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Abstract Guyton’s most significant contributions are the

exploration into the development of venous return and

circulatory equilibrium. Recently, several physiologists

challenged the validity of venous return as a function of

venous pressure. Guyton’s experiment in effect controlled

venous pressure by changing cardiac output. Thus, critics

claimed that cardiac output is the determinant of venous

return. This claim is true, but in the presence of constant

stressed volume, venous return and venous pressure have a

fixed reciprocal relationship. Thus, it is meaningless to

argue which one is the independent variable. We fully

support Guyton’s venous return and in particular circula-

tory equilibrium. Guyton’s framework should be taught at

medical schools worldwide.

Keywords Venous return curve � Venous return surface �
Circulatory equilibrium � Stressed volume � Cardiac output

curve

Introduction

Guyton proposed the venous return and circulatory equi-

librium framework more than half a century ago. While

Guyton’s physiology appeared to be accepted by the sci-

entific community at one time, criticism started to emerge

around 2000, sparking a flurry of debates in scientific

journals. This article introduces the most important points

of argument among the various controversies, and explains

the views of the authors. Based on this background, the

latest development of Guyton’s physiology will be com-

mented. Some terms that appear frequently in this article

may be unfamiliar to some readers. For the benefit of those

readers, Memos are added to explain these terms in simple

language. For those readers who already know the defini-

tions of these terms, they may skip these Memos and

continue to read on. Moreover, many equations are used to

explain how the basic concept proposed in Guyton’s

physiology has been extended in modern time to new

concepts of the venous return surface and circulatory

equilibrium. Readers who find these equations difficult to

understand may also skip them, although we believe that

following the derivation of these equations will allow

readers to acquire fundamental understanding of the

concept.

Guyton’s venous return

In the 1950s when Guyton was engaged in research on the

venous return and circulatory equilibrium, Otto Frank

[2, 3] and Ernst H. Starling [4–6] had already established

the preload dependence of cardiac output. However,

despite understanding of the basic characteristics of the

cardiac pump function, the mechanism by which cardiac

pump function determines hemodynamics remained

unknown.

With this historical background, Guyton hypothesized

that ejection does not occur without return of the blood to

the heart, and attempted to elucidate the properties of blood

returning from the vein to the heart. He hypothesized that
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when central venous pressure (hereinafter venous pressure)

increases, the blood returning to the heart decreases [7–11].

To prove the relationship between venous pressure and

venous return flow, he performed several important

experiments. In his most fundamental experiment [7], he

drained blood from the superior and inferior vena cavae,

fixed the venous pressure via a circuit containing a Starling

resistor (see Memo), and at the same time returned the

collected blood to the aorta or pulmonary artery using a

pump (Fig. 1, left). In this experiment, venous pressure

could be changed by altering the height of the Starling

resistor. Guyton initially fixed the venous pressure, and

then adjusted the flow of the pump; i.e., cardiac output,

such that the volume of blood in the blood vessel did not

change at that particular venous pressure. In this experi-

ment, cardiac output inevitably corresponds to venous

return. Guyton plotted venous return along the vertical

axis, and venous pressure decided by Starling resistance on

the horizontal axis. In other words, he obtained the so

called venous return curve. As shown in Fig. 1 (right),

venous return decreases when venous pressure is increased.

Guyton defined the reciprocal of the gradient of the curve

that has dimension of resistance as venous return

resistance. He focused on the pressure when venous return

becomes zero, and defined this pressure as the mean cir-

culatory filling pressure. Mean circulatory filling pressure

is the blood pressure when venous return (cardiac output)

becomes zero, and has the same value in the whole blood

circulatory system [8, 9]. Mean circulatory filling pressure

is determined by the ratio of the stressed volume to the

total compliance of blood vessels including the heart (see

Memo). Although he observed that while venous return

increases when venous pressure is lowered, venous return

no longer increases when venous pressure is in the negative

pressure range.

