

GUIDELINES FOR THE CLASSIFICATION AND CODING OF INDUSTRIAL AND HAZARDOUS WASTES

THIS IS A GUIDANCE DOCUMENT AND SHOULD NOT BE INTERPRETED AS A REPLACEMENT TO THE RULES. The rules for classifying and coding industrial wastes and hazardous wastes may be found in 30 Texas Administrative Code (TAC) Sections (§§) 335.501-.521 (Subchapter R).

Prepared by:

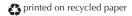
I&HW Permits Section, MC 130 Waste Permits Division Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

RG-022 Texas Commission on Environmental Quality

Bryan W. Shaw, Ph.D., P.E., Chairman Toby Baker, Commissioner Zak Covar, Commissioner

Richard A. Hyde, P.E., Executive Director

We authorize you to use or reproduce any original material contained in this publication—that is, any material we did not obtain from other sources. Please acknowledge the TCEQ as your source.


Copies of this publication are available for public use through the Texas State Library, other state depository libraries, and the TCEQ Library, in compliance with state depository law. For more information on TCEQ publications call 512-239-0028 or visit our website at:

tceq.texas.gov/publications

Published and distributed by the Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087

The TCEQ is an equal opportunity employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans with Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at 512-239-0028, Fax 512-239-4488, or 1-800-RELAY-TX (TDD), or by writing PO Box 13087, Austin, TX 78711-3087.

How is our customer service? tceq.texas.gov/customersurvey

Contents

Chapter 1

1 INTRODUCTION

Chapter 2

3 "WASTE STREAMS"—A KEY CONCEPT

Chapter 3

4 WASTE CLASSIFICATION CHECKLIST

Chapter 4

12 PROCESS KNOWLEDGE, ANALYTICAL TESTING, AND DOCUMENTATION REQUIREMENTS

Chapter 5

14 TEXAS WASTE CODE FORMULA

Chapter 6

16 NOTIFICATION REQUIREMENTS AND FORMS

Chapter 7

18 MANAGEMENT OF MECHANICAL SHREDDING WASTES

Chapter 8

19 DEFINITIONS OF TERMS

Appendices, Tables and Figures listed on page iv.

Contents Continued

APPENDICES

24	Appendix A Hazardous Substances
31	Appendix B Ignitable Solids
33	Appendix C Class 1 Toxic Constituents' Maximum Leachable Concentrations
35	Appendix D 7-Day Distilled Water Leachate Test's Maximum Contaminant Levels
36	Appendix E Class 1 Toxic Constituents
38	Appendix F 7-Day Distilled Water Leachate Test Procedure
39	Appendix G Form Codes
46	Appendix H Codes for Out-of-State Waste Generators and Receivers
	FIGURES
1	Figure 1-1 Hazardous and Nonhazardous Wastes
15	Figure 5-1 Components of a Texas Waste Code
	TABLES
3	Table 2-1 An Operation's Overall Waste Flow Can Produce Multiple "Waste Streams"
6	Table 3-1 TCLP Regulatory Levels
	Table 5-1

15 Questions to Ask about Some Combinations of Coding and Classification

Introduction

Who Should Read This Booklet

The main purpose of this guidance document is to help generators of industrial and hazardous waste follow state and federal requirements on

- classifying and coding these wastes,
- keeping proper records, and
- notifying the Texas Commission on Environmental Quality (TCEQ) about the wastes, when required.

Specifically, this document gives guidance on the regulations in Title 30 of the Texas Administrative Code (TAC), Chapter 335, Subchapter R (Waste Classification). The rules in Subchapter R apply both to wastes generated in Texas and to those generated outside the state and sent to Texas for treatment, storage, and/or disposal. Correct and timely compliance with the regulations on industrial and hazardous wastes helps to protect the state's environment and safeguard the health of Texas citizens.

Waste Classes

Figure 1-1 shows the main categories of hazardous and nonhazardous waste. The following paragraphs give brief descriptions of these categories—important terms that will be used throughout this booklet. (For more details, see the classification checklist in Chapter 3 and the definitions in Chapter 8.)

Hazardous Waste

A hazardous waste is one that is listed as such by the U.S. Environmental Protection Agency (EPA) or that exhibits one or more hazardous characteristics (also as specified by the EPA). Hazardous wastes are threatening to human health and the environment.

Listed Hazardous Waste

EPA lists over 400 wastes as hazardous. For more information see Part I-A of the checklist in Chapter 3.

Characteristically Hazardous Waste

Waste that displays one or more of four hazardous characteristics:

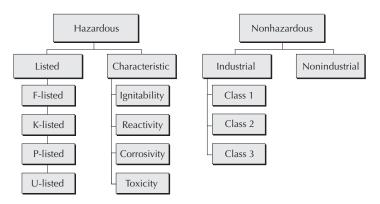
- ignitability (easily flammable for example, solvents);
- reactivity (capable of rapid chemical reaction-for example, peroxides);

- corrosivity (highly acidic or alkaline, able to dissolve metals or burn the skin–for example, hydrochloric acid or sodium hydroxide); and
- toxicity (a waste that can release toxic constituents into the environment—for example, lead-based paint).

For more information on hazardous characteristics, see Part I-B of the checklist in Chapter 3.

Nonhazardous Waste

Any industrial waste that is not listed as hazardous and does not have hazardous characteristics. (Class 1 nonhazardous industrial waste can include certain levels of constituents and specified properties that, at higher levels, might otherwise render the waste hazardous—see Part II of the checklist in Chapter 3.)


Industrial versus Nonindustrial Wastes

Industrial wastes result from (or are incidental to) operations of industry, manufacturing, mining, or agriculture—for example, wastes from power generation plants, manufacturing facilities, and laboratories serving an industry. *Nonindustrial wastes*, by contrast, come from sources such as schools, hospitals, churches, dry cleaners, most service stations, and laboratories serving the public.

Nonhazardous Industrial Waste

In this grouping, *Class 1* waste is considered potentially threatening to human health and the

Figure 1-1. Hazardous and Nonhazardous Wastes

environment if not properly managed, because of the constituents and properties this class can include. Therefore, there are special handling requirements for Class 1 wastes. An example is water contaminated with ethylene glycol.

Examples of *Class 2* wastes include wasteactivated sludge from biological wastewater treatment. *Class 3* includes materials such as demolition debris—for example, bricks—that are insoluble, do not react with other materials, and do not decompose. Class 2 and 3 wastes are often accepted by local landfills. However, a Class 2 or 3 designation does not mean that the waste is incapable of causing harm in every management (or mismanagement) situation.

What This Booklet Explains How to Do

After you have worked through this booklet (and that includes consulting the rules referred to in it), you will be able to accomplish the following tasks:

- Identify which wastes you must classify, code, and notify the TCEQ about. Chapter 2 introduces a key concept—"waste streams"— that helps you decide these points.
- Classify your waste. Chapter 3 gives you a step-by-step approach for putting your waste into one of four categories: either *hazardous* waste or *nonhazardous* industrial waste Classes 1, 2, or 3.
- Know what kind of information (either from process knowledge about your facility's operation or from analytical testing) that you must document and keep on file (Chapter 4).
- Understand the 8-character Texas waste code. Chapter 5 explains the components of the waste code:
 - 4-character *sequence number* (may be a number, letters, or a combination; generally, identifies a particular waste or where it came from);
 - 3-digit form code; and
 - 1-character classification (from Chapter 3).
- Know how to notify TCEQ about your wastes and which TCEQ form to use (Chapter 6).

Some Things This Booklet Does NOT Cover

*Non*hazardous *Non*industrial Waste. The rules in 30 TAC Chapter 335, *do NOT* apply to nonhazardous waste generated by nonindustrial facilities.

Selective Coverage of Chapter 335

Also, please be aware that this guidance document only covers 2 subchapters (A and R) of 30 TAC Chapter 335, which contains 18 subchapters in all. This booklet covers only classification and coding, documentation you must create and keep on file, and notifications you must send to TCEQ (and the forms to use for that purpose). This booklet is not a substitute for the complete rules themselves. (You can obtain your own copies of the full, official state rules from the TCEQ's publications unit. Ways to contact this unit are listed under the heading "TCEQ and EPA Forms" in Chapter 6.)

Classification versus Risk Reduction

There is an important distinction between (1) classifying your wastes; and (2) meeting the *risk reduction standards*, which are set forth in 30 TAC Chapter 335, Subchapter S. Here are the most common situations where the risk reduction standards apply:

- a facility that handled industrial wastes is being closed;
- a site where unauthorized discharge of wastes occurred is being cleaned up.

If you are involved in a situation like these, you need to inform yourself about the risk reduction standards. The guidance document you are now reading does not cover this topic. (Again, you can obtain a copy of Subchapter S, and other information, from the TCEQ publications unit—see the heading "TCEQ and EPA Forms" in Chapter 6.)

Who Are "You" in This Booklet?

Throughout this guidance document, generators of industrial and/or hazardous wastes will be referred to as "generator," "generators," or—for a more direct way of writing—simply as "you." Also, 30 TAC Chapter 335, Subchapter R, will be referred to as "these rules" or "the rules." Finally, "this booklet," "this document," or "this guidance document" refers to *Guidelines for the Classification and Coding of Industrial and Hazardous Wastes*, TCEQ Publication Number RG-022—the booklet you are now reading.

"Waste Streams"-A Key Concept

When the preceding chapter mentioned that this booklet will instruct you on how to classify, code and report about wastes, a question that naturally might have come to your mind is "*How* do I know which wastes must be classified, coded, and reported?" (The general answer is that you must perform these processes on all hazardous wastes and nonhazardous industrial wastes.)

In discussing this point, federal regulators use the term *waste stream*, in both of the following senses: First, it can mean the total flow of all waste from homes, businesses, and industry. Second, within this total flow, smaller "waste streams" can be distinguished—for example, "the residential waste stream," "the recyclable waste stream," and others.

Similarly, within the overall flow of waste from your ordinary operations or processes, a number of particular waste streams can be identified. For example if your process ordinarily produces a hazardous acidic waste, and at some point you neutralize that waste, these are two separately identifiable "waste streams." Each waste stream—the acidic waste and the neutralized waste, in this example—must be identified by an 8-character Texas waste code, which identifies the waste stream as a separate entity and gives information about its origin, general nature, and hazardous status. (Chapters 3 through 5 go into the details of how this 8-character code is arrived at.)

Table 2-1 gives examples of some situations in which the waste flow from an operation or process can produce more than one waste stream, each of which must be classified and coded; and an example of a situation that does *not* result in more than one waste stream. For specific guidance on specific waste streams, contact the TCEQ.

In general, whenever you have or suspect the existence of an additional, distinct waste stream, you must determine its classification (Chapter 3), arrive at a Texas waste code for it (Chapter 5), and in most cases notify TCEQ about the additional waste stream (Chapter 6—which also gives details about some of the exceptions to the requirements for notification: for example, a slight change or variation in a waste stream's composition may not require notification.)

IF you have WASTES that are	AND they come from PROCESSES that are	THEN the wastes are considered
different	similar	different "waste streams"—for example, a sludge removed from an electroplating vat is not the same waste stream as a liquid removed from an electroplating vat.
similar	different	different "waste streams"—for example, methylene chloride used in a paint- stripping operation is not the same waste stream as methylene chloride used in laboratory analysis.
similar	similar	the same "waste stream"—for example, a site may have several paint booths that perform the same activities with the same materials, and each produces drop cloth waste. These drop cloth wastes, from the various locations at this site, could be considered one waste stream as long as they were all classified the same (for more on classifica- tion, see Chapter 3).
altered physically or chemically by treatment	N/A	different "waste streams"—for example, if a sludge is dewatered, it may produce two new waste streams, one a solid and the other a liquid.

Table 2-1. An Operation's Overall Waste Flow Can Produce Multiple "Waste Streams"

Waste Classification Checklist

This chapter provides a checklist to help you classify your hazardous waste and your nonhazardous industrial waste. For an overview of these types of waste, refer back to Figure 1-1 in Chapter 1; for more details, refer to 30 TAC Chapter 335 Subchapter R Sections 335.501–508. (You can obtain your own copy of state rules from the TCEQ publications unit; ways to contact this unit are listed under the heading "TCEQ and EPA Forms" in Chapter 6.)

Process Knowledge vs. Analytical Testing

In determining a waste stream's classification, a generator may use *process knowledge* and/ or *analytical testing*. Process knowledge is the owner or operator's knowledge about how the facility operates, how a waste was produced and handled, and other information based on operating experience. Analytical testing is information about a waste from laboratory analysis.

In the checklist, the nonhazardous classification criteria that could involve analytical testing have been marked with an *. This marking **does not** mean that analytical testing is the only way to evaluate these criteria. If sufficient process knowledge is available, little or no analysis may need to be performed. You should evaluate whether you have enough process knowledge about the waste to classify it or whether analytical testing is needed.

Documentation

Regardless of whether you rely on process knowledge or opt for analytical testing, you must fully document the information used in making your waste classification. A completed checklist does not qualify as full documentation. Documentation should be in a written and/or electronically stored format that is reasonably accessible and easily reproducible. For details on documentation requirements, see Chapter 4.

Part I. Hazardous Waste Determination

All waste generators should work through Part I of this checklist. In this part you will determine whether your waste is hazardous because (a) it is listed as hazardous by EPA or (b) it displays characteristics that EPA says make it hazardous.

In federal regulatory language, the first step in classifying your waste is called "making a *hazardous waste determination*." The definition of hazardous waste, based upon the Resource Conservation and Recovery Act (RCRA), is found in Title 40 of the Code of Federal Regulations (CFR), Part 261.

This TCEQ guidance document reflects the hazardous waste definition in the *Federal Register* as of July 1,2004. If that definition changes, the generator is still responsible for making an accurate hazardous waste determination in accordance with the latest regulations—instead of with what is printed in this guidance document.

IF the answer to any of the questions in Part I is "Yes," THEN the waste is hazardous.

Possible Exclusions from Hazardous Classification

Under certain conditions, some types of wastes are excluded from being considered hazardous (40 CFR Sections 261.3–4). Generators may wish to review these exclusions before working through Part I of this checklist.

Part I-A. Listed Hazardous Waste Determination

The EPA lists some 400 hazardous wastes.

Information to Help You Make This Determination

Descriptions of listed waste are found in 40 CFR Part 261, Subpart D, Sections 261.31–33. These wastes are often referred to as follows:

- "F" listed waste (waste from nonspecific sources, Section 261.31);
- "K" listed waste (wastes from specific sources, Section 261.32);
- "P" listed waste (unused acutely hazardous off-specification materials as well as container residues and spill residues of these materials, Section 261.33);
- "U" listed waste (unused toxic hazardous off-specification materials as well as container residues and spill residues of these materials, Section 261.33).

QUESTION: Is the waste a listed hazardous waste, or is it mixed with or derived from one? \Box Yes \Box No

Part I-B. Characteristic Hazardous Waste Determination

Wastes may be hazardous if they display any of four characteristics: ignitability, corrosiveness, reactivity, or toxicity.

Information to Help You Make This Determination

Ignitability

Wastes that are hazardous because they may ignite include the following:

- Liquid wastes (other than those aqueous waste containing less than 24 percent alcohol by volume) that have a flash point less than 60°C (140°F). (The test method is the Pensky-Martens closed cup tester, using the test method specified in ASTM Standard D-93-79 or D-93-80, or a Setaflash closed cup tester, using the test method specified in ASTM Standard D-3278-78.)
- Nonliquid wastes that, under standard temperature and pressure, are capable of causing fire through friction, absorption of moisture, or spontaneous chemical changes and, when ignited, burn so vigorously and persistently that they create a hazard.
- Wastes that meet the definition of an ignitable compressed gas (see 49 CFR Section 173.300).
- Wastes that meet the definition of an oxidizer (see 49 CFR Section 173.151).

QUESTION: Is the waste ignitable according to 40 CFR Section 261.21?

Corrosiveness

Wastes that are hazardous because they are corrosive include the following:

- aqueous wastes with a pH of 2 units or below or of 12.5 units or above;
- liquid wastes that corrode steel at a rate greater than 6.35 mm (0.250 inches) per year.

QUESTION: Is the waste corrosive according to 40 CFR Section 261.22? \Box Yes \Box No

 \Box Yes \Box No

Reactivity

A waste is considered reactive if it meets any of the following conditions:

- It is capable of detonation or explosive decomposition or reaction
 - at standard temperature and pressure,
 - · if subjected to a strong ignition source, or
 - if heated under confinement.
- When mixed with water, it is
 - potentially explosive,
 - · reacts violently, or
 - generates toxic gases or vapors.
- If a cyanide or sulfide-bearing waste is exposed to pH conditions between 2 and 12.5, it can generate enough toxic gases, vapors, or fumes to present a danger to human health or the environment. Generally, if a waste generates 250 ppm or more of reactive cyanides or 500 ppm or more of reactive sulfides, it is considered a reactive waste. (It should be noted that these levels of reactive compounds are just guidance. Each waste must be evaluated for reactivity on a case-by-case basis).
- It is normally unstable and readily undergoes violent change without detonating.
- It is a forbidden explosive (as defined in 49 CFR 173.51, or a Class A explosive as defined in 49 CFR 173.53).
- It is a Class B explosive (see 49 CFR Section 173.88).

QUESTION: Is the waste reactive according to 40 CFR Section 261.23?

