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Chapter 1

Abstract

This paper details an original continuous time ODE model describing a macroparasite infection
known as guinea worm disease (GWD). In doing so, the modeling process, the steps involved and
its iterative nature are presented forming a guide to infection modeling. Specific mathematical
concepts utilized in model analysis including the Next-Generation Operator are discussed. A brief
introduction to the biology of GWD is given, specifically the life cycles of the parasite (guinea worm)
and the intermediate host (copepod). Symptoms and interventions are also highlighted. A detailed
description of the original model is given, including parameters and a nondimensionalization. An
algebraic solution to the disease-free equilibrium is found and a numerical stability analysis of the
solution is conducted. The paper analyzes key parameters to determine effective combinations
of intervention. Simulations of these various combinations are presented and analysis of their
application to an endemic equilibrium of the GWD system is shown.
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Chapter 2

Introduction & Motivation

Dracunculiasis, more generally called Guinea Worm Disease (GWD), is a serious problem in various
countries in Africa. This macroparasite infection currently plagues adults and children. Intervention
and prevention techniques have been implemented in these areas to significantly reduce outbreaks.
In this paper we provide explanation of an original model describing the interactions among humans,
copepods, and guinea worms. Both SEIS and SI infection models are used in this paper. In
addition, we conduct a stability analysis of the disease-free equilibrium as well as simulate various
intervention scenarios. The combination of larvicides, pipe filters and education proves to be a
promising intervention. This paper not only describes the population and infection dynamics of
the system, but also underscores the social implications of Guinea Worm Disease. The fact is that
GWD is not just a disease of poverty but rather a cause of poverty due to the disability it causes.

According to the CDC, 966 cases of Dracunculiasis were reported from South Sudan, Chad,
Mali, and Ethiopia as of August 2011 [20]. These countries are not the only areas affected over
the past fifteen years. Cases have gone from 3.5 million per year in 1986 to fewer than 1,800 in
2010[20]. The disease is spread through contaminated drinking water. Contamination is in the
form of a parasite, Dracunculus medinensis, that has developmental stages both inside a human
host and inside a copepod host. It is transmitted to humans through the maturation of larvae into
adult worms inside the body and is transmitted to copepods through ingestion of free-living larvae.

To determine how GWD spreads in a given region, we model the disease using a compartmental
model. This model represents the three different populations; humans, copepods, and guinea
worms, by partitioning the populations into different categories or compartments based on stages
of infection and growth. Both the humans and copepods have susceptible and infectious stages.
Guinea worms are either categorized as eggs or free-living larvae outside of the host. Using ordinary
differential equations, we model the change in size of each compartment.

After we describe the model, there are some key issues we wish to explore. For example, we
want to identify equilibrium values, characterize stability and understand dynamics. Both the
disease-free and endemic equilibria are of particular interest. Determining the stability of these
points gives insight into the global health implications caused by a GWD epidemic. Such insight
is therefore used to help minimize the disruption of the lives of those afflicted with the disease.

Due to GWD’s heath and economic effects, it is the goal of this project to describe the dynamics
of guinea worms, copepods, and humans with an original model. A continuous time ODE model is
used to study the biological and ecological consequences of these interactions. Intervention in the
form of a larvicide, pipe filters, and education are simulated to determine effectiveness. Though the
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World Health Organization had certified 187 countries and territories around the world as being
free of GWD, as of August 2011, we suggest this to be too bold of a statement. Understanding of
the system is useful to prevent reinfection, a possibility since there is no immunity to the disease
[20].

The paper is structured in the following manner. In Chapter 3, we discuss the modeling process,
the steps involved and its iterative nature. Next we describe the use of compartment models and
present examples of different population and infection models. Chapter 4 details the mathematical
concepts utilized in model analysis and provides examples with methodology. Chapter 5 highlights
a key concept, the Next-Generation Operator. This is an essential method for stability analysis
of our multi-infection model. The biology of GWD is presented in Chapter 6, specifically the life
cycles of the guinea worm and copepods. Symptoms and interventions are also explained. Chapter 7
describes the model, parameters and a nondimensionalization of the model. Chapter 8 determines
an algebraic solution to the disease-free equilibrium, goes through a numerical stability analysis
of the solution and analyzes key parameters to determine effective combinations of intervention.
In addition, we present simulations of these various combinations and apply them to an outbreak
scenario or endemic equilibrium of the GWD system.
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Chapter 3

Mathematical Modeling:
Compartment Models

3.1 What is modeling?

Mathematical modeling provides a conceptual framework in which the researcher can tap into real
systems and determine a particular description. Developing this description involves the ability to
tell a physical or biological story using logic, notation, and mathematical techniques. Modeling is
a process, rather an iterative process, that requires the repetition of a number of steps [3].

One begins this process with investigation of a real system. We outline important biological
characteristics, translate these into the mathematical notation, sketch the model, and reinterpret
the results mathematically then biologically. The methodology that many follow can be broken
down into three stages: (1) Formation Stage, (2) Solution State, and (3) Interpretation Stage. Each
stage has a number of steps that complete the progression. This progression is shown in Fig 2.1.
These steps include the following [3].

(i) empirical observations

(ii) formalization of biological/physical model

(iii) development of mathematical model based on (ii)

(iv) formalization of statistical model

(v) model analysis

(vi) interpretation & comparison of (v) results with the real system

(vii) evaluation of insights gained

In the formulation stage, empirical observations (i) are made through experiments and data
collection. The proper literature review is necessary to gain the knowledge required to detail the
system as well as to understand the data and experimental results. For example, if the modeler
wishes to describe the yearly population of flowers in a particular garden, data on the number of
seeds and flowers per given area would be helpful information. Formalization of a biological/physical
model (ii) involves detailing the various pathways, mechanisms, chemical reactions and different
relationships of the system under observation. Creation of a mathematical model (iii) involves
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Figure 3.1: The Iterative Modeling Process [3].

differential equations with constraints and initial conditions that describe the biological/physical
model. Lastly, formalization of a statistical model (iv) accounts for variability and uncertainty in
the model and data. It is assumed that there is a certain amount of error in the model due to
the nature of measurement and observations. In this paper, the original model presented does not
include a statistical model or statistical analysis.

In the solution stage, model analysis (v) entails simulations, stability analysis, perturbation
studies and perhaps parameter estimation and data fitting. This analysis is the modeler’s tool to
quantify the biological/physical system and research hypotheses.

The last stage is the interpretation stage. Interpretation and comparison (vi) verifies or refutes
that the conclusions of the model analysis match the initial predictions. The result of this com-
parison leads to (vi) evaluation of insights gained. The comparisons help dictate the next step in
the process. Many times, predictions are reworked and additional experiments are required. Other
times, the mismatching leads to a simplification of the model or a call for more detail.

The ultimate question yet to be asked is, What are the reasons for modeling? It comes down to
the fact that modelers can provide transparency, mechanism, and predictions. Modeling allows for
the investigation of a complex system and increases the accessibility of understanding the system.
In addition, manipulation of a system is more controlled and plausible through simulations. The
modeler drives hypotheses and experimentation for further biological investigation of the system.

11



3.2 Compartment Models

Compartment models are used to describe the transport of materials, whether they be fluids, cells
or populations in biological systems. The basic idea with compartment models is to describe a
system as a number of compartments and to derive equations of mass-balance for each of these
compartments [5]. A compartment model contains a number of compartments, each containing
specific material that can be exchanged following a set of rules. Every compartment or box has
a number of connections that lead to the box (inflows) and a number of arrows that lead from
the box (outflows). Material either flows from one compartment to another, is added from the
outside through a source, or removed through a drain or a sink [5]. A conservation law that allows
the model for account for the material is used. Each compartment has a mathematical equation
governed by a conservation law. The conservation laws dictate what flows in, out, and transfers
from one compartment to the next. It is essential to note that one should not think of what enters
and leaves each compartment as individual components that can be describe independently. On
the contrary, it is the system that should be treated as a whole with well-mixed averages.

With these models there are limitations. Every system under investigation may not be suitable
for a compartment model description. To determine if this method is viable, the modeler must ask
the following questions. Is the system closed? Is assuming homogeneity reasonable? Or rather, is
the material in each compartment uniformly mixed? Is the balance equation accurate? Is the balance
of mass relevant? [5] The various answers to these questions dictate the usage and modification of
a compartment model application.