Venous return, stressed volume, and mean
circulatory filling pressure

Guyton conducted experiments to examine how fluid

infusion changes venous return. His experiment showed

that when fluid infusion is performed to increase the

stressed volume, mean circulatory filling pressure increases

and the venous return curve is shifted upward in an almost

parallel manner (Fig. 2, dotted line). Conversely, when

blood is drained, the venous return is shifted downward

(Fig. 2, dashed line). From these experiments, Guyton

Memo

Starling resistor (see diagram on the left in Figure 1): When a part of the hard tube 

within the extracorporeal blood circuit is replaced with a tube made of soft material, the 

lumen pressure in the soft tube approximates the atmospheric pressure. Utilizing this 

property, by arbitrarily setting the Starling resistance at different height, the hydrostatic 

pressure changes and it is possible to arbitrarily change the venous pressure.

Memo

Mean circulatory filling pressure describes the pressure when circulation is arrested 

and the intravascular pressure becomes uniform. This pressure is obtained by dividing the 

stressed volume by the compliance of the whole circulatory system, and includes the 

compliance of the heart. Mean systemic filling pressure describes the intravascular 

pressure when systemic circulation is arrested and there is no inflow to or outflow from the 

systemic circulatory system. This pressure is calculated by dividing the stressed volume in 

systemic circulation by the total compliance of the systemic circulation. Since both 

compliance and blood volume are overwhelmingly higher in systemic circulation, not only 

is mean systemic filling pressure but also mean circulatory filling pressure are determined 

by the stressed volume of systemic circulation and the total compliance of systemic 

circulation. Both values are known to approximate 7 mmHg. 
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hypothesized that venous return is determined by driving

the venous return resistance by the pressure gradient

between mean circulatory filling pressure and venous

pressure.

Modeling of venous return by electrical circuit

To render this hypothesis more robust, Guyton performed a

theoretical analysis using a simple electrical circuit [9].

Figure 3 shows the six elements in the electrical circuit

Fig. 1 Guyton’s experimental model with a Starling resistor (left) and venous return curves (right), cited with permission from Guyton et al. [7]

Memo

Stressed volume and unstressed volume: Guyton clearly differentiated the total blood 

volume in blood vessels from the stressed volume. Under the situation when blood flow 

is arrested, the blood vessel is simply a closed sac. When blood is introduced into this 

sac, up to a certain blood volume, the blood pressure in the vessel does not increase. 

When a certain threshold is exceeded, the intravascular pressure begins to increase. The 

blood volume until the threshold is reached is termed the unstressed volume, and the 

volume after the threshold is reached the stressed volume. The sum of unstressed volume 

and stressed volume is the total blood volume in blood vessel. In general, approximately 

one-quarter of the total blood volume is considered to be the stressed volume. The 

vascular compliance per kg body weight is estimated to be 2.72 ml/mmHg [12]. When 

mean circulatory filling pressure is 7 mmHg, the stressed volume is 2.72 × 7 ≈ 20 ml/kg. 

The unstressed volume is considered to be around 60 ml/kg. An increase in sympathetic 

tone increases the tone of vascular smooth muscles, especially the venous smooth muscle

tone, resulting in marked decrease in unstressed volume and a concomitant increase in

stressed volume to a maximum of 8.7 ml/kg [12,13]. This implies that in an individual 

weighting 60 kg, activation of the sympathetic nerve would increase the stressed volume 

by over 500 ml. In this case, it is known that vascular compliance hardly changes. As a 

result, the increase in stressed volume due to sympathetic activation increases the mean 

circulatory filling pressure. Increase in mean circulatory filling pressure causes an 

upward shift of the venous return curve.
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used by Guyton. Using this circuit, Guyton obtained the

relations between venous return (CO), venous pressure

(PRA), and stressed volume (V).

CO ¼ V � C PRA

R1C1 þ ðR1 þ R2ÞC2 þ ðR1 þ R2 þ R3ÞC3

; ð1Þ

where C = C1 ? C2 ? C3. With mean circulatory filling

pressure (Pm) = V/C, substituting this into Eq. (1) yields

the following:

CO ¼ Pm � PRA

R1C1 þ ðR1 þ R2ÞC2 þ ðR1 þ R2 þ R3ÞC3

C

¼ Pm � PRA

Rv

: ð2Þ

This is Guyton’s venous return equation. The denominator

shows venous return resistance. Venous return resistance is

not real resistance that exists physically, but represents func-

tional resistance comprising resistance and compliance. This

parameter in fact caused various confusions, which will be

discussed later. On the other hand, the numerator shows the

pressure gradient by subtracting venous pressure from mean

circulatory filling pressure. Guyton advocated that this pres-

sure gradient drives the venous return resistance, which gives

rise to venous return. At the same time, this analysis also

validated the intuitive interpretation that mean circulatory

filling pressure is the value obtained by dividing stressed

volume by total vascular compliance.

