
Guidelines for Implementing Pair Programming in

Introductory CS Courses: Experience Report
Alex Radermacher, Gursimran S. Walia, Sameer Abufardeh, Oksana Myronovych

Department of Computer Science
North Dakota State University

Fargo, ND 58108
{alex.radermacher, gursimran.walia, Sameer.abufardeh, Oksana.myronovych}@ndsu.edu

ABSTRACT

Pair programming has been shown to be an effective method of

improving the learning outcomes of students in introductory

computer science courses. However, much of the existing

literature related to pair programming does not focus how to

effectively implement pair programming. Researchers studying

multiple aspects of pair programming have conducted several

empirical studies at our university over the past two years. During

this time, researchers received valuable feedback from course

instructors about the effects of implementing pair programming in

their introductory computer science courses. These instructors

also expressed concerns about the use of pair programming in

their courses. These include being able to ensure equal

participation from pair members and not being able to assess

individual learning outcomes effectively. This paper reports these

concerns and uses empirical evidence from the pair programming

studies to provide guidelines for the effective use of pair

programming in beginning programming courses. Based on the

experiences at our university along with those experiences of

other researchers, we provide recommendations for course design

when using pair programming.

Keywords

Pair programming, CS1, CS2, course design.

1. INTRODUCTION
Pair programming began as part of Extreme Programming (XP),

an agile development methodology proposed by Beck, et al. to

help software developers be more productive [1]. Initial research

showed that pair programming was effective when used by

professionals [17]. Eventually researchers conducted studies that

found the pair programming to be effective when used by novice

programmers as well [13, 25].

Over the past two years, numerous studies related to pair

programming has been conducted in introductory computer

programming courses at our university. This research has

produced valuable empirical evidence related to student learning,

pairing strategies, and other aspects of pair programming (e.g.,

student-teacher interactions, students’ mental model consistency

etc). Throughout these studies, the primary researchers have

worked closely with the three instructors who taught the classes in

which the studies were conducted. These instructors have

provided valuable feedback regarding the implementation of pair

programming in introductory computer science courses to help

researchers better understand the results, and on how to address

the problems faced while designing a programming course when

using pair programming.

Although pair programming has been demonstrated to be an

effective method of improving student learning, there are several

considerations that must be taken into account when using pair

programming in an introductory computer science course.

Examples include as how students will be paired and how to

ensure that both pair members are contributing. Previous research

has already provided many useful suggestions including strategies

for effectively pairing students [5, 26], but there is a general lack

of empirical evidence to guide course design when using pair

programming.

This paper reports on instructor concerns regarding the use of pair

programming and provides data from empirical studies conducted

at several universities (including the studies conducted at the

researchers’ university) in order to provide a set of

recommendations that can be used to most effectively implement

pair programming in an introductory computer science course.

Similar reports have been published by other authors in the past

[3, 27, 28], but these papers mainly focus on problems

experienced at a single university or were published several years

ago and do not take recent advancements or discoveries into

account.

The remainder of this paper is constructed as follows: Section 2

provides a brief description of pair programming and presents

related work that forms the basis of this study. A description of

the empirical studies on pair programming used to identify issues

and solutions is given in Section 3. Section 4 lists instructor

feedback and concerns which are validated by empirical evidence.

Recommendations for remedying these problems are presented in

section 5. Conclusions to this study are given in section 6. Finally,

Section 7 briefly describes the ongoing and future research studies

in pair programming at researcher’s university.

2. BACKGROUND
Pair programming describes a programming technique where two

programmers work together on the same programming task. One

programmer, referred to as the driver, actively controls the

keyboard and writes code, while the other programmer, referred to

as the navigator, watches the driver for mistakes and helps him

develop the code. The pair programmers work collaboratively

while frequently exchanging the roles of the driver and the

navigator.

The term pair programming was first used by Beck and his

colleagues in Extreme Programming Explained: Embrace Change

[1]; however, the effects of collaborative programming [17] as

well as the use of collaborative learning in introductory computer

science courses have previously been studied [21].

Substantial empirical studies were performed by Williams, et al. at

NCSU (North Carolina State University) [24, 25] and McDowell,

et al. at UCSC (University of California Santa Cruz) [3, 13, 14]

that provided significant evidence to support the use of pair

programming in introductory computer science courses, showing

that it improved student performance on programming exercises

and improved their enjoyment of programming. These initial

findings provided good support for the use of pair programming

in introductory computer science courses and motivated further

research into pair programming.