One of the key aspects of a system the modeler must address is whether it is closed. The mass-
balance equations used in compartment models are only correct if all material added and removed
from the system is accounted for in the model. Many descriptions of phenomena guarantee this
condition by assuming that the total amount of material is constant. In a real system, this is
obviously not always the case. Next, the modeler must consider the homogeneity of the system.
The use of compartment models is usually prefaced by the assumption that all material is well-
mixed or homogeneous. This means that each unit of material is equally likely to be moved out of
the compartment as either an outflow or a transition to another compartment. This assumption
is not described in the equations, since only the total amount of material in each compartment is
represented. All systems are not well-mixed. For example, any model involving a gradient would
violate homogeneity. Each difference in concentration that makes up the gradient would need its
own compartment or require explicit handling of space. The accuracy of the balance equation is
questioned if all sources of material are not known. In real systems, some of the mass-balances are
not known to the observer. Lastly, the modeler must consider if the balance of mass is relevant
to the system. Depending on the system under observation, mass-balance may not be useful or
capable of describing the system.

There are many phenomena that are commonly described with compartment models, including
mixing problems, predator-prey dynamics, and the spread of disease and infection. Simple examples
include the nonlinear continuous time SIS and SIRS infection models.

Example 1. SIS model [12, p.1]
Consider an infection that spreads throughout a population via contact where “healthy” individuals
are susceptible to the infection (S) and “infectious” individuals (I) are capable of transmitting the
infection.

To begin the modeling process, we will first describe the model in words.

12
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Figure 3.2: SIS model

change in S = gain from recovery - loss to infection

change in I = loss to recovery + gain from infection

Next, replace the words with symbols. The rate of change of S is represented with dS
dt . The

“gain from recovery” term of the S equation is represented by βI. The “loss to infection” term is
represented by αIS. Similarly, in the I equation the rate of change of I is stated as dI

dt “loss to
recovery” term is represented by αIS and the same term is used for the gain from infection as the
loss to infection term of the S class. We can think of β as the leaving rate from the I compartment.
Everything, in this model, that leaves one compartment enters another (i.e. it is a closed system).
The resulting equations read as the following. The rate of change of S is proportional to the number
of individuals infected and the number of individuals recovered. A similar argument holds for the
I class. Since infection is only transmitted through contact with infectious hosts, we might expect
that the rate that S individuals gain infection is proportional to the density of infectious individuals,
I, and the density of susceptible individuals, S, with a constant of proportionality, α. The rate that
S individuals recover is proportional to the number of infectious individuals leaving/recovering with
a constant of proportionality β.

Thus, the following equations result{
dS
dt = βI − αIS
dI
dt = −βI + αIS

(3.1)

The following assumptions dictate how we treat the model. The total population is held con-
stant. That is dN

dt = dS
dt = dI

dt = 0. Since N = S + I, the equation for S can be rewritten as
S = N−I and substituted into the I equation to form a one-dimensional nonlinear continuous time
model.

dI

dt
= αI(N − I)− βI. (3.2)
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Therefore, we can write the model as dI
dt = g(I) = αI(N − I) − βI. Though this is simplified,

the model is still nonlinear. It is common practice in modeling, however, to linearize a model. That
is provide an approximation of the model. To apply the method, we must first understand a linear
model. The following example provides us with a platform onto which we can apply our techniques
of analysis.

Let us use some numbers. Suppose 30 individuals become infected on day d = 1 and the length
of the infection is 14 days. On day 14, we expect all 30 infected individuals will recover and become
susceptible one again. We would expect 1

14 of the individuals to recover each day. This means we
would expect approximately 2 individuals to recover each day. Thus, the recovery rate β is 1

14 per
day and β has units of

(
1

time

)
.

To determine the units for α, let us consider the definition of the infection rate. It is considered
the product of the number of contacts an individual has per unit of time and the probability of an
infected individual infecting a susceptible divided by the total population. When multiplied by S,
we have the probability that an individual will infect another individual. Then, multiplying by I,
we have the number of individual infected by one unit of time.

For example, if we have 30 susceptible humans and introduced 5 infected individuals into the
system. If an individual makes 1.5 contacts per day and for every 4 individuals in contact with an
infected individual, 3 of them become infected, α will be defined as follows.

α =

(
1.5 contacts

individual . day

)(
0.75 infected individuals

contact

)(
1

35 individuals

)
= 0.032

(
1

individual . day

)
So, if we have 30 susceptible individuals come into contact with 5 infected individuals, then

approximately 5 individuals will become newly infected.

αSI =

(
0.032

individual . day

)(
30 susceptible individuals

)(
5 infected individuals

)
= 5

(
individuals

day

)

This means that the change of S or I due to infection is approximately 5

(
individuals

day

)
.

Example 2. A beaver farm
In this example we study the population dynamics of beaver in a farm. We know that beavers have
an inflow from birth and two outflows, one from death and one from harvesting.

change in N = gain from birth - loss to death - loss to harvesting

14



Let N(t) denote the size of the beaver population at any time t. To derive to model we need
to replace the contributions to the change the size of the beaver population. We will assume that
both the birth and death rates are constant, that is a set number of beaver will enter and leave
the system in a given time period. For the farmer to make money, P beavers must be harvested
(and sold) every week. We represent the rate of change of N as dN(t)

dt and replace “gain from birth”
with bN(t) as well as “loss to death” with mN(t). Lastly, “loss to harvesting” is represented by
P , a fixed number per year. The following model can be formed from the above substitutions.
Thus, the rate of change from birth is proportional to the number of beavers and the constant
of proportionality is b. Similarly, the rate of change from death is proportional to the number of
beavers with a constant of proportionality, m (Fig 3.3).

!"#$%

%&%!"#$% %'%!"#$%

(%

!"#$%&"

Figure 3.3: Compartment model describing beaver farm

Tracking the inflows and outflows, we can derive the following differential equation describing
the population.

dN(t)

dt
= bN(t)−mN(t)− P = (b−m)N(t)− P (3.3)

Let us use some numbers. Suppose we have 300 beavers on the farm on day t = 1. The length
of time for the birth of beavers is approximately 110 days. This means that on day 110, a new
beaver enters the system. Approximately, 3 beavers are born each day in the given system. Thus,
the birth rate, b, is 1

time . Similarly, the length of time for the death of a beaver is approximately
15 years or 5,500 days. This means that the death rate m of beavers is 1

5,500 days and is therefore
very small relative to the birth rate. Lastly, the number of beavers sold per day is 5. This means
that P = 5 beavers

day . Thus, the death rate is relatively small compared to the harvesting rate. The
change of N(t) from “loss” is due harvesting, not natural death.

This is a linear first order differential equation. Understanding the above linear example assists
us with the linearization of a nonlinear continuous time model. This linearization is crucial to
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successfully conduct a stability analysis.

Example 3. SIRS model [12, pp.1-3]
The SIRS model is used to describe the amount of susceptible, infected, recovered individuals in
a population. This model is appropriate under the following assumptions: the population must
be considered fixed/constant and the only way an individual can leave the susceptible group is
to become infected. The only way an individual can leave the infected group is to recover from
the disease/infection. Once an individual has recovered, the individual receives immunity. There
is no inherited immunity and the member of the population mixes homogeneously (have similar
interactions) with all other individuals. S(t) is the number of susceptible individuals at time t, I(t)
is the number of infected individuals at time t and R(t) is the number of recovered individuals at
time t. N is the total population size and thus N = S + I +R. The total change in the population
at any time is zero. Thus,

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= 0. (3.4)

This implies a closed system. In this model, once an individual is infected and reaches the recovered
class the individual acquires immunity. That is, the recovered do not become susceptible. The
representation of the model is given in Figure 3.4 where q and r are positive constants such that
q is the per capita infection rate and r is the per capita recovery rate. We define 1

a is the average
length of time a recovered individual has immunity from the disease. Therefore, a is the rate that
recovered individuals will return to the susceptible class.

!" #" $"

%!#" &#"
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Figure 3.4: SIRS model

The number of individuals that become infectious depends on the size of the susceptible class
and the number of individuals that recover only depends on the size of the infectious class. Below
is the system of ordinary differential equations used to describe the biological system.
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Table 3.1: SIS State Variables

S(t) susceptible individuals
I(t) infectious individuals
R(t) recovered individuals

Table 3.2: SIS Parameters

q infection rate
(

1
individual . time

)
r recovery rate

(
1

time

)
a loss of immunity rate

(
1

time

)

dS

dt
= −qSI + aR (3.5)

dI

dt
= qSI − rI (3.6)

dR

dt
= rI − aR (3.7)

This example has one infected class. The next example incorporates two infected/diseased
classes that are differentiated by the stage of infection.

Example 4. SEIRS Model [10, p. 281]
The SEIRS model is a modified version of the SIRS model. The model has similarities to Example
3. Both models have compartments for susceptible, infected, and recovered individuals , however,
the SEIRS model has an additional infectious class. That is, an exposed or latently infected class
represented by E. This means that individuals in this class are infected but not infectious. They
can not spread infection to others through contact. In addition, the model does not have a constant
population. This means that dN

dt 6= 0. The change in the total population is proportional to the
birth rate of susceptible individuals and the death of the total population.

dN

dt
= λ− µN

The model is described visually through Figure 2.5. The time spent latently infected is 1
k ,

where k is the progression rate from exposed to infected. β is the effective contact rate and Λ is
the recovery rate. 1

r is the duration of immunity before the individual becomes susceptible again.