 \Box Yes \Box No

Toxicity

A waste is toxic if the toxicity characteristic leaching procedure (TCLP) shows that a representative sample from the waste contains one or more constituents at or above the levels listed in Table 3-1. The TCLP is described in EPA Method 1311 (SW-846).

QUESTION: Is the waste toxic according to 40 CFR Section 261.24?

 \Box Yes \Box No

Table 3-1. TCLP Regulatory Levels

arsenic —5.0 mg/l	1,4-dichlorobenzene — 7.5 mg/l	nitrobenzene — 2.0 mg/l
barium — 100.0 mg/l	1,2-dichloroethane — 0.5 mg/l	pentachlorophenol — 100.0 mg/l
benzene — 0.5 mg/l	1,1-dichloroethylene — 0.7 mg/l	pyridine — 5.0 mg/l
cadmium — 1.0 mg/l	2,4-dinitrotoluene — 0.13 mg/l	selenium — 1.0 mg/l
carbon tetrachloride — 0.5 mg/l	endrin — 0.02 mg/l	silver — 5.0 mg/l
chlordane — 0.03 mg/l	heptachlor (and its epoxide) — 0.008 mg/l	tetrachloroethylene — 0.7 mg/l
chlorobenzene — 100.0 mg/l	hexachlorobenzene — 0.13 mg/l	toxaphene — 0.5 mg/l
chloroform — 6.0 mg/l	hexachlorobutadiene — 0.5 mg/l	trichloroethylene — 0.5 mg/l
chromium — 5.0 mg/l	hexachloroethane — 3.0 mg/l	2,4,5-trichlorophenol — 400.0 mg/l
o-cresol — 200.0 mg/l	lead — 5.0 mg/l	2,4,6-trichlorophenol — 2.0 mg/l
m-cresol — 200.0 mg/l	lindane — 0.4 mg/l	2,4,5-TP (Silvex) — 1.0 mg/l
p-cresol — 200.0 mg/l	mercury — 0.2 mg/l	vinyl chloride — 0.2 mg/l
p-cresol — 200.0 mg/l cresol — 200.0 mg/l 2,4-D — 10.0 mg/l	mercury — 0.2 mg/l methoxychlor — 10.0 mg/l methyl ethyl ketone — 200.0 mg/l	vinyl chloride — 0.2 mg/l

Review of Checklist Part I: Hazardous Waste

IF the answer to any of the preceding questions in Part I is "Yes,"
THEN the waste is HAZARDOUS; PROCEED to Chapter 4.
IF the answers are "No" to all the preceding questions,
AND the waste is NONINDUSTRIAL,
THEN STOP here.
IF the answers are "No" to all of the preceding questions,
AND the waste is INDUSTRIAL,
THEN PROCEED to Part II.

Part II: Nonhazardous Industrial Waste Classes 1 & 2

The determination in this part of the checklist applies only to nonhazardous industrial waste—see Figure 1-1 in Chapter 1. (This part of the checklist is based on regulations found in 30 TAC Sections 335.505–06 and 335.508).

IF	the answer to any of the un-numbered questions in this part of the checklist is "Yes,"
THEN	the nonhazardous industrial waste is a Class 1 waste.
IE	all the answers to the up numbered questions in this part of

IF all the answers to the **un-numbered** questions in this part are "No,"

THEN the industrial waste is a Class 2 waste.

Generator's Self-Classification

QUESTION: Has the generator chosen to classify its nonhazardous waste as Class 1?

Container Waste

- IF the waste is a container, greater than 5 gallons in holding capacity, which has held
 - a hazardous substance (as defined in 40 CFR Part 302 and listed in Appendix A of this guidance document),
 - a hazardous waste (including acutely hazardous wastes),
 - a Class 1 waste, and/or
 - a material that would be classified as a hazardous or Class 1 waste if disposed of,
- THEN answer questions 1 and 2. (*Please note that containers that have held acutely hazardous wastes must be triple-rinsed before they can be classified as empty*).
- IF these conditions are not present in your situation,

THEN proceed to the next un-numbered question.

- 1. Has the container had all its residues removed? \Box Yes \Box No
- 2. Has the container been rendered unusable? \Box Yes \Box No

QUESTION: Are any of the answers to questions (1) or (2) above "NO"?

 \Box Yes \Box No

 \Box Yes \Box No

Regulated Asbestos-Containing Material (RACM) (See Chapter 8, Definition of Terms, for information on RACM.)		
QUESTION : Does the waste contain asbestos material identified as RACM, as defined in 40 CFR Part 61? *	□ Yes	□ No
Polychlorinated Biphenyls (PCBs)		
QUESTION : Is the waste contaminated by a material that originally contained 50 or more parts per million (ppm) total PCBs? *	□ Yes	□ No
QUESTION: Does the waste contain 50 or more ppm PCBs?*	□ Yes	□No
Petroleum Substance Waste		
 Is your waste specifically identified as a <i>petroleum substance</i> (see Chapter 8, Definitions of Terms) or contaminated with a material identified as a petroleum substance waste? □ Yes □ No 		
 Does the waste contain more than 1,500 ppm total petroleum hydrocarbons (TPH)? □ Yes □ No 		
QUESTION : Are the answers to both of the numbered questions above "Yes"? (If one or both of the answers are "No," enter "No" for this question.)	□ Yes	□ No
"New Chemical Substance" See "new chemical substances wastes" in Chapter 8, Definitions and Terms, for a description of how this particular type of waste may be classified as Class 2 or 3.		
QUESTION : Is the waste from the production of a "new chemical substance," as defined by the federal Toxic Substances Control Act, 15 U.S.C.A. Section 2602(9)?	□ Yes	□ No
Out-of-State Origin See "wastes generated out-of-state" in Chapter 8, Definitions of Terms, for details on how this particular type of waste may be classified as Class 2 or 3.		
QUESTION: Is the waste generated outside Texas?	□ Yes	□ No
Constituent Levels and Specified Properties for Nonhazardous Industrial Class 1	Wastes	
QUESTION : If the waste is a liquid, does it have a flash point of less than $65.6^{\circ}C (150^{\circ}F)$? *	□ Yes	□ No
QUESTION : Is the waste a solid or semi-solid that—under conditions normally encountered in storage, transportation, and disposal—		
 is liable to cause fires through friction or through retained heat from manufacturing or processing; or 		
can be ignited readily, and when ignited burns so vigorously and persistently as to create a serious hazard?	□ Yes	□No

QUESTION : Is the waste a semi-solid or solid that, when mixed with an equivalent weight of ASTM Type II laboratory distilled or deionized water, produces a solution with a pH of 2 or less or 12.5 or more? (<i>Exception:</i> for solidified, stabilized, encapsulated, or otherwise chemically bound wastes, an exception is provided in 30 TAC Section 335.505(3)) *	□Yes □No
QUESTION : Does the waste leach Class 1 toxic constituents at or above the levels listed in Table 1, Appendix 1 of 30 TAC Chapter 335 Subchapter R when submitted to the toxicity characteristic leaching procedure (TCLP)? * (For a copy of Table 1, Appendix 1, see Appendix C of this guidance document.)	□Yes □No
(Where matrix interferences of the waste cause the Practical Quantitation Limit (PQL) of the specific analysis to be greater than the Maximum Concentration listed in Table 1, Appendix 1 of 30 TAC Chapter 335 Subchapter R, then the achievable PQL becomes the Maximum Concentration, provided that the generator maintains documentation that satisfactorily demonstrates to the TCEQ that lower levels of quantitation of a sample are not possible.)	
A satisfactory demonstration includes the results from the analysis of the waste for that specific constituent by a laboratory using an appropriate method found in <i>Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods</i> (EPA SW-846); <i>Methods or Chemical Analysis of Water and Wastes</i> (EPA-600 series); <i>Standard Methods for the Examination of Water and Wastewater</i> ; <i>American Society for Testing and Materials (ASTM) Standard Methods</i> ; or an equivalent method approved by the TCEQ.	

Lack of Class 2 or 3 Information

QUESTION: Is information lacking that demonstrates the waste belongs in Class 2 or 3?

Review of Checklist Part II: Class 1 or 2 Nonhazardous Industrial Waste

Part III: Nonhazardous Industrial Class 3 Waste

This part of the checklist applies only to nonhazardous, industrial waste that does not meet the definition of a Class 1 waste and is not specifically identified as a Class 2 waste. (The corresponding regulations for this part of the checklist can be found in 30 TAC Sections 335.507 and 335.508.)

Part III-A. Initial Determinations for Class 3 Status

IF the answer to any of the following questions in Part III-A is "Yes,"THEN the nonhazardous, industrial waste <i>cannot</i> be considered a Class 3 waste.		
Containers		
QUESTION: Is the waste an empty container?	□Yes □No	
Medical Waste		
(For a definition, see "medical wastes" in Chapter 8.)		
QUESTION: Is the waste a medical waste regulated under 30 TAC Chapter 330, Subchapter Y?	□Yes □No	
Distilled Water Leaching Test		
QUESTION: When subjected to the 7-day distilled water leaching test, does the waste leach constituents at or above the maximum contaminant levels listed in Table 3, Appendix 1		
of 30 TAC Chapter 335, Subchapter R? *	□Yes □No	
(Table 3 is reproduced in Appendix D of this guidance document.)		
Toxicity Characteristic Leaching Procedure		
QUESTION: When submitted to the toxicity characteristic leaching procedure (TCLP), does		
the waste leach Class 1 toxic constituents listed in Table 1, Appendix 1 of 30 TAC		
Chapter 335 Subchapter R at or above their detection levels? *	\Box Yes \Box No	
(The list of Class 1 toxic constituents is reproduced in Appendix E of this guidance document.)		
<i>Exclusion</i> : Excluded from this list of Class 1 toxic constituents are those addressed in the previous question (that is, constituents identified in Table 3, Appendix 1 of 30 TAC Chapter 335 Subchapter R).		
Petroleum Hydrocarbons		
QUESTION: Does the waste contain detectable levels of petroleum hydrocarbons (Method 1005)? *	□Yes □No	
Polychlorinated Biphenyls (PCBs)		
QUESTION: Does the waste contain detectable levels of PCBs? *		
Decomposition		
QUESTION: Is the waste readily decomposable?	\Box Yes \Box No	

Review of Checklist Part III-A: Class 3 Nonhazardous Industrial Waste

- IF the answer to any of the preceding questions in Part III-A is "Yes," THEN
- the nonhazardous, industrial waste *cannot* be considered a Class 3 waste.
- IF all the answers to the preceding questions in Part III-A are "No,"
- THEN proceed to Part III-B to continue the waste's evaluation for possible Class 3 status.

Part III-B: Final Determinations for Class 3 Status

Inertness

-	DN : Is the waste inert? (Inertness refers to chemical inactivity of an element, a d, or a waste.)	□Yes □No
Insolubi	lity	
QUESTION: Is the waste essentially insoluble? \Box Yes		\Box Yes \Box No
(Note: wastes that contain liquids are NOT considered insoluble.)		
Review	of Checklist Part III	
IF	the answer to any question under Part III-B is "No,"	

- THEN the nonhazardous, industrial waste *cannot* be considered a Class 3 waste.
- IF all the answers to the questions in Part III-A are "No,"
- AND all the answers to the questions in Part III-B are "YES,"
- THEN the nonhazardous industrial waste is a Class 3 waste.

Part IV. Variance from Waste Classification

The TCEO may determine, on a case-by-case basis, the merits of a variance request for a specific nonhazardous classification. The burden of justifying the need for a variance is on the requestor. The requestor must submit information sufficient to clearly indicate the issues involved, the reason(s) for the request, and both the positive and negative impacts that may result from the granting of the variance. (The regulations corresponding to these types of variance requests can be found in 30 TAC Section 335.514, Variance from Waste Classification Provisions.)

^{*} As a reminder, these characteristics need not necessarily be addressed by analytical testing. A generator may be able to address them through process knowledge. For more information on process knowledge, please see Chapter 4 of this guidance document.

Chapter 4

Process Knowledge, Analytical Testing, and Documentation Requirements

Introduction

Now that you know how to classify your wastes, you are ready to compile supporting documentation. Documentation should support the classification and coding of a waste stream. You must properly document each waste stream generated by the facility, and keep that documentation for at least three years after the waste is no longer generated, stored, or recycled or until the site is closed.

The regulations on documentation requirements can be found in 30 TAC Section 335.9 (Record Keeping and Annual Reporting Procedures Applicable to Generators), Section 335.70 (Record Keeping), Section 335.510 (Sampling Documentation), Section 335.511 (Use of Process Knowledge), and Section 335.513 (Documentation Required).

The TCEQ randomly audits a portion of waste stream *notifications* (see Chapter 6) in order to ensure proper classification and coding of waste in Texas. When the TCEQ sends you a request for information for the purpose of an audit, you must send the agency the information that you have gathered to make your hazardous waste determination/waste classification. Please use Chapter 4 as a guide to compiling supporting documentation for each waste stream generated at your facility.

Process Knowledge

If process knowledge is used in classifying a waste, that knowledge must be documented and kept on file for three years. Process knowledge must be in writing or stored in some electronic form. It cannot be stored solely in someone's mind. The process knowledge must support a generator's reasoning about why the waste has been given a particular classification. It must also support the generator's reasoning about why a particular test method was not performed.

The following are some examples of process knowledge that may assist in classifying waste:

- description of the waste;
- date of initial waste generation;

- a detailed description of the process generating the waste (that is, identification of chemicals or other materials in the process that generated the waste stream (including any potential breakdown products);
- manufacturer's literature such as Material Safety Data Sheets—MSDSs (although they were not created for the purpose of determining Texas waste classification, and do not contain information on all constituents found in a product, MSDSs may be helpful);
- full description of activities that generated the waste stream;
- identification of potential contaminants; and
- other documentation generated in conjunction with the particular process.

Analytical Data

If a generator uses analytical data to classify a waste, the data must be supported by documentation of the sampling procedure and the analytical testing. The following lists specify information that must be maintained when analytical data is used for classification purposes.

Sampling Procedures

The following procedures must be documented:

- dates of sample collection;
- description of the site and/or unit from which the sample was taken, including sampling locations;
- the method and equipment used for sampling;
- a description of the sampling techniques, including collection, containerization, and preservation; and
- rationale—that is, supporting reasons for the sampling plan (why the number, type, and location of samples taken accurately represent the waste stream being characterized).

Analytical Testing

Documentation of analytical testing must include the following:

- Analytical results (including quality control data).
- Analytical methods (including any preparatory methods).
- The **detection limits** for each analysis.
- Name of laboratory performing the analysis.
- Chain of custody—documentation tracking the condition of the waste containers. For example, were the waste containers and their seal intact or broken upon arrival at the laboratory? Were the containers full, half-full, or empty? Did all the containers arrive at the laboratory or just a partial shipment?
- Documentation that satisfactorily demonstrates that lower levels of *quantitation* are not possible (this is only necessary when the waste media causes the *Estimated Quantitation Limit* (EQL) of a Class 1 toxic constituent (as listed in Appendix E of this guidance document) to be greater than the concentration listed (*matrix interference*). (Terms in italics are explained in Chapter 8.)

Classification Checklist

Although the checklist in Chapter 3 can be used to help classify industrial and hazardous waste, a generator should support the checklist's "yes" or "no" responses with process knowledge and/or analytical data. A completed checklist by itself is not sufficient documentation to submit to the TCEQ in response to a random audit of classification. For example, a generator answers "no" to the question "Is the waste ignitable according to 40 CFR Section 261.21?" You can support this response by submitting process knowledge, analytical data, or both. If process knowledge is used, it must be **specific**. A general statement such as "the waste is not ignitable" would not be sufficient.

Instead, you should document specific actions you took and their results, such as (1) reviewed all constituents that may be present in the waste; (2) determined that each constituent present in the waste does not meet the definition of an ignitable waste; and (3) determined that the process generating the waste does not introduce any ignitable characteristics to the waste stream. You should keep copies of your documentation demonstrating that the constituents in the waste stream would not cause the waste to exhibit the characteristic of ignitability.

Rule of Thumb about Documentation

Remember that documentation should demonstrate why a waste has been given a particular classification. Here's a good rule of thumb: if someone else can review your classification documentation, using the published criteria and/or the checklist, and arrive at the same classification you did, then you have probably done a good job of compiling supporting documentation for a waste classification. On the other hand, if someone reviews your classification and still has unanswered questions, then you may want to gather additional documentation (from process knowledge and/or analytical data) to support your classification of that waste stream.

Texas Waste Code Formula

Chapter 5 describes the 8-digit Texas waste code that identifies each of your waste streams. (Part of the information to complete this waste code comes from the waste determination process (described in Chapter 3) and from the documentation you must compile and keep on hand (described in Chapter 4).)

The formula for the Texas waste code is given in Figure 5-1. The rules corresponding to this formula can be found in 30 TAC Section 335.503 (Waste Classification and Waste Coding Required).

Sequence Number

Although called a sequence "number," this part of the code may contain a mix of numbers and letters—alphanumeric; and sometimes it may consist of letters alone. Various types of 4-digit sequence numbers are used in the Texas waste code.

