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Abstract—Rotating machines can develop inertia effects and 
this inertia effects in rotating structures are usually caused by 
gyroscopic moment introduced by the precise motions of the 
vibrating rotor as it spins. As spin velocity increases, the 
gyroscopic moment acting on the rotor becomes critical. It can be 
analyzed to improve the design and decrease the possibility of 
failure. This paper focuses on dynamic unbalance detection in 
rotating machinery by incorporating whirl, gyroscopic effects, 
mass effects and the effect of unbalance using the Finite Element 
Method (FEM) . 

Keywords—Gyroscopic effects, Rotating machine unbalance, 
Rotatory Inertia, Coriolis Force. 

I. INTRODUCTION 

The study of the mechanical signature or the vibration 
spectrum  of a rotating machine allows to identify operating 
problems even before they become dangerous [4].Any
deviation of the signature from its usual pattern provides a 
symptoms of a problem that is developing and allows the 
required counter measures to be taken in time. The objective is 
to study the rotor dynamic aspects of rotors and develop an 
understanding of critical speed, the effects of mass in a simple
model and Rotor dynamics analysis using FEM by 
incorporating whirl, gyroscopic effects and the effect of 
unbalance.

Modal analysis using damped Eigen value solver is carried out 
in order to predict the dynamic behavior of the rotating system 
[11]. In modal analysis, the natural frequencies are evaluated in 
order to decide the critical speeds and mode shapes of the rotor. 
The process is repeated for different rotational speeds. Study of 
a simple rotating shaft (Jeffcott rotor) with  a) centrally 
mounted disc, b) multiple discs, c) varying the mass, d) for 
varying distance in order to find the gyroscopic effects and 
mass effects in the system. To understand the gyroscopic 
effects a system with four degree of freedom is considered .i.e. 
two lateral and two rotational motion. 

A. Theory 
The theory of dynamics acts as a tool in understanding the 

physics of a rotating system and the theory of vibration serves 
as a powerful instrument to mathematically quantify the 
behavior of a rotor. Stability problems are the reason why rotor 

dynamics are important [3]. Any instability in the rotor can 
easily lead to disaster and end up to be very expensive. 
Oscillations can shorten the lifetime of the machine. 
Oscillations can also make the environment around the machine 
intolerable with heavy vibrations and high sound so it is 
advisable to avoid or reduce oscillations. 

1) Gyroscopic effects.

The perpendicular rotation or precession motion is 
applied to the spinning rotor about its spin axis, a reaction 
moment appears and this effect is described as gyroscopic 
effect [5]. The interaction of the angular momentum of the 
rotating rotor and the wobbling motion introduce gyroscopic 
effect. The gyroscopic effect is only observed for modes which 
includes an angular (wobbling) component. The gyroscopic 
effect implies a change in the stiffness of the system and hence 
its frequency. A forward whirling increases the stiffness of a 
system while backward whirling decreases the stiffness of a 
system. A frequency map, is a graphically way to illustrate the 
influence of the gyroscopic effect on natural frequencies.

2) Critical Speed.
When the excitation frequency equal to natural frequency. The 
critical speed can be identified with both a modal analysis and a 
forced response analysis. Critical speed should always be 
avoided in any machines parts because otherwise significant 
vibrations may occur. These vibrations are the result of a 
resonant condition [8].

3) Campbell Diagram

Campbell diagram is the graphical representation of 
the system frequency Vs excitation frequency as a function of 
rotational speed. The diagram has the rotational speed of the 
rotor on the x-axis and the mode frequencies on the y-axis. The 
modes are plotted for different rotational speeds. The 
frequencies are not constant over the rotational speed range 
because most of the modes will be increased or decreased with 
higher rotational speed. Frequencies of two circular whirling 
motion, one occurring in the same direction of the spin motion 
known as Forward whirling, and one in the opposite direction is 
known as reverse whirling or Backward whirling. Torsional and 
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longitudinal modes are constant over the rotational speed range 
because they are not affected by the gyroscopic effect, the 
bearings or the stator. Forces in rotating machine may occur 
due to misalignments, a bended rotor, or due to a certain 
imbalance in the rotating disk. Machines are designed on the 
basis of manufacturing tolerances; there will always be small 
imbalance. An imbalance causes lateral forces, if the frequency 
of the force is equal the rotor speed the force is said to be 
synchronous. This produces a straight line of positive slope in 
the Campbell diagram, and is referred to as the one-times spin 
speed and labeled as 1X. The critical speeds are where the 
excitation line crosses any of the mode line. Campbell diagram 
shown in figure 1. 