The above briefly overviewed Guyton’s venous return.

Based on the venous return curve, Guyton developed the

concept of circulatory equilibrium that explains how the

heart and blood vessels interact to determine cardiac

output.

Circulatory equilibrium

Both the cardiac output curve that describes the relation-

ship between venous pressure and cardiac output and the

venous return curve that describes the relationship between

venous pressure and venous return use the same variables

(venous pressure and cardiac output). Therefore, the

intersection of these two graphs should depict the operating

point when cardiac output and venous return reach equi-

librium. Figure 4 (left) shows a superimposed plot of the

cardiac output curve and venous return curve. Guyton

called the intersection point ‘‘circulatory equilibrium’’, and

proposed circulatory equilibrium as the physiological

mechanism that determines cardiac output [10, 11]. This

concept of circulatory equilibrium is able to explain the

mechanism that determines cardiac output by opening the

circulatory loop at the vein, and was a revolutional

achievement in the history of circulatory physiology.

Figure 4 (left) shows the response to fluid infusion.

When fluid is infused, mean circulatory filling pressure

increases accompanying an increase in stressed volume.

Therefore, venous return increases at all the venous pres-

sures [Fig. 4 (left): venous return curve; solid line to dotted

line]. Even in the absence of any change in the cardiac

output curve, cardiac output at the intersection point (closed

circle) increases, and venous pressure also increases. On the

other hand, even though the cardiac output curve becomes

markedly steeper due to increases in heart contractility and

heart rate [Fig. 4 (left): cardiac output curve; solid line to

dotted line], because venous pressure is already low, further

decrease in venous pressure does not increase venous

return, and cardiac output hardly increases (open square). In

fact, it has been shown experimentally that modifying the

cardiac output curve alone does not increase cardiac output,

which corroborates the physiological observations. From

these findings, Guyton concluded that physiologically,

cardiac output is not determined by the heart but by venous

return which is a vascular characteristic. In exercise, acti-

vation of sympathetic nerve increases stressed volume

resulting in marked increase in mean circulatory filling

pressure. Additionally, the cardiac output curve becomes

steep due to decrease in vascular resistance, increase in

contractility, or increase in heart rate. As a result, while

cardiac output increases markedly, venous pressure shows

little change (closed square).

Furthermore, Guyton mentioned the hemodynamics in

heart failure, as shown in Fig. 4 (right). In heart failure,
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because the slope of the cardiac output curve decreases,

cardiac output is lowered (open square). The reason why

cardiac output is relatively preserved in most patients with

heart failure is that increased stressed volume increases

venous return, consequently preserving cardiac output

(closed square). At the same time, venous pressure

increases, which does not contradict the hemodynamics of

heart failure.

The venous return framework, and furthermore the cir-

culatory equilibrium framework advocated by Guyton

dramatically advanced the understanding of circulatory

physiology. As a result, Guyton’s book on circulatory

physiology became a bestselling medical book, and began

to be used as teaching material in medical schools world-

wide. This is due to the common recognition that Guyton’s

venous return and circulatory equilibrium concepts are

indispensable for the understanding of hemodynamics.

However, Guyton’s physiology is fundamentally difficult,

and it is easy to imagine that medical students, or even

lecturers, do not necessarily acquire a deep understanding

of this field. Then, nearly half a century since Guyton

proposed venous return and circulatory equilibrium, open

opinions began to emerge in authoritative physiology

journals, with comments that Guyton’s physiology only

confuses students, and that it should not be taught at

medical schools. The arguments will be summarized

below.