Since then, additional empirical research has studied other aspects

of pair programming such as the effects on student retention [7,

15], the effects of pair programming on female computer science

students [2], and factors related to creating effective student pairs

[5, 26].

Recent research conducted at NDSU (North Dakota State

University) has provided further empirical support for the

effectiveness of pair programming [20], studied newer alternative

methods for pairing students that improved the pair performance

[18], examined the effects that the use of pair programming has on

student-instructor interactions during laboratory sessions [19],

and are currently evaluating the effects of pair programming on

mental-model consistency in introductory computer programming

students.

The following section provides a more in-depth description and

analysis of pair programming studies from which information has

been extracted to support the research findings presented in later

sections of the paper.

3. RELATED EMPIRICAL STUDIES
This section presents a more detailed description of the empirical

studies on pair programming in an educational context and the

major results from those studies. This is done to highlight that the

identified issues with pair programming implementation (as

discussed in Section 4) and the proposed solutions to those issues

(as discussed in Section 5) are based on a large collection of

empirical evidence across different research sites.

Inclusion and Exclusion Criteria: Papers included in the analysis

were those that reported the results from an empirical

investigation of pair programming or using the results of previous

empirical studies to form conclusions. Some studies were

excluded from the analysis as they included participating subjects

who worked together remotely or because the participating

subjects were not students. Also, those studies whose findings

were unclear or ambiguous were excluded from the analysis.

Many papers present results or analysis based on the same data

sets or share common authors. Because of this, papers are grouped

according to the university site where the research was conducted.

3.1 NCSU Studies
A large number of studies related to pair programming have been

conducted at NCSU over the course of the last decade [12, 16, 22,

25, 26, 27, 28].

The initial studies conducted at NCSU were part of an NSF

(National Science Foundation) supported longitudinal study [25].

During the Fall 2001 semester, two sections of the introductory

programming course were included in the experiment. The study

required 69 subjects in one section to work individually and

served as a control group, whereas 44 subjects in the other section

served as the experimental group and used pair programming. The

focus of this study was to gain a better understanding of how pair

programming affected student learning and performance.

Quantitative results from the study indicated that pair

programming improved student performance on programming

exercises, but that pair programming did not improve student

performance on exams. The study also included qualitative

findings related to student behavior when using pair programming

and role of instructors during laboratory sessions. One of the most

notable reported observations was that when pair programming

was used in programming labs, students appeared to spend less

time waiting for assistance from an instructor.

A follow-up study that added additional data points was

conducted during Spring 2002 semester [16]. An additional 102

subjects worked individually as part of a control group and 280

subjects used pair programming. As with the previous study, only

the results of freshman and sophomore students who took the

course for credit were analyzed. The results of this study indicated

that pair programming was effective for improving the learning

outcome for non-computer science majors, but did not have a

significant impact on computer science majors. The study also

provided further support that the use of pair programming did not

improve student performance on exams. The study also provided

qualitative analysis that stipulated that random pairing led to

incompatible pairs in a small percentage of cases and that lab

instructors should monitor pairs to ensure that pair programming

is being used properly.

Katira, et al. conducted a study during the Fall 2002 and Spring

2003 semesters to study factors influencing pair compatibility [11,

12]. The study analyzed 564 students from three courses for pair

compatibility based on personality, skill level, perceived

competence, and self-esteem. There was moderate support to

indicate that partners with different personality types were more

compatible and that pairs were more effective if both partners

believed that they had similar levels of technical competence.

However, the researchers did not find that the pair compatibility

was dependent on actual skill level (measured by performance on

a midterm exam).

Shrikanth, et al. reported on student and instructor perceptions of

the viability of pair rotation [22]. Subjects in this study were 240

students in a CS1 course and 170 students in an undergraduate SE

(software engineering) course, which were a subset of the subjects

from the experiment conducted by Katira [11]. All participating

subjects used pair programming and were assigned four partners

over the course of the semester. The researchers concluded that

pair rotation had benefits for both students and instructors, but

also pointed out several issues that could arise when constantly

adjusting student pairs. One prominent problem identified by the

authors is that mandatory pair rotation could break apart a

functional pair and result in new pairs that were less effective. The

researchers noted that because only a small number (17) of

subjects from the SE course completed the survey, the results may

be slightly biased.

