

January 29, 2008

Morbidity and Mortality Weekly Report (MMWR)

1981 June 5:30:250-2

Pneumocystis Pneumonia - Los Angeles

In the period October 1980-May 1981, 5 young men, all active homosexuals, were treated for biopsy-confirmed *Pneumocystis carinii* pneumonia at 3 different hospitals in Los Angeles, California. Two of the patients died. All 5 patients had laboratory-confirmed previous or current cytomegalovirus (CMV) infection and candidal mucosal infection. Case reports of these patients follow.

Over 6800 new HIV infections a day in 2007

- >96% are in low-middle income countries
- ~1200 are in children <15 years of age
- ~5800 are in adults 15 years and older:
 - ~50% are among women
 - ~40% are among young people (ages 15-24)

Early History of AIDS

- 1981: reports of gay men with PCP, KS, CD4 depletion
 - then injection drug users, hemophiliacs, transfusion recipients
 - · blood-borne; sexually transmitted
- 1983-84: isolation of HIV-1
- 1985: HIV-1 antibody testing available
- 1986: isolation of HIV-2
- 1987: first antiretroviral drug approved (AZT)
 - · 25,000 Americans dead

(Later) Early History of HIV/AIDS

- 1988: PCP prophylaxis with Bactrim
- 1994: AZT prophylaxis for perinatal transmission; 2-drug ART introduced into clinical practice
- 1996: 3-drug ART introduced into clinical practice
- 2000: Durban conference, move to bring ART to developing world gains momentum

HIV-1 Virions

Gelderblom, Human Retroviruses and AIDS 1997

Human Immunodeficiency Virus

- formerly HTLV-III; isolated 1983
- human retrovirus outer glycoprotein coat, inner protein coat and genetic material: RNA (2 strands)
- types: HIV-1 and HIV-2
- subtypes (clades): B most common in North America and Europe
- target cell: CD4+ lymphocyte

Origin of HIV

- Evidence for zoonosis
 - similarity of genomes, phylogenetic relationships, prevalence in normal host, geographic coincidence, plausible route of transmission
- SIVsm (sooty mangabey) --- HIV-2
- SIVcpz (chimpanzee) --- HIV-1 (~1930)

 ? Skin/mucous membrane exposure to infected animals (pets, food)

Hahn et al. Science 2000;287:607

HIV Testing

- HIV antibody testing (indirect)
 - Window period ~3 months
 - · Screening test: HIV antibody by ELISA
 - If repeatedly positive, proceed to confirmatory test
 - Confirmatory test: HIV antibody by Western Blot
 - 20-minute oral test now available
- HIV viral testing (direct)
 - p24 antigen
 - viral culture
 - HIV RNA (viral load)

HIV Transmission Routes

- Sexual transmission
 - Low efficiency (~1% per contact)
- Injection drug use
 - High efficiency (~ 10% per contact)
- Blood, blood products, tissue
 - Very high efficiency (~ 90% per transfusion)
- Perinatal transmission (~25% per birth)
- Needlestick injury (~1/300 exposures)

Viral Dynamics -- Summary

- 10 billion new virions created and cleared daily
- 2 billion CD4 cells destroyed daily (twice the rate of replacement by the hematopoietic system)
- Mechanism of CD4 cell destruction is poorly understood

Ho, Nature 1995;373:123 Wei, Nature 1995;373:117 Perelson, Science 1996;271:1582

CDC Adult AIDS Case Definition

- 1982: "AIDS" -- list of diseases (definitive diagnosis) and disqualifying conditions
- 1985: HIV antibody testing added to definition
- 1987: presumptive diagnoses with a positive HIV antibody added
- 1993: CD4 <200 (without symptoms) and other diagnoses added

Opportunistic Infection (OI): Definition

 Infection caused by an organism capable of causing disease only in a host whose resistance is lowered (by other diseases or by drugs)

Examples of Common OIs/Malignancies

- · Developed world
 - Pneumocystis carinii (fungus)
 - Cytomegalovirus (virus)
 - Toxoplasma gondii (parasite)
 - Mycobacterium avium complex (bacterium)
 - Kaposi's sarcoma (malignancy)
- · Developing world
 - Cryptococcus (fungus)
 - Mycobacterium tuberculosis (bacterium)
 - · Wasting disease

Progress in ART Scale Up Achievements Challenges • 1.6 M people on ART • 10–20% ART mortality in $1^{\rm st}$ • 24% of 6.8 M in need; year male=female • 73% present with CD4+ <100 • 21 countries treating • <5% of HIV+ children on ART >50% in need; capacity • <10% of HIV+ pregnant women growing receive PMTCT · Favorable outcomes in • Less access and ART for IDUs large cohorts • Human resource, skill deficits • \$8.3 B mobilized • Labs, toxicities, costs • G-8 commitment: • Sustainability - \$25 B needed Universal access by 2010

UNAIDS 2006 Report

Goal of Antiretroviral Therapy

- to suppress HIV RNA (viral load level) as low as possible, for as long as possible
- to preserve or enhance immune function
- to delay clinical progression of HIV disease

Antiretroviral Drugs: 2008

nucleoside/tide RTIs (NRTIs)

- zidovudine (ZDV, AZT)
- didanosine (ddI)
- stavudine (d4T)
- lamivudine (3TC)
- abacavir (ABC)
- emtricitabine (FTC) tenofovir (TDF)

NNRTIs

- nevirapine (NVP)
- delavirdine (DLV)
- efavirenz (EFV)
- etravirine (ETR)

protease inhibitors (PIs)

- saquinavir (SQV)
- ritonavir (RTV)
- indinavir (IDV)
- nelfinavir (NFV)
- lopinavir/r (LPV/r)
- atazanavir (ATV)
- fosamprenavir (FPV)
- tipranavir (TPV)
- darunavir (DRV)

entry inhibitors (EIs)

- enfuvirtide (T-20, fusion inh)
- maraviroc (MVC, CCR5 inh)
- integrase inhibitors (IIs)
- raltegravir (RAL)

What to start? **DHHS** Treatment Guidelines

Recommended regimens:

- 2 nucs + NNRTI
 - preferred and alternative choices
- 2 nucs + PI (+/- RTV)
 - · preferred and alternative choices

DHHS Guidelines, 12/1/07

Evidence for Immune Reconstitution with ART

- · Decreased mortality
- · Decreased morbidity
 - fewer opportunistic infections (OI)
 - discontinuation of OI prophylaxes possible
 - resolution of chronic OI without maintenance therapy
- · Resolution of "untreatable" diseases
 - e.g. cryptosporidiosis, microsporidiosis, PML, malignancies
- Expansion of CD4 populations
- Improved lymph node architecture and immune function (e.g., DTH responses).

Conclusions

- HIV/AIDS is a worldwide pandemic.
- Worldwide, the most common mode of transmission is sexual contact.
- HIV RNA levels and CD4 cell counts predict disease progression.
- Antiretroviral therapy (ART) decreases HIV RNA and increases CD4 cell count, and thus prevents disease progression.
- Current ART consists of 3-drug therapy and is increasingly available worldwide.
- Prevention of HIV infection continues to be a key strategy.

Acknowledgments

- Cornell HIV Clinical Trials Unit (CCTU)
- Weill Medical College of Cornell University
- AIDS Clinical Trials Group (ACTG)
- Division of AIDS, NIAID, NIH
- The patient volunteers!