Criticism and support of Guyton’s venous return

The criticisms are focused on the following two points. The

first counterpoint is that in Guyton’s experiment on venous

return, venous pressure is not an independent variable. As

mentioned above, in that experiment, although it was stated

that venous pressure was determined by Starling resistance

and then the pump flow rate was adjusted, in effect, however,

venous pressure was determined with respect to the pump

flow rate. In a later experiment using simple right cardiac

bypass and did not include a Starling resistor [14, 15], a

cardiac output–venous pressure relationship similar to that

obtained using Guyton’s venous return curve was obtained.

These findings therefore suggest that venous pressure

changes only because cardiac output is changed; in other

words, venous pressure is a dependent variable and pump

flow rate is an independent variable [14–17]. Considering the

content of the experiment, such interpretation is valid.

Consequently, researchers who advocate this theory claim

that cardiac output which is an independent variable should

be plotted on the horizontal axis, and venous pressure which

is a dependent variable should be plotted on the vertical axis.

In this regard, supporters of Guyton’s physiology also

express opinion of agreement [18].

The second counterpoint is disagreement with Guyton’s

view that venous return is driven by the difference between

the mean circulatory filling pressure and the venous pres-

sure. These critics claim that venous return is only possible

because the heart ejects, and therefore Guyton’s view that

the pressure gradient between mean circulatory filling

pressure and venous pressure drives venous return is not

correct [16, 19, 20]. They accept that mean circulatory

filling pressure is determined by the ratio of stressed vol-

ume to total compliance of the vascular bed. However,

regarding Guyton’s claim that mean circulatory filling

pressure drives venous return, they contradict that mean

circulatory filling pressure is only an abstract quantity in

the world of mathematics and does not exist as a physio-

logical driving pressure. Furthermore, they argue that

although venous return resistance has a resistance unit,

such resistance does not exist in the vein and the quantity is

abstract. Consequently, teaching medical students about

this topic will only confuse the students [17].

Normal

0 
-4 

25

20

15

10

5 

0 +4 +8 
Right atrial pressure (mmHg)

Ca
rd

ia
c 

ou
tp

ut
 (l

/m
in

)
Heart Failure

Normal

0 
-4 

25

20

15

10

5 

0 +4 +8 
Right atrial pressure (mmHg)

Ca
rd

ia
c 

ou
tp

ut
 (l

/m
in

)

Fig. 4 Circulatory equilibrium

in infusion, cardiac stimulation

and exercise (left), and in heart

failure (right)

J Physiol Sci (2017) 67:447–458 451

123



On the other hand, the biggest argument of supporters

who advocate that Guyton’s physiology should be taught at

medical schools is that the concept of circulatory equilib-

rium can be derived by accepting the venous return curve

[18, 21]. As a result, it is essentially possible to use simple

graphs to describe the cardiac output and venous pressure

in various disease states encountered clinically. They claim

that this point is the greatest feature of Guyton’s physiol-

ogy, and the most important clinical model in educating

medical students.

Author’s view regarding Guyton’s venous return

Regarding the first counterpoint against Guyton’s venous

return as mentioned above, the view that venous pressure is

a dependent function of cardiac output is certainly true.

However, the most important point here is that the exper-

iment was done under the condition of constant stressed

volume. Under this condition, venous pressure and venous

return are mutually dependent; when one is fixed, the other

is definitively determined. Thus, the two bear a linear

relationship. Therefore, the idea that one is an independent

variable and the other a dependent variable is not valid. We

believe that the discussion of which of them is an inde-

pendent variable is futile, and the argument itself is

meaningless.

The second counterpoint is the stance that venous return

is being driven by the pressure gradient between mean

circulatory filling pressure and venous pressure. In actual

fact, mean circulatory filling pressure does not exist

physically as a source of pressure. Under the condition of

constant stressed volume, venous return behaves as if

venous return resistance is driven by the difference

between the mean circulatory filling pressure and venous

pressure, as shown above. The mean circulatory filling

pressure is only an amount calculated from the ratio of

stressed volume to vascular bed compliance, and such

pressure source does not physically exist in the vascular

bed. Venous return resistance is determined by a complex

combination of vascular resistance and compliance (details

to be described below), and no such viscous resistance

exists physically. However, when the circulatory system,

described by a combination of compliance (amount of

blood stored proportional to pressure) and resistance (blood

flow proportional to pressure), is driven at constant stressed

volume, the relation between venous pressure and venous

return is a mathematical inevitability with no room for

debate. Our view is that if such concept deepens knowl-

edge, then the concept together with the physiological

characteristic quantities derived from adopting the concept

should be utilized without hesitation.