Fig.1 An example for Campbell diagram for a rotor system 

4) Rotor Unbalance

Unbalance is the most common rotor system 
malfunction. Its primary symptom is 1X vibration, which, when 
excessive, can lead to fatigue of machine components. In 
extreme cases, it can cause wear in bearings or internal rubs 
that can damage seals and degrade machine performance. 
Unbalance can produce high rotor and casing vibration, and it 
can produce vibration in foundation and piping systems. 1X 
vibration can also contribute to stress cycling in rotors, which 
can lead to eventual fatigue failure [6]. There are two types of 
rotating unbalance:

A. Static Unbalance 
All the unbalanced masses lie in a single plane resulting 

in an unbalance of single a radial force. Static unbalance can be 
detected by placing the shaft between two horizontal rails and 
allowing the shaft to naturally roll to the position at which the 
unbalance is below the shaft axis. Static unbalance is shown in 
figure.2. 

B. Dynamic Unbalance 
This is when the unbalanced masses lie in more than one 

plane. The static test will only detect the resultant force. The 
unbalance has to be detected by rotating the shaft and 
measuring the unbalance. The machine for carrying out this 
detection are called ‘balancing machines’ and consist of spring 
mounted bearings that support the shaft. By obtaining the 
amplitude and relative phase it is possible to calculate the 
unbalance and correct for it. This is a problem of two degrees 
of freedom as transitional and angular motions take place. 

Classification of unbalances for a short rigid rotor is shown in 
figure .2. 

Fig.2 . Classification of  unbalances for a short rigid rotor 

II. MATHEMATICAL MODEL

A. Equations of motion 
The motion of the disc is described with four degree of 

freedom .Two lateral and two rotational motion 

{U}={x y  },where U is the nodal vector of 
displacements and rotations. 

1) Equation Of Motion -Lateral Modes
The disc has a mass m and the centre of gravity offset from 

the shaft centre is defined an eccentricity  as shown in figure 3. 
It is assumed that the damping of the shaft is zero 

Fig.3 Rotating mass on a flexible shaft 

Where, 

a   Intersection with the line through the points of support 

b   Intersection with the axis of rotation 

c   Centre of the rotating mass 

The distance bc is indicated as  and the distance ab as r, 
where  is the eccentricity and r is the deflection of the beam. 
The equation of motion for the mass center is derived from 
Newton's second law 

2

2

dm r kr
dt

(1) 

Where  is the bending stiffness of the shaft 
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Fig.4 The position of the mass center expressed in the x-y coordinate system 

The equation of motion in x-y coordinate system, is given by, 
2

2

2

2

cos( t)

sin( t) y

x

y

dm x k x
dt
dm x k
dt

(2) 

Equation becomes,
2
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2) Equation Of Motion- Angular Momentum

3

3

0

0
d p

d p

I I k

I I k
3 0p

0p 3

Motion  Anggg

pI p

gular Momeg

3k3

gg

3k3

p

pI p

(4) 

Where, 
I

d
 -Diametric mass moment of inertia,

I
p
- Polar moment of inertia,

3) The Stiffness Matrix
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4) Equation Of Motion For The Complete System
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By solving, 
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Where, n is the Natural frequency of the rotor 

III. FINITE ELEMENT ANALYSIS

A. Case1:Modal Analysis Without Spin
This  analysis is done without any rotation, the gyroscopic 

effects does not take place. Basic characteristic of a rotating 
machinery can be determined by introducing b a simple rotor 
model (Jeffcott rotor) shown in figure 5. The model consists of 
a single rigid disc centrally mounted on a uniform flexible mass 
less shaft supported by two identical rigid bearings at each side.
The mass of the disc is 110 Kg, Specifications of the rotor 
system is given in the table 1.

Fig.5 simple rotor model 

TABLE.1. 