The following equations represent the given system.

17
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Figure 3.5: SEIRS model

dS

dt
= λ− βSI + rR− µS (3.8)

dE

dt
= βSI − (µ+ k)E (3.9)

dI

dt
= kE − (µ+ Λ)I (3.10)

dR

dt
= ΛI − µR− rR (3.11)

Table 3. Parameters

λ birth rate
(

individual
time

)
β infection rate

(
1

individual . time

)
k transition rate

(
1

time

)
Λ recovery rate

(
1

time

)
r loss of immunity rate

(
1

time

)
µ mortality rate

(
1

time

)
The preceding examples will be revisited when discussing equilibrium points and stability.
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Chapter 4

Important Mathematical Concepts &
Applications

4.1 Equilibrium Points and Behavior of Linear Systems

In this section, we introduce some mathematical concepts that will be used to evaluate and analyze
the models previously described. In mathematical modeling, long-term behavior of solutions to
models is a main point of interest. Consider the following generic dynamical system.

Let dX
dt = f(X) where X = (X1, · · · , Xn) and



dX1
dt = f1(X1, X2, · · · , Xn)

dX2
dt = f2(X1, X2, · · · , Xn)

...

dXn
dt = fn(X1, X2, · · · , Xn)

(4.1)

is an n-dimensional system of differential equations.

Definition 1. Equilibrium point. [4, p.5] An equilibrium point of the system of differen-
tial equations (3.1) is the value of the solution that is unchanging in time. Therefore, X∗ =
(X∗

1 , X
∗
2 , · · · , X∗

n) is an equilibrium point if f(X∗
1 , X

∗
2 , · · · , X∗

n) = 0.

A solution that begins at an equilibrium point will remain at X∗, since X1, X2, · · · , Xn will not
change. Determining the stability of equilibria gives information about the long term behavior of
the model.

Definition 2. Stable equilibrium point. [4, p.84] An equilibrium point X∗ is a stable equilib-
rium point or a sink if any solution with initial condition sufficiently close to X∗ is asymptotic to
X∗ as t increases. That is, if solutions “near” X∗ approach X∗ in time, then X∗ is locally stable .
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Definition 3. Unstable equilibrium point. [4, p.84] An equilibrium X∗ is an unstable equi-
librium point or a sourceif all solutions that start sufficiently close to X∗ is asymptotic to X∗ as t
decreases. That is, if solutions “near” X∗ diverge from X∗ in time, it is locally unstable.

Theorem 1. [4, pp.290, 305] Suppose X∗ is an equilibrium point of the differential equation
dX
dt = f(X) where f is a continuously differentiable function. Then,

• if f
′
(X) < 0, then X∗ is a sink.

• if f
′
(X) > 0, then X∗ is a source.

• if f
′
(X) = 0, then we need additional information to determine the type of X∗.

Theorem 2. [4, pp. 284,299]
For a linear system of differential equations:

• If the eigenvalues of the matrix all have negative real parts, then the equilibrium is a sink. If
these eigenvalues are complex, then the sink is a spiral sink.

• If the eigenvalues of the matrix all have positive real parts, then the equilibrium is a source.
If these eigenvalues are complex, then the source is a spiral source.

• If the eigenvalues of the matrix have both negative and positive real parts, then the equilibrium
is a saddle.

We can apply the above definitions and theorem to Example 4.1, our beaver problem in Section
3.2. First, we must determine the solution of the model. The particular solution can be found by
determining the equilibrium solutions (2.5). That is

dN(t)

dt
= (b− d)N∗ − P = 0.

This implies that N∗ = P
b−d . If we let the birth rate b = 0.4 , the death rate d = 0.015 and P =

150, then we get the equilibrium solution N∗ = 6000.

The general solution to the homogeneous equation

dN(t)

dt
= (b− d)N(t)

is given by N(t) = Ce(b−d)t where C is an arbitrary constant that can be found by applying the
initial conditions. We combine the particular solution of the inhomogeneous equation and the
general solution of the homogeneous equation to get the following equation.
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N(t) = Cert, N(0) = 6000⇒ C = 6000

N(t) = 6000ert.

Theorem 3. Assuming the the beaver birth rate is greater than the death rate (b > d), N∗ = P
b−d

is unstable.

Proof. Let N∗ = P
b−d be the equilibrium solution of f(N) = (b − d)N − P . Since the derivative

f
′
(N) = b − d, we know that b > d and therefore f

′
(N) > 0. According to Theorem 1, N∗ is

unstable.

A graph of this solution is also shown in Figure 4.1. Note that an initial population larger than
the equilibrium population makes the population grow while an initial population smaller than the
equilibrium population makes the population decrease in size. To the farmer, this means that it
is very important that he/she monitors the size of the population and tries to keep it at 6000.
Note in a real biological setting, birth and death rates vary. If the farmer monitors the birth and
death rates weekly, this model could be used to compute how many beavers can be sold to keep a
manageable population.
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Figure 4.1: A beaver solution
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4.2 Stability of Nonlinear Systems

The following examples and analysis are in reference to nonlinear systems.

Let us look at Example 1, our SIS model. Using (2.3), which we redefined as g(I) = αI(N−I)−βI,
we compute the equilibrium points defined as g(I∗) = 0. This calculation results in the trivial
solution (I∗ = 0) and the non-trivial solution I∗ = N − β

α .

Theorem 4. Assuming α > β, that is the infection rate is greater than the recovery rate, I∗ = N− β
α

is a sink.

Proof. Let I∗ = N − β
α be the non-trivial equilibrium point of the model g(I) = αI(N − I) − βI.

Taking the derivate of g(I), we find that g
′
(I) = αN − 2αI − β. Solving for the derivative at I∗,

we find that g
′
(I∗) = β −αN . Given our assumption that α > β, g

′
(I∗) < 0 and therefore a stable

sink.

After graphing the solution Figure 4.2, we confirmed that I∗ = N − β
α is stable as long as

β < Nα.
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Figure 4.2: SIS solution

Definition 4. Global Stability. [4, p.84] An equilibrium point is globally stable if all solutions
converge to the equilibrium as t →∞.

It follows that global stability implies local stability. To determine the local stability of the equi-
librium point under analysis, we linearize the system.

For the system of equations in (3.1), the Jacobian matrix is defined to be the following n × n
matrix.
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J =



∂f1
∂X1

∂f1
∂X2

· · · ∂f1
∂Xn

∂f2
∂X1

∂f2
∂X2

· · · ∂f2
∂Xn

...
...

...
...

∂fn
∂X1

∂fn
∂X2

· · · ∂fn
∂Xn


.

J is the matrix that represents the linearized system of (3.1)

Example 5. [4, pp. 277-278]

Consider the system

dY

dt
= GY where G =

 8 −11

6 −9

 .

First, we compute the eigenvalues of G by finding the roots of the characteristic polynomial.

det(G− λI) = det

 8− λ −11

6 −9− λ

 = (8− λ)(−9− λ) + 66 = λ2 + λ− 6 = 0.

The roots of this equation are λ1 = −3 and λ2 = 2, the eigenvalues of G.

Next, we compute the eigenvectors. For λ1 = −3, the equations that give the eigenvectors
(x1, y1) are

{
8x1 − 11y11 = −3x1

6x1 − 9y11 = −3y1

This means that any nonzero vector that lies along the line y = x in the plane is an eigenvector for
λ1 = −3. We choose V1 = (1, 1). Therefore the solution is

Y1(t) = e−3tV1

is a straight-line solution lying on the line y = x. As t increases, the solution approaches the origin.

Following similar steps, we can compute the eigenvectors that correspond to λ2 = 2 that lie
along the line 6x− 11y = 0, specifically V2 = (11, 6). We get a straight-line solution

Y2(t) = e2tV2
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Figure 4.3: Saddle

that diverges away from the origin as t increases. Therefore, the general solution is

Y(t) = k1e
−3tV1 − k2e

2tV2.

where the straight-line solutions produce a phase portrait that displays a saddle (Fig 4.3).

Theorem 5. [4, p. 323] Let (X∗
1 , X

∗
2 , · · · , X∗

n) be an equilibrium point of an n-dimensional system
of differential equations. If the eigenvalues of the Jacobian matrix J of this system evaluated at
(X∗

1 , X
∗
2 , · · · , X∗

n) all have negative real parts, then the equilibrium point is locally stable. If at least
one of the characteristic roots has a positive real part, then the equilibrium point is unstable.

The eigenvalues of the Jacobian matrix of a two-dimensional system are the roots of a quadratic
characteristic equation. The following theorem specifies these conditions with respect to Theorem 5.