Guyton’s view that the pressure gradient between mean

circulatory filling pressure and venous pressure drives

venous return resistance to determine venous return

explains an inevitable relationship only under the condition

of constant stressed volume. We therefore see no problem

with Guyton’s idea. As mentioned earlier, there is no

mistake that venous return is generated because the arterial

pressure is higher than the venous pressure. However, to

maintain a constant stressed blood volume, a reciprocal

relationship exists between venous pressure and venous

return, and this relationship is determined explicitly. This is

equivalent to Ohm’s law that states with resistance once

decided, the voltage–current relation is unequivocally

determined. Hence, the argument of which is an indepen-

dent variable and which is a dependent variable makes no

sense. Although blood is actually not driven by mean cir-

culatory filling pressure, such relationship is valid in

functional (mathematical) terms. If adopting functional

resistance would provide reasonable explanations for cir-

culatory equilibrium, universality will emerge despite the

abstract nature of this parameter, and will result in better

understanding of venous return.

Limitations of Guyton’s venous return and their
resolution

Having explained the usefulness of Guyton’s venous

return, we also need to point out that there are serious

limitations. The biggest limitation in our opinion is that

Guyton’s venous return curve and circulatory equilibrium

alone do not describe the preload of the left cardiac system.

Therefore, these concepts impede discussion of the circu-

latory equilibrium in the setting of left heart failure, which

is the most problematic clinical issue. To overcome this

limitation of Guyton’s venous return, we opened the cir-

culation loop not only at the right atrial level but also at the

left atrial level, and experimentally confirmed the effects

by theoretically inducing a relationship between venous

pressure and venous return. We introduce our work below

with the aim to deepen the understanding of venous return

[22–24].

Although slightly complicated, we shall introduce the

mathematical process. As shown in Fig. 5, the vascular bed

is composed of a distributed system circuit with resistance

and compliance sequentially connected from the artery to

the vein. The blood pressure–blood flow relationship is

assumed to follow Ohm’s law, and the volume of blood

stored in compliance is assumed to be proportional to blood

pressure. This is a common assumption in the world of

circulatory physiology and circulatory dynamics, and there

is no major discrepancy from experimental data. We use
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this blood vessel model to obtain blood flow, stressed

volume, mean circulatory filling pressure, venous return

resistance, and other parameters. Moreover, we extend the

circulatory system to systemic and pulmonary circulations

to identify the characteristics of venous return of the whole

circulatory system.

Let C(x) be the vascular compliance at a distance x from the

terminal end of the vein,R(x) be the cumulative resistance from

that point to the terminal end of the vein, P(x) be the blood

pressure at that point, andPv be the venous blood pressure [22].

Let the cardiac output be CO. The stressed volume (V) stored in

the whole blood circulatory system is as follows:

V ¼
Z L

0

PðxÞCðxÞdx: ð3Þ

Since P(x) = R(x) CO ? Pv, substituting into Eq. (3)

gives:

V ¼
ZL

0

ðRðxÞCO þ Pvf gCðxÞdx ð4Þ

Since CO and Pv that are independent of x may be a

scalar of integration, Eq. (4) becomes:

V ¼ CO

ZL

0

RðxÞCðxÞdxþ Pv

ZL

0

CðxÞdx: ð5Þ

Let the compliance of the whole vascular bed be C and

the distribution of normalized compliance be Cd(x) (which

becomes unity when integrated), the following is obtained:

V ¼ CO C

ZL

0

RðxÞCdðxÞdxþ C Pv ð6Þ

Rearranging the equation while considering V = C Pm,

the equation becomes

CO ¼ V � C � Pv

C
RL
0

RðxÞCdðxÞdx
¼ Pm � Pv

RL
0

RðxÞCdðxÞdx
¼ Pm � Pv

Rv

: ð7Þ

From Eq. (7), the pressure driving venous return is the

difference between mean circulatory filling pressure and

venous pressure, as shown in the numerator. Venous return

resistance (Rv) is defined by the denominator. This equation

implies that venous return resistance can be obtained by

integrating over the whole vascular bed the cumulative

resistance at every point of the vascular bed weighted by

the compliance at the site. Since compliance is over-

whelmingly concentrated in the vein, the actual venous

return resistance is greatly influenced by venous resistance

but little affected by arterial resistance. Equation (7) cor-

responds to Eq. (2) obtained by Guyton from his six-ele-

ment electrical circuit model. This fact shows that although

Guyton derived Eq. (2) using a simple model, the same

result is obtained when using the more generalized dis-

tributed model. One aspect of the broad utility of Guyton’s

model is emerging.

This result is then extended to integrate venous return

from the systemic circulation with that from the pulmonary

circulation. The stressed volume, compliance and venous

return resistance for systemic circulation and pulmonary

circulation are expressed by the subscripts s and p,

respectively. From Eq. (6), the following are obtained:

Vs ¼ CO CsRvs þ CsPRA ð8Þ
Vp ¼ CO CpRvp þ CpPLA: ð9Þ

Considering that the sum of stressed volume for the

systemic and pulmonary circulation (V = Vs ? Vp) is

constant, and that cardiac output is same for systemic and

pulmonary circulation, adding both sides of Eqs. (8) and

(9) gives the following:

V ¼ COðCsRvs þ CpRvpÞ þ CsPRA þ CpPLA: ð10Þ

Since both vascular resistance and compliance of the

systemic circulation are 7–8 times larger than those of the

pulmonary circulation [12], the error is around 2% even if

approximated by CsRvs ? CpRvp & CsRvs. Furthermore,

arranging Eq. (10) for cardiac output when V = (Cs ?

Cp)Pm gives:

CO � V

CsRvs

� 1

Rvs

PRA þ 1
Cs

Cp
Rvs

PLA

 !
: ð11Þ

This relationship is presented in Fig. 6 (left). Venous

return decreases as left atrial pressure and right atrial

pressure increase, constituting a venous return plane. The

slope of this surface with respect to the right atrial pressure

is determined by the reciprocal of the venous return

resistance of the systemic circulation (Rvs), and the slope

with respect to the left atrial pressure by the reciprocal of

Cs/Cp-fold the venous return resistance of the systemic

circulation (1/7–1/8 times the slope for the left than for the

L

R(.)

C(.)

CO

x

R(x)P(x)

C(x) Pv

Fig. 5 Vascular model expressed by distributed system
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right). The intercept of right atrial pressure is the mean

systemic filling pressure when blood flow is interrupted and

all the blood is collected in the systemic circulation, and is

given by Pms = V/Cs. The intercept of the left atrial pres-

sure represents the mean pulmonary circulation filling

pressure generated when all the blood is collected in the

pulmonary circulation, and is given by Pmp = V/Cp.

Obviously, the compliance of pulmonary blood vessels is

much smaller than that of systemic blood vessels, therefore

Pmp � Pms. The intercept of the venous return axis is

obtained by dividing the systemic mean filling pressure by

the systemic venous return resistance, and represents the

maximum venous return for a given stressed volume. Since

the actual increase in physiological left atrial pressure is

limited, the physiological venous return surface assumes a

shape obtained by cutting out a part of the triangular

pyramid as shown in the figure. Figure 6 (left) is an

extension of Guyton’s venous return for systemic and

pulmonary circulations under the condition of constant

stressed volume, and this diagram describes universally the

venous return–venous pressure relationship.