Williams, et al. released a follow-up study to further examine

compatibility of student pair programmers [26]. This study used

data collected by Katira [11] but included 133 additional subjects

in a software engineering course in the Fall 2004 and Spring 2005

semesters. Researchers examined the impact that learning styles,

work ethic, and time management skills had on pair compatibility.

Results of the study indicated that pairing Myers Briggs sensors

with Myers Briggs intuitors, classifications (used to describe how

people perceive and understand information) produced more

compatible pairs and that pairing students with similar work ethics

also produced more compatible pairs.

Williams also released two papers that provided a list of lessons

learned from using pair programming [27] and suggested

guidelines for using pair programming [28]. These papers were

based on the results of previous studies conducted at NCSU. A

few of the major points not discussed in previous work include

providing students with training in order to help them understand

how to effectively use pair programming. Both papers also

expressed the importance of ensuring that instructors or other

teaching staff are engaged in managing pair interactions.

3.2 UCSC Studies
Several early studies of pair programming were conducted at

USCS by McDowell and colleagues [3, 13, 14, 15].

The initial studies conducted at UCSC evaluated the effectiveness

of pair programming on the performance and retention of female

students in computer science or related fields [13, 15]. Subjects

for the study were students enrolled in two different sections of

the introductory programming course during the 2000 – 2001

academic year. In this study, 172 subjects from one section

completed programming assignments in pairs, while 141 subjects

from the other section work independently. The results of this

research indicated that pair programming improved student grades

on programming exercises, but did not improve student grades on

exams. The authors also noted that the use of pair programming

may lead to fewer students dropping the course, but did not have a

sufficient number of data points to determine if this result also

applied specifically to female students.

McDowell, et al. reported on another study focused on examining

the effects of pair programming on student persistence,

perception, and performance [14]. Subjects in this study were 555

students enrolled in the introductory programming class in the

2000 – 2001 academic year, and also included the subjects from

the previous study. The major findings of this study were that

students who use pair programming indicated that they were more

confident in their work, were more satisfied with programming,

and had greater enjoyment than students who worked

independently.

Beven, et al. released an experience report, providing guidelines

and suggestions for successfully implementing pair programming

[3]. The recommendations were based on lessons learned and

issues experienced with implementing pair programming during

the 2000 – 2001 academic year. The researchers reported the main

sources of difficulty were due to student scheduling conflicts and

large disparities in skill level. The authors of the study also

presented suggestions for course design (e.g. designing lab

exercises that can be completed with minimal out-of-class time

requirements.) and pair arrangement, indicating that students of

somewhat similar ability should be paired together.

3.3 NDSU Studies [Researchers’ Site]
Recently, a series of studies related to pair programming were

conducted at NDSU [18, 19, 20].

Radermacher et al., reports on the results of two different studies

conducted during the Spring 2010 semester [18]. Subjects in the

first study were 35 students enrolled in one section of the CS1

course and the second study included 39 students enrolled in two

sections of the CS2 course. Subjects in the CS1 course were split

into two groups, one which used pair programming and one that

did not; whereas the subjects in the CS2 course were paired based

on declared major. Researchers reported that subjects from both

the CS1 and CS2 courses indicated that they felt pair

programming improved their understanding of programming

concepts. Another major result indicated that pairing a computer

science (CS) student with a non-computer science (nonCS)

student produced less compatible pairs as compared to CS-CS

pairs and nonCS-nonCS pairs.

Radermacher et al., reported another empirical study that

investigated the effects of pair programming on student-instructor

interactions during programming laboratory sessions [19].

Subjects in this study were 44 students enrolled in one section of

the CS1 course and 53 students enrolled two sections of the CS2

course during the Fall 2010 semester. Subjects in the CS1 course

alternated between using pair programming and working

individually during lab sessions, whereas subjects in the CS2

course only used pair programming. Researchers monitored these

lab sessions, marking the number of questions asked, how long it

took before an instructor could address the subject’s question, and

how long the instructor spent interacting with the subject. Results

of the study indicate that when pair programming is used, students

spend less time waiting for assistance from an instructor and

spend more time interacting with the instructor, likely due to a

decrease in questions related to syntax errors or other minor

problems.

An ongoing experiment at NDSU investigated the effects of

pairing subjects based on their mental model consistency levels

(ranging from highly consistent to highly inconsistent) at the

beginning of the semester to evaluate changes in the students’

mental model consistency and their programming performance

[20]. The initial evidence suggest that such a pairing strategy can

be an effective way if previous performance data is not available

and that certain mental-model-based pairing arrangements (and

not all) are more effective in migrating students towards greater

consistency and resulted in better performance on exams.