Theorem 6. [4, p. 323] For a two-dimensional system of differential equations, let τ = tr(J) =
a11 + a22 and ∆ = det(J) = a11a22 − a12a21.

1. If ∆ < 0, then the fixed point is a saddle.
2. If ∆ > 0 and τ < 0, then the fixed point is a sink.

To clarify, Theorem 6 is utilized with two-dimensional nonlinear systems. Another useful calculation
for infection models is the reproductive number, R0, which is used to determine the stability of a
disease.
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Both the sink and saddle are different types of fixed points of two-dimensional systems dictated
by the sign of τ = tr(J) and ∆ = det(J) of the system’s Jacobian, J . The τ∆ - plane is determined

by the graph of the parabola ∆ = τ2

4 on the τ∆-plane. If τ2 − 4∆ = 0 or if ∆ = τ2

4 , we have

repeated eigenvalues. Points above the parabola (∆ > τ2

4 ) correspond to systems with complex

eigenvalues. Points below the parabola (∆ < τ2

4 ) correspond to systems with real eigenvalues. The
following figure summarizes the different types of fixed points depending on specific conditions.

τ
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Saddles

Stable nodes Unstable nodes

Unstable spiralsStable spirals

Ce
nt

er
s

Figure 4.4: Trace-Determinant Plane

4.3 The Basic Reproductive Number : R0

For epidemiology models, a quantity R0, is derived to assess the stability of the disease free equi-
librium. R0 represents the number of secondary cases that are caused by a single infectious case
introduced into a completely susceptible population [1]. When R0 < 1, if a disease is introduced,
there are insufficient new cases per case and the disease cannot invade the population. When
R0 > 1, the disease will become endemic.
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Definition 5. Reproductive Number. [11, p. 1]
The reproductive number, R0, is generally defined to be the number of secondary infections caused
by one infectious person during the course of an infection in a susceptible population.

There are many interpretations but commonly it is a dimensionless number that takes into
account transmissibility (the probability of infection given contact), the average rate of contact and
the duration of infection. That is,

R0 ∝
(

infection

contact

)(
contact

time

)(
time

infection

)
∝ (infection rate)(time spent infecting).

In general, R0 = τ c d, where τ is transmissibility, c is the average rate of contact between a
susceptible and an infected individuals and d is the duration of infection.

Theorem 7. [14, p.2] The reproductive number of the SIRS model is R0 = qN
r .

Proof. Using the definitions and theorems above, we can conduct a stability analysis on Example
3. First, we must do a quick calculation of the reproductive number for the SIRS model. We know
from Definition 5 that R0 is essentially the infection rate multiplied by the time of infection. For
our SIRS model, we assume a disease-free state. This means that R0 = 0 and I(0) << 1 and
therefore N ≈ S. Thus,

R0 =
qN

r
(4.2)

Theorem 8. [14, pp.2-5] The equilibrium points of the SIRS model are the disease free equilibrium
(N, 0, 0) and the endemic equilibrium point (I∗, R∗), where I∗ = qN−r

q(1+ r
a

) and R∗ = r
a
qN−r
q(1+ r

a
) . (I∗, R∗)

exists if R0 > 1 .

Proof. To determine the equilibrium points for the given system of equations, we set the system
of equations equal to zero. For the disease-free equilibrium, we assume that the diseased classes
are zero and S = N . To find (I∗, R∗), we reduce the system to two equations using a substitution
based on our initial assumption (S = N − I − 0). In doing so, the following system results.

dI

dt
= q(N − r)I − qI2 − qRI (4.3)

dR

dt
= rI − aR (4.4)

Next, we set (3.3), (3.4) equal to zero and solve for R∗.

R∗ =
rI∗

a
(4.5)

Then substitution (3.5) into (3.3), we find the following expression for I∗ and R∗.
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I∗ =
qN − r
q(1 + r

a)
(4.6)

R∗ =
r

a

qN − r
q(1 + r

a)
(4.7)

Given these equations and the fact that the populations and parameters are positive, (I∗, R∗) exists
only if qN − r > 0 =⇒ qN

r > 1.

Substituting (3.2) into (3.6) & (3.7), we determine the following equations.

I∗ =
r(R0 − 1)

q(1 + r
a)

(4.8)

R∗ =
r2

a

R0 − 1

q(1 + r
a)

(4.9)

It is known that r, a, N and q > 0. Therefore the reproductive number R0 > 0 and the point exists
if R0 > 1.

To determine the local stability of the equilibrium points, we apply the linearization principle
and calculate the Jacobian matrix J for this system. Let dI

dt = f1 and dR
dt = f2. Then taking

the partial derivatives of the two-dimensional system, we get the following entries of the Jacobian
matrix J .

a11 =
∂f1

∂I
= qN − r − qR− 2qI a12 =

∂f1

∂R
= −qI

a21 =
∂f2

∂I
= r a22 =

∂f2

∂R
= −a

We can determine the stability for both the disease-free and endemic equilibria.

(1) Disease-Free Equilibrium: I∗ = R∗ = 0

Theorem 9. [6, p.2] The disease-free equilibrium of the SIRS model is stable if R0 < 1 and unstable
if R0 > 1.

Proof. The Jacobian J of the SIRS model at the disease-free equilibrium has the following entries.

a11 =
∂f1

∂I
= qN − r a12 =

∂f1

∂R
= 0

a21 =
∂f2

∂I
= r a22 =

∂f2

∂R
= −a
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Using Theorem 6, we calculate both the tr(J) and the det(J).

tr(J) = qN − r − a det(J) = −qaN

We can substitute R0 = qN
r , which results in tr(J) = r(R0 − 1)− q and det(J) = −ar(R0 − 1).

This means that when R0 < 1, tr(J) < 0 and det(J) > 0. According to Theorem 6, the above
conditions dictate that the equilibrium is a sink and therefore stable. If R0 > 1, det(J) < 0 and
the equilibrium is a saddle and therefore unstable.

(2) Endemic Equilibrium: (I∗, R∗) 6= (0, 0)

Theorem 10. [6, p.3] The endemic equilibrium point is stable if R0 > 1.

Proof. The Jacobian J of the SIRS model at the endemic equilibrium has the following entries.

a11 = qN − r − r

a

qN − r
1 + r

a

− 2
qN − r
1 + r

a

a12 = −qN − r
1 + r

a

a21 = r a22 = −a

Next, we determine the tr(J) and the det(J). Substituting the above expressions, we find the
following terms for both quantities.

tr(J) = a11 + a22 = qN − r − r

a

qN − r
1 + r

a

− 2
qN − r
1 + r

a

− a (4.10)

det(J) = a11a22 − a12a21 = −qNa+ ra+ r
qN − r
1 + r

a

− 2a
qN − r
1 + r

a

(4.11)

Substituting R0 = qN
r into 3.8 and 3.9, the following expressions were found.

tr(J) =
−r(R0 − 1)− a− r

1 + r
a

(4.12)

det(J) =
ra(R0 − 1)

1 + r
a

(4.13)

Since all parameters are positive, if R0 > 1, tr(J) < 0, and det(J) > 0. According to Theorem 6,
the endemic equilibrium point (I∗, R∗) is a sink and therefore stable.

The calculation of the reproductive number and the stability analysis of Example 3 is relatively
simple. A factor that contributes to this simplicity is that the model has only one diseased class.
Other models have multiple levels of infection and different diseased classes. This fact complicates
the reproductive number calculation. For a systematic way to calculate the secondary infections
produced by an infection, we look to the Next-Generation Operator, a method that utilizes the
spectral radius of a transmission matrix.
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Chapter 5

Defining R0 : The Next-Generation
Operator

The basic reproductive number, R0, as defined in Definition 5, Section 4.3, is applicable for a single
“typical” infection. R0 is typically found through the study and calculation of the eigenvalues of
the Jacobian at the disease-free equilibrium. To account for multiple types of infected individuals,
a different R0 must be used. That is a reproductive number that describes a generation of infection.
The Next-Generation Operator approach allows us to do this. The next-generation operator is given
by the transmission matrix and R0 is defined as the spectral radius of the transmission matrix.

Definition 6. Transmission matrix. [10, pp.93-94]
For n infectious populations, the transmission matrix T is an n × n matrix whose entries tij are
the number of infections caused in a population i by an infective individual in population j.

Definition 7. Spectral radius. [11, p. 94]
The spectral radius of a matrix A, denoted ρ(A), is defined to be the maximum of the absolute
value of the eigenvalues of the matrix.

