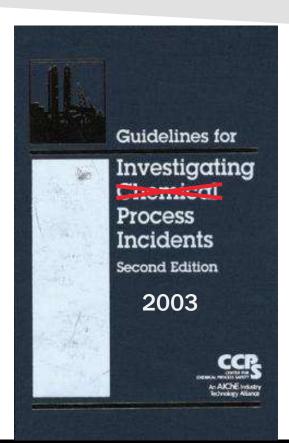


Guidelines for Investigating Process Safety Incidents Third Edition, CCPS

Hazards 29 – Incident Investigation Roger Stokes BSc CEng FIChemE MInstPet Thursday 23 May 2019 | 16:25 PM-16:50 PM

About CCPS

<u>Center</u> for Chemical Process Safety



 March 1985, in response to Bhopal, AIChE formed CCPS with seventeen charter member companies.

www.aiche.org/ccps

- A collaborative effort to eliminate catastrophic process incidents by advancing state of the art technology and management practices, serving as the premier resource for information on process safety, supporting process safety in engineering, and promoting process safety as a key industry value
- Now over 100 member companies including most of the world's leading chemical, petroleum, pharmaceutical and related manufacturing companies.
- Over 100 books and products

Evolution

Acknowledgements – CCPS & Subcommittee

Dan Sliva – CCPS Staff Liaison

Jerry Forest	Celanese (Chair)	
Michael Broadribb	BakerRisk	
Laurie Brown	Eastman	
Chonai Cheung	Contra Costa County	
Eddie Dalton	BASF	
Carolina Del Din	PSRG	
Scott Guinn	Chevron Corporation	
Christopher Headen	Cargill	
Kathleen Kas	Dow Chemical Company	
Mark Paradies	System Improvements Inc.	
Nestor Paraliticci	Andeavor	

Muddassir Penkar	Evonik Canada Inc.	
Morgan Reed	Exponent	
Meg Reese	Occidental Chemical Corp.	
Marc Rothschild	DuPont	
Joy Shah	Reliance Industries Ltd	
Dan Sliva	CCPS Staff Advisor	
Bob Stankovich	Eli Lilly	
Lee Vanden Heuvel	ABS Consulting	
Terry Waldrop	AIG	
Scott Wallace	Olin	
Della Wong	Canadian Natural Resources	

Acknowledgements – Peer Reviewers

Amy Breathat	NOVA Chemicals Corporation	
Steven D. Emerson	Emerson Analysis	
Patrick Fortune	Suncor Energy	
Walter L. Frank	Frank Risk Solutions	
Barry Guillory	Louisiana State University	
Jerry L. Jones	CFEISBC Global	
Gerald A. King	Armstrong Teasdale LLP	
Susan M. Lee	Andeavor	
William (Bill) D. Mosier	Syngenta Crop Protection, LLC	
Mike Munsil	PSRG	
Pamela Nelson	Solvay Group	
Katherine Pearson	BP Americas	
S. Gill Sigmon	AdvanSix	

BakerRisk Project Team

Quentin Baker

Michael Broadribb

Cheryl Grounds

Thomas Rodante

Roger Stokes

Major Process Safety Incidents since 2003

- 2003 Repsol Puertollano Refinery Explosion
- 2004 Sonatrach Skikda, Algeria Explosion
- 2005 BP Texas City Explosion
- 2005 HOSL Buncefield Explosion
- 2008 Alon Refinery Explosion
- 2009 Caribbean Petroleum Explosion
- 2010 BP Macondo/ Deepwater Horizon
- 2011 TEPCO Fukushima Daiichi

Major Process Safety Incidents since 2003

- 2012 Chevron Richmond Refinery Fire
- 2013 Williams Olefins Explosion / West Fertilizer explosion
- 2014 Shell Moerdijk Explosion
- 2015 ExxonMobil Torrance Refinery Explosion
- 2016 BASF Ludwigshafen ethylene pipeline explosion
- 2017 Grenfell Tower Fire
- 2018 Bayernoil, Germany Explosion

Incident Investigation Developments 2003-2019

- Methodologies used to investigate process incidents
- Attitudes about investigation focus and practices
- Technological developments
- Regulatory agency expectations
- Legal rulings regarding admissibility of evidence and expert opinions

Focus of Third Edition

- Primarily process safety incidents, but concepts equally applicable to other potentially hazardous industries -
 - Manufacturing / mining
 - Construction
 - Transportation
- Emphasis on investigating near-misses and minor incidents
 - Had the potential for significant damage /injury and should be considered for a higher level of investigation commensurate with the potential consequence.
- Witness management, evidence analysis, the scientific method, and human factors
- To be more global
 - Flexibility in the investigation approach for varying regulatory, industry, cultural, and situational considerations.