Description of the system

Disc: steel Shaft :steel

Inner Diameter: 0.03 m Length : 2 m

Outer diameter: 0.6 m Diameter : 0.03 m

Thickness: 0.05 m Modulus (E): 2.10
11

N/m
2

Density: 7800 kg/m
3

Density: 7800 kg/m
3

The eigen frequencies obtained from the analysis is 
tabulated in the table 2.
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TABLE 2. 
Natural Frequencies (Hz)

Ansys Analytical
(Matlab)

6.4960 6.5091 

24.932 24.9373 

137.41 138.5571 

Fig.6 First and second mode shape 

It is observed that the Ansys results are very much comparable 
with the analytical results obtained by Matlab. The rotor is not 
rotating and the modes are a pure planar motion in the z-x plane
[9]. In the first mode the centrally mounted disc translate 
vertically in z direction .In the second mode the vertical 
translation is zero and the movement is pure wobbling mode of 
the shaft. First mode is cylindrical mode and the second mode 
is conical mode.

B. Case2:Analysis of Rotating Shaft
In this analysis, several set of damped Eigen frequency analysis 
is performed on the rotor model between speed range 0 to 1000 
rpm. The rotational velocity is increased ins steps of 100 rpm.
Damped modal analysis is performed and validated by 
comparing the result against corresponding analytical solution. 

TABLE 3.  
Eigen Frequencies and Critical speeds

Natural 
Frequencies(Hz)

Critical speed ,RPM (slope 
of excitation line = 1) 

Ansys Matlab Critical speed Whirl

6.496 6.509 389.791 BW

24.932 24.935 389.796 FW

137.41 138.557 876.562 BW

1

0

3.133

6.267

9.4

12.533

15.667

18.8

21.933

25.067

28.2

31.333

34.467

37.6

40.733

43.867

47

F
r
e
q
u
e
n
c
y
 
(
H
z
)

0
100

200
300

400
500

600
700

800
900

1000

Spin velocity of SHAFT    (rpm)

1
CAMPBELL DIAGRAM

AUG  2 2014
18:55:06

F=1x spin
BW stable
FW stable
BW stable
FW stable

Fig.7 Campbell diagram

Fig.8 . First and second mode shape 

Since the model undergoes several rotation speed gyroscopic 
effects take place. The critical speeds are calculated from the 
Campbell diagram at the intersection of excitation line with 
modal frequency lines. From the Campbell diagram we can see 
the first mode is independent of the rotational speed and does 
not separate. This is because the disc does not have any 
wobbling. In the backward whirling the natural frequency is 
decreasing as the rotational speed increasing, In forward 
whirling and the natural frequency is increasing as the 
rotational speed is increasing. This behavior is due to the 
influence of the gyroscopic effect which is caused by the 
wobbling of the disc. The intersections of the various branches 
of the Campbell diagram with the y axis are the natural 
frequencies at standstill of the system. 
The first two mode shapes shown in figure 8. The first mode 
shape is characterized as a cylindrical mode. The second mode 
shape is called a conical mode. These motions are described
with four degrees of freedom, two lateral and two rotational. 
The mode shapes look similar to the non rotating modes, but 
involve a circular motion instead of planar motion, the circular 
motion is called whirling. Due to gyroscopic effect the 
frequency line splits into two. There are three intersections 
between the excitation line and the forward(FW)and backward 
whirling(BW) curves, two at 390 rpm and one at 877 rpm, 
where the latter is a backward whirling. The first forward mode 
which crosses the excitation line at 390 rpm is critical speed. 
The intersection at backward whirl is not considered as critical
speed because backward whirling modes not give any 
excitation.

C. Case 3.Offset Disc

Fig.9 Model with mass placed off center 

Disc with the same mass is placed at a distance from the centre 
as shown in the figure 9. Analysis is performed on the model 
between the speed range 0 rpm to 1000 rpm. 
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Fig.10 Campbell Diagram 

Fig.11 First and second mode shape 
TABLE.4. 

Eigen frequency and critical speed
Natural Frequencies (Hz) Critical speed(RPM)

9.4119 509.80
29.940 616.24
63.205 -

From the Campbell diagram shown in figure10, frequency 
split is observed even for the first mode. That is when the disc 
placed off centre , which results in the wobbling for both the 
first and second mode shape. In the second mode the 
gyroscopic effect is more and as a result the frequency splits as
forward and backward whirl. This is due to the fact that at zero 
speed, the modes of vibration are composed of a bending and a 
rotation one. When the system turns, these two modes still 
exist, but each of them is separated into two, one forward and 
one backward. From the equation of motion it is the coupling 
due to the diametric moment of inertia, that causes the splitting 
up of forward and backward whirl.

When the disc is placed offset natural frequencies of the system 
also changed. From the Campbell diagram shown in figure.8,
the line of excitation intersect the frequency lines only in the 
first mode and only two critical speeds are observed one in 
forward whirl and other one in backward whirl.  