So for an n× n matrix with eigenvalues λ1, λ2, λ3, . . . ,

ρ(A) = max{|λi| : 1 ≤ i ≤ n}. (5.1)

5.1 What is a Generation?

A generation in an infection model is a wave of secondary infection that flows from each previous
infection [12]. In general, Ri denotes the reproduction number of the ith generation. The first
generation of an epidemic is all the secondary infections that result from infectious contact with
the index case, or generation zero. Thus, R0 is the number of infections generated by generation
zero. Calculation of the reproductive number, R0, is evaluated at a disease-free state. That is, the
infected/diseased classes are zero.
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5.2 Method for determining the transmission matrix

We define the next-generation matrix or the transmission matrix as the square matrix T in which
the ijth element of T, tij is the expected number of infections of type i caused by a single infected
individual of type j. The basic reproductive number is the spectral radius of T, which is known as
the dominant/maximum eigenvalue of T. A useful property of T is that this matrix is non-negative.
It is guaranteed that there will be a single, unique eigenvalue which is positive, real, and strictly
greater than all the others. This eigenvalue is R0.

To provide further detail of the method, consider the next-generation matrix T is defined as
T = FV −1, where

F =

[
∂Fi(x0)

∂xj

]
(5.2)

V =

[
∂Vi(x0)

∂Xj

]
(5.3)

Here, Fi describes the new infections, while Vi describes transfers of infections from one compart-
ment to another. x0 is the disease-free equilibrium state. The spectral radius, ρ(T) = ρ(FV −1), is
the reproductive number R0.

Example 6. To best illustrate this method, we will apply it to Example 4, our SEIRS model.
We assume a disease-free state where S = N . We also assume that there is change in the total
population. Thus, N = λ

µ . This is an appropriate model for application of the next-generation
operator, since there are two infected classes, E and I. To calculate the transmission matrix T ,
we must first identify the ways in which (1) new infections are ’born’ and (2) individuals can
move between compartments. In this example, there are two infective classes but one way for new
infections to arise. If we look at the equations for E and I compartments, (2.9) and (2.10), we
can represent the two-dimensional system in vector form and then separate the system into two
matrices. Fi accounts for the new infections of the system and Vi accounts for the outflows and
transfers from one compartment to another. We can deduce that the only source of new infection is
from newly infected susceptible individuals represented by βSI. We can substitute our assumption
for S to get βλI

µ .

 dE
dt

dI
dt

 =

 −(µ+ k)E + βλI
µ

kE + (µ+ Λ)I

 (5.4)

=

 βλI
µ

0

−
 (µ+ k)E

−kE + (µ+ Λ)I

 (5.5)

= Fi − Vi. (5.6)

Thus, taking the partial derivatives of both Fi and Vi to get F and V.
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F =

 0 βλ
µ

0 0

 (5.7)

V =

 (µ+ k) 0

−k (µ+ Λ)

 . (5.8)

Next, we determine the inverse of V, V−1and then calculate the transmission matrix T.

V−1 =


1

(µ+k) 0

k
(µ+k)(µ+Λ)

1
(µ+Λ)

.

Thus, the transition matrix T = FV−1 is given by the following matrix.

T =

 −βλk
µ(µ+k)(Λ+µ)

βλ
µ(Λ+µ)

0 0

.

R0 is the leading or maximum eigenvalue of the the transition matrix. This is simple, since we are
dealing with a 2× 2 matrix.

R0 =
βλk

µ(k + µ)(Λ + µ)
. (5.9)

It is important to note that the reproductive number in this case is the product of the rate of new
exposures and new infections. This will be important to recall when calculating the reproduction
number of the guinea worm model.
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Part III

Guinea Worm Disease
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Chapter 6

The Biology of Guinea Worm Disease

As previously discussed, GWD affects populations that are in contact with drinking water contain-
ing guinea worm larvae. As a result of improper filtration and water collection, this disease afflicts
communities in remote parts of Africa that have contaminated drinking water sources. It is a vector
transmitted infection in which copepods serve as an intermediary stage in the infection process.
Infection is transferred through the ingestion of guinea worm larvae. The parasite that causes this
disease is the nematode Dracunculus medinensis [6]. The nematode D. medinensis belongs to the
order of Spirurida, which are tissue parasites that produce eggs containing larvae or release free
larvae [14] (Fig 6.1). These free larvae require arthropods/copepods as intermediate hosts. Aver-
aging 1 meter in length and only 1-2mm thick, the mature female guinea worm is considered one
of the longest nematodes (Fig 6.2). These macroparasites fester in the abdominal tissues of the
human host and then migrate to the skin’s surface, forming a painful blister.

Figure 6.1: Guinea worm larvae [16]. Figure 6.2: Guinea worm in vial [8].

The life cycle of the parasite has three stages, one occurring in the water, one in the copepod,
and one in the human (Fig 6.3). Infection is only caused by female worms. The path of infection
is described as follows. The human drinks unfiltered well or pond water containing copepods that
are infected with mature larvae (Fig 6.6). After ingestion, gastric juices in the human digest the
infected copepod and worm larvae are released. Movement of the larvae to abdominal tissues occurs
so they can grow and mate. Next, maturation occurs and female worms migrate towards skin’s
surface approximately 9-11 months after infection [6]. As a result, formation of blister occurs.
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With time, the blister ruptures and the emerging female worm releases eggs into the water source,
later hatching and becoming immature stage 1 larvae. Larvae are ingested by copepod and resist
digestion. After 2 weeks, (two molts) stage 3 larvae have developed into infective/mature larvae.

Figure 6.3: Life cycle of guinea worm [11].

The copepods, a group of small crustaceans, that transmit guinea worm disease are typically 1
to 2 millimeters (0.04 to 0.08 in) long, with a teardrop shaped body and large antennae [6] (Fig
6.5). The organism has four developmental stages: eggs, nauplius, copepodite, and adult (Fig 6.4).
The larvae stages including nauplius and copepodite are of particular interest. The timing of this
cycle must be in sync with the infection process. For our purposes, we ignore the different stages
of larvae.
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Figure 6.4: Cyclic copepod development [16]. Figure 6.5: Fuzzy microscopic horseshoe crabs [8].

Figure 6.6: Infested copepod inducing death [16].

6.1 Symptoms & Interventions

One of the difficult aspects of the disease is the absence of symptoms until after infection. There
are no symptoms until approximately 1 year after infection. The only indication is the blister on
the surface of skin and the pain/burning sensation associated with it. Additionally, days before
the worm exits the human host the patient develops a fever, swelling, and pain in the general area.
The blister bursts within 24-72 hours and the worm emerges, leaving a wound that is susceptible
to secondary infections [20]. Currently, there is no within-host treatment/cure. Several forms of
prevention, however, have been introduced including pipe filters (reduces the number of copepods
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consumed) and larvicides (reduces free living GW larvae in drinking water sources). A key compo-
nent of decreasing guinea worm outbreaks is education. Awareness of the disease, its symptoms,
and how it spreads could prevent people from going to the water while infected, decreasing the
amount of eggs released into the water source.

Figure 6.7: Foot blister induced by the female
guinea worm in a person with dracunculiasis [15].

Figure 6.8: Guinea worm emerging from foot ul-
cer [19].

Using our knowledge of Guinea Worm Disease and the biological system it involves, we can create
what is known as an ecological epidemiology model. This model not only seeks to understand the
disease that afflicts the human population but also aims to grasp the population dynamics of the
macroparasite and its intermediate host.
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Chapter 7

A Model for Guinea Worm Disease

7.1 Introduction to the Model

This model incorporates the fact that exposed humans experience a period during which GWD is
undergoing developmental stages in their bodies. During this time, humans are infected but not
yet infectious. It is important to note that though copepods never recover from GWD, humans can
recover, yet do not acquire any immunity. Thus, once the infectious humans recover, they are once
again just as likely to become infected with the disease.

In this model, we represent the human population with a SEI model and the copepod population
with an SI model. Humans become infected when guinea worm larvae that are released inside the
body after consumption of contaminated drinking water. Since there is a slow maturation rate of
the guinea worm within the host, the recovery rate is the reciprocal of the number of days it takes
for the worm to leave the body after breaking through the skin’s surface.

The model includes regular births and deaths of the human, copepod, and guinea worm popu-
lations. No human deaths occur due to GWD directly. Note that NH and NC are the total human
and copepod populations. Unlike other models, the change in the total population of humans and
copepods is not constant. The equations for these are given below.

NH = SH + EH + IH

dNH

dt
= bHNH

(
1− NH

KH

)

NC = SC + IC

dNC

dt
= bCNC

(
1− NC

KC

)
.

To best describe the biological system, the model is broken down into three sections to address
the human, copepod and guinea worm populations. As previously stated, the SEI infection model is
used to describe the human population. The human population is described using logistic growth,
dNH
dt = bHNH(1− NH

KH
). The susceptible human compartment SH gains individuals through births,
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bHNH , and recovery from infection, rIH . A loss of individuals is a result of natural death, bHNH
SH
KH

,
and infection, εcβ(IC)SH . The infected human compartment EH gains individuals through infection
εcβ(IC)SH and loses individuals when they become infectious ρEH and to natural death bHNH

EH
KH

.
Lastly, the infectious human compartment IH gains individuals when infected individuals become
infectious ρEH and loses individuals when they die bHNH

IH
KH

and recover rIH .