Role of Third Edition

- Detailed reference on investigation of process safety incidents in processing facilities
- Guideline
 - Cultures
 - Corporate approaches
 - Experience level
- Several suggested methodologies for activities including:
 - Timeline development
 - Causal Factor Determination
 - Root Cause Determination

Target Audiences

Company management

 Chapters 1 – 4 (Introduction, Incident Causation, Overview of Investigation Methodologies, and Designing an Incident Investigation Management System)

Novice investigator

Guide for learning the entire investigation process.

Experienced investigators

 Reference when they require information on a specific subject or a refresher on a topic.

Terminology

Incident

 An unusual, unplanned, or unexpected occurrence that either resulted in, or <u>had the potential to</u> result in harm to people, damage to the environment, or asset/business losses, or loss of public trust or stakeholder confidence in a company's reputation.

Terminology

Near-Miss (Near Hit)

- Follows the lead of HSE Guide 245 and API RP 585 in treating a near-miss as an incident.
- Significant philosophical shift as many companies have treated near-misses as events that did not have to be investigated like accidents.
- The book encourages investigating near-misses with the same rigor as accidents based on potential severity (damage/injury) of the near miss.
 - A Free Lesson

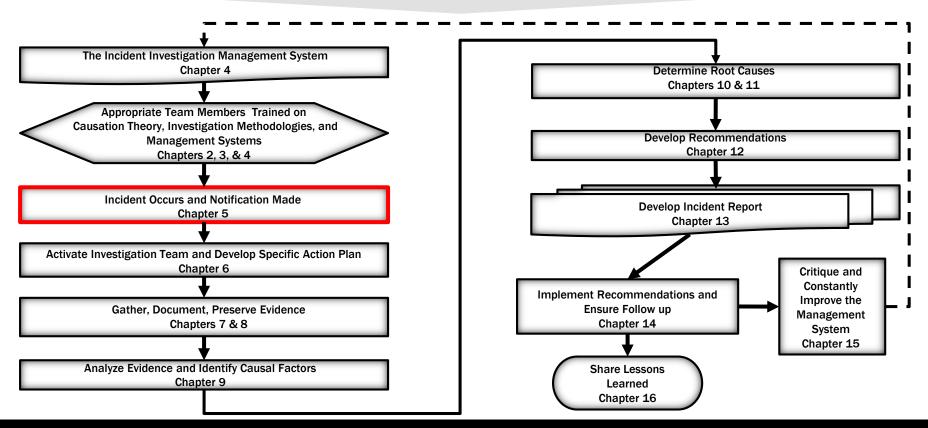
Terminology

Causal Factor

 A major unplanned, unintended contributor to an incident (a negative event or undesirable condition), that if eliminated would have either prevented the occurrence of the incident, or reduced its severity or frequency.

Root Cause

• A fundamental, underlying, system-related reason why an incident occurred that identifies a correctable failure(s) in management systems. There is typically more than one root cause for every process safety incident.


Organisation of the Book

- Overview of Investigations
 - Introduction to Investigations
 - Incident Causation
 - Overview of Investigation methodologies
- Designing an Investigation Management System
- Responding to an Incident
 - Initial notification and classification of an incident
 - Building/ leading an investigation team
 - Witness Management / interviews
 - Evidence identification, collection, and management
 - Analysing data

Organisation of the Book

- Determining Causal Factors
- Determining Root Causes
- The Impact of Human Factors
- Developing Recommendations
- Preparing a Report
- Implementing Recommendations
- Sharing and Institutionalising Lessons Learned
- Improving the Investigation Program
- Checklists
 - Evidence preservation, the investigators toolkit, report writing, auditing