3.4 Dickinson College Studies
Braught, et al. reported a study examining the effects of pairing

students based on ability [5]. Subjects in this study were 259

students enrolled in 13 different sections of an introductory

programming course taught between 2005 and 2008. 142 subjects

were pair based on ability, 41 were paired randomly, and 72 were

not paired. Subjects in this study completed weekly programming

assignments and completed 5 exams, two of which were

programming exams where students produced code to complete a

program. The results from this study indicate that students in the

lower quartile who were paired by ability performed better on

programming exams than students in the lower quartile who were

paired randomly or not paired at all. This contrasts earlier research

findings from studies conducted at NCSU and UCSC, which did

not find any significant improvement for students on exams when

using pair programming.

Braught, et al. also examined how the results of their studies

compared with the results from several previous studies conducted

by other researchers [6]. The results of this report provided

additional support for the conclusion that pair programming

provided benefits for students at lower SAT levels. The

researchers also provided qualitative data supporting the

conclusion that using pair programming in programming labs

resulted in fewer questions related to syntax issues or other lower-

level problems.

3.5 University of Sussex Studies
Chaparro, et al. examined factors that affected student perceptions

of the effectiveness of pair programming [9]. Subjects in the study

were 80 post-graduate students enrolled in an object oriented

programming course during the Fall 2004 semester. Researchers

found that subjects preferred to work with someone who was

similarly skilled or more skilled than they were and that subjects

felt that pair programming was not useful if the programming task

was not challenging. Observational evidence also suggested that

when a large skill disparity existed between subjects, the more

skilled subject would take control and relegate the less skilled

subject to a more passive role.

4. PROBLEMS AND CONCERNS WITH

THE USE OF PAIR PROGRAMMING
This section details problems encountered by instructors when

using pair programming in an introductory computer science

course. Both issues which have been encountered at NDSU and

issues which have been described in previous research papers are

considered. Although these problems and concerns are broken

into five different categories, there is often a relationship between

them, such that issues experienced in one area often exacerbate

problems that are experienced in another area.

4.1 Individual Assessment
Difficulties assessing individual learning and ensuring that both

partners are benefiting from the use of pair programming is a

common issue with pair programming. One of the CS1 instructors

at our university also expressed concerns that several students,

who he felt would not have normally been able to pass the class,

had been able to pass the class because their partner was able to

help carry them. Table 1 shows the percentage of students passing

the course when pair programming was used and when students

worked individually based on eight semesters of historic data for

this instructor’s class.

This shows a large increase in the number of students who were

able to pass the course. The results are even more skewed than

they appear as the drop-rate for the course during the Fall 2010

semester was slightly more than 8% compared to the historical

drop-rate of approximately 18%. Bevan, et al. had also reported

that students were willing to submit assignments that only one of

the students had completed [3]. Williams, et al. also expressed

similar concerns when they discovered instances of students who

performed well on pair programming exercises, but scored poorly

on exams, suggesting that one partner may have been completing

most or all of the work on the programming exercises, a

phenomenon that was also observed by our own instructors.

Another of our instructors indicated that this may have been an

issue as a large number of laboratory assignments required

substantial out-of-class work in order to complete and that there

was no easy way to ensure that both partners had contributed

equally.

4.2 Subject Pairing
Another issue regarding pair programming is ensuring that

individuals are paired effectively, especially early in the semester.

Previous research has indicated that it is not feasible to match

students based on existing available measures such as SAT score,

GRE, or GPA [26]. Nagappan, et al. reported that random pairing

lead to conflict and undesirable pairs so it is preferable to avoid

pairing students in this manner [16]. It was also reported that

pairing computer science students with non-computer science

students produced less compatible pairs [18].

Another important aspect related to effective pairing is ensuring

that student pairs will be able to work together outside of the class

room. One of our instructors mentioned that some of the

laboratory assignments were too large to be completed during

laboratory periods. In these cases, it is necessary to ensure that

students will be able to meet outside of class to work on the

assignment together. Bevan, et al. also described this issue, but

indicated that students may not always report scheduling issues or

conflicts with their partner [3].

Another important question to ask is how frequently pairs should

be rearranged, if at all. Because some pairs will experience

scheduling conflicts or other problems that make the pair

ineffective, some amount of rearrangement will be necessary.