Similarly, the copepod population is described using logistic growth. That is, dNCdt = bCNC(1−
SC
KC

). Here we use a SI model. The susceptible copepod compartment SC gains more individuals
only through births, bCNC . Copepods cannot recover from infection. The population loses more
copepods through natural death bCNC

SC
KC

, consumption by humans, β(IC)SH , and to infection by
guinea worm larvae, εLα(L)SC . The infected copepod compartment IC gains individuals through
infection, εLα(L)SC , and loses more copepods through natural death, δCIC , and consumption by
humans β(IC)SH .

The guinea worm population is represented by both eggs and larvae populations. The egg
compartment E gains more individuals by the release of eggs from adult worms exiting human
hosts, λ0λ1IH . The population loses eggs through natural death, δE, and hatching into larvae, fE.
We assume that the natural death rate of eggs is less than the hatching rate. That is δ < f . The
larvae compartment L gains more larvae by hatching and maturation, fσE. Losses occur due to
natural death, δLL, and consumption of larvae by copepods, α(L)(SC + IC). The following system
of equations describes the above events and interactions.

dSH
dt

= bHNH

(
1− SH

KH

)
+ rIH − εcβ

(
IC

NC +K
′
C

)
SH (7.1)

dEH
dt

= εcβ

(
IC

NC +K
′
C

)
SH − ρEH − bHNH

EH
KH

(7.2)

dIH
dt

= ρEH − rIH − bHNH
IH
KH

(7.3)

dE

dt
= λ0λ1IH − δE − fE (7.4)

dL

dt
= fσE − δLL− α

(
L

L+K
′
L

)
NC (7.5)

dSC
dt

= bCNC

(
1− SC

KC

)
− εLα

(
L

L+K
′
L

)
SC − β

(
SC

NC +K
′
C

)
SH (7.6)

dIC
dt

= εLα

(
L

L+K
′
L

)
SC − δCIC − β

(
IC

NC +K
′
C

)
SH (7.7)

Here β(IC) is the copepod consumption rate and α(L) is the larvae consumption rate.

β(IC) = β

(
IC

NC +K
′
C

)
α(L) = α

(
L

L+K
′
L

)
.
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These rates are dependent on the probability of ingesting an infected copepod or guinea worm
larvae, resulting in infection.
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Figure 7.1: Compartment model
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Table 7.1: State Variables

SH(t) susceptible humans
EH(t) latently infected humans
IH(t) infectious humans
E(t) guinea worm eggs
L(t) guinea worm larvae
SC(t) susceptible copepods
IC(t) infectious copepods

Table 7.2: Parameters

bH human birth rate ( 1
time

)
r recovery rate ( 1

time
)

εc human infection fraction (humans infected
copepod

)

β copepod consumption rate ( copepods consumed
human · time

)
ρ activation (infected to infectious) rate ( 1

time
)

λ0 visitation rate (visits to the water
time

)
λ1 egg release rate ( eggs released

human · visit
)

δ natural death rate of eggs ( 1
time

)
f hatching rate ( 1

time
)

σ fraction of larvae surviving to stage 3 ( larvae survived
egg

)

δL natural death rate of larvae ( 1
time

)
α larvae consumption rate ( larvae consumed

copepod · time
)

εL copepod infection fraction ( copepods infected
larvae

)
bc copepod birth rate ( 1

time
)

δc natural death rate of copepods ( 1
time

)
K
′
C copepod saturation constant (copepods)

K
′
L larvae saturation constant (larvae)
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7.2 Infection Rates

There are two infection rates in this model. One is the human infection rate. It is dependent upon
the probability of consuming an infected copepod. The other is the copepod infection rate. It is
dependent upon the number of larvae in the system. The rates are described below.

εCβ(IC) = εCβ

(
IC

NC +K
′
C

)
(7.8)

εLα(L) = εLα

(
L

L+K
′
L

)
(7.9)

where εC is the probability of being infected, β is the copepod consumption rate and IC
NC+K

′
C

is the

probability of consuming an infected copepod. K
′
C is the copepod saturation term that saturates

the copepod population. Similarly, εL is the probability that a copepod will be infected by a guinea
worm larvae. α is the larvae consumption rate and L

L+K
′
L

is the saturated larvae population term.

This indicates that the larvae consumption rate is dependent upon the number of larvae in the
system.

7.3 Nondimensionalization

For simplicity, we utilize a nondimensionalization technique in which we scale the equations to be
fractional quantities of the classes’ “carrying capacities”. We assign new variables for SH , EH ,
IH , E, L, SC , IC with the following terms S̃H , ẼH , ĨH , Ẽ, L̃, S̃C and ĨC . We get the following
equations.

S̃H =
SH
KH

, ẼH =
EH
KH

, ĨH =
IH
KH

(7.10)

Ẽ =
E

KE
, L̃ =

L

KL
(7.11)

S̃C =
SC
KC

, ĨC =
IC
KC

(7.12)

This gives us seven dimensions for the fractional populations of the different classes. Addition-
ally, we have to scale the initial assumptions, which include NH and NC as well as develop newly
defined parameters for the now dimensionless system. Thus,

ÑH =
NH

KH
(7.13)

ÑC =
NC

KC
(7.14)

and

ÑH = S̃H + ẼH + ĨH ÑC = S̃C + ĨC .
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Table 7.3: Dimensionless Parameters

ωHC = KH
KC

human/copepod carrying capacity ratio (dimensionless)

β
′

= βωHC copepod consumption rate ( 1
time)

KE = KHλ0λ1
f egg ’carrying capacity’ (eggs)

KL = KHλ0λ1
δL

larvae ’carrying capacity ’(larvae)

α
′

= α(NCKCKL
) larvae consumption rate ( 1

time)

κL =
K
′
L

KL
larvae saturation constant (dimensionless)

κL =
K
′
C

KC
copepod saturation constant (dimensionless)

The following parameters used in the nondimensionalization.

Using the above equations and parameters, we nondimensionalize each differential equation of

the model in the following manner. Let us define dS̃H
dt as an example. By substituting (6.10), S̃H ,

into the derivative, we find

dS̃H
dt

=
d SHKH
dt

=
1

KH

(
dSH
dt

)
=

1

KH
[bHNH

(
1− SH

KH

)
+ rIH − εcβ

(
IC

NC +K
′
C

)
SH ]

= bHÑH(1− S̃H) + rĨH − εcβ
(

IC

NC +K
′
C

)
S̃H , by substituting (6.10) and (6.13).

= bHÑH(1− S̃H) + rĨH − εcβ
(

IC

KC(NCKC +
K
′
C

KC
)

)
S̃H

= bHÑH(1− S̃H) + rĨH − εcβ
(

ĨC

ÑC + κC

)
S̃H , by substituting κC , (6.12) and (6.14).

Continuing this process, we calculate each differential equation and obtain the following system of
scaled equations.
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dS̃H
dt

= bHÑH(1− S̃H) + rĨH − εcβ
(

ĨC

ÑC + κC

)
S̃H (7.15)

dẼH
dt

= εcβ

(
ĨC

ÑC + κC

)
S̃H − ρẼH − bHÑHẼH (7.16)

dĨH
dt

= ρẼH − rĨH − bHÑH ĨH (7.17)

dẼ

dt
= f ĨH − (δ + f)Ẽ (7.18)

dL̃

dt
= δLσẼ − δLL̃− α

′
(

L̃

L̃+ κL

)
(7.19)

dS̃C
dt

= bCÑC(1− S̃C)− εLα(
L̃

L̃+ κL
)S̃C − β

′
(

S̃C

ÑC + κC
)S̃H (7.20)

dĨC
dt

= εLα

(
L̃

L̃+ κL

)
S̃C − δC ĨC − β

′
(

ĨC

ÑC + κC

)
S̃H (7.21)

Equations (6.15 - 6.21) are used for calculation of the reproductive number, stability analysis and
simulations. Without nondimensionalization, the differences in size of populations, rates, and time
intervals cause great difficulty when calculating solutions to our system.

43



Chapter 8

Analysis and Results

Solving the equations (6.15-6.21) numerically, we can see how the system evolves over time. To
simulate the seven-dimensional system, we used MATLAB 7.12.0.635 (R2011a), specifically an
ODE solver called ode15s. It is a stiff system solver with a low to medium order of accuracy. ode15s
is a variable order solver based on the numerical differentiation formulas (NDFs) [17]. Optionally,
it uses the backward differentiation formulas (BDFs, also known as Gear’s method) that are usually
less efficient. Like ode113, ode15s is a multistep solver. It is suggested to try ode15s when ode45
fails, or is very inefficient, and the problem is stiff, or when solving a differential-algebraic problem
[18]. It is an ideal solver to use when the mass matrix or Jacobian is nonsingular and sparse. Our
system’s Jacobian is definitely sparse.