In order to theoretically derive the venous return sur-

face, we made a loose hypothesis regarding vascular

resistance and compliance. Experimental validation is

obviously required to establish the correctness of the

derived venous return surface. We performed experiments

by bypassing both the left and the right hearts, and per-

fusing the systemic and pulmonary circulations using

pumps. To determine the venous return surface, we fixed

the stressed volume, changed the blood distribution of

systemic circulation and pulmonary circulation, and

investigated whether the actual operating points constitute

a plane [23]. As shown on the right side of Fig. 6, venous

return forms a plane with left and right atrial pressures. To

verify the accuracy of the surface, we observed the distri-

bution of operating points over the surface. If the surface is

strictly planar, the operating points will be distributed on a

straight line, the projection of the surface. As shown on the

right side of Fig. 6, all the operating points are distributed

exactly on a straight line, indicating that the venous return

surface is an exact plane. Also, changing the stressed

volume results in a parallel shift of the plane in an up–

down direction. Thus, the features of the theoretically

derived venous return plane were reproduced

experimentally.

Limitations of Guyton’s cardiac output curve
and circulatory equilibrium, and their resolution

As mentioned above, Guyton’s circulatory equilibrium

ingeniously explained various disease conditions. How-

ever, it has two major limitations. The first is that the

cardiac output curves of the right heart and the left heart

are not depicted independently. Without this distinction, it

is difficult to understand the changes in hemodynamics

associated with left heart failure and right heart failure.

This issue can be solved by obtaining the cardiac output

curves for the right heart and the left heart separately and

then drawing the integrated cardiac output curve of the two

as a function of the right atrial pressure and the left atrial

pressure. In Fig. 7, the graph on the left shows Guyton’s
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venous return and cardiac output curves, and that on the

right presents circulatory equilibrium described by the

integrated cardiac output curve obtained as mentioned

above and the venous return surface. Using this framework,

not only cardiac output but also left and right atrial pres-

sures can be determined from the equilibrium point. In the

case of left heart failure, the cardiac output curve of the left

heart is depressed, consequently the cardiac output at the

equilibrium point decreases while the left atrial pressure

increases markedly. On the contrary, in the case of right

heart failure, the right atrial pressure increases as cardiac

output decreases. Therefore, by using the integrated cardiac

output curve and the venous return surface, it is possible to

describe the circulatory equilibrium in various pathological

conditions simply with a graph, as was done by Guyton.

The second limitation is that the cardiac and vascular

characteristics that affect the cardiac output curve, which

had been sought since Frank-Starling, have not been

identified quantitatively. To understand disease conditions,

it is necessary to quantitatively know how the dynamic

properties of the heart and blood vessels influence the

cardiac output curve. As a point of entry to this inquiry, we

established a framework of ventriculo-arterial coupling.

Quantitative representation of cardiac output
curve by expansion of ventriculo-arterial coupling

In the 1980s, Suga and colleagues [25–27] demonstrated

that the dynamics of the ventricle can be accurately rep-

resented by time-varying elastance. Especially, the end-

systolic elastance (Ees) expresses the cardiac contractility

in a load-insensitive manner. Using this idea, the end-

systolic pressure (Pes), the end diastolic volume (Ved), the

stroke volume (SV), and volume at zero pressure (V0) can

be described by the following relationship:

Pes ¼ EesðVed � SV � V0Þ: ð12Þ

On the other hand, Sunagawa and colleagues [28–30]

focused on the fact that the mean arterial pressure and end-

systolic pressure have similar magnitude, and the afterload

constituted by the arterial system can be approximated by

the effective arterial elastance (Ea) obtained by dividing the

vascular resistance (R) by the cardiac cycle (T) (Ea & R/

T) (Fig. 8, left). Using this relationship, the arterial system

can be expressed in terms of elastance, as follows:

Pes ¼ EaSV ¼ R

T
SV: ð13Þ

Solving Eqs. (12) and (13), and expressing in terms of

SV yields the following:

SV ¼ Ees

Ees þ Ea

ðVed � V0Þ: ð14Þ

By using Eq. (14), it was confirmed that SV obtained

from the ventricular and arterial characteristics very

accurately concur with the actually measured values, and

the framework of coupling with the arterial vessel was

established. Expanding to cardiac output by multiplying

Eq. (14) with heart rate gives:

CO ¼ 60
60

HR þ R
Ees

ðVed � V0Þ ð15Þ

It is known that in the heart, the actual end-diastolic

volume is determined by venous pressure, and that the end-

diastolic pressure–volume relationship follows a simple

exponential function (especially when the ventricular vol-

ume is in the physiological range). Therefore, the rela-

tionship of end-diastolic pressure (Ped) and stiffness of the

heart at diastole (Eed) is as follows:

Ped ¼ eEedðVed�VuÞ þ P0 ð16Þ

From Eq. (16), left ventricular volume within the

physiological range is approximated as:

Ved � 1

Eed

lnðPedÞ: ð17Þ

PRA
CO

0 0 
0 

PRA
PLA

CO

Fig. 7 Guyton’s venous return

curve and cardiac output curve

(left), venous return surface and

integrated cardiac output curve

(right)
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CO can be approximated by substituting Eq. (17) into

Eq. (15), as follows:

CO � 60

60

HR þ R
Ees

� �
Eed

lnðPedÞ: ð18Þ

Equation (18) shows that cardiac output increases log-

arithmically with increasing preload, and the manner of

bending is derived from (the reciprocal of) the exponential

characteristics of the diastolic characteristics. By examin-

ing the cardiac and vascular parameters in the denominator

and numerator, it is possible to delineate how the cardiac

output curve is modified quantitatively by these factors.

The graph on the right in Fig. 8 indicates qualitatively how

various properties of the ventricle and blood vessel modify

the cardiac output curve. Uemura and colleagues [24]

validated experimentally that the cardiac output curve can

be approximated by this equation. Equation (18) can be

used to define the cardiac output curve for either the left or

the right heart, and the cardiac output curve that describes

both at the same time is defined as the integrated cardiac

output curve.

Circulatory equilibrium obtained
from the integrated cardiac output curve
and venous return surface

Applying the extended concept of circulatory equilibrium,

Fig. 9 shows the relationship between the predicted and

measured values of circulatory equilibrium in response to

changes in stressed volume when the integrated cardiac

output curve and venous return surface are known. Cardiac

output, right atrial pressure, and left atrial pressure are

found to be accurately estimated for a wide range of

stressed volume [24].

The above findings show that the current circulatory

equilibrium framework with the integrated cardiac output
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Fig. 8 Analytical solution of

cardiac output curve by

extending ventricular-arterial

coupling framework (left),

factors determining the cardiac

output curve (right)
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curve and venous return surface, while preserving the

excellent qualities of Guyton’s classic circulatory equilib-

rium, is more generalized and takes into account the sys-

temic circulation, pulmonary circulation, right heart

failure, and left heart failure. It is an extremely powerful

analytical framework that allows systematic consideration

of left heart failure. Extension of the classic concept was

only possible because of the existence of previous research

in which Guyton opened the circulation loop at the vein

and defined circulatory equilibrium by the cardiac output

curve and venous return.

Conclusions

In recent years, the merits and demerits of Guyton’s

physiology have been widely debated. However, when we

look at the arguments, none of the papers raised questions

about experimental facts. Consequently, there were few

questions about the most elegant outcome of Guyton’s

physiology; that circulatory equilibrium is depicted

graphically and can be applied clinically. On the other

hand, many questions were directed to interpretation of the

experimental results; for example, is venous return driven

by mean circulatory filling pressure, and what is venous

return resistance. Although all the issues in question con-

cern some sort of abstract quantities, the relationship

between venous pressure and venous return is unambigu-

ously established in that they bear a reciprocal relationship

mathematically when stressed volume is unchanged. In our

opinion, despite being abstract, if the concept contributes to

more in-depth understanding, then the concept as well as

the functional quantities derived from the concept (in-

cluding venous return resistance and mean circulatory

filling pressure) should be accepted positively. The

author’s generation is probably the last generation that has

the opportunity to talk directly with Guyton. From personal

experience through direct discussion, Guyton was a rare

scholar who challenged circulatory physiology with

mathematical rationality as well as exceptionally finely

honed sensibility. With his undoubtedly huge research

achievement, Guyton is the greatest physiologist in human

history. In our views, Guyton’s physiology is the founda-

tion of circulatory physiology, with potential for extension.

It should be taught in the medical school, and we believe

that more comprehensive circulatory physiology will be

born from generations who receive the teaching.
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