Shrikanth, et al. indicated that while there were advantages of

frequently exchanging pairs, a large number of students indicated

that it took time to become adjusted to working with a new

partner and that in some cases, mandatory rearrangement

destroyed an existing, highly compatible pair [19].

4.3 Assignments and Grading
One of the major issues with pair programming that we

experienced was related to assignments and grading. One of the

CS1 instructors found that when pair programming was used in

his course the student grades became much less diverse, making it

more difficult to assign letter grades based on performance.

Figure 1 shows the distribution of student grades when pair

programming was used and compares it against the student grades

from eight semesters of historic data. A chi square test indicated

that the distributions were significantly different (p = .014).

Additionally, drop rates for the course were significantly lower (p

< 0.001), and the student grades were spread over a much

narrower range when pair programming was used.

This is likely related to issues discussed in 4.1 where it was

reported that one student may be carrying the other. McDowell, et

al. also discussed the possibility of grade inflation, i.e. that higher

grades are a result of one member carrying the team [13]. Based

on analysis of student performance at our university, it appears as

though this was the cause of the change in grade distribution.

Chaparro, et al. also discussed the necessity of ensuring that

programming assignments are adequately challenging [9].

Students in that study indicated that pair programming was not as

beneficial if the assigned programming task was trivial or quickly

completed. One of our instructors reported a similar issue for the

last assignment of the semester, which was designed to be

considerably easier than previous assignments. He noted few

Table 1. Pre and Post Pair Programming Result

Comparison of Student Grades

Percentage of Students Receiving

Grade or Better

Historical

Average

Fall

2010

Percentage of students with ‘C’ or

better grade.

68.87% 74.68%

Percentage of students with ‘D’ or

better grade .

80.21% 93.57%

Figure 1. Comparison of Distribution of Student Grades

Prior to and After Implementing Pair Programming

cases where one member of the pair would individually complete

the exercise within the first day of it being assigned without

consulting his or her partner.

4.4 Pair Interaction
Multiple researchers have indicated issues with how students

interact. Williams, et al. found that students often did not properly

use pair programming [25]. The most common identified issues

from that research were that some pairs did not exchange roles at

all while pair programming. Researchers at NCSU also indicated

that students were unlikely to change roles unless instructed to

during lab sessions. Chaparro, et al. did note that students should

be allowed some leeway in role-switching and that forcing

students to exchange roles at set intervals could interrupt students

[9].

Our experiences were similar. In instances where the instructor

took an actively role in telling pairs to switch, students were more

likely to exchange roles, but if they were not instructed to do so, it

was not uncommon for students to maintain whichever role that

they had assumed for the duration of the session.

4.5 How Much Pair Programming
All three of the instructors with whom we worked have expressed

some concern that using pair programming for every assignment

may not be as effective as only using it for some assignments. One

of the CS1 instructors felt that most new students did not have any

programming experience and that until they gained some

knowledge they wouldn’t be able to effectively pair. One

instructor noted instances where one member of a pair would

actually be providing the other with incorrect information.

Another instructor felt that some assignments should be

completed individually in order to provide the opportunity for

students to show that they have mastered the ability to program

without the need of a partner. The instructor stated that

occasionally one partner would be absent from a lab and that the

remaining student seemed to struggle, even though that student

had done well on previous lab exercises.

Previous research has also indicated that some students feel that it

is important to work individually [20].

5. SOLUTIONS AND RECOMENDATIONS
Based on our own experiences along with recommendations and

results from previous research, we present a list of possible

solutions for the problems and issues outlined in the previous

section. It is believed that these suggestions are useful and valid

as they are based on over a decade of empirical studies conducted

on pair programming.

5.1 Individual Assessment
Our instructors felt that there were multiple ways to approach this

issue. One instructor felt that having students complete lab

assignments using a mixture of pair programming and individual

work would provide an adequate amount of information to

determine that students are able to program. When using a

laboratory format where students alternated between using pair

programming and working individually for each programming

exercise, this instructor felt that there were not students who were

able to take advantage of a strong partner in order to pass the

class.

Another instructor indicated that having short in-class quizzes of

programming concepts related to the previous lab would help to

determine if each member of a pair was learning and benefitting

equally. There were some concerns that this would create an

excessive amount of work, but it was suggested that using a

student response system could reduce the necessary amount of

work on the part of the instructor and other researchers have

reported that using these systems have other positive impacts in

introductory programming courses [8].