In Section 8.1 we calculate the system’s disease-free equilibrium. We determine the reproductive
number using the Next-Generation Operator in Section 8.2. After this calculation is computed,
Section 8.4 shows bifurcation diagrams of our key parameters. Analysis is conducted to see how
the stability of the disease-free equilibrium can change based on changes in these parameters. Lastly,
in Section 8.5 we conduct a parameter analysis by looking at combinations of key parameters in
hopes of developing simulation scenarios.

Using our results from the previous study, we illustrate dynamics below. Section 8.6 presents
the results of simulations of an endemic equilibrium with no intervention. This scenario represents
an epidemic, or worst case scenario. We believe that such a situation occurred in the early 80’s,
resulting in many relief efforts [20]. Section 8.7 shows results from simulations that represent the
introduction of a larvacide to the water source of the system plagued by the epidemic. Lastly,
Section 8.8 displays the results of simulations of the positive effects of educational intervention and
pipe filters.

8.1 The Disease-Free Equilibrium

Theorem 11. If one of the diseased classes (ẼH , ĨH , Ẽ, L̃, or ĨC) of an equilibrium point of the
system (6.19-6.25) is zero, then all the diseased classes are zero.

Proof. To examine an equilibrium point of the system, we must set the left-hand side of the equa-
tions (6.19-6.25) equal to zero. It is sufficient to show that if any one of the diseased classes is zero,
then the others must also be zero. It is assumed that all model parameters and total fractional
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populations ÑH , ÑH are non-zero and positive. The susceptible populations are non-zero as well.

Suppose ĨH = 0. Then from (6.16), we see that dĨH
dt = 0 = ρẼH . Since ρ > 0, this implies that

ẼH = 0. Similarly, when ẼH = 0 the equation (6.18) tells us that dẼH
dt = 0 = εCβ

ĨC
ÑC+κC

S̃H .

Since S̃H > 0, this implies that εCβ
ĨC

ÑC+κC
= 0⇒ εCβĨC = 0. We know from our assumptions that

εCβ > 0. Thus, ĨC = 0. Using this result, we find from equation (6.21) that dĨC
dt = 0 = εLα

L̃

L̃+κL
S̃C .

We know that S̃C > 0 and therefore εLα
L̃

L̃+κL
= 0⇒ L̃ = 0, since εLα > 0. Lastly, equation (6.19)

shows that dL̃
dt = 0 = δLσẼ. Since δLσ > 0 ⇒ Ẽ = 0. Thus, if ĨH = 0, then ẼH = 0 if and only

if Ẽ = L̃ = ĨC = 0. Hence, if any one of the diseased classes is zero, then all disease classes are
zero.

Theorem 12. Assuming bC > κC >> β
′
, the system of equations (6.19-6.25) has exactly one

disease-free equilibrium (dfe) point xdfe = (ÑH , 0, 0, 0, 0, ÑC , 0) where,

Ñ∗
H = 1 (8.1)

Ñ∗
C =

(bc − bcκC) +
√

(bc + bcκC)2 − 4bcβ
′

2bc
(8.2)

Proof. To verify that xdfe is an equilibrium point of the model, we check that the left-hand side of
equations (6.19-6.25) are all zero at xdfe. Next, we must check that this is the only dfe equilibrium

point. Since we are only considering the disease-free equilibrium point we must have ẼH = ĨH =
Ẽ = L̃ = ĨC = 0. This means that the total human and copepod populations are susceptible. That

is, ÑH = S̃H and ÑC = S̃C . Thus, dÑH
dt = dS̃H

dt and dÑH
dt = dS̃H

dt . So, we need only to replace ÑH

for S̃H and solve equation (6.19) for all possible solutions by setting dÑH
dt = 0. A similar argument

is used for S̃C .

To consider xdfe, set the right hand side of modified (6.19) equal to zero. This results in

the following equality. 0 = bHÑH(1 − ÑH). This implies that Ñ∗
H = 0 or Ñ∗

H = 1. Since we

assume that ÑH is positive, Ñ∗
H = 1. Using this result, we set modified equation (6.24) equal to

zero and use the quadratic formula to get Ñ∗
C = 0 or Ñ∗

C =
(bc−bcκC)+

√
(bc+bcκC)2−4bcβ

′

2bc
. From

our assumptions, it is known that
√

(bc + bcκC)2 − 4bcβ
′ > 0, since (bc + bcκC)2 > 4bCβ

′
and

4bCβ
′
< 1. We know 4bCβ

′
< 1 because β

′
= βKHKC is a fractional copepod consumption rate. The

consumption rate β is already small and the fractional carrying capacity KH
KC

<< 1. So, we can

assume that bCβ
′
<< 1⇒ 4bCβ

′
< 1. Thus, if ÑC > 0, there is only one equilibrium value for ÑC ,

Ñ∗
C =

(bc−bcκC)+
√

(bc+bcκC)2−4bcβ
′

2bc
. Hence, the only disease-free equilibrium point is xdfe = (Ñ∗

H , 0,

0, 0, 0, Ñ∗
C , 0).

8.2 The Reproductive Number

As discussed in Chapter 4, the next-generation operator is used to calculate the reproductive number
R0 of a system. This number is used to determine the stability of the disease-free equilibrium of
the system (ÑH , 0, 0, 0, 0, ÑC , 0) from Theorem 12.
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To compute R0, we express the model equations in vector form as the difference between the rate
of new infection in each infected compartment, Fi, and the rate of transfer between each infected
compartment, Vi. For this case, the only compartments involved are latently infected humans,
infectious humans, eggs, larvae and infected copepods. Recall, this calculation is done at xdfe and

therefore S̃H = Ñ∗
H and S̃H = Ñ∗

H and all diseased classes are zero. Thus we have,

d

dt



ẼH

ĨH

Ẽ

L̃

ĨC


= Fi − Vi =



εCβ

(
ĨC

Ñ∗C+κC

)
S̃H

0

f ĨH
0

εLα

(
L̃

L̃+κL

)
S̃C


−



ρẼH
rĨH − ρẼH
(δ + f)Ẽ

δLL̃+ α
′
(

L̃

L̃+κL

)
− δLαẼ

β
′
(

ĨC
Ñ∗C+κC

)
S̃H


.

Next, we calculate the corresponding Jacobian matrices about the disease free equilibrium of the
system. Thus, substitute S̃H = Ñ∗

H and S̃H = Ñ∗
H . Recall, ẼH = ĨH = Ẽ = L̃ = ĨC = 0.

F =


0 0 0 0

εCβÑ
∗
H

Ñ∗H+κC

0 0 0 0 0
0 f 0 0 0
0 0 0 0 0

0 0 0
εLαÑ

∗
C

κL
0

 and V =



ρ 0 0 0 0
−ρ r 0 0 0
0 0 δ + f 0 0

0 0 −δLα δL + α
′

κL
0

0 0 0 0
β
′
Ñ∗H

Ñ∗C+κC

 .

By taking the inverse of the matrix V, we find

V−1 =



1
ρ 0 0 0 0
1
r

1
r 0 0 0

0 0 1
δ+f 0 0

0 0 δLα

(δ+f)(δL+ α
′

κL
)

1

δL+ α
′

κL

0

0 0 0 0
Ñ∗C+κC

β
′
Ñ∗H


.

The basic reproductive number for the system is calculated as the spectral radius of the next
generation matrix T = FV−1.

T =



0 0 0 0 εC
ωHC

0 0 0 0 0
f
r

f
r 0 0 0

0 0 0 0 0

0 0
εLα

2Ñ∗HδL

κL(δ+f)(δL+ α
′

κL
)

εLαÑ
∗
C

κLδL+α′
0

 .
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Taking the maximum eigenvalue, we find that

R0 =
3

√√√√√ εC KC f εL α2 λ0 λ1

r (δ + f)

(
δLK

′
L

Ñ∗C
+ αKC

) (8.3)

where Ñ∗
C =

(bc − bcκC) +
√

(bc + bcκC)2 − 4bcβ
′

2bc
. (8.4)

We know in general that if R0 < 1, the xdfe of our system is stable. Similarly, if R0 > 1, the xdfe
of our system is unstable. In the next section, we consider these relationships of R0 to determine
parameter ranges for three key parameters; λ0, β, and δL that maintain stability.