- An arbitrary and unique 4-digit number from 0001 to 9999 (no alpha characters), which is assigned by the generator when adding a waste stream to Texas facility's *Notice* of Registration (see Chapter 6, Notification Requirements). Once assigned to a particular waste stream, a sequence number cannot be reassigned to another waste stream. Generators need not sequentially assign sequence numbers to a facility's waste streams.
- A 4-digit alphanumeric number assigned by the TCEQ (under the one-time shipment program) to wastes generated by unregistered generators within Texas. (Spill waste not managed under the Emergency Response Program may be handled in this manner.)
- "SPIL" to be assigned only by the Emergency Response Team of the Field Operations Division for spill wastes regulated under the Emergency Response Program.
- "OUTS" to be used for wastes generated outside of Texas.
- "CESQ" to be used by municipal hazardous and industrial CESQGs (Conditionally Exempt Small-Quantity Generators).
- "TSDF" (treatment, storage, and disposal facilities), to be used by facilities that

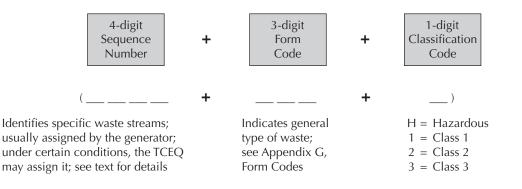
(1) receive and consolidate a waste stream with other like waste streams (thus not changing the form or composition of the waste); or (2) store a received waste without treating or changing its form or composition. This sequence number does not apply to wastes that are treated or altered in some other way. The "TSDF" designation is to be used only by **facilities that store and/or accumulate waste** from more than one site for subsequent shipment to a treatment or disposal facility.

Form Code

The second series of numbers found in the Texas waste code is the "form code." The list of form codes as well as flowcharts that depict the choosing of a form code can be found in Appendix G.

Form codes are broken down into 10 major categories. They are Lab Packs, Inorganic Liquids, Organic Liquids, Inorganic Solids, Organic Solids, Inorganic Sludges, Organic Sludges, Inorganic Gases, Organic Gases, and Plant Trash. The various form codes and corresponding descriptions can be found under these categories in Appendix G.

In determining a waste stream's form code, TCEQ recommends that the generator first determine the major category into which the waste stream fits. Then review all the form code descriptions in that category to determine which code or codes best describe your waste stream. From this narrowed-down list, choose a form code for the waste stream.


Classification

The waste stream's classification completes the Texas waste code. As Figure 5-1 showed, this part of the Texas waste code will be "H" or "1", "2", or "3".

Stop! Are You about to Misclassify a Waste?

Table 5-1 provides additional information about using certain combinations of form and class codes.

Figure 5-1. Components of a Texas Waste Code

IF the waste is	AND you assigned form codes	Are you sure about a classification of
Any Class 3 waste	Any form code	<i>Class 3?</i> (You must submit all supporting documentation)
Asbestos solids, debris, slurry, sludge, etc.	311, 515	<i>Class 2?</i> (Wastes that contain regulated asbestos- containing material are Class 1)
Oils	205, 206ª	<i>Class 2?</i> (Wastes that contain more than 1,500 ppm total petroleum hydrocarbons are Class 1)
PCB-containing materials	297, 298, 394, 395, 396, 397, 398, 399, 494, 495, 496, 497, 498, 499, 598, 599, 698, 699	<i>Class 2?</i> (Wastes that contain 50 ppm or more PCBs are Class 1)
Petroleum-containing materials	205, 206ª, 296, 489, 510, 603, 606, 695, 696	(Petroleum substance wastes that contain more than 1,500 ppm total petroleum hydrocarbons are Class 1)
Plant trash	902 and 999 ^b	Hazardous, Class 1, or Class 3? (Only wastes that are Class 2 may be given a form code for plant trash)
Spent lead acid batteries	309°	Hazardous

^a If your waste oil is nonhazardous, is managed under 40 CFR 279 and 30 TAC 324, and is recycled 100 percent, then do not add to your Notice of Registration (the central record that the TCEQ compiles from waste notifications you send in—see Chapter 6, Notification Requirements and Forms).

^b Only form codes 902 and 999 may be used.

^c If all your lead acid batteries are managed under the "universal waste" rule in 40 CFR Part 273, then do not add to your Notice of Registration.

Chapter 6

Notification Requirements and Forms

This chapter describes forms and supporting documentation you must send to the TCEQ to notify the agency about waste streams that you generate. The regulations on notification can be found in 30 TAC Section 335.6 (Notification Requirements), Section 335.502 (Conversion to New Waste Notification and Classification System), Section 335.508 (Classification of Specific Industrial Solid Wastes), Section 335.509 (Waste Analysis), and Section 335.513 (Documentation Required).

Notifications about Industrial or Hazardous Waste

You must submit information about industrial or hazardous wastes no later than 90 days after the waste's initial generation and before handling, shipment, or disposal; use TCEQ form 00002 or the TCEQ State of Texas Environmental Electronic Reporting System (STEERS) software. (For information on obtaining TCEQ forms and how to access the STEERS information, see this chapter's section "TCEQ and EPA Forms.")

Please Note: All Large-Quantity Generators (LQG) **must** use STEERS to update their Notice of Registration (NOR). This requirement, effective December 15, 1997, is found in 30 TAC Section 335.6(b). Therefore, if you are a LQG and you need to update your NOR to replace inactivated waste code, please do so using STEERS.

The TCEQ uses the information submitted on these forms to create a record called the *Notice of Registration*, which contains site-specific waste management information about industrial and municipal hazardous waste generators in Texas.

Notifications about New Chemical Substance Waste

For a Class 2 or Class 3 waste generated as the result of the production of a "new chemical substance" (see Chapter 8, Definitions of Terms), you must follow the instructions below:

- Give the TCEQ notice that the waste is from the production of a "new chemical substance."
- Submit all supporting reasons and documentation used in that waste's classification.

- Manage nonhazardous waste from the production of a "new chemical substance" as a Class 1 waste, unless you can provide appropriate analytical data and/or process knowledge demonstrating that the waste meets the definition of a Class 2 or Class 3, and the TCEQ concurs. (For definitions of Class 2 and 3, see Chapter 8 and the classification checklist in Chapter 3.)
- If you have not received concurrence or denial from the TCEQ within 120 days from the date of your request for review, you may manage the waste according to the requested classification, but you must give the TCEQ 10 working days written notice before managing the waste as a Class 2 or a Class 3.

Notifications about Class 2 and Class 3 Out-of-State Waste

If you want to ship a nonhazardous waste into Texas, it is automatically considered a Class 1 waste (and expected to be managed as such) unless

- you request the TCEQ to review your waste classification documentation supporting a lower classification such as Class 2 or 3; and
- the TCEQ concurs with the lower classification.

After concurrence from the TCEQ you must comply with the lower classification's requirements on shipping, record keeping, and disposal of the waste. If, after review of your documentation, the TCEQ disagrees with your waste classification, you must continue managing the nonhazardous waste as Class 1 waste.

Notifications about Other Industrial and Hazardous Wastes from out of State

Please note the following special requirements for the documentation of industrial and hazardous waste that is imported to Texas from foreign countries and other U.S. states.

 If out-of-state generators and importers of record want to bring hazardous waste into Texas, they must have an EPA Identification number. Generators and importers who do not have this ID number must obtain one from the EPA, using EPA Form 8700-12.

- Out-of-state generators or importers of record must fill out a Uniform Hazardous Waste Manifest (TCEQ-00311) and place their EPA ID number in Box 1 of this form.
- In Box B of the Uniform Hazardous Waste Manifest, use one of the generic numbers for identifying the country or state of origin. For example: F0061 for hazardous and or nonhazardous industrial waste imported from Mexico, D0022 for Louisiana (Appendix H gives these codes). For more information about manifesting imported industrial and hazardous waste, see 40 CFR 262.60 and 30 TAC 335.76 (d).
- OUTS must be used as the 4-digit sequence number of the Texas waste code in Box I of the manifest.

Notifications about Alternate Analytical Methods

Generators who propose an alternate analytical method must validate their alternate method by demonstrating that it is equal to or superior in accuracy, precision, and sensitivity to the corresponding EPA-approved methods for analytical testing given in *Standard Methods for the Examination of Water and Wastewater*, SW-846, and EPA-600/4-79/020.

In making this demonstration, the generator must provide the TCEQ, at a minimum, the following documentation:

- a full description of the proposed method (including all equipment and reagents to be used);
- a description of type of waste and waste matrices to be analyzed (for definitions of terms in italics, see Chapter 8);
- comparative results of the proposed method and corresponding SW-846 or ASTM method;
- a complete assessment of interferences with the proposed method (see, for example, *matrix interference* in Chapter 8);
- a description of quality control procedures; and
- additional information as needed and/or requested by the TCEQ to adequately review the proposed alternate method.

TCEQ and EPA Forms

How to Order

Notification forms can be obtained in several ways:

- Contact the TCEQ regional office near you.
- On the Internet go to <www.tceq.texas.gov> and select the "Forms" link. Access the

Forms Database and type in the form number. (The instructions for form TCEQ-00002 are in a separate download file).

 Fax your order to 512-239-4488, or order forms by voice at 512-239-0028, the TCEQ's publications unit. Be sure to give the form *numbers* that you want; this information will help the TCEQ get the correct form to you as quickly as possible.

How to Access STEERS

State of Texas Environmental Electronic Reporting System (STEERS) information, including an application package, can be obtained as follows:

- on the Internet, go to <https://www3.tceq. texas.gov/steers>; or
- call the STEERS Help Line at 512-239-6925.

Currently Available Forms

Notification forms available at the time of this printing include the following:

- The hazardous or industrial waste
 "Initial Notification Form," used for initial notification about a site, and adding a waste stream to your Notice of Registration (see Chapter 6) or when recording a 6-digit waste code into one or more 8-digit waste codes. (form number: TCEQ-00002)
- The "Hazardous or Industrial Waste Management Unit Form," used when adding information about a waste management unit to a Notice of Registration. (form number: TCEQ-00002)
- The "Uniform Hazardous Waste Manifest," used by generators and transporters of hazardous waste and by owners or operators of hazardous waste treatment, storage, and disposal facilities for both inter- and intrastate transportation. (form number: TCEQ-00311–Only order form available on the Web)
- The "One-Time Shipment Request ... for Shipment of Class 1, 2, 3 and EPA Hazardous Waste," used by unregistered generators, not by generators that already have a site's Notice of Registration. (form number: TCEQ-00757)
- The EPA "Notification of Regulated Waste Activity" form, used when notifying EPA of a federally regulated hazardous waste activity—for example, the generation of hazardous waste. (form number: EPA 8700-12–Available on the Web as part of TCEQ-00002)

Chapter 7

Management of Mechanical Shredding Wastes

The regulations on mechanical shredding waste can be found in 30 TAC Section 335.508 (Classification of Specific Industrial Solid Wastes).

Wastes generated by the mechanical shredding of automobiles, appliances, or other items of scrap, used, or obsolete metals are handled according to the provisions of the Texas Solid Waste Disposal Act, Health and Safety Code, Section 361.019 (Vernon Pamphlet 1992), until the TCEQ develops specific standards for the classification of this waste and ensures adequate disposal capacity.

These provisions say that you can dispose of mechanical shredding wastes in a municipal landfill facility authorized to accept Class 1 and 2 industrial solid wastes, if the shredding waste:

- contains no free liquids, and
- is not a hazardous waste.

As mentioned earlier, TCEQ may establish other requirements.

Definitions of Terms

For readers' convenience, this chapter gives the full version of some abbreviations and brief descriptions of some important terms used in this guidance document. Full, official definitions can be found in the sources cited. Nothing in this chapter takes the place of any definitions in laws, rules, or regulations.

Acutely hazardous wastes (40 Code of Federal Regulations (CFRs) Parts 261.31–33 and subject to the exclusion established in 40 CFR Part 261.5: EPA hazardous waste numbers F020, F022, F023, F026, and F027)—A subset of *listed hazardous wastes* that carry the "H" code; they are considered very harmful to human health and the environment.

ASTM-American Society for Testing and Material

CFR-Code of Federal Regulations

Characteristically hazardous waste (40 CFR Part 261 Subpart C)—Any waste that exhibits the characteristics of ignitability, corrosivity, reactivity, and/or toxicity as defined by the EPA in 40 CFR Part 261 Subpart C. These are often referred to as the "D" wastes. (Also see Chapter 3 of this guidance document.)

Class 1 waste [30 TAC Section 335.1(14)]—Any waste or mixture of waste that, because of its concentration or physical or chemical characteristics is toxic; corrosive; flammable; a strong sensitizer or irritant; a generator of sudden pressure by decomposition, heat, or other means; or may pose a substantial present or potential danger to human health or the environment when improperly processed, stored, transported, disposed of, or otherwise managed. (The checklist in Chapter 3 takes you through the process of distinguishing hazardous waste from nonhazardous Class 1 waste.)

Class 2 waste [30 TAC Section 335.1(15)]—Any individual waste or combination of waste that cannot be described as hazardous waste or as nonhazardous Class 1 or Class 3 waste.

Class 3 waste [30 TAC Section 335.1(16)]—Waste that is *inert* and *essentially insoluble* (see definitions of terms in italics), usually including but not limited

to materials such as rock, brick, glass, dirt, certain plastics, rubber, and similar materials that are not readily decomposable.

Classification code (30 TAC Section 335.503)— This last digit of the Texas waste code represents the classification of the waste stream. The letter H represents hazardous wastes; and the number 1, 2, or 3 represents nonhazardous industrial waste Class 1, 2, or 3.

Conditionally Exempt Small-Quantity Generator

(30 TAC Section 335.78)—Generators of less than 100 kg (220 lbs) per month of hazardous waste, or less than 1 kg (2.2 lbs) per month of *acutely hazardous waste* (see description of term in italics in this chapter).

Essential insolubility (30 TAC Section 335.507)— Is established when using:

- the Seven-Day Distilled Water Leachate Test, and the extract from the sample of waste does not leach greater than the Maximum Contaminant Level listed in Appendix 1, Table 3 of 30 TAC Chapter 335, Subchapter R;
- the test methods described in 40 Code of Federal Regulations Part 261, Appendix II, and the extract from the sample of waste does not exhibit detectable levels of the constituents found in Appendix 1, Table 1 of 30 TAC Chapter 335, Subchapter R;
- an appropriate test method, and a representative sampling of the waste does not exhibit detectable levels of total petroleum hydrocarbon (TPH); ("Petroleum substance wastes" are not subject to 30 TAC's subsection on essential insolubility.)
- an appropriate test method, and a representative sampling of the waste does not exhibit detectable levels of polychlorinated biphenyls (PCBs).

Form code (30 TAC Section 335.503)—This code describes the general type of waste stream. It consists of three numbers, the 5th, 6th, and 7th digits in the Texas waste code (see Figure 5-1 in Chapter 5). More than one form code may apply to a particular waste stream.

Hazardous substance (30 TAC Section 335.508)— Any substance designated as "hazardous" in 40 CFR Part 302 (Table 302.4) including, but not limited to, waste designated as hazardous in the Resource Conservation Recovery Act (RCRA).

Hazardous waste (40 CFR 261.3.)—The EPA defines a waste as hazardous if it exhibits one or more of four hazardous "characteristics," or if it is one of several hundred wastes "listed" as hazardous. For details, see Chapters 1 and 3 of this guidance document.

Hazardous waste determination (30 TAC Section 335.504)—An evaluation of a waste to determine whether it meets the RCRA definition of a hazardous waste.

Inert (30 TAC Section 335.507)—Inertness refers to the chemical inactivity of an element, compound, or waste. Ingredients added to mixtures chiefly for the purposes of bulk and/or weight are normally considered inert.

Listed hazardous wastes (40 CFR Part 261 Subpart D)—Specific wastes that have been identified by the EPA as hazardous. These are often referred to as the "F" wastes (waste from nonspecific sources); "K" wastes (wastes from specific sources); "P" wastes (acutely hazardous off-specification materials, container residues, and spill residues of these materials); and "U" wastes (toxic, hazardous off-specification materials, container residues, and spill residues).

A waste is considered hazardous if

- it is listed in 40 CFR Part 261 Subpart D, or
- is mixed with or derived from a waste listed there, and
- has not been provided a particular exclusion from the definition of hazardous as provided in 40 CFR Sections 261.3–4.

Matrix interference—Interference with the precision of analytical testing for a particular constituent in a waste stream due to other material(s) in the sample (contamination by carryover). See also waste matrices.

Medical wastes (30 TAC Section 335.508)— Nonhazardous medical wastes that are subject to the provisions of 30 TAC Chapter 330 Subchapter Y are designated as Class 2 wastes. An example of such waste would be needle-bearing syringes from plant infirmaries.

"New chemical substance" waste (30 TAC Section 335,508)—If a nonhazardous industrial waste is generated as a result of the commercial production of a "new chemical substance" as defined by the federal Toxic Substances Control Act, United States Code Annotated (U.S.C.A.), Title 15, Section 2602(9), the generator must manage that waste as a Class 1 waste, unless the generator can provide appropriate analytical data and/or process knowledge demonstrating that the waste is Class 2 or Class 3, and the TCEQ concurs. If the generator has not received concurrence or denial from the TCEQ within 120 days from the date of the request for review, the generator may manage the waste according to the requested classification, but not before giving 10 working days written notice to the TCEQ.