In their initial studies, Williams, et al. implemented a policy

where only students who scored above a certain threshold on

exams were allowed to work in pairs [25]. This was done in order

to prevent cases where an unskilled individual could get by with

having a strong partner. This solution may not be ideal, especially

given the recent findings that pair programming is most beneficial

to students in the lowest quartile and improves their performance

on programming exams [5]. This evidence contradicted most

existing evidence regarding student performance on exams,

although the authors were careful to distinguish that this was only

observed on programming exams where students wrote code, and

not the more traditional, written exams.

5.2 Subject Pairing
Subject pairing can be somewhat difficult. Williams, et al.

indicated that some effective methods do exist [26, 27]. The most

effective methods were pairing based on midterm score, pairing a

Myers Briggs sensor with a Myers Briggs intuitor, or pairing

students who share a similar work ethic.

Pairing based on midterm grade is impossible at the beginning of

a CS1 course, but previous exam scores could be used to pair

students taking a CS2 course. There is a general consensus among

researchers that pairing students who are similar in ability,

perceived or actual, is effective [5, 12]. Radermacher, et al. are

investigating using mental model consistency tests to assess

students and create pairs based on similarities in mental model

consistency [20]. These tests which were developed by Bornat

and Dehnadi can be given to students without previous

programming experience and provide a reasonable assessment of

ability [4, 10]. Other possible tests described by Simon, et al.

could also be used to create ability-based pairs at the onset of the

semester [23]. However, the effectiveness of such pairing methods

have not been well examined.

Considering that all of our instructors also felt that it was

important for students to complete some assignments individually,

another possibility is to have students complete several initial

programming exercises individually before assigning them to

pairs. This approach provides data which can be used to construct

ability-based pairs.

5.3 Assignments and Grading
Previous studies have provided several different suggestions

regarding assignments. Chaparro, et al. indicated that it is

important to create programming exercises that were sufficiently

challenging, otherwise students were less likely to view pair

programming as beneficial [9].

Guidelines published by Beven, et al. indicated the importance of

producing programming exercises as a function of class time [3].

The authors stipulate that programming exercises should be

designed so that the vast majority of students will be able to

complete the assignment during scheduled laboratory sessions.

Williams, et al. suggest balancing the grades so that individual

work has a larger impact on the overall grade than pair work [28].

In the introductory programming class at NCSU, pair work only

accounts for 10% of the total grade. Another policy for other

courses where pair programming was used is that students must

have a passing grade on the individual portions of the class in

order to receive a passing grade [27]. This solution allows pair

programming to benefit a student, but does not allow them to pass

unless they’ve shown sufficient individual mastery of the course

content.

5.4 Pair Interaction
Multiple researchers have indicated that a closed, mandatory

laboratory session is necessary for pair programming to be

effective [3, 27]. This has multiple benefits because it allows

instructors to monitor students and alleviate the lack of role

switching [25]. It can also reduce the frequency of scheduling

conflicts [3]. Additionally, this affords instructors an opportunity

to reinforce good pair programming behavior by reminding

students to frequently switch roles.

In courses where a substantial amount of work must be completed

outside of the course, Williams, et al. indicate the importance of

using a peer review system [28]. This allows instructors to

identify dysfunctional pairs where partners are either unable to

find sufficient time to work together or where one partner is

completing a majority of the work.

5.5 How Much Pair Programming
There is no doubt that pair programming is beneficial to student

learning [5, 25] and enjoyment [14] and has benefits for

instructors as well [19]. It has already been suggested that pair

work should not constitute the majority of a student’s grade, but

has not been suggested how much pair activity should be

conducted.

In introductory computer science courses where a majority of

subjects have little or no experience with programming, our

instructors feel that they should spend some initial time at the

beginning of the course working individually in order to acquire

some programming knowledge before working with a partner.

Such an arrangement has several benefits. First, it provides

performance data that can be used to pair based on ability, as most

researchers agree that this is the most desirable pairing strategy [3,

5, 26]. Secondly, it allows a period of time for students who do

not intend to complete the course to drop before pairs are created,

minimizing the need to re-pair students. Additionally, initial

programming assignments are more likely be trivial or

straightforward and may not benefit from the use of pair

programming [9].

6. CONCLUSION
Pair programming is an area where there are still many

unanswered questions, but there is a consensus among researchers

that the use of pair programming is beneficial for multiple

reasons. However, there are many important considerations to

keep in mind when implementing pair programming for the first

time.