Book / Incident Flowchart

Notification and Classification

- Legal / agency /corporate / stakeholder requirements
- Classifying incidents and determining appropriate level of investigation.
 - A near-miss that potentially could have been a severe incident would be investigated in the same way as a major incident
 - Tiered approach (e.g., based on API RP 754 / CCPS metrics & severity categories)
 - Logic Tree
 - Risk Matrix

Investigation Methodologies

Increasing Structure

Informal, Oneon-one

Traditional,
Informal
Investigation
usually performed
by immediate
supervision

Brainstorming

Judgment/
experience to find
credible causes.
Structured brainstorming may
employ tools such
as What-If and 5Whys.

Process of Elimination

Eliminates
potential causes.
and the
cause(s) not
eliminated are
concluded to be
the final cause(s).

Timeline

Chronological listing of events using a variety of formats from simple sequential list to diagrams showing events/conditions along a straight axis.

Sequence Diagram

Graphical depiction of timeline that allows investigators to exhibit related events and conditions in parallel branches.

Investigation Methodologies

Increasing Structure

Scientific Method

Test hypotheses based on Investigation data, to prove/disprove them, and Iteratively resolve to the final hypothesis using scientific approaches.

Causal Factor Identification

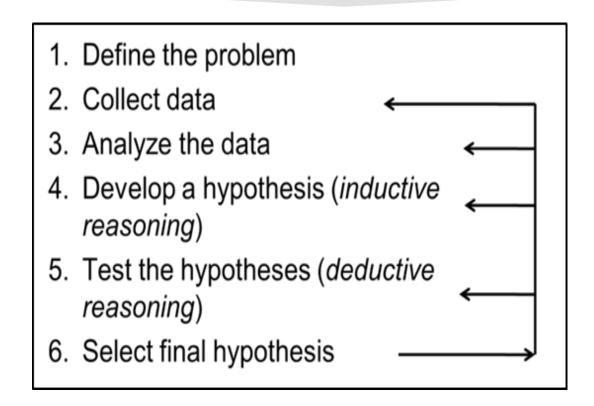
Negative events, conditions, and actions that made major contributions to the incident. Tools such as Barrier Analysis and Change Analysis may be used.

Checklists

Review of causal factors against Investigative checklists to determine why that factor existed. A combined whatif/checklist approach may be used.

Pre-Defined Trees

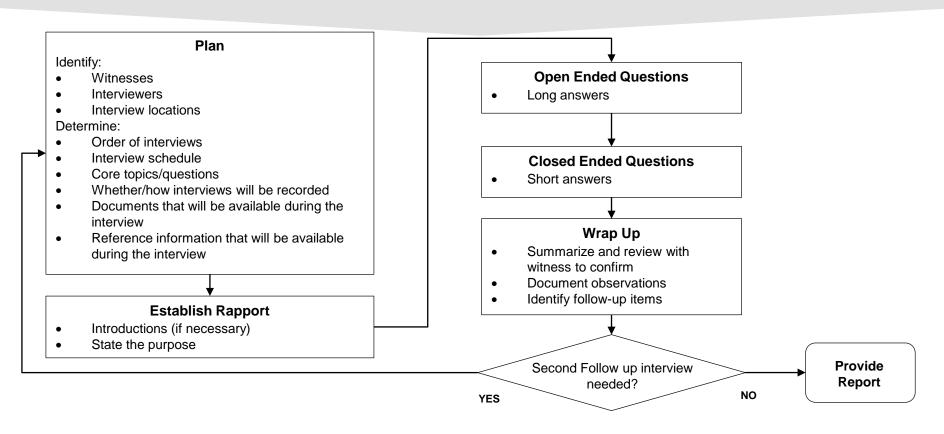
Ready-made tools.
Investigators apply causal factors to each branch in turn, disregard those branches that are not relevant to the specific Incident.


Logic Trees

Tools using a multiple cause, system-oriented approach to determine root causes integrated with a PSM program. E.g.: fault tree, event tree, causal tree, why tree.