Notice of Registration (NOR)-TCEQ term for the information it collects in its database on each hazardous or industrial waste handler: generator, receiver, transporter, and recycler. The NOR includes the facility's physical and mailing addresses, information on waste streams that are generated or handled at the site, a list of individual units at the facility where wastes are managed, and other information. It also contains the state facility identification numbers and the EPA facility number, issued by the TCEQ. The NOR serves to verify the information submitted by each handler. When a generator registers with the TCEO using form TCEQ-00002, the agency sends back a printout of the information in its database about the site and generator. The handler should keep the NOR current and in on-site files and check it periodically to make sure that it accurately reflects the facility's waste streams and waste management units.

Petroleum-hydrocarbon-containing wastes

(**30 TAC Section 335.508**)—Wastes resulting from the cleanup of leaking underground storage tanks (USTs), which are regulated under 30 TAC Chapter 334 Subchapter K (relating to Petroleum Substance Waste), are not subject to classification under 30 TAC Chapter 335 Subchapter R (Waste Classification).

Petroleum substance—A crude oil, or any refined or unrefined fraction or derivative of crude oil, that is a liquid at standard conditions of temperature and pressure. These substances include the following:

 combinations or mixtures of basic petroleum substances, such as crude oils, crude oil fractions, petroleum feedstocks, and petroleum fractions;

- aviation gasolines, aviation jet fuels, distillate fuel oils, residual fuel oils, gas turbine fuel oils, illuminating oils, lubricants, building materials, insulating and waterproofing materials, used oils;
- solvents or a combination or mixture of solvents—except for any listed substance regulated as a hazardous waste under the federal Solid Waste Disposal Act, Subtitle C (*United States Code*, Title 42, Section 6921, et seq.)—that are liquid at standard conditions of temperature (20^o centigrade) and pressure (1 atmosphere). Examples include Stoddard solvent, petroleum spirits, mineral spirits, petroleum ether, varnish makers' and painters' naphthas, petroleum extender oils, and commercial hexane.

The following materials are *not* considered petroleum substances:

- polymerized materials, such as plastics, synthetic rubber, polystyrene, high- and low- density polyethylene;
- animal, microbial, and vegetable fats;
- food-grade oils;
- hardened asphalt and solid asphaltic materials, such as roofing shingles, roofing felt, hot mix and cold mix; and
- cosmetics.

Practical Quantitation Limits (PQLs)—See quantitation.

Process Knowledge—See examples in Chapter 4 under this subheading.

Quantitation—Generally, measurement of quantity or amounts. The word appears in a number of specialized terms used in waste regulation:

- *Quantitation Limits* (QLs) indicate the levels at which measurements can be "trusted."
- Practical Quantitation Limits (PQLs) and Estimated Quantitation Limits (EQLs) are levels that are routinely and reliably detected and quantitated in a variety of sample matrices. These are 3 to 5 times the Method Detection Limits (MDLs). (See Chapter 1, SW 846, 1992.)
- Method Detection Limits (MDLs) take into account the reagents, sample matrix, and preparation steps applied to a sample in specific analytical methods. (See 40 CFR Part 136, Appendix B; Chapter 1, SW 846, July 1992.)

RCRA—Resource Conservation and Recovery Act (amendment to the Solid Waste Disposal Act). Primarily designed to regulate five types of disposal activities: hazardous waste, solid waste, underground storage tanks, oil waste, and medical waste. In this guidance document, any mention of "RCRA" refers to RCRA Subtitle C, which applies to all handlers of hazardous waste, including generators; transporters; and operators of treatment, storage, and disposal (TSDF) facilities. (RCRA, a federal law, covers only whether a solid waste is either hazardous or nonhazardous. Texas regulations further subdivide nonhazardous waste into Classes 1, 2, and 3.)

Regulated asbestos-containing material (RACM)

(30 TAC Sections 335.508)—RACM includes the following:

- friable asbestos containing more than 1 percent asbestos¹ that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure;
- nonfriable asbestos-containing material containing more than 1 percent asbestos as measured by the method found in 40 CFR Part 763, Subpart E, Appendix E, Section 1 that, when dry, *cannot* be crumbled, pulverized, or reduced to powder by hand pressure.
- **Category I** nonfriable asbestos includes packings, gaskets, resilient floor coverings, and asphalt roofing products);
- **Category II** nonfriable asbestos includes transite shingles, transite pipes, and any nonfriable asbestos material not defined as Category I.

Regulated generators (30 TAC Chapter 335 Subchapters A and C)—If you generate the following amounts of waste, you are a regulated generator and must follow regulations in Chapter 335:

Waste Type	Monthly Amount
Class 1	100 kg (220 lbs) or more
hazardous	100 kg (220 lbs) or more
acutely hazardous	1 kg (2.2 lbs) or more

If you generate less than the amounts shown above, you are considered a Conditionally Exempt Small-Quantity Generator and are not subject to regulations requiring notification, manifesting, and fees.

¹As determined using the method specified in 40 CFR Part 763, Subpart E, Appendix E, Section 1, Polarized Light Microscopy.

Sequence number (30 TAC Section 335.503)—The first 4 digits of the waste code (actually these four characters may be numbers, letters, or a combination of the two). The sequence number is used as an internal numbering system determined by each generator. The number of a waste may range from 0001 to 9999, and can only be used once.

Solid waste (30 TAC Section 335.1 and 40 CFR Section 261.2)—Any discarded material such as garbage; refuse; sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility; or other material including solid, liquid, semisolid, or contained gaseous material resulting from industrial, municipal, commercial, mining, and agricultural operations. Solid wastes include any material that is abandoned by being disposed of; burned or incinerated; or accumulated, stored, or treated before or in lieu of these activities. Certain recycled materials are also considered wastes. Solid wastes are often referred to simply as "wastes." For the complete definition of a "solid waste," please refer to 30 TAC Section 335.1 (Solid Waste).

Specific industrial solid waste (30 TAC Section 335.508)—A nonhazardous waste for which specific classification criteria and/or a form code have been established.

Stabilized wastes (30 TAC Section 335.508)— Wastes that originally exhibit hazardous characteristics can be *stabilized* so that they are no longer hazardous and can meet the criteria for classification as Class 1 or 2 nonhazardous industrial waste. For example a waste containing lead that exhibits the hazardous characteristic of toxicity can be stabilized by mixing with cement in the proper proportion to reduce the toxicity or mobility of contaminants. Depending on the process(es) used, stabilization achieves varying degrees of long-term effectiveness.

Synthetic oils—Oils not derived from crude oil, including those derived from shale, coal, or a polymer-based starting material; and nonpolymeric synthetic fluids that are used as hydraulic fluids and heat transfer fluids, such as those based on phosphate esters, diphenyl oxide, or alkylated benzenes. Synthetic oils are generally used for the same purpose as oils, and they present relatively the same level of hazardousness after use. **TAC**—Texas Administrative Code. Title 30 of TAC contains TCEQ rules on industrial solid waste and municipal hazardous waste, among other subjects.

TSDF—Treatment, storage, and disposal facilities.

Universal Waste (30 TAC Section 335.261 and 40 CFR Part 273)—This rule covers five types of waste:

- lamps as described in 40 CFR §273.5, and §335.261(b)(16)(F).
- mercury-containing thermostats as described in 40 CFR 273.4;
- all hazardous waste batteries as described in 40 CFR 273.2;
- some hazardous waste pesticides as described in 40 CFR 273.3;
- paint and paint-related waste as described in §335.262(b);

The rule establishes a reduced set of regulatory requirements for facilities managing universal waste, depending on whether the facility falls into one of four categories:

- small-quantity handler of universal waste (SQHUW),
- large-quantity handler of universal waste (LQHUW),
- transporter of universal waste, or
- final destination facilities.

In addition, the rules establish a petitioning procedure whereby additional wastes may be added to the universal waste rule.

U.S.C.A.—United States Code Annotated.

Used oil (30 TAC Section 335.1, 30 TAC Section 324 (relating to used oil), and 40 CFR Part 279 (relating to standards for management of used $oil)^2$ — Any oil refined from crude oil, or any synthetic oil, that has been used and, from such use, is contaminated by physical or chemical impurities and cannot be used for its intended purpose (that is, it is a spent material).

Used oil fuel includes any fuel produced from used oil by processing, blending, or other treatment.

Waste—Unwanted materials left over from a manufacturing process; refuse from places of human or animal habitation.

² Rules applicable to nonhazardous used oil, are found in Chapter 324, state regulations on recyclable used oil, and 40 CFR Part 279, federal regulations on used oil recycling.

Waste code—Also referred to as Texas waste code (30 TAC Section 335.503)—This 8-digit code identifies a waste stream. The first 4 digits are the *sequence number*, the next 3 digits are the *form code*, and the last digit is the waste's *classification* (sequence number + form code + classification code = waste code). (Some of the "digits" referred to here actually may be letters or a combination of letters and numbers.)

Waste matrices—Water and soil or sediment in which a waste is found.

Wastes generated out-of-state (30 TAC Section 335.508)—All nonhazardous industrial waste generated outside the state of Texas and transported into or through Texas for processing, storage, or disposal

is classified as Class 1 unless the waste satisfies the Class 2 or 3 criteria as defined in 30 TAC Sections 335.506–8. A Class 2 or 3 waste determination, accompanied by all supporting process knowledge and analytical data, must be submitted to the TCEQ for approval.

Waste stream (30 TAC Section 335.503)—The total flow of solid waste from homes, businesses, institutions, and manufacturing plants that is recycled, burned, or disposed of in landfills; or segments of that total flow, such as the "residential waste stream" or the "recyclable waste stream." (It should be noted that the terms "waste stream", "solid waste", and "waste" are often used interchangeably by federal and state regulators as well as many members of the regulated community).

Hazardous Substances

Applicability: Empty Container Class 2 Evaluations

The following is a listing of materials identified as hazardous substances (40 CFR Table 302.4) in effect at the time of this guideline's printing. (As amended at 57 FR 61492, Dec. 24, 1992; 58 FR 35314, June 30, 1993; 59 FR 31551, June 20, 1994; 60 FR 7824 Feb. 9, 1995). Chemical Abstract Service (CAS) Registry Numbers of the materials are also provided.

Hazardous Substance	CAS Number	Hazardous Substance	CAS Number
Acenaphthene	83329	Ammonium fluoborate	13826830
Acenaphthylene	208968	Ammonium fluoride	12125018
Acetaldehyde	75070	Ammonium hydroxide	1336216
Acetaldehyde, chloro-	107200	Ammonium oxalate	6009707
Acetaldehyde, trichloro-	75876	Ammonium picrate	131748
Acetamide, N-	591082	Ammonium silicofluoride	16919190
(aminothioxomethyl)-		Ammonium sulfamate	7773060
Acetamide, N-9H-fluoren-2-yl-	53963	Ammonium sulfide	12135761
Acetic acid	64197	Ammonium sulfite	10196040
Acetic acid (2,4-dichlorophenoxy)-	94757	Ammonium tartrate	14307438
Acetic anhydride	108247	Ammonium thiocyanate	1762954
Acetone	67641	Ammonium vanadate	7803556
Acetone cyanohydrin	75865	Amyl acetate	628637
Acetonitrile	75058	iso-	123922
Acetophenone	98862	sec-	626380
2-Acetylaminofluorene	53963	tert-	625161
Acetyl bromide	506967	Aniline	62533
Acetyl chloride	75365	Anthracene	120127
1-Acetyl-2-thiourea	591082	Antimony	7440360
Acrolein	107028	Antimony pentachloride	7647189
Acrylamide	79061	Antimony potassium tartrate	28300745
Acrylic acid	79107	Antimony tribromide	7789619
Acrylonitrile	107131	Antimony trichloride	10025919
Adipic acid	124049	Antimony trifluoride	7783564
Aldicarb	116063	Antimony trioxide	1309644
Aldicarb sulfone	1646884	Aroclor 1016	12674112
Aldrin	309002	Aroclor 1221	11104282
Allyl alcohol	107186	Aroclor 1232	11141165
Allyl chloride	107051	Aroclor 1242	53469219
Aluminum phosphide	20859738	Aroclor 1248	12672296
Aluminum sulfate	10043013	Aroclor 1254	11097691
Ametycin	50077	Aroclor 1260	11096825
(7-amino-9-a-methoxymitosane)		Arsenic	7440382
5-(Aminomethyl)-3-isoxazolol	2763964	Arsenic acid H ₃ AsO ₄	1327522
4-Aminopyridine	504245	Arsenic disulfide	1303328
Amitrole	61825	Arsenic pentoxide, As ₂ O ₅	1303282
Ammonia	7664417	Arsenic trichloride	7784341
Ammonium acetate	631618	Arsenic trioxide, As ₂ O ₃	1327533
Ammonium benzoate	1863634	Arsenic trisulfide	1303339
Ammonium bicarbonate	1066337	Arsinic acid, dimethyl-	75605
Ammonium bichromate	7789095	Asbestos	1332214
Ammonium bifluoride	1341497	Auramine	492808
Ammonium bisulfite	10192300	Azaserine	115026
Ammonium carbamate	1111780	1H-Azepine-1-carbothioic acid,	2212671
Ammonium carbonate	506876	hexahydro-, S-ethyl ester	
Ammonium chloride	12125029	Aziridine, 2-methyl	75558
Ammonium chromate	7788989	Barium cyanide	542621
Ammonium citrate, dibasic	3012655	Benz[c]acridine	225514

Hazardous Substance	CAS Number	Hazardous Substance	CAS Numbe
Benzanthracene	56553	Cadmium	744043
Benz[a]anthracene	57976	Cadmium acetate	54390
Benzene	71432	Cadmium bromide	778942
Benzene, dichloromethyl-	98873	Cadmium bloride	10108642
Benzene, 2,6-diisocyanato-1-methyl-	91087	Calcium arsenate	777844
Benzene, m-dimethyl	108383	Calcium arsenite	5274016
Benzene, o-dimethyl	95476	Calcium carbide	7520
Benzene, p-dimethyl	106423	Calcium chromate	1376519
Benzenesulfonic acid chloride		Calcium cyanide Ca(CN) ₂	59201
	98099		
Benzene, (trichloromethyl)	98077	Calcium dodecylbenzenesulfonate	26264062
Benzidine	92875	Calcium hypochlorite	777854
Benzo[a]anthracene	56553	Captan	13306
,3-Benzodioxol-4-ol, 2,2-dimethyl-,	22961826	Carbamic acid, butyl-,	5540653
(Bendiocarb phenol)		3-iodo-2-n-butylcarbamate)	
,3-Benzodioxol-4-ol, 2,2-dimethyl-,	22781233	Carbamic acid, [1-	1780435
methyl carbamate (Bendiocarb)		[(butylamino)carbonyl]-	
3enzo[b]fluoranthene	205992	1H-benzimidazol-2-yl,	
3enzo(k)fluoranthene	207089	methyl ester (Benomyl)	
Benzoic acid	65850	Carbamic acid, 1H-benzimidazol-2-yl,	1060521
Benzoic acid, 2-hydroxy-, compound	57647	methyl ester	
with (3aS-cis)-1,2,3,3a,8,8a-		Carbamic acid, (3-chlorophenyl)-,	10127
hexahydro-1,3a,8-trimethylpyrrolo-		4-chloro-2-butynyl ester	
[2,3-b]indol- 5-yl methylcarbamate		Carbamic acid, dimethyl-,1-	64464
ester (1:1) (Physostigmine salicylate))	[(dimethylamino)carbonyl]-5-	
Benzonitrile	100470	methyl-1H-pyrazol-3-yl ester	
Benzo[rst]pentaphene	189559	Carbamic acid, dimethyl-,	11938
Benzo[ghi]perylene	191242	3-methyl-1-(1-methylethyl)-	
Benzo[a]pyrene	50328	1H-pyrazol-5-yl ester	
p-Benzoquinone	106514	Carbamic acid, methyl-,	112941
Benzotrichloride	98077	3-methylphenyl ester	112311
Benzoyl chloride	98884	Carbamic acid, [1,2-phenylenebis-	2356405
Benzyl chloride	100447	(iminocarbonothioyl)]bis-,	2330403
Beryllium chloride	7787475	dimethyl ester	
Beryllium powder	7440417	Carbamic acid, phenyl-,	12242
Beryllium fluoride	7787497	1-methylethyl ester (Propham)	12242
			(155)
Beryllium nitrate	13597994	Carbamic acid,	61553
alpha-BHC	319846	methylnitroso-, ethyl ester	7044
beta-BHC	319857	Carbamic chloride, dimethyl-	7944
delta-BHC	319868	Carbamodithioic acid, dibutyl-,	13630
2,2'-Bioxirane	1464535	sodium salt	0=06
3is(2-chloroethyl) ether	111444	Carbamodithioic acid, diethyl-,	9506
3is(2-chloroethoxy)methane	111911	2-chloro-2-propenyl ester	
Bis(dimethylthiocarbamoyl) sulfide	97745	Carbamodithioic acid, diethyl-,	14818
3is(2-ethylhexyl) phthalate	117817	sodium salt	
Bromoacetone	598312	Carbamodithioic acid, dimethyl-,	12803
Bromoform	75252	potassium salt	
1-Bromophenyl phenyl ether	101553	Carbamodithioic acid, dimethyl-,	12804
Brucine	357573	sodium salt	
I-Butanol	71363	Carbamodithioic acid, dimethyl-,	14434
2-Butenal	123739	tetraanhydrosulfide with	
Butyl acetate	123864	orthothioselenious acid	
iso-	110190	Carbamodithioic acid,	5102628
sec-	105464	(hydroxymethyl)methyl-,	
tert-	540885	monopotassium salt	
n-Butyl alcohol	71363	Carbamodithioic acid, methyl-,	13741
Butylamine	109739	monopotassium salt	137 11
iso-	78819	Carbamodithioic acid, methyl-,	13742
			13/42
sec-	513495	monosodium salt	<u> </u>
sec-	13952846	Carbamothioic acid, bis(1-	230317
tert-	75649	methylethyl)-, S-(2,3,3-	
Butyl benzyl phthalate	85687	trichloro -2-propenyl) ester	
Butyric acid	107926	Carbamothioic acid, bis(2-	200841
iso-Butyric acid	79312	methylpropyl)-, S-ethyl ester	