Based on the experiences at our university along with study

results and recommendations from previous researchers, it is

suggested that when using pair programming for the first time, the

following guidelines should be followed in order to ensure the

experience is beneficial and enjoyable for students and

instructors:

 Subjects should be paired such that they have similar levels

of ability and availability. This can be accomplished by

requiring students to complete some minimal amount of

work individually to determine programming ability. The use

of mental model consistency or other tests may also be used

to establish a reasonable baseline [4, 23].

 Mandatory laboratory sessions are essential in order to

ensure that students are appropriately using pair

programming and that there is at least some time that both

partners can easily meet.

 Programming exercises should be designed such that they do

not require substantial amounts of out-of-class time in order

to complete. It should be largely possible for students to

complete programming exercise assignments during

scheduled laboratory sessions. This is suggested in order to

maximize the amount of time spent in a location where

appropriate pair programming behavior can be reinforced by

an instructor and to minimize the amount of time where

students can engage in undesired behavior.

 Pair work should not constitute a majority of a student’s

grade, but students should still be graded on their ability to

write code. Using programming exams allows instructors to

grade more heavily on programming ability and also

provides an opportunity for additional individual assessment.

 When using pair programming in introductory courses, pairs

should be re-arranged. This exposes students to a larger

number of classmates and helps them make acquaintances,

whom they will likely work with in future classes. It also

helps alleviate problems with ineffective pairs and ensures

that no one student will be stuck with a bad partner.

These guidelines, while useful, should not be considered concrete.

In some cases, there is not sufficient empirical data to provide

strong support for one particular point of view. Additionally,

every university faces different conditions and constraints.

7. ONGOING AND FUTURE WORK
There is no doubt that pair programming is beneficial to student

learning [5, 25] and enjoyment [14] and has benefits for

instructors as well [19]. One question which does not contain a

significant amount of empirical support is to what extent pair

programming should be used in introductory computer science

courses. In the future we plan to investigate this by studying

student learning outcomes when pair programming is only used

partially. Two possible approaches are to only use PP during the

second half of the semester, and to alternate between using pair

programming and working individually

8. REFERENCES
[1] Beck, K. 2000. Extreme Programming Explained: Embrace Change.

Addison-Wesley, Reading, MA, USA.

[2] Berenson, S.B., Slaten, K. M., Williams, L., and Ho, C. 2004.

Voices of women in a software engineering course: reflections on

collaboration. Journal on Educational Resources in Computing. 4,

1, (March 2004), Article 3.

[3] Bevan, J., Werner, L., and McDowell, C. 2002. Guidelines for the

Use of Pair Programming in a Freshman Programming Class. In

Proceedings of the 15th Conference on Software Engineering

Education and Training (CSEET '02). IEEE Computer Society,

Washington, DC, USA, 100-108.

[4] Bornat, R., Dehnadi, S., and Simon. 2008. Mental models,

consistency and programming aptitude. In Proceedings of the tenth

conference on Australasian computing education (ACE '08), S.

Hamilton and M. Hamilton (Eds.), Vol. 78. Australian Computer

Society, Inc., Darlinghurst, Australia, Australia, 53-61.

[5] Braught, G., MacCormick, J., Wahls. T. 2010. The benefits of

pairing by ability. In Proceedings of the 41st ACM technical

symposium on computer science education (SIGCSE '10). ACM,

New York, NY, USA, 249-253.

[6] Braught, G., Wahls, T., Eby, L. M. 2011. The Case for Pair

Programming in the Computer Science Classroom. ACM

Transactions on Computing Education, 11, 1 (February 2011),

Article 2.

[7] Carver, J. C., Henderson, L., He, L., Hodges, J., and Reese, D.

2007. Increased Retention of Early Computer Science and Software

Engineering Students Using Pair Programming. In Proceedings of

the 20th Conference on Software Engineering Education &

Training (CSEET '07). IEEE Computer Society, Washington, DC,

USA, 115-122.

[8] Chamillard, A. T.. 2011. Using a student response system in CS1

and CS2. In Proceedings of the 42nd ACM technical symposium on

Computer science education (SIGCSE '11). ACM, New York, NY,

USA, 299-304.

[9] Chaparro,, E.A, Yuksel, A., Romero, P., and Bryant, S. 2005.

Factors affecting the perceived effectiveness of pair programming in

higher education. In Psychology of Programming Interest Group

17th Workshop, 5-18.

[10] Dehnadi., S. 2006. Testing programming aptitude. In Proceedings of

the Psychology of Programming Interest Group 18th Annual

Workshop, 22-37.