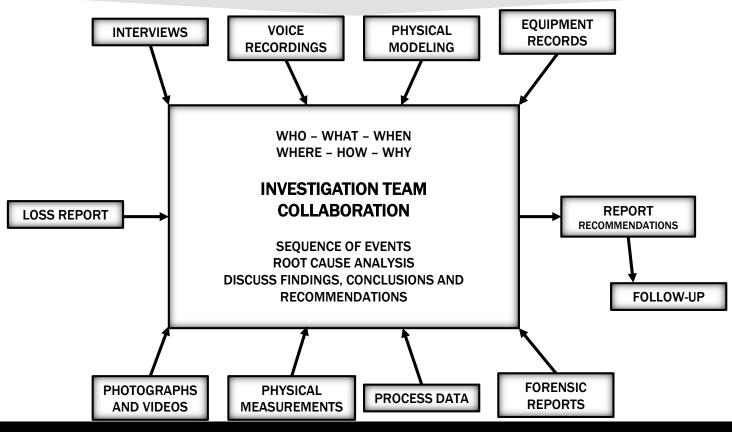
Objectivity of Investigations

- Scientific method used to objectively, systematically, and scientifically determine the causal factors.
- Supports latest guidance in NFPA 921: Guide for Fire and Explosion Investigations, 2017
- Helps to avoid bias
 - Pre-conceptions (confirmation bias) / hindsight bias


Scientific Method

Scientific Method Example – Seal Leak

Potential cause	Verification	Finding	Hypothesis
Poor installation by one fitter	Review of maintenance history where similar work carried out	Leaks have occurred where other fitters have installed seal	FALSE
Poor installation by all fitters	Review of maintenance procedures with all fitters concerned	No evidence that the work was being done differently to that in the manual	FALSE
Overpressure	Review of DCS data	No evidence of overpressure	FALSE
Generic seal problem	Background gas level measurements	Slight rise in average toxic gas levels for past 18 months (not acted upon)	CONFIRMED
Component problem	Review spares stock against manufacturer's specification	Spares supplier changed 2 years previously. Same spec but slight difference in compressibility of O-ring seal	CONFIRMED


Witnesses and Interviews

Evidence Collection/ Analysis

Investigation Team Activities

Recommendations – clarification of roles

- Recommendations developed in collaboration with the management team.
- Implementation of the recommendations management's role.
- Decision whether to restart a process management's role.
- Decision on partial restart (major incident, lengthy investigations) –
 management's role but based on Interim reports / recommendations.

Lessons Learned

Expanded to include:

- Sharing at local level
- Sharing more broadly within the company
- Sharing with outside industry
 - Regulatory / litigation issues
- Receiving lessons from industry
 - Why we're here

Summary of key developments - Edition 3

- Treat near-misses as incidents
- Decision on the level of investigation based on the potential severity of the incident
- Scientific method was added to the book to improve objectivity of investigations
- Roles of the investigation team and management in implementing recommendations and deciding on restarting processes were clarified
- Methods are suggested on sharing lessons learned both internally and externally as well as institutionalising them

Conclusions

- The new book is a comprehensive guide to investigating incidents
 not just on chemical/ process plant
- It also guides the reader through the management systems and processes that are required to have an effective incident investigation system.
- If you are looking for a comprehensive reference for incident investigation you might find it a useful addition to your library and reading material
- Note: We are not on commission!

Contact Us

Roger Stokes

Thornton Science Park, Ince, Chester CH2 4NU

+44 (0) 1244 405960

rstokes@bakerrisk.com

Chapters

- 1. Introduction
- 2. Overview of Causation
- 3. Overview of Methodologies
- 4. Design of Incident Investigation Management System
- 5. Initial Notification, Classification and Investigation of Process Safety Incidents
- 6. Building and Leading an Incident Investigation Team
- 7. Witness Management
- 8. Evidence Identification, Collection and Management
- 9. Evidence Analysis and Causal Factor Determination

Chapters

- 10. Determining Root Causes—Structured Approaches
- 11. The Impact of Human Factors
- 12. Developing Effective Recommendations
- 13. Preparing the Final Report
- 14. Implementing Recommendations
- 15. Continuous Improvement for the Incident Investigation System
- 16. Lessons Learned Institutional Knowledge
- Numerous Checklists
 - Evidence preservation, the investigators toolkit, evidence preservation, report writing, auditing,