Hazardous Substance	CAS Number	Hazardous Substance	CAS Numbe
Carbamothioic acid,	1114712	Cupric sulfate, ammoniated	10380297
butylethyl-, S-propyl ester		Cupric tartrate	815827
Carbamothioic acid,	1134232	Cyanides	57125
cyclohexylethyl-, S-ethyl ester		Cyanogen	460195
Carbamothioic acid,	759944	Cyanogen bromide (CN)Br	506683
dipropyl-, S-ethyl ester (EPTC)		Cyanogen chloride	506774
Carbamothioic acid,	52888809	Cyclohexane	110827
dipropyl-, S-(phenylmethyl) ester		Cyclohexanone	108941
Carbamothioic acid,	1929777	2-Cyclohexyl-4,6-dinitrophenol	131895
dipropyl-, S-propyl ester		Cyclophosphamide	50180
Carbaryl	63252	2,4-D Acid	94757
Carbofuran	1563662	2,4-D (isopropyl) Esters	94111
Carbofuran, phenol	1563388		94791
Carbosulfan	55285148		94804
Carbon disulfide	75150		1320189
Carbon oxyfluoride	353504		1928387
Carbon tetrachloride	56235		1928616
Chlorambucil	305033	Butoxyethl	1929733
Chlordane	57749		2971382
Chlorine	7782505	Isooctyl	25168267
Chlornaphazine	494031	Dichlorophenoxyaceticacid-	53467111
p-Chloroaniline	106478	polyproxybutyl	
Chlorobenzene	108478	Daunomycin	20830813
		DDD	72548
Chlorobenzilate	510156	DDE	72559
p-Chloro-m-cresol	59507	DDT	50293
Chlorodibromomethane	124481	Diallate	2303164
Chloroethane	75003	Diazinon	333415
2-Chloroethyl vinyl ether	110758	Dibenzo[a,h]anthracene	53703
Chloroform	67663	1,2-Dibromo-3-chloropropane	96128
Chloromethyl methyl ether	107302	DibutyInitrosoamine	924163
2-Chloronaphthalene	91587	Di-n-butyl phthalate	84742
2-Chlorophenol	95578	Dicamba	1918009
4-Chlorophenyl phenyl ether	7005723	Dichlobenil	1194656
3-Chloropropionitrile	542767	Dichlone	117806
Chlorosulfonic acid	7790945	Dichlorobenzene	25321226
4-Chloro-o-toluidine, hydrochloride	3165933	1,2-Dichlorobenzene	95501
Chlorpyrifos	2921882	1,3-Dichlorobenzene	541731
Chromic acetate	1066304	1,4-Dichlorobenzene	106467
Chromic acid	11115745	3,3'-Dichlorobenzidine	91941
Chromic sulfate	10101538	Dichlorobromomethane	75274
Chromium	7440473	1,4-Dichloro-2-butene	764410
Chromous chloride	10049055	Dichlorodifluoromethane	75718
Chrysene	218019	1,1-Dichloroethane	75343
Cobaltous bromide	7789437	1,2-Dichloroethane	107062
Cobaltous formate	544183	1,1-Dichloroethylene	75354
Cobaltous sulfamate	14017415		
Copper	7440508	1,2-Dichloroethylene	156605
Copper, dimethyldithiocarbamate	137291	Dichloroethyl ether	111444
Copper cyanide CuCN	544923	Dichloroisopropyl	10860
Coumaphos	56724	Dichloromethoxyethane	11191
Creosote	8001589	Dichloromethyl ether	54288
Cresol(s)	1319773	2,4-Dichlorophenol	120832
m-Cresol	108394	2,6-Dichlorophenol	87650
o-Cresol	95487	Dichlorophenylarsine	696286
p-Cresol	106445	Dichloropropane	26638197
Cumene	98828	1,1-Dichloropropane	78999
Cupric acetate	142712	1,3-Dichloropropane	142289
Cupric acetoarsenite	12002038	1,2-Dichloropropane	78875
Cupric chloride	7447394	Dichloropropane	8003198
Cupric nitrate	3251238	Dichloropropene	26952238
Cupric oxalate	5893663	2,3-Dichloropropene	78886
Cupric sulfate	7758987	1,3-Dichloropropene	542756

Appendix A – Hazardous Substances

Hazardous Substance	CAS Number	Hazardous Substance	CAS Number
2,2-Dichloropropionic acid	75990	Endrin & metabolites	72208
Dichlorvos	62737	Endrin aldehyde	7421934
Dicofol	115322	Epichlorohydrin	106898
Dieldrin	60571	Epinephrine	51434
Diethylamine	109897	Ethanimidiothioic acid, 2-	30558431
Diethylarsine	692422	(dimethylamino-N-hydroxy-2-oxo-,	
1,4-Diethylenedioxide	123911	methyl ester (A2213)	
O,O-Diethyl S-methyl dithiophosphate		Ethanimidiothioic acid, 2-	23135220
Diethyl-p-nitrophenyl phosphate	311455	(dimethylamino)-N-[[(methylamino)	10.00110
Diethyl-o-phthalate	84662	carbonyl]oxy]-2-oxo-, methyl	
O,O-Diethyl O-pyrazinyl	297972	ester (Oxamyl)	
phosphorothioate	237372	Ethanimidothioic acid, N,N'-	59669260
Diethylstilbestrol	56531	[thiobis[(methylimino)	55005200
Dihydrosafrole	94586		
		carbonyloxy]] bis-, dimethyl astar (Thiadicarb)	
Diisopropylfluorophosphate	55914	dimethyl ester (Thiodicarb)	5052261
3,3'-Dimethoxybenzidine	119904	Ethanol, 2,2'-oxybis-,	5952261
Dimethylamine	124403	dicarbamate (Diethylene	
p-Dimethylamino-azobenzene	60117	glycol, dicarbamate)	
3,3'-Dimethylbenzidine	119937	Ethion	563122
1,1-Dimethylhydrazine	57147	Ethyl acetate	141786
1,2-Dimethylhydrazine	540738	Ethyl acrylate	140885
alpha,alpha-	122098	Ethylbenzene	100414
Dimethylphenethylamine		Ethyl carbamate	51796
2,4-Dimethylphenol	105679	Ethyl cyanide	107120
Dimethyl phthalate	131113	Ethylenebisdithiocarbamic	111546
Dimethyl sulfate	77781	acid, salts & esters	
Dinitrobenzene (mixed)	25154545	Ethylenediamine	107153
m-Dinitrobenzene	99650	Ethylenediamine-	60004
o-Dinitrobenzene	528290	tetraacetic acid (EDTA)	
p-Dinitrobenzene	100254	Ethylene dibromide	106934
4,6-Dinitro-o-cresol and salts	534521	Ethylene glycol	110805
Dinitrophenol	25550587	monoethyl ether	110005
2,5-Dinitrophenol	329715	Ethylene oxide	75218
2,6-Dinitrophenol	573568	Ethylenethiourea	96457
2,4-Dinitrophenol		Ethylenimine	
Dinitrotoluene	51285 25321146		151564
		Ethyl ether	60297
3,4-Dinitrotoluene	610399	Ethyl methacrylate	97632
2,4-Dinitrotoluene	121142	Famphur	52857
2,6-Dinitrotoluene	606202	Ferric ammonium citrate	1185575
Dinoseb	88857	Ferric ammonium oxalate	2944674
Di-n-octyl phthalate	117840	Ferric chloride	7705080
1,2-Diphenylhydrazine	122667	Ferric fluoride	7783508
Diphosphoramide,	152169	Ferric nitrate	10421484
octamethyl-		Ferric sulfate	10028225
Diphosphoric acid, tetraethyl ester	107493	Ferrous ammonium sulfate	10045893
Dipropylamine	142847	Ferrous chloride	7758943
Di-n-propylnitrosamine	621647	Ferrous sulfate	7720787
Diquat	85007	Fluoranthene	206440
Disulfoton	298044	Fluorene	86737
Dithiobiuret	541537	Fluorine	7782414
1,3-Dithiolane-2-	26419738	Fluoroacetamide	640197
carboxaldehyde, 2,4-dimethyl-,	20115750	Fluoroacetic acid, sodium salt	62748
O-[(methylamino)		Formaldehyde	50000
carbonyl]oxime (Tirpate)	220541	Formic acid	64186
Diuron	330541	Fumaric acid	110178
Dodecylbenzenesulfonic acid	27176870	Furan	110009
Endosulfan	115297	Furfural	98011
alpha-Endosulfan	959988	Glauramine	492808
beta-Endosulfan	33213659	Glycidylaldehyde	765344
Endosulfan sulfate	1031078	Guanidine, N-methyl-N'-nitro-N-nitroso	
Endothall	145733	Guthion	86500

Hazardous Substance	CAS Number	Hazardous Substance	CAS Number
Heptachlor	76448	Methacrylonitrile	126987
Heptachlor epoxide	1024573	Methanesulfonic acid, ethyl ester	62500
Hexachlorobenzene	118741	Methanimidamide,	23422539
Hexachlorobutadiene	87683	N,N-dimethyl-N'-	
Hexachlorocyclohexane (all isomers)	608731	[3-[[(methylamino)carbonyl]	
Hexachlorocyclohexane	58899	oxylphenyl]-, monohydrochloride	
(gamma isomer - Lindane)	30033	Methanimidamide,	17702577
Hexachlorocyclopentadiene	77474	N,N-dimethyl-N'-	17702377
Hexachloroethane	67721	[2-methyl-4-[[(methylamino)	
Hexachlorophene	70304	carbonyl]oxy]phenyl]-	
	1888717	Methanol	67561
Hexachloropropene			
Hexaethyl tetraphosphate	757584	Methapyrilene	91805
Hydrazine	302012	Methomyl	16752775
Hydrazine, 1,2-diethyl-	1615801	Methoxychlor	72435
Hydrochloric acid	7647010	Methyl bromide	74839
Hydrocyanic acid	74908	1-Methylbutadiene	504609
Hydrofluoric acid	7664393	Methyl chloride	74873
Hydrogen sulfide H ₂ S	7783064	Methyl chlorocarbonate	79221
Hydroperoxide, 1-methyl-1-phenylethy	l 80159	3-Methylcholanthrene	56495
Indeno(1,2,3-cd)pyrene	193395	4,4'-Methylene(bis)chloroaniline	101144
Iron, tris	14484641	Methylene bromide	74953
(dimethylcarbamodithioato-S,S')-		Methylene chloride	75092
Isobutyl alcohol	78831	Methyl ethyl ketone (MEK)	78933
Isodrin	465736	Methyl ethyl ketone peroxide	1338234
Isophorone	78591	Methyl hydrazine	60344
Isoprene	78795	Methyl iodide	74884
Isopropanolamine	42504461	Methyl isobutyl ketone	108101
dodecylbenzenesulfonate		Methyl isocyanate	624839
Isosafrole	120581	Methylmercaptan	74931
3(2H)-Isoxazolone, 5-(aminomethyl)-	2763964	Methyl methacrylate	80626
Kepone	143500	Methyl parathion	298000
Lasiocarpine	303344	Methylthiouracil	56042
Lead	7439921	Mevinphos	7786347
Lead acetate	301042	Mexacarbate	315184
Lead arsenate	7784409		
Lead chloride		Mitomycin C Monoethylamino	50077
	7758954	Monoethylamine	75047
Lead fluoborate	13814965	Monomethylamine	74895
Lead fluoride	7783462	Naled	300765
Lead iodide	10101630	1-Naphthalenamine	134327
Lead nitrate	10099748	2-Naphthalenamine	91598
Lead phosphate	7446277	Naphthalene	91203
Lead stearate	7428480	1,4-Naphthalenedione	130154
Lead subacetate	1335326	Naphthenic acid	1338245
Lead sulfate	15739807	alpha-Naphthylthiourea	86884
Lead sulfide	1314870	Nickel	7440020
Lead thiocyanate	592870	Nickel ammonium sulfate	15699180
Lithium chromate	14307358	Nickel carbonyl	13463393
Malathion	121755	Nickel chloride	7718549
Maleic acid	110167	Nickel cyanide Ni(CN),	557197
Maleic anhydride	108316	Nickel hydroxide	12054487
Maleic hydrazide	123331	Nickel nitrate	14216752
Manganese dimethyldithiocarbamate	15339363	Nickel sulfate	7786814
Melphalan	148823	Nicotine, & salts	54115
Mercaptodimethur	2032657	Nitric acid	7697372
Mercuric cyanide	592041	p-Nitroaniline	100016
Mercuric nitrate	10045940	Nitrobenzene	98953
Mercuric sulfate	7783359	Nitrogen dioxide NO ₂	10102440
Mercuric thiocyanate	592858	Nitrogen oxide NO	10102439
Mercurous nitrate	10415755	Nitroglycerine	55630
Mercury	7439976	Nitrophenol (mixed)	25154556
Mercury fulminate	628864	m-Nitrophenol	554847

Appendix A – Hazardous Substances

Hazardous Substance	CAS Number	Hazardous Substance	CAS Number
o-Nitrophenol	88755	Potassium chromate	7789006
p-Nitrophenol	100027	Potassium cyanide KCN	151508
2-Nitropropane	79469	Potassium hydroxide	1310583
N-Nitrosodiethanolamine	1116547	Potassium permanganate	7722647
N-Nitrosodiethylamine	55185	Potassium silver cyanide	506616
N-Nitrosodimethylamine	62759	Pronamide	23950585
N-Nitrosodiphenylamine	86306	1,3-Propane sultone	1120714
N-Nitrosopyrrolidine	930552	Propanedinitrile	109773
Nitrotoluene	1321126	Propargite	2312358
m-Nitrotoluene	99081	Propargyl alcohol	107197
o-Nitrotoluene	88722	Propionic acid	79094
p-Nitrotoluene	99990	Propionic anhydride	123626
5-Nitro-o-toluidine	99558	n-Propylamine	107108
Osmium tetroxide OsO ₄	20816120	Propylene oxide	75569
Paraformaldehyde	30525894	Pyrene	129000
Paraldehyde	123637	Pyrethrins	121299
Parathion	56382	Pyridine	110861
Pentachlorobenzene	608935	Pyridine, 2-methyl-	109068
Pentachloroethane	76017	Pyrrolo[2,3-b] indol-5-ol,	57476
Pentachloronitrobenzene	82688	1,2,3,3a,8,8a-hexahydro-1,3a,8-	
Pentachlorophenol	87865	trimethyl-, methylcarbamate	
Perchloroethylene	127184	(ester), (3aS-cis)-Physostigmine	
Phenacetin	62442	Quinoline	91225
Phenanthrene	85018	Reserpine	50555
Phenol	108952	Resorcinol	108463
Phenol, 3-(1-methylethyl)-,	64006	Saccharin and salts	81072
methyl carbamate (m-Cumenyl		Safrole	94597
methylcarbamate)		Selenious acid	7783008
Phenol, 3-methyl-5-	2631370	Selenium	7782492
(1-methylethyl)-, methyl		Selenium dioxide	7446084
carbamate (Promecarb)		Selenium sulfide SeS ₂	7488564
Phenylmercury acetate	62384	Selenourea	630104
Phenylthiourea	103855	Silver	7440224
Phorate	298022	Silver cyanide AgCN	506649
Phosgene	75445	Silver nitrate	7761888
Phosphine	7803512	Silvex (2,4,5-TP)	93721
Phosphoric acid	7664382	Sodium	7440235
Phosphorodithioic acid,	60515	Sodium arsenate	7631892
O,O-dimethyl S-		Sodium arsenite	7784465
[2(methylamino)-2-oxoethyl] ester		Sodium azide	26628228
Phosphorus	7723140	Sodium bichromate	10588019
Phosphorus oxychloride	10025873	Sodium bifluoride	1333831
Phosphorus pentasulfide	1314803	Sodium bisulfite	7631905
Phosphorus trichloride	7719122	Sodium chromate	7775113
Phthalic anhydride	85449	Sodium cyanide NaCN	143339
Piperidine, 1-nitroso-	100754	Sodium dodecyl-	25155300
Piperidine, 1,1'-	120547	benzenesulfonate	
(tetrathiodicarbonothioyl)bis-		Sodium fluoride	7681494
(Bis(pentamenthylene)thiuram		Sodium hydrosulfide	16721805
tetrasulfide)		Sodium hydroxide	1310732
Polychlorinated biphenyls (PCBs)	1336363	Sodium hypochlorite	7681529
Aroclor 1016	12674112	Sodium methylate	124414
Aroclor 1221	11104282	Sodium nitrite	7632000
Aroclor 1232	11141165	Sodium phosphate, dibasic	7558794
Aroclor 1242	53469219	Sodium phosphate, tribasic	7601549
Aroclor 1248	12672296	Sodium selenite	10102188
Aroclor 1254	11097691	Streptozotocin	18883664
Aroclor 1260	11096825	Strontium chromate	7789062
Potassium arsenate	7784410	Strychnine, & salts	57249
Potassium arsenite	10124502	Styrene	100425
Potassium bichromate	7778509	Sulfur monochloride	12771083