[11] Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., and

Gehringer, E. 2004. On understanding compatibility of student pair

programmers. In Proceedings of the 35th SIGCSE technical

symposium on computer science education (SIGCSE '04). ACM,

New York, NY, USA, 7-11.

[12] Katira, N., Williams, L., and Osborne, J. 2005. Towards increasing

the compatibility of student pair programmers. In Proceedings of the

27th international conference on Software engineering (ICSE '05).

ACM, New York, NY, USA, 625-626.

[13] McDowell, C. Werner, L., Bullock, H., and Fernald, J. 2002. The

effects of pair-programming on performance in an introductory

programming course. SIGCSE Bulletin. 34, 1 (February 2002), 38-

42.

[14] McDowell, C., Werner, L., Bullock, H., and Fernald, J. 2003. The

impact of pair programming on student performance, perception,

and persistence. In Proceedings of the 25th international conference

on software engineering (ICSE ’03), IEEE Computer Society,

Washington, DC, USA, 602-607.

[15] McDowell, C., Werner, L., Bullock, H., and Fernald, J. 2006. Pair

programming improves student retention, confidence, and

programming quality. Communications of the ACM, 49, 8 (August

2006), 90-95.

[16] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller,

C., and Balik, S. 2003. Improving the CS1 experience with pair

programming. SIGCSE Bulletin. 35, 1 (January 2003), 359-362.

[17] Nosek, J. The case for collaborative programming. 1998.

Communications of the ACM, 41, 3 (March 1998), 105-108.

[18] Radermacher, A., and Walia, G. S. 2011. Investigating the effective

implementation of pair programming: an empirical investigation. In

Proceedings of the 42nd ACM technical symposium on Computer

science education (SIGCSE '11). ACM, New York, NY, USA, 655-

660.

[19] Radermacher, A., and Walia, G. S. 2011. Investigating student-

instructor interactions when using pair programming: an empirical

study. To be published in 24th Conference on Software Engineering

Education & Training (CSEET ’11). IEEE Computer Society,

Washington, DC, USA.

[20] Radermacher, A. Walia, G. S., Myronovych, O., Abufardeh, S., and

Rummelt, R. 2010. Investigating the use of pair programming at

North Dakota State University: a family of empirical studies.

Technical report, the department of computer science, North Dakota

State University, http://cs.ndsu.edu/research/reports.

[21] Sabin, R. E., and Sabin E. P. 1994. Collaborative learning in an

introductory computer science course. In Proceedings of the 25th

SIGCSE symposium on computer science education (SIGCSE '94).

ACM, New York, NY, USA, 304-308.

[22] Srikanth, H., Williams, L., Wiebe, E., Miller, C., and Balik, S. 2004.

On Pair Rotation in the Computer Science Course. In Proceedings

of the 17th Conference on Software Engineering Education and

Training (CSEET '04). IEEE Computer Society, Washington, DC,

USA, 144-149.

[23] Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., de

Raadt, M., Haden, P., Hamer, J., Hamilton, M., Lister, R., Petre, M.,

Sutton, K., Tolhurst, D., and Tutty, J. 2006. Predictors of success in

a first programming course. In Proceedings of the 8th Austalian

conference on Computing education - Volume 52 (ACE '06), Denise

Tolhurst and Samuel Mann (Eds.), Vol. 52. Australian Computer

Society, Inc., Darlinghurst, Australia, Australia, 189-196.

[24] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. 2000.

Strengthening the case for pair programming. IEEE Software. 17, 4

(July 2000), 19-25.

[25] Williams, L., Wiebe, E., Yang, K., Ferzli, M., and Miller, C. 2002.

In support of pair programming in the introductory computer science

course. In Computer Science Education, 12, 3 (September 2002),

197-212.

[26] Williams, L., Layman, L., Osborne, J., and Katira, N. 2006.

Examining the Compatibility of Student Pair Programmers. In

Proceedings of the conference on AGILE 2006 (AGILE '06). IEEE

Computer Society, Washington, DC, USA, 411-420.

[27] Williams, L. 2007. Lessons learned from seven years of pair

programming at North Carolina State University. SIGCSE Bull. 39,

4 (December 2007), 79-83.

[28] Williams, L., McCrickard, D. S., Layman, L., and Hussein, K. 2008.

Eleven Guidelines for Implementing Pair Programming in the

Classroom. In Proceedings of the Agile 2008 (AGILE '08). IEEE

Computer Society, Washington, DC, USA, 445-452.