D. Case4:Shaft with Two Rotor 
1) Exploring Gyroscopic and Mass Effects

Considering two models, first model with the same mass at 
equal distance from the center and the in the second model,
masses are replaced with two different masses  

Fig.12 Two Rotor at equal distance 

Fig.13 Campbell diagram for 2 rotor a) same mass.b) different masses 

Fig.14 mode shapes 

Figure 13 shows two sets of natural frequencies versus speed 
and from the natural frequencies, it can be see that the different 
mass model increases the first and second mode frequencies 
(mass is at a point of large whirling motion, mass moments of 
inertia changed). The reduced mass moment of inertia version 
(different mass) does not change the third mode (may be disk 
center of gravity has very little conical motion).The reduced 
mass moment of inertia increases the frequency of the second 
mode, and decreases the strength of the gyroscopic effect (disc 
center of gravity has substantial conical motion).

IV. RESULTS AND DISCUSSIONS

A. Non rotating Dynamics 
When the machine is not spinning and the bearings have 
essentially no damping, in the modal test, we would find a set 
of natural frequencies/modes. At each frequency, the motion is 
planar. The ratio of bearing stiffness to shaft stiffness has a 
significant impact on the mode-shapes. For the soft and 
intermediate bearings, the shaft does not bend very much in the 
lower two modes. As the bearing stiffness increases (or as shaft 
stiffness decreases), the amount of shaft bending increases. In 
the first mode, the disk translates without rocking. In the second 
mode, it rocks without translation. This general characteristic 
repeats as the frequency increases. If we moved the disk off-
centre, we would find that the motion is a mix of translation 
and rocking. This characteristic will give rise to some 
interesting behavior once the shaft starts rotating and is called 
gyroscopic effects 

B. Rotating Dynamics 
When shaft rotates the modes look like the non rotating modes, 
but involve circular motion rather than planar motion to see the 
effects of changing shaft speeds performed the analysis from 
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non spinning to a high spin speed and follow the two 
frequencies associated with the conical mode. The frequencies 
of the conical modes do change over the speed range. The 
backward mode drops in frequency, while the forward mode 
increases. The explanation for this behavior is a gyroscopic 
effect that occurs whenever the mode shape has an angular 
(conical/rocking) component. If consider forward whirl, shaft 
speed increases, the gyroscopic effects essentially act like an 
increasingly stiff spring on the central disk for the rocking 
motion. Increasing stiffness acts to increase the natural 
frequency. For backward whirl, the effect is reversed. 
Increasing rotor spin speed acts to reduce the effective stiffness, 
thus reducing the natural frequency .Also the gyroscopic terms 
are generally written as a skew-symmetric matrix added to the 
damping matrix, the net result is a stiffening or softening effect 
of the shaft. In the case of the cylindrical modes, very little 
effect of the gyroscopic terms was noted, since the centre disk 
was whirling without any conical motion. Without the conical 
motion, the gyroscopic effects do not appear. In conical type 
motion near the bearings a slight effect was noted. 
The frequencies are affected by both the mass and diametric 
mass moment of inertia. The mass has the greatest effect at 
points of large circular motion (anti-nodes), while the mass
moment of inertia has the greatest effect at points of large 
rocking motion (nodes).Changes in mass precisely at a node do 
not change the corresponding natural frequency, and changes in 
mass moment of inertia at points of no conical motion do not 
change the corresponding natural frequency.

V. CONCLUSIONS 
The modes affected by the mass moment of inertia (the conical 
mode, for example), are strongly affected by changes in speed. 
Assuming the bearing characteristics do not change, the 
backward whirl mode will decrease in frequency with 
increasing shaft speed, while the forward mode frequency will 
increase. The extent to which this occurs is related to both the 
mode shape and the ratio of the polar mass moment of inertia to 
the diametric mass moment of inertia. Thus, a machine with a 
big disk/fan blade will probably show strong speed dependent 
effects in at least some modes. A fairly symmetric machine will 
probably have some modes that are relatively constant with 
shaft speed. A forward whirling increase the natural frequency 
and a backward whirling decreases the natural frequency. A 
forward whirling increases the stiffness of a system while 
backward whirling decreases the stiffness of a system. For a 
non rotating system (  = 0), the modes of vibration are 
composed of a bending and a rotation one. When the system 
turns, these two modes still exist, but each of them is separated 
into two, one forward and one backward. 
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