Hazardous Substance	CAS Number	Hazardous Substance	CAS Number
Sulfuric acid	7664939	Trichloroethene (Trichloroethylene)	79016
2,4,5-T acid	93765	Trichloromethanesulfenyl chloride	594423
2,4,5-T amines	2008460	Trichloromonofluoromethane	75694
	1319728	Trichlorophenol	25167822
	3813147	2,3,4-Trichlorophenol	15950660
	6369966	2,3,5-Trichlorophenol	933788
	6369977	2,3,6-Trichlorophenol	933755
2,4,5-T (n-butyl) esters	93798	3,4,5-Trichlorophenol	609198
	1928478	2,4,5-Trichlorophenol	95954
	2545597	2,4,6-Trichlorophenol	88062
Isooctyl	25168154	Triethanolamine	27323417
Methylpropyl	61792072	dodecylbenzenesulfonate	
2,4,5-T salts	13560991	Triethylamine	121448
1,2,4,5-Tetrachlorobenzene	95943	Trimethylamine	75503
2,3,7,8-Tetrachloro-	1746016	1,3,5-Trinitrobenzene	99354
dibenzo-p-dioxin (TCDD)		Tris(2,3-dibromopropyl)phosphate	126727
1,1,1,2-Tetrachloroethane	630206	Trypan blue	72571
1,1,2,2-Tetrachloroethane	79345	Uracil mustard	66751
2,3,4,6-Tetrachlorophenol	58902	Uranyl acetate	541093
Tetraethyllead	78002	Uranyl nitrate	10102064
Tetraethyldithiopyrophosphate	3689245	Urea, N-ethyl-N-nitroso-	759739
Tetrahydrofuran	109999	Urea, N-methyl-N-nitroso-	684935
Tetranitromethane	509148	Vanadium pentoxide	1314621
Thallium	7440280	Vanadyl sulfate	27774136
Thallium(I) acetate	563688	Vinyl chloride	75014
Thallium(I) carbonate	6533739	Vinyl acetate	108054
Thallium chloride TICI	7791120	Vinylamine, N-methyl-N-nitroso-	4549400
Thallium(I) nitrate	10102451	Warfarin, and salts, when present at	81812
Thallium oxide Tl_2O_3	1314325	concentrations greater than 0.3%	
Thallium selenite	12039520	Xylene (mixed)	1330207
Thallium(I) sulfate	7446186	Xylenol	1300716
2H-1,3,5-Thiadiazine-2-thione,	533744	Zinc	7440666
tetrahydro-3,5-dimethyl- (Dazomet)		Zinc acetate	557346
Thioacetamide	62555	Zinc ammonium chloride	52628258
Thiofanox	39196184	Zinc, bis(dimethyl	137304
Thioperoxydicarbonic diamide,	1634022	carbomodithioato-S,S')- (Ziram)	
tetrabutyl (Tetrabutylthiuram disulfic		Zinc, bis(diethylcarbamo	14324551
Thioperoxydicarbonic diamide,	97778	dithioato-S,S')- (Ethyl Ziram)	
tetraethyl (Disulfiram)		Zinc borate	1332076
Thiophenol	108985	Zinc bromide	7699458
Thiosemicarbazide	79196	Zinc carbonate	3486359
Thiourea	62566	Zinc chloride	7646857
Thiourea, (2-chlorophenyl)-	5344821	Zinc cyanide $Zn(CN)_{2}$	557211
Thiram	137268	Zinc fluoride	7783495
Toluene	108883	Zinc formate	557415
Toluenediamine	95807	Zinc hydrosulfite	7779864
Toluene diisocyanate	584849	Zinc nitrate	7779886
o-Toluidine	95534	Zinc phenolsulfonate	127822
p-Toluidine	106490	Zinc phosphide Zn_3P_{27}	1314847
o-Toluidine	636215	when present at concentrations	10.101/
hydrochloride	000210	greater than 10%	
Toxaphene	8001352	Zinc silicofluoride	16871719
2,4,5-TP esters	32534955	Zinc sulfate	7733020
Trichlorfon	52686	Zirconium nitrate	13746899
1,2,4-Trichlorobenzene	120821	Zirconium potassium fluoride	16923958
1,1,1-Trichloroethane	71556	Zirconium sulfate	14644612
1,1,2-Trichloroethane	79005	Zirconium tetrachloride	10026116
	7 5005		10020110

Appendix B

Ignitable Solids

(30 TAC Chapter 335 Subchapter R Appendix 1 Table 2)

Constituents listed from Department of Transportation Regulations, 49 CFR Part 173 Subpart E, October 1, 1993. Note: The presence of a constituent on this table in a nonhazardous waste does not automatically identify that waste as a Class 1 ignitable waste. The constituents on this table are examples of materials which could be considered Class 1 ignitable waste. The physical characteristics of the waste will be the determining factor as to whether or not a waste is ignitable. Refer to 30 TAC §335.505(2) (relating to Class 1 Waste Determination) for the Class 1 ignitable criteria.

Compound or Material	Compound or Material
Aluminum, metallic, powder	Celluloid
Alkali metal amalgams	Cerium
Alkali metal amides	Cesium metal
Aluminum alkyl halides	Chromic acid or chromic acid mixture, dry
Aluminum alkyl hydrides	Cobalt naphthenates, powder
Aluminum alkyls	Cobalt resinate
Aluminum borohydrides	Decaborane
Aluminum carbide	2-Diazo-1-naphthol-4-sulphochloride
Aluminum ferrosilicon powder	2-Diazo-1-naphthol-5-sulphochloride
Aluminum hydride	2,5-Diethoxy-4-morpholinobenzene-
Aluminum phosphide	diazonium zinc choride
Aluminum resinate	Diethylzinc
Aluminum silicon powder	4-Dimethylamino-6-(2-dimethyaminoethoxy)-
Ammonium picrate	toluene-2-diazonium zinc chloride
2,2'-Azodi(2,4-dimethyl-4-methoxyvaleronitrile)	Dimethylzinc
2,2'-Azodi(2,4-dimethylvaleronitrile)	Dinitrophenolates
1,1' Azodi(hexahydrobenzonitrile)	Dinitroresorcinol
2,2'-Azodi(2-methyl-butryronitrile)	N,N'-Dinitroso-N,N'-dimethylterephthalamide
Azodiisobutryonitrile	N,N'-Dinitrosopentamethylenetetramine
Barium, metallic	Diphenyloxide-4,4'-disulfohydrazide
Barium alloys, pyrophoric	Dipicryl sulfide
Barium azide	4-Dipropylaminobenzenediazonium zinc chloride
Benzene-1,3-disulfohydrazide	Ferrocerium
Benzene sulfohydrazide	Ferrosilicon
4-(Benzyl(ethly)amino)-3-ethoxy-	Ferrous metal
benzenediazonium zinc chloride	Hafnium powder
4-(Benzyl(methyl)amino)-3-ethoxy-	Hexamine
benzenediazonium zinc chloride Borneol	Hydrides, metal 3-(2-Hydroxyethoxy)-4-pyrrolidin-1-ylbenzenediazo-
Boron trifluoride dimethyl etherate	nium zinc chloride
5-tert-Butyl-2,4,6-trinitro-m-xylene	Iron oxide, spent
Calcium, metallic	Isosorbide dinitrate mixture
Calcium carbide	Lead phosphite, dibasic
Calcium chlorite	Lithium acetylide-ethylene diamine complex
Calcium cyanamide	Lithium alkyls
Calcium dithionite	Lithium aluminum hydride
Calcium hypochlorite	Lithium amide, powdered
Calcium manganese silicon	Lithium borohydride
Calcium silicon powder	Lithium ferrosilicon
Calcium phosphide	Lithium hydride
Calcium pyrophoric	Lithium metal
Calcium resinate	Lithium nitride
Calcium silicide	Lithium silicon
Camphor, synthetic	Magnesium granules
Carbon, activated	Magnesium aluminum phosphide

Appendix B - Ignitable Solids

Compound or Material	Compound or Material
 Magnesium diamide	Sodium aluminum hydride
Magnesium phosphide	Sodium amide
Magnesium silicide	Sodium borohydride
Maneb	Sodium chlorite
Manganese resinate	Sodium2-diazo-1-naphthol-4-sulphonate
Methyl magnesium bromide	Sodium2-diazo-1-naphthol-5-sulphonate
Methyldichlorosilane	Sodium dichloro-s-triazinetrione
Mono-(trichloro)tetra(monopotassium dichloro)-	Sodium dinitro-ortho-cresolate
penta-s-triazinetrione	Sodium hydride
N-Methyl-N'-nitronitrosoguanidine	Sodium hydrosulfite
Naphthalene	Sodium methylate
Nitrocellulose mixtures	Sodium nitrite and mixtures
Nitroguanidine	Sodium picramate, wet
p-Nitrosodimethylaniline	Sodium potassium alloys
Paraformaldehyde	Sodium sulfide, anhydrous
Pentaborane	Stannic phosphide
Peratic acid	Strontium phosphide
Phosphorous, amorphous, red	Sulfur
Phosphorous, white or yellow	Titanium metal powder
Phosphoric anhydride	Titanium hydride
Phosphorous pentachloride	Trichloroisocyanuric acid
Phosphorus pentasulfide	Trichlorosilane
Phosphorus sesquisulfide	Trichloro-s-triazinetrione
Phosphorus trisulfide	Trinitrobenzoic acid
Picric acid	Trinitrophenol
Potassium, metallic	Trinitrotoluene
Potassium dichloro-s-triazinetrione	Urea nitrate
Potassium borohydride	Zinc ammonium nitrite
Potassium dithionite	Zinc phosphide
Potassium phosphide	Zinc powder
Potassium sulfide, anhydrous	Zinc resinate
Rubidium metal	Zirconium hydride, powdered
Silicon powder, amorphous	Zirconium picramate
Silver picrate	Zirconium powder
Sodium, metallic	Zirconium scrap

Class 1 Toxic Constituents' Maximum Leachable Concentrations

(30 TAC Chapter 335 Subchapter R Appendix 1 Table 1)

Applicability: Class 1, 2, and 3 Waste Evaluations

Values are based on information contained in Federal Registers Vol. 55 / Friday, July 27, 1990; Vol. 56 / June 7, 1991; and Integrated Risk Information Systems, Environmental Protection Agency, and 40 CFR 264 Appendix 9.

Compound	CAS No.	Concentration (mg/l)	Compound	CAS No.	Concentration (mg/l)
Acenaphthene	83-32-9	210	Dieldrin	60-57-1	0.02
Acetone	67-64-1	400	Diethyl phthalate	84-66-2	3000
Acetonitrile	75-05-8	20	Dimethoate	60-51-5	70
Acetophenone	98-86-2	400	2,4-Dimethyphenol	105-67-9	70
Acrylamide	79-06-1	0.08	2,6-Dimethyphenol	576-26-1	21
Acrylonitrile	107-13-1	0.6	m-Dinitrobenzene	99-65-0	0.4
Aniline	62-53-3	60	2,4-Dinitrophenol	51-28-5	7
Anthracene	120-12-7	1050	2,4-Dinitrotoluene	602-01-7	0.13
Antimony	7440-36-0	1	(and 2,6-, mixture)		
Arsenic	7440-38-2	1.8	Dinoseb	88-85-7	3.5
Barium	7440-39-3	100.0	1,4-Dioxane	123-91-1	30
Benzene	71-43-2	0.50	Dioxins (Polychlorinated dib	enzo-p-dioxin	s)
Benzidine	92-87-5	0.002	2,3,7,8-TCDD	1746-01-6	0.005
Beryllium	7440-41-7	0.08	1,2,3,7,8-PeCDD	40321-76-4	0.010
Bis(2-chloroethyl) ether	111-44-4	0.3	1,2,3,4,7,8-HxCDD	57653-85-7	0.050
Bis(2-ethylhexyl) phthalate	117-81-7	30	1,2,3,6,7,8-HxCDD	34465-46-8	0.050
Bromodichloromethane	75-27-4	0.3	1,2,3,7,8,9-HxCDD		0.050
Bromomethane	74-83-9	5	Diphenylamine	122-39-4	90
Butylbenzyl phthalate	85-68-7	700	1,2-Diphenylhydrazine	122-66-7	0.4
Cadmium	7440-43-9	0.5	Disulfoton	298-04-4	0.1
Carbon disulfide	75-15-0	400	Endosulfan	959-98-8	0.2
Carbon tetrachloride	56-23-5	0.50	Endrin	72-20-8	.02
Chlordane	57-74-9	0.03	2-Ethoxyethanol	10-80-5	1400
Chlorobenzene	108-90-7	70	Ethylbenzene	100-41-4	400
Chloroform	67-66-3	6.0	Ethylene dibromide	106-93-4	0.004
Chloro-m-cresol, p	59-50-7	7000	Ethylene glycol	107-21-1	7000
2-Chlorophenol	95-57-8	20	Fluoranthene	206-44-0	140
Chromium	7440-47-3	5.0	Fluorene	86-73-7	140
m-Cresol	108-39-4	200.0*	Furans (Polychlorinated dibe	nzofurans)	
o-Cresol	95-48-7	200.0*	2,3,7,8-TCDF	51207-31-9	0.050
p-Cresol	106-44-5	200.0*	1,2,3,7,8-PeCDF		0.100
DDD	72-54-8	1	2,3,4,7,8-PeCDF		0.010
DDE	72-55-9	1	1,2,3,4,7,8-HxCDF		0.050
DDT	50-29-3	1	1,2,3,6,7,8-HxCDF		0.050
Dibutyl phthalate	84-74-2	400	1,2,3,7,8,9-HxCDF		0.050
1,4-Dichlorobenzene	106-46-7	7.5	Heptachlor	76-44-8	0.008
3,3-Dichlorobenzidine	91-94-1	0.8	Heptachlor epoxide	1024-57-3	0.04
1,2-Dichloroethane	107-06-2	0.50	Hexachlorobenzene	118-74-1	0.13
Dichlorodifluoromethane	75-71-8	700	Hexachloro-1,3-butadiene	87-68-3	0.4
1,1-Dichloroethylene	75-35-4	0.6	Hexachlorocyclopentadiene	77-47-4	20
1,3-Dichloropropene	542-75-6	1	Hexachloroethane	67-72-1	3.0
2,4-Dichlorophenol	120-83-2	10	Hexachlorophene	70-30-4	1
2,4-Dichlorophenoxy-	94-75-7	10.0	Isobutyl alcohol	78-83-1	1000
acetic acid (2,4-D)			Isophorone	78-59-1	90

Compound	CAS No.	Concentration (mg/l)	Compound	CAS No.	Concentration (mg/l)
Lead	7439-92-1	1.5	Pyridine	110-86-1	4
Lindane	58-89-9	0.3	Selenium	7782-49-2	1.0
Mercury	7439-97-6	0.2	Silver	7440-22-4	5.0
Methacrylonitrile	126-98-7	0.4	Styrene	100-42-5	700
Methomyl	16752-77-5	90	1,1,1,2-Tetrachloroethane	630-20-6	10
Methoxychlor	72-43-5	10.0	1,1,2,2-Tetrachloroethane	79-34-5	2
2-Methoxyethanol	109-86-4	14.0	Tetrachloroethylene	127-18-4	0.7
Methyl ethyl ketone	78-93-3	200.0	2,3,4,6-Tetrachlorophenol	58-90-2	100
Methyl isobutyl ketone	108-10-1	200	Toluene	108-88-3	1000
Methylene chloride	75-09-2	50	Toxaphene	8001-35-2	0.3
Methyl parathion	298-00-0	0.9	trans-1,3-Dichloropropene	542-75-6	1
Mirex	2385-85-5	0.7	Tribromomethane	75-25-2	70
Nickel	7440-02-0	70	(Bromoform)		
Nitrobenzene	98-95-3	2.0	1,2,4-Trichlorobenzene	120-82-1	70
N-Nitroso-di-n-butylamine	924-16-3	0.06	1,1,1-Trichloroethane	71-55-6	300
N-Nitrosodiphenylamine	86-30-6	70	Trichloroethylene	79-01-6	0.5
N-Nitrosomethylethylamine	10595-95-6	0.02	1,1,2-Trichloroethane	79-00-5	6
N-Nitroso-n-propylamine	621-64-7	0.05	Trichlorofluoromethane	75-69-4	1000
N-Nitrosopyrrolidine	930-55-2	0.2	2,4,5-Trichlorophenoxy-	93-72-1	1.0
p-Phenylenediamine	106-50-3	20	propionic acid		
Parathion	56-38-2	20	(2,4,5-TP or Silvex)		
Pentachlorobenzene	608-93-5	3	1,2,3-Trichloropropane	96-18-4	20
Pentachloronitrobenzene	82-68-8	10	2,4,5-Trichlorophenol	95-95-4	400.0
Pentachlorophenol	87-86-5	100.0	2,4,6-Trichlorophenol	88-06-2	2
Phenol	108-95-2	2000	Vanadium pentoxide	1314-62-1	30
Pronamide	23950-58-5	300	Vinyl chloride	75-01-4	0.2
Pyrene	129-00-0	5.9	Xylenes (all isomers)	1330-82-1	7000

Appendix C – Class 1 Toxic Constituents' Maximum Leachable Concentrations (MCLs)

* If o-, m-, and p-cresol concentrations cannot be differentiated, the total cresol concentration is used. The Maximum Concentration for total cresol is 200.0 mg/l.