Using the parameter values found in Table 8.1, we numerically found the disease-free equilibrium
as shown in Fig. 8.1. The results show that the disease is not present in the human and copepod
populations and the guinea worm population is nearly extinct in the given time period.
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Figure 8.1: Disease-Free Equilibrium

These parameter values are used later to conduct stability analysis involving our reproductive
number, R0.
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Table 8.1: Disease-Free Parameter Values

r = 0.072 εC = 0.44
β = 3 ρ = 0.0027
λ0 = 0.001 λ1 = 25000
δ = 0.01 f = 0.072
σ = 0.2 δL = 2.5
α = 0.1 εL = 0.1
bC = 1 δC = 1

K
′
L = 5000 bH = 0.033

K
′
C = 2000 KC = 10000

KH = 500

8.3 Endemic Equilibrium

Similarly, we simulated an endemic equilibrium using parameter values found in Table 8.2. The
results show that disease is present in the system in the human, guinea worm, and copepod popu-
lations.
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Figure 8.2: Endemic Eq: λ0 = 0.05, β = 3, δL = 2.5
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Table 8.2: Endemic Parameter Values

r = 0.072 εC = 0.667
β = 3 ρ = 0.0027
λ0 = 0.05 λ1 = 25000
δ = 0.03 f = 0.072
σ = 0.9 δL = 0.25
α = 0.8 εL = 0.9
bC = 1 δC = 1

K
′
L = 5000 bH = 0.033

K
′
C = 2000 KC = 10000

KH = 500

8.4 Bifurcation Diagrams

Consider the three forms of intervention discussed in Section 6.1. We identify specific parameters
that would apply these interventions to the model. The first intervention parameter is λ0. This
is the water source visitation rate. Education is the intervention represented by a decrease in this
parameter. By decreasing the number of times an individual visits the water source, there is a
smaller chance of infection. Our analysis describes that xdfe is stable if 0 < λ0 < 0.0038.
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Figure 8.3: Education: Intervention parameter λ0

Similarly, our second intervention parameters is β. This is the copepod consumption rate. Pipe
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filters are represented by a decrease in this parameter. By decreasing the number of copepods
consumed per day, the probability of infection is decreased. Our analysis describes that xdfe is
stable if 0 < β < 78.
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Figure 8.4: Pipe Filters: Intervention parameter β

Lastly, the third intervention parameter is δL. This is the larvae death rate. Larvicides are
represented by an increase in this parameter. By increasing the death of free-living larvae, the
probability of copepod infection as well as human infection decreases. Our analysis describes that
xdfe is stable if 0.25 < δL (Fig 8.5).

The results from this analysis provided base parameter values for which we use to test combi-
nations of these parameters. It is the goal to construct intervention scenarios from our findings.
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Figure 8.5: Larvicide: Intervention parameter δL

8.5 Parameter Analysis

To assist in developing simulation scenarios, we look at different combinations of our intervention
parameters and observe the effects they have on the solutions of different compartments.

From Figure 8.6 we see that the combination of education (λ0) and larvicide (δL) is not nec-
essarily the most effective course of action. We find that there is a significant reduction in the
egg compartment E but there is little effect on the infected copepod compartment IC . Figure 8.7
highlights that though the combination of pipe filters (β) and larvicide (δL) significantly reduces
the infected copepod compartment IC , there is still a high fraction of infected humans EH . Figure
8.8 confirms that the combination of pipe filters (β) and education (λ0) are effective at reducing
the infected compartments.

This analysis leads to three simulations that describe intervention scenarios. The first scenario
excludes intervention to provide a base line. The next two scenarios incorporate a larvicide alone
and the combination of education and pipe filters.
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Figure 8.6: Combined effects of λ0 and δL: δL = (small, base, big) = (0.0001, 0.25, 5)
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Figure 8.7: Combined effects of β and δL: δL = (small, base, big) = (0.0001, 0.25, 5)

52



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

0

5

10

15

20 x 10−3

lambda0

E

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

0

0.2

0.4

0.6

lambda0

I c

 

 

base beta
big beta
small beta

Figure 8.8: Combined effects of λ0 and β: β = (small, base, big) = (0.01, 0.5, 5)

8.6 Scenario 1: No Intervention

An endemic equilibrium is simulated with experimentally determined parameters and initial condi-
tions. The following parameters where used to simulate the epidemic. λ0 = 0.001, β = 3, δL = 2.5.
Additional values can be found in Table 8.2. The system contained fractional populations of each
class (See Fig. 8.9). These parameter values produce a sudden outbreak of GWD.

Based on our results, we find that there is a high fractional population of guinea worm eggs and
larvae as well as infected humans and copepods. Thus, the system is guinea worm ridden. Recall
that the compartments contain fractional populations of the carrying capacity.

8.7 Scenario 2: Introduction of a Larvicide

Introduction of larvicide, a water treatment that reduces the number of copepods in the given
sample, was simulated by increasing the natural larvae death rate (δL = 450) and using the initial
parameter values listed in Table 7. With the decreased larvae compartment, change is seen over
a 1000 day time interval in the infected human compartment. In addition, there is a decrease
in infected copepods (See Fig. 8.8). Increasing the death further is quite unrealistic, since that
larvicide at high concentrations in the water is likely to affect other organisms in the environment.
Other combinations of intervention must be explored.

The results show that though the water treatment is effective, it must be an annual procedure.
The guinea worm eggs and larvae are significantly reduced for about a year until around day 400,
when the populations begin to grow again. This shows the endemic equilibrium has pseudo stability.
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It also highlights the necessity of annual water treatments. Though manageable, the deleterious
effects to other populations within the water source as well as on land may outweigh the benefits.
Thus, it is necessary to find an alternative combination of interventions.

8.8 Scenario 3: Introduction of Education & Pipe Filters

Education about the disease and the avoidance of the water source is simulated by decreasing
the water source visitation rate λ0. The pipe filters are simulated by decreasing the copepod
consumption rate. The probability of ingesting an infected copepod is the same but the number of
copepods ingested per day is much less. β is reduced. The new values of the two parameters are
λ0 = 0.01 and β = 0.4. Similar to Section 8.6 and 8.7, we use the initial parameter values in Table
7. We found the following results (See Fig. 8.11).

It is shown that with the combination of pipe filters and education, the egg and larvae compart-
ments are decreased to zero as well as the infected copepod compartment. This, in turn, reduced
the infected and infectious human compartments significantly, proving to be a successful method
of intervention. Thus, education and pipe filters is the viable intervention combination and can
replace the use of a larvicide.
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Figure 8.9: Scenario 1: λ0 = 0.05, β = 3, δL = 2.5
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Figure 8.10: Scenario 2: λ0 = 0.05, β = 3, δL = 450
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Figure 8.11: Scenario 3: λ0 = 0.01, β = 0.4, δL = 0.25
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Part IV

Conclusion and Explanation
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Chapter 9

Conclusion

The global campaign to eradicate Guinea Worm Disease began in 1980 at the U.S. Centers for
Disease Control and Prevention (CDC). Guinea Worm Disease (GWD) eradication was targeted
as an ideal indicator of success for the United Nations 1981-1990 International Drinking Water
Supply and Sanitation Decade (IDWSSD) because the disease could only be transmitted through
contaminated drinking water. A year later, GWD eradication was adopted as a sub-goal of the
IDWSSD [20]. Though many view the disease as virtually absent, nothing is certain and there
is always the potential of an outbreak. The creation of this model as well as the stability and
numerical analysis conducted proved useful for multiple reasons. It confirms that the current
efforts of relief organizations are warranted and working. We found that the continued use of
pipe filters and education is needed to ensure the stability of the disease-free state. If necessary,
an annual larvicide may be used to increase larvae death. The main result of this model is the
intervention parameter value intervals. Keeping values within these intervals allows the system to
remain disease-free. In a way, this model is a warning to public health officials that a high level of
attention is necessary to prevent future outbreaks.

On the other hand, this model can be viewed as a tool for the fledgling modeler. It presents
the modeling process as cyclic and stresses the importance of reinterpretation and modification. It
highlights compartmental modeling of diseases and the methodology of sketching a mathematical
model from a biological description. Multiple techniques including nondimensionalization and the
Next-Generation Operator are detailed. Lastly, stability and parameter analysis is described to
assist with interpretation. Overall, this paper is a user guide for modelers interested in ecological
epidemiology models.

Future areas of study include conducting a more in depth sensitivity analysis. Many of these
parameters can not be estimated directly from existing research. Latin hypercube sampling could
be used to test the sensitivity of the model to each input parameter. This approach has been suc-
cessfully applied in the past to many other disease models. Latin hypercube sampling is a stratified
sampling technique that creates sets of parameters by sampling for each parameter according to a
predefined probability distribution [10]. In addition, some complexities of the system including the
copepod’s multiple larvae stages have been omitted from this model. An attempt to incorporate
the time component of these stages into the model could prove beneficial.

With any type of modeling we always have the risk that the behavior observed mathematically
does not translate to real-world situations. This original model provides a basis for examining the
GWD host-macroparasite interactions and allots for modification and reinterpretation.
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