7-Day Distilled Water Leachate Test's Maximum Contaminant Levels

(30 TAC Chapter 335 Subchapter R APPENDIX 1 Table 3)

Applicability: Class 3 Waste Evaluations

Values obtained from 40 Code of Federal Regulations Part 141, Subparts B and G, Maximum Contaminant Levels and 40 Code of Federal Regulations Part 143, Total Dissolved Solids.

Constituent	MCL (mg/l)
Arsenic	0.05
Barium	1
*Benzene	0.005
Cadmium	0.005
*Carbon tetrachloride	0.005
Chlordane	0.002
*Chlorobenzene	0.002
Chromium	0.1
2,4-D	0.07
*Dibromochloropropane	0.0002
*ortho-Dichlorobenzene	0.6
*para-Dichlorobenzene	0.075
*1,2-Dichloroethane	0.005
*1,1-Dichloroethylene	0.005
*trans-1,2-Dichloroethylene	0.007
*1,2-Dichloropropane	0.005
*Ethylbenzene	0.7
Heptachlor	0.0004
Heptachlor epoxide	0.0004
Lead	0.05
Mercury	0.002
Methoxychlor	0.002
Pentachlorophenol	0.001
Selenium	0.05
Silver	0.05
*Styrene	0.03
*Tetrachloroethylene	0.005
*1,1,1-Trichloroethane	0.20
*Trichloroethylene	0.005
*Toluene	1
Toxaphene	0.003
2,4,5-TP (Silvex)	0.005
*Vinyl chloride	0.002
*Xylenes (total)	10
Total dissolved solids	500
10101 013501/00 501105	1 500

* For a Class 3 waste classification, these constituents must also be evaluated using the test methods described in 40 Code of Federal Regulations, Part 261, Appendix II. See §335.507 (4) (A) (ii) for additional information.

Class 1 Toxic Constituents

(other than those identified in Appendix C, and their Estimated Quantitation Limits [EQLs])

Applicability: Class 3 Waste Evaluations

This table is to be utilized by the generator in evaluating detection limits for the identified constituents. The EQLs in this table are defined as the lowest detectable levels that can be reliably achieved using the Toxicity Characteristic Leaching Procedure (TCLP) at the time of the printing of this guideline. Applicable EPA method numbers are provided and can be found in EPA Report SW-846 "Test Methods for Evaluating Solid Waste" except where noted. Please note that more than one test method may be available for a particular constituent. Synonyms are provided in brackets "[]".

Constituent	EQL (mg/l)	Method(s)	Constituent	EQL (mg/l)	Method(s)
Acenaphthene	0.2	8100	Chloroform	0.0005	8010
1	0.01	8270		0.005	8240
	0.02	8250	p-Chloro-m-cresol	0.005	8040
Acetone	0.1	8240		0.02	8270
Acetonitrile	0.1	8015	2-Chlorophenol	0.003	8040
[Methyl cyanide]	0.1	8030	[o-Chlorophenol]	0.01	8270
Acetophenone	0.001	8250	m-Cresol	0.01	8270
	0.01	8270	o-Cresol	0.01	8270
Acrylamide	0.005	8015	p-Cresol	0.01	8270
Acrylonitrile	0.005	8030	DDD [Dichlorodiphenyl-	0.0001	8080
[Vinyl cyanide]	0.005	8240	dichloroethane]	0.028	8250
Anthracene	0.2	8100		0.01	8270
	0.02	8250	DDE [Dichlorodiphenyl-	0.00004	8080
	0.01	8270	ethylene]	0.056	8250
Aniline	0.01	8250	,	0.01	8270
[Benzyl amine]	0.01	8270	DDT [Dichlorodiphenyl-	0.0001	8080
Antimony	0.2	204	trichloroethane]	0.047	8250
,	0.3	6010		0.01	8270
	2.0	7040	Dibutyl phthalate	0.005	8060
	0.03	7041		0.01	8270
	2.0	7000A	1,4-Dichlorobenzene	0.004	8010
Benzidine [Dianiline]	0.44	8250		0.003	8020
Beryllium	**	210		0.013	8120
,	0.003	6010		0.01	8270
	0.05	7090	3,3-Dichlorobenzidine	0.02	8270
	0.002	7091	Dichlorodifluoromethane	0.01	8010
	0.05	7000A		0.005	8240
Bis(2-chloroethyl) ether	0.057	8250	1,3-Dichloropropene	0.003	8010
[Dichloroethyl ether]	0.01	8270		0.005	8240
Bis(2-ethylhexyl)	0.02	8060	2,4-Dichlorophenol	0.05	8040
phthalate	0.25	8250		0.01	8270
	0.01	8270	Dieldrin	0.00002	8080
Bromodichloromethane	0.001	8010		0.01	8270
	0.005	8240	Diethyl phthalate	0.005	8060
Bromomethane	0.003	8010		0.01	8270
[Methylbromide]	0.01	8240	Dimethoate	0.02	8270
Butylbenzyl phthalate	0.005	8060	2,4-Dimethylphenol	0.003	8040
[Benzylbutyl phthalate]	0.025	8250		0.01	8270
· · ·	0.01	8270	2,6-Dimethylphenol	**	**
Carbon disulfide $[CS_2]$	0.005	8240	m-Dinitrobenzene	0.01	8270

Constituent	EQL (mg/l)	Method(s)	Constituent	EQL (mg/l)	Method(s)
2,4-Dinitrophenol	0.13	8040	Methyl ethyl ketone [MEK]	0.01	8015
	0.05	8270		0.1	8240
2,4-Dinitrotoluene	0.0002	8090	Methyl isobutyl ketone [MIBK]	**	8015
(and 2,6-, mixture)	0.01	8270		0.005	8240
Dinoseb	0.007	8150	Methylene chloride	0.005	8010
	0.02	8270	[Dichloromethane]	0.005	8240
1,4-Dioxane	0.15	8015	Methyl parathion	0.0003	8140
Dioxins (Polychlorinated diber	zo-p-dioxins)			0.01	8270
2,3,7,8-TCDD	0.000005	8280	Mirex	**	**
1,2,3,7,8-PeCdd	0.00001	8280	Nickel	0.04	249
1,2,3,4,7,8-HxCDD	0.00001	8280		0.05	6010
1,2,3,6,7,8-HxCDD	0.00001	8280		0.4	7520
1,2,3,7,8,9-HxCDD	0.00001	8280		0.04	7000A
Diphenylamine	0.01	8270	Nitrobenzene	0.04	8090
1,2-Diphenylhydrazine	0.2	1625		0.01	8250
Disulfoton	0.002	8140		0.01	8270
	0.01	8270	N-Nitroso-di-n-butylamine	0.01	8270
Endosulfan	0.0001	8080	N-Nitrosodiphenylamine	0.01	8270
	0.056	8250	N-Nitrosomethylethylamine	0.02	8270
Endrin	0.00006	8080	N-Nitroso-n-propylamine	0.01	8270
	0.01	8250	N-Nitrosopyrrolidine	0.01	8270
2-Ethoxyethanol	**	**	p-Phenylenediamine	0.01	8270
Ethylene dibromide [EDB]	0.5	6231	Parathion	0.01	8270
(Standard Methods for Examina		0231	T di ddinom	0.0003	8140
of Water and Wastewater)			Pentachlorobenzene	0.02	8270
Ethylene glycol	**	**	Pentachloronitrobenzene	0.01	8270
Fluoranthene	0.2	8100	Phenol	0.001	8040
Tuorantinene	0.2	8270	Thenor	0.001	8270
Fluorene	0.01	8100	Pronamide	0.01	8270
Tuorene	0.2	8270	Pyrene	0.2	8100
Furans (Polychlorinated dibenz		0270	Tyrene	0.2	8270
2,3,7,8-TCDF	0.00001	8280	Pyridine	0.005	8240
1,2,3,7,8-PeCDF	0.00001	8280	T yndine	0.005	8270
	0.00001	8280	1,1,1,2-Tetrachloroethane	0.005	8010
2,3,4,7,8-PeCDF	0.00001	8280	1,1,1,2-Tetrachioroethane	0.005	8240
1,2,3,4,7,8-HxCDF	0.00001		1,1,2,2-Tetrachloroethane		
1,2,3,6,7,8-HxCDF		8280	1,1,2,2-Tetrachioroethane	0.0003 0.005	8010
1,2,3,7,8,9-HxCDF	0.00001	8280	2.2.4.C. Tatra ablaran banal		8240
Hexachlorobenzene	0.0005	8120	2,3,4,6-Tetrachlorophenol	0.01	8270
Hexachloro-1,3-butadiene	0.0	8270	trans-1,3-Dichloropropene	0.0034	8010
nexaciiioro-1,3-buladiene	0.0034	8120	Tribromomothano [Promoform]	0.005 0.002	8240
Llove allove aveler enterliere	0.01	8270	Tribromomethane [Bromoform]		8010
Hexachlorocyclopentadiene	0.004	8120	1.2.4 Tricklouch correspond	0.005	8240
Literate de la constitución a	0.01	8270	1,2,4-Trichlorobenzene	0.01	8270
Hexachloroethane	0.0003	8120	1,1,2-Trichloroethane	0.0002	8010
	0.01	8270	[1,1,2-TCE]	0.005	8240
Hexachlorophene	0.05	8270	Trichlorofluoromethane	0.01	8010
Isobutyl alcohol	0.05	8015	[Freon 11]	0.005	8240
Isophorone	0.06	8090	1,2,3-Trichloropropane	0.01	8010
L'a de se	0.01	8270		0.005	8240
Lindane	0.00004	8080	2,4,5-Trichlorophenol	0.01	8270
	0.01	8250	2,4,6-Trichlorophenol	0.006	8040
	0.00004	608		0.01	8270
	0.01	625	Vanadium pentoxide	0.2	286
Methacrylonitrile	0.005	8015		0.08	6010
Methomyl	0.09	632		2.0	7910
2-Methoxyethanol	**	**	1	0.04	7911

* If o-, m-, and p-cresol concentrations cannot be differentiated, the total cresol concentration is used.
 ** This information not available at time of publication.

7-Day Distilled Water Leachate Test Procedure

(30 TAC Chapter 335 Subchapter R Appendix 4)

Applicability: Class 3 Waste Evaluations

This test is intended only for dry, solid wastes, i.e., waste materials without any free liquids.

- 1. Place a 250 gram (dry weight) representative sample of the waste material in a 1500 milliliter Erlenmeyer flask.
- 2. Add 1 liter of deionized or distilled water into the flask and mechanically stir the material at a low speed for five (5) minutes.
- 3. Stopper the flask and allow to stand for seven (7) days.
- 4. At the end of seven (7) days, filter the supernatant solution through a 0.45 micron filter, collecting the supernatant into a separate flask.
- 5. Subject the filtered leachate to the appropriate analysis.

Appendix G

Form Codes

(30 TAC Chapter 335 Subchapter R Appendix 3)

Applicability: All Waste

In determining a waste stream's form code, it is recommended that the generator first determine into which major category the waste stream fits (e.g. inorganic liquids). The generator should then review all the form code descriptors in that category to determine which code or codes best describe the generator's waste stream. The generator should then choose, from the narrowed-down list, a form code for the waste stream.

Form codes are fairly generic in their descriptions. It is possible that more than one form code may be applicable to a particular waste stream. Generators should assign the form code which best describes the waste stream. If more than one form code can "best describe" the waste stream, then the generator should choose one of those several codes.

Code	Waste Description	Code	Waste Description
	— Lab Packs —	113	Other aqueous waste with high dissolved solids
Lah Par	cks — Lab packs of mixed wastes, chemicals,	114	Other aqueous waste with low dissolved solids
	ab wastes		Scrubber water
		116	Leachate
001	Lab packs of old chemicals only	117	Waste liquid mercury
002	Lab packs of debris only	119	Other inorganic liquids (Specify in Comments)
003 004	Mixed lab packs Lab packs containing acute hazardous wastes	198	Nonhazardous photographic chemical wastes (inorganic)
009	Other lab packs (Specify in Comments)	199	Brine solution that could also bear the form code 113
	— Liquids —	Organi	c Liquids — Waste that is primarily organic
and hig	nic Liquids — Waste that is primarily inorganic ghly fluid (e.g., aqueous), with low suspended nic solids and low organic content	and is l	highly fluid, with low inorganic solids content v-to-moderate water content
0	0	201	Concentrated solvent-water solution
101	Aqueous waste with low solvents	202	Halogenated (e.g., chlorinated) solvent
102	Aqueous waste with low other toxic organics	203	Non-halogenated solvent
103	Spent acid with metals	204	Halogenated/non-halogenated solvent mixture
104	Spent acid without metals	205	Oil-water emulsion or mixture
105	Acidic aqueous waste	206	Waste oil
106	Caustic solution with metals but no cyanides	207	Concentrated aqueous solution of other organic
107	Caustic solution with metals and cyanides	208	Concentrated phenolics
108	Caustic solution with cyanides but no metals	209	Organic paint, ink, lacquer, or vanish
109	Spent caustic	210	Adhesives or epoxies
110	Caustic aqueous waste	211	Paint thinner or petroleum distillates
111	Aqueous waste with reactive sulfides	212	Reactive or polymerizable organic liquids
112	Aqueous waste with other reactives	219	Other organic liquids (Specify in Comments)
	(e.g., explosives)	296	Ethylene glycol based antifreeze

Code	Waste Description	Code	Waste Description
297	Nonhazardous liquids containing greater than or equal to (>) 50 and less than (<) 500 ppm PCBs	397	Nonhazardous electrical equipment/devices containing greater than or equal to (>) 500 ppm PCBs
298	Nonhazardous liquids containing greater than or equal to (>) 500 ppm PCBs	398	Nonhazardous soils containing greater than or equal to (>) 50 ppm and less than (x) 500 ppm BCBs
299	Nonhazardous photographic chemical waste (organic)	399	than (<) 500 ppm PCBs Nonhazardous soils containing greater than or equal to (>) 500 ppm PCBs
	— Solids —		
Inorgar	codes do not apply to pumpable waste.) nic Solids — Waste that is primarily inorganic	solid, v	ic Solids — Waste that is primarily organic and vith low-to-moderate inorganic content and content; not pumpable
	id, with low organic content and low-to- nte water content; not pumpable	401	Halogenated pesticide solid
		402	Non-halogenated pesticide solid
301	Soil contaminated with organics	403	Solids resins or polymerized organics
302	Soil contaminated with inorganics only	404	Spent carbon
303	Ash, slag, or other residue from incineration of wastes	405	Reactive organic solid
304	Other "dry" ash, slag, or thermal residue	406	Empty fiber or plastic containers
305	"Dry" lime or metal hydroxide solids chemically "fixed"	407	Other halogenated organic solids (Specify in Comments)
306	"Dry" lime or metal hydroxide solids not "fixed"	409	Other non-halogenated organic solids (Specify in Comments)
307	Metal scale, filings, or scrap	488	Wood debris
308	Empty or crushed metal drums or containers	489	Petroleum contaminated solids
309	Batteries or battery parts, casings, cores	490	Sand blasting waste
310	Spent solid filters or adsorbents	491	Dewatered biological treatment sludge
311	Asbestos solids and debris	492	Dewatered sewage or other
312	Metal-cyanide salts/chemicals		untreated biological sludge
313	Reactive cyanide salts/chemicals	493	Catalyst waste
314	Reactive sulfide salts/chemicals	494	Solids containing greater than or equal to $(x) = 50$ mere and less than $(x) = 50$ mere PCPs
315	Other reactive salts/chemicals	495	(>) 50 ppm and less than (<) 500 ppm PCBs
316	Other metal salts/chemicals	495	Solids containing greater than or equal to (>) 500 ppm PCBs
319	Other waste inorganic solids	496	Electrical equipment/devices containing
388	(Specify in Comments)		greater than or equal to $(>)$ 50 ppm and
389	Empty or crushed glass containers Nonhazardous sandblasting waste	407	less than (<) 500 ppm PCBs
390	Nonhazardous concrete/cement/	497	Electrical equipment/devices containing greater than or equal to (>) 500 ppm PCBs
391	construction debris Nonhazardous dewatered	498	Soil containing greater than or equal to (>) 50 ppm and less than (<) 500 ppm PCBs
551	wastewater treatment sludge	499	Soils containing greater than or equal to
392	Nonhazardous dewatered air pollution control device sludge		(>) 500 ppm PCBs
393	Catalyst waste		— Sludges —
394	Nonhazardous solids containing greater than or equal to (>) 50 ppm and less than (<) 500 ppm PCBs		codes only apply to pumpable waste.)
395	Nonhazardous solids containing greater than or equal to (>) 500 ppm PCBs	with m	nic Sludges — Waste that is primarily inorganic oderate-to-high water content and low organic t, and pumpable
396	Nonhazardous electrical equipment/devices containing greater than or equal to (>) 50ppm	501	Lime sludge without metals
	containing greater than or equal to (>) 50ppm and less than (<) 500 ppm PCBs	501	Lime sludge without metals Lime sludge with metals/metal hydrox

Code	Waste Description	Code Waste Description
503	Wastewater treatment sludge with toxic organics	— Gases —
504	Other wastewater treatment sludge	Inorganic Gases — Waste that is primarily inorganic
505	Untreated plating sludge without cyanides	with a low organic content and is a gas at atmospheric
506	Untreated plating sludge with cyanides	pressure
507	Other sludge with cyanides	701 Inorganic gases
508	Sludge with reactive sulfides	
509	Sludge with other reactives	Organic Gases — Waste that is primarily organic
510	Degreasing sludge with metal scale or filings	with low-to-moderate inorganic content and is a gas at atmospheric pressure
511	Air pollution control device sludge (e.g., fly ash, wet scrubber sludge)	801 Organic gases
512	Sediment or lagoon dragout contaminated with organics	— Plant Trash —
513	Sediment or lagoon dragout contaminated with inorganics only	(In order to be considered for one of the two plant refuse designations, a waste must first meet the following two criteria.
514	Drilling mud	
515	Asbestos slurry or sludge	<i>First,</i> the waste must be a Class 2 waste. This means that
516	Chloride or other brine sludge	a proper classification determination must be performed for each item which a facility is considering as one of
519	Other inorganic sludges (Specify in Comments)	the plant refuse designations. A waste is not a Class 2 solely because it has been designated as a plant refuse
597	Catalyst waste	waste. Hazardous and Class 1 wastes are not eligible for
598	Nonhazardous sludges containing greater than or equal to (>) 50 ppm and less than (<) 500 ppm PCBs	designation as one of the plant refuses. Second , the waste must meet the particular definition
599	Nonhazardous sludges containing greater than or equal to (>) 500 ppm PCBs	of the plant refuse term. For more information on these terms, please refer to the terms listed in this table as well as the "Definitions" section which follows this table.)
low-to-	c Sludges — Waste that is primarily organic with moderate inorganic solids content and water t, and pumpable	902 Supplemental plant production refuse – any Class 2 waste from production, manufacturing, or laboratory operations as long as the total
		amount of the supplemental plant production
601	Still bottoms of halogenated (e.g., chlorinated) solvents or other organic liquids	refuse does not exceed twenty percent of the total plant trash (form code 999) volume or
602	Still bottoms on non-halogenated solvents or other organic liquids	weight, whichever is less – this could include, but is not limited to, such things as metal parts,
603	Oily sludge	floor sweepings, and off-specification materials
604	Organic paint or ink sludge	999 Plant Trash – any Class 2 waste originating in
605	Reactive or polymerizable organics	the facility offices, laboratory, plant production
606	Resins, tars, or tarry sludge	area or food services/cafeteria operations that is composed of paper, cardboard, linings,
607	Biological treatment sludge	wrappings, paper and/or wooden packaging
608	Sewage or other untreated biological sludge	materials, uncontaminated food wastes and/or
609	Other organic sludges (Specify in Comments)	packaging, cafeteria wastes, glass, aluminum foil, aluminum cans, aluminum scrap, stainless
695	Petroleum contaminated sludges other than still bottoms and oily sludges	steel, steel, iron scrap, plastics, styrofoam, rope, twine, uncontaminated rubber, uncon-
696	Grease	taminated wooden materials, equipment belts,
697	Catalyst waste	wirings, uncontaminated cloth, metal bindings, empty containers with a holding capacity of
698	Nonhazardous sludges containing greater than or equal to (>) 50 ppm and less than (<) 500 ppm PCBs	less than five gallons, uncontaminated floor sweepings, and personal cosmetics generated
699	Nonhazardous sludges containing greater than or equal to (>) 500 ppm PCBs	by facility personnel (does not include cosmet- ics generated as a result of manufacturing or plant production operations).

Form Code Definitions

The following are definitions of terms utilized in form codes:

Acidic – A material having a pH less than 7.0.

Alkaline – A material having a pH greater than 7.0.

Aqueous – A water solution containing organic and/or inorganic constituents dissolved in solution.

Caustic – A material which is corrosive or irritating to living tissue and has a pH greater than 7.

Inorganic – Chemicals that are not organic (i.e., water, carbon dioxide, carbon disulfide, iron, zinc, steel). Generally, if a waste is composed of more than 50% inorganic materials, it is considered an inorganic waste.

Organic – Chemicals composed primarily of carbon and hydrogen and their derivatives. (i.e. methylene chloride, benzene, petroleum products). In general, if a waste is composed of 50% or more organic materials, it is considered an organic waste.

Plant Trash – Includes the following Class 2 wastes which are produced as a result of plant production, manufacturing, laboratory, general office, cafeteria or food service operations; paper, cardboard, linings, wrappings, paper or wood packaging materials, food wastes, cafeteria wastes, glass, aluminum foil, aluminum cans, aluminum scrap, stainless steel, steel, iron scrap, plastics, styrofoam, rope, twine, uncontaminated rubber, uncontaminated wooden materials, equipment belts, wirings, uncontaminated cloth, metal bindings, empty containers with a holding capacity of less than five gallons, uncontaminated floor sweepings, and personal cosmetics generated by facility personnel (does not include cosmetics generated as a result of manufacturing or plant production operations). Please note that hazardous waste and Class 1 waste can not be designated as "plant office refuse". Plant trash shall not include oils, lubricants of any type, oil filters, contaminated soils, sludges, or wastewaters.

Examples of "plant trash" include Class 2 soda cans, lunch sacks, food scraps, envelopes, plastic binders, empty boxes, pallets, styrofoam shipping boxes, chemical container liners, shrink wrap, and broken glassware.

As another example, used typing paper from the secretarial area could be considered "plant trash" because it resulted from general office operations. (Please note that typing paper would normally be considered a Class 2 waste unless it were contaminated with something to cause it to be considered a hazardous or Class 1 waste. For example, if typing paper were used to clean up a spill of a F003 waste, it would be considered a hazardous waste.)

As another example, a Class 2 off-specification production chemical could not be considered "plant trash" because it does not meet the definition of a "plant trash". However, the Class 2 off-specification production chemical might be considered a "supplemental plant production refuse" as long as the weight/ volume limits established for "supplemental plant production refuse" were not exceeded. (For more information on "supplemental plant production refuse" and weight/volume limits, please see "Supplemental Plant Production Refuse" in these definitions.

Reactive – A material is reactive if it is capable of detonation or explosive decomposition:

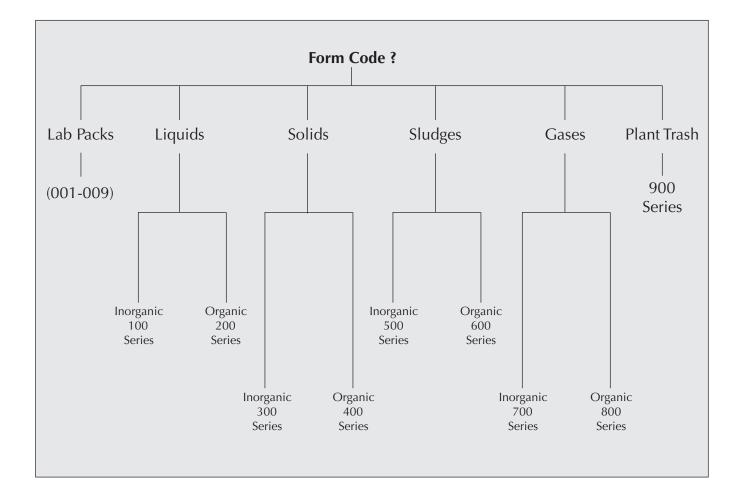
- 1. at standard temperature and pressure, or
- 2. if subjected to a strong ignition source, or
- 3. heated under confinement.

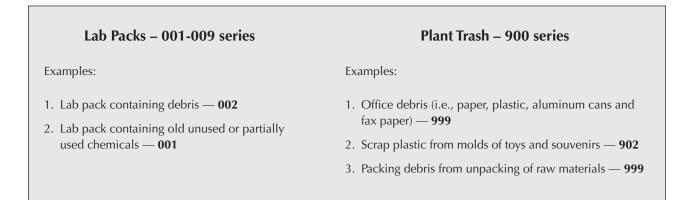
A material is also considered reactive if, when mixed with water it is:

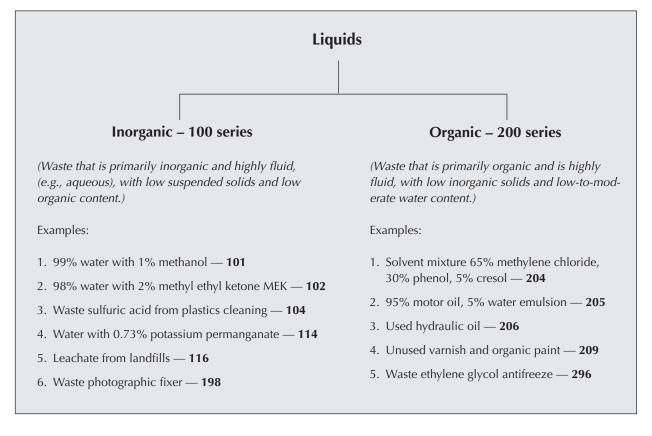
- 1. potentially explosive, or
- 2. reacts violently, or
- generates toxic gases or vapors (i.e. hydrogencyanide or hydrogensulfide).

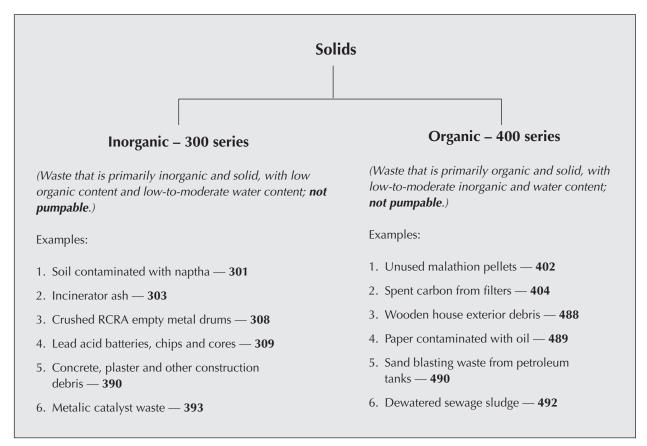
A material is also considered reactive if it is:

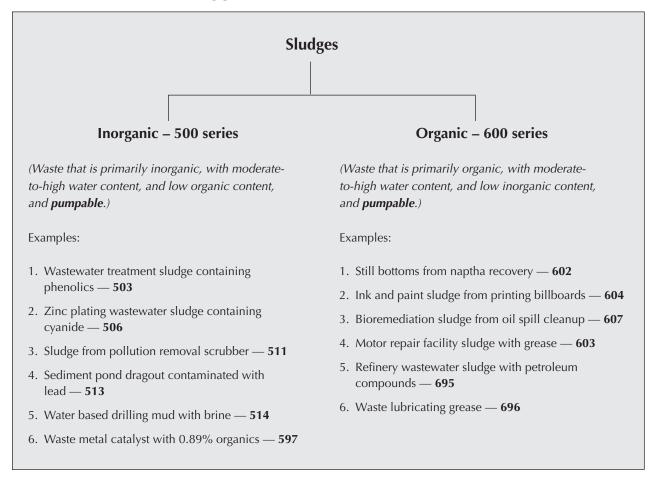
- 1. normally unstable and readily undergoes violent changes, or
- 2. a forbidden explosive (see 49 CFR §173.53), or
- 3. a Class B explosive (see 49 CFR §173.88).

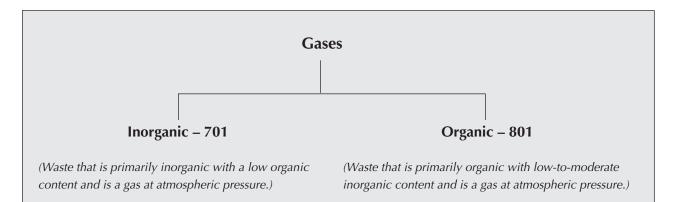

Solvent – A liquid used to dissolve another material.


Supplemental Plant Production Refuse – Any Class 2 Waste from production, manufacturing, or laboratory operations can be designated as "supplemental plant production refuse" (form code 999) as long as the total amount of the supplemental plant production refuse does not exceed twenty percent of the total plant production refuse volume or weight, whichever is less.


Individual wastes which have been designated "supplemental plant production refuse" may be designated by the generator at a later time as a separate waste in order to maintain the "supplemental plant production refuse" at a level below 20% of the "plant trash" amount. For any waste stream so redesignated, the generator must provide the initial notification information required pursuant to 30 TAC Chapter 335. Please note that hazardous waste and Class 1 waste can not be designated as "supplemental plant production refuse".


Examples of "supplemental plant production refuse" include Class 2 steel shavings, empty metal containers, aerosol cans, old chemicals, safety equipment, and machine parts.


Please note that when a site notifies the Commission that it generates "supplemental plant production refuse", it must include a list of those wastes which are expected to be included in the "supplemental plant production refuse" designation. If that list increases, the generator must notify the Commission of the additions to that list; otherwise, the Commission will not view the additions as "supplemental plant production refuse".



Appendix H

Codes for Out-of-State Waste Generators and Receivers

Codes for States of the United States				Country Codes		
State or Country	Abbreviation	Generator No.	Receiver No.	State or Country	Generator No.	Receiver No.
Alabama	AL	D0001	D0001	American Samoa	D0083	D0083
Alaska	AK	D0002	D0002	Australia	F0095	F0095
Arizona	AZ	D0004	D0004	Austria	F0078	F0078
Arkansas	AR	D0005	D0005	Bahamas Islands	F0002	F0002
California	CA	D0006	D0006	Belgium	F0069	F0069
Colorado	CO	D0008	D0008	Belize	F0091	F0091
Connecticut	СТ	D0009	D0009	Brazil	F0086	F0086
Delaware	DE	D0010	D0010	Cambodia	F0001	F0001
Dist. of Columbia		D0011	D0011	Canada	F0063	F0063
Florida	FL	D0012	D0012	Chile	F0007	F0007
Georgia	GA	D0012	D0013	China	F0005	F0005
Hawaii	HI	D0015	D0015	Columbia	F0003	F0003
Idaho	ID	D0016	D0016	Denmark	F0067	F0067
Illinois	IL	D0017	D0010	El Salvador	F0097	F0097
Indiana	IN	D0018	D0017	England	F0064	F0064
lowa	IA	D0019	D0010	Finland	F0070	F0070
Kansas	KS	D0019	D0019	France	F0076	F0076
Kentucky	KY	D0020	D0020	Germany	F0068	F0068
Louisiana	LA	D0021	D0021	Greece	F0084	F0084
Maine	ME	D0022 D0023	D0022 D0023	Guam	D0075	D0075
	MD			Haiti	F0093	F0093
Maryland Massachusetts	MA	D0024 D0025	D0024 D0025	Holland	F0079	F0079
	MA			Honduras	F0011	F0011
Michigan		D0026	D0026	Hong Kong	F0080	F0080
Minnesota	MN	D0027	D0027	India	F0006	F0006
Mississippi	MS	D0028	D0028	Italy	F0090	F0090
Missouri	MO	D0029	D0029	Jamaica	F0089	F0089
Montana	MT	D0030	D0030	Japan	F0062 F0092	F0062 F0092
Nebraska	NE	D0031	D0031	Luxemburg	F0092 F0077	F0092 F0077
Nevada	NV	D0032	D0032	Malaysia Marshall Islands	F0074	F0074
New Hampshire	NH	D0033	D0033	Marshall Islands Mexico	F0061	F0061
New Jersey	NJ	D0034	D0034	Navajo Nation	D0057	D0057
New Mexico	NM	D0035	D0035	Netherlands	F0071	F0071
New York	NY	D0036	D0036	Netherlands Antilles (A,B,C)	F0010	F0010
North Carolina	NC	D0037	D0037	Nicaragua	F0094	F0094
North Dakota	ND	D0038	D0038	Norway	F0081	F0081
Ohio	OH	D0039	D0039	Offshore beyond 12 mi.	F0087	F0087
Oklahoma	OK	D0040	D0040	Pacific Islands	F0072	F0072
Oregon	OR	D0041	D0041	Panama	F0082	F0082
Pennsylvania	PA	D0042	D0042	Peru	F0085	F0085
Rhode Island	RI	D0044	D0044	Puerto Rico	D0060	D0060
South Carolina	SC	D0045	D0045	Saudi Arabia	F0088	F0088
South Dakota	SD	D0046	D0046	Slovenia	F0009	F0009
Tennessee	TN	D0047	D0047	South Africa	F0004	F0004
Utah	UT	D0049	D0049	Spain	F0065	F0065
Vermont	VT	D0050	D0050	Sweden	F0096	F0096
Virginia	VA	D0051	D0051	Taiwan	F0099	F0099
Washington	WA	D0053	D0053	Thailand	F0008	F0008
West Virginia	WV	D0054	D0054	Trinidad de Tobago	F0098	F0098
Wisconsin	WI	D0055	D0055	Venezuela	F0073	F0073
Wyoming	WY	D0056	D0056	Virgin Islands	D0066	D0066