H2-MHR Conceptual Designs Based on the SI Process and HTE

Matt Richards, Arkal Shenoy, Ken Schultz, Lloyd Brown – General Atomics Ed Harvego and Michael McKellar, Idaho National Laboratory Jean-Phillippe Coupey and S.M. Moshin Reza, Texas A&M University Futoshi Okamoto – Fuji Electric Systems Norihiko Handa – Toshiba Corporation

Third Information Exchange on the
Nuclear Production of Hydrogen
and
Second HTTR Workshop on Hydrogen Production Technologies

Japan Atomic Energy Agency
Oari, Japan
October 5 - 7, 2005

Presented by

General Atomics, San Diego, CA, USA Matt.Richards@gat.com

H2-MHR Conceptual Designs are Being Developed

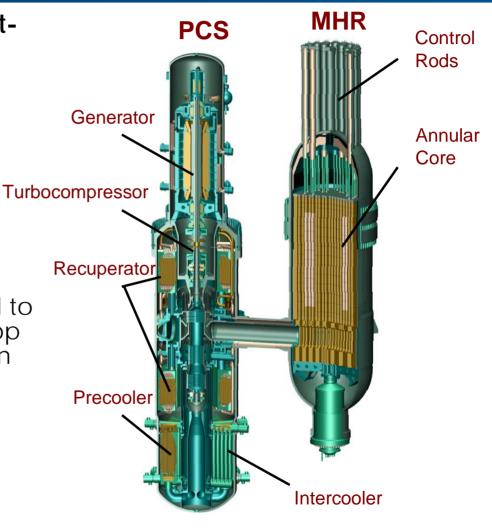
3 year DOE NERI project with GA, INL, TAMU, & Entergy

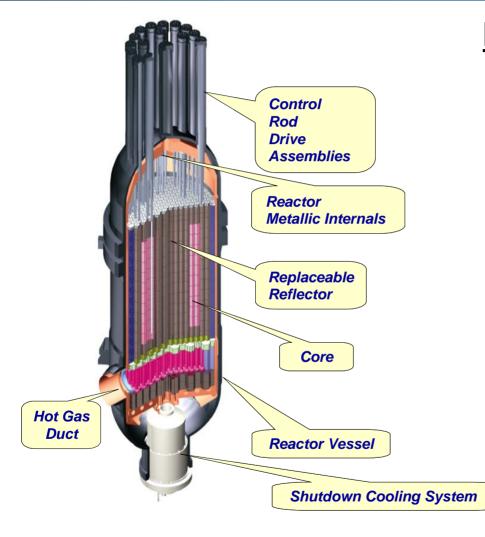
- Develop conceptual designs of "H2-MHR" hydrogen production plants
- Initial focus on integration of MHR and Sulfur-Iodine-based hydrogen production plant
- Conceptual design also being developed for integration of MHR with High Temperature Electrolysis
- FY-05 is last year of project

Participation in Related NERI/I-NERI Projects:

- Centralized Hydrogen Production from Nuclear Power: Infrastructure Analysis and Test Case Design Study (SRNL, GA, Entergy, ANL, Univ. S. Carolina)
- High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water Splitting (SNL, CEA, GA)

Additional Cooperation/Coordination with Various other Projects

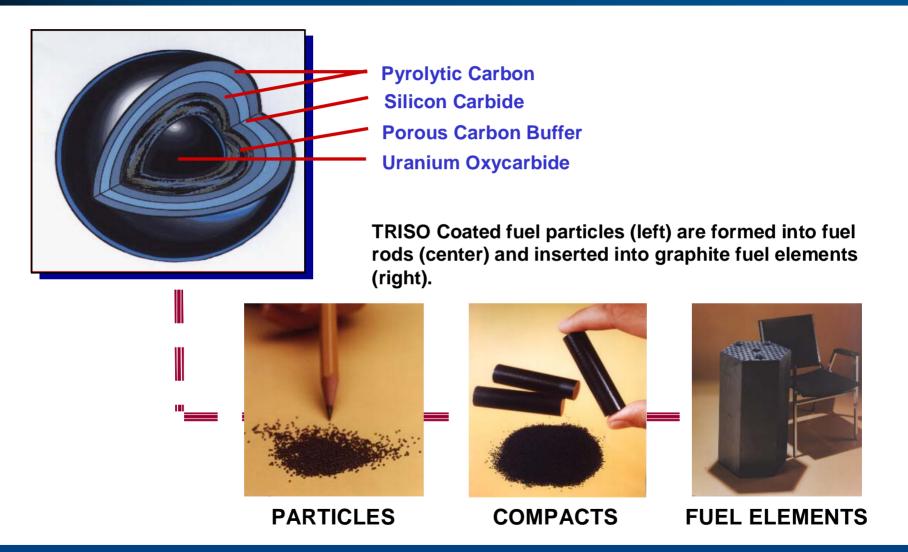

- UNLV High Temperature HX Project
- Private collaborations with Fuji Electric / Toshiba
- HTE Technology Development at INL


GT-MHR Provides Springboard to the H2-MHR

- MHR coupled to a directcycle Brayton powerconversion system
- 600 MW(t), 102 column, annular core, prismatic blocks
- Concept developed initially in the U.S.
 - Technology transferred to Russia to further develop design for Pu disposition
 - Similar concept being developed in Japan (JAEA GTHTR300)

The MHR is a Passively Safe Design

Passive Safety Features

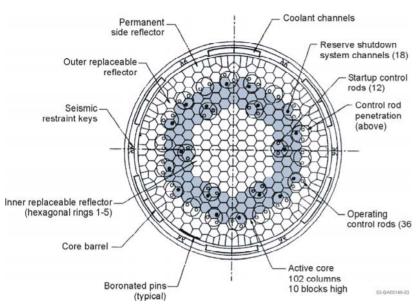

- Ceramic, coated-particle fuel
 - Maintains integrity during lossof-coolant accident
- Annular graphite core with high heat capacity
 - Helps to limit temperature rise during loss-of-coolant accident
- Low power density
 - Helps to maintain acceptable temperatures during normal operation and accidents

Inert Helium Coolant

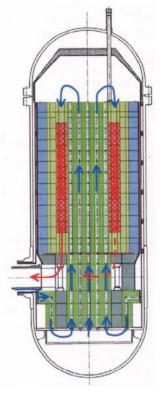
Reduces circulating and plateout activity GENERAL ATOMICS

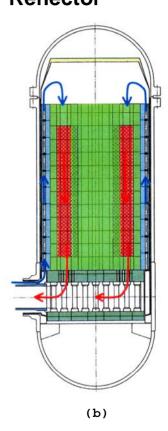
Ceramic Fuel Retains its Integrity Under Severe Accident Conditions and is an Ideal Waste Form for Permanent Disposal

Reactor Design is Being Optimized for Higher Temperature Operation


- Optimize Power Distributions
 - Fuel placement or sandwich shuffling refueling schemes to reduce "age" component of power peaking
 - Improved zoning of fissile/fertile fuel ratio and burnable poison
 - Use control rods in inner and outer reflector
 - · Reduce radial component of power peaking
 - Temperature limitations may require C-C clad rods
- Optimize Thermal Hydraulic Design
 - Reduce bypass flow
 - Core restraint and sealing devices to minimize gaps
 - Reduce or eliminate flow in control-rod channels using C-C rods
 - Goal is to reduce bypass flow fraction from about 0.2 to about 0.1
 - Alternative Inlet Flow Configurations
 - Reduce vessel temperature
 - Route flow through inner and/or outer reflector
- Use Higher-Temperature Metals, C-C Composites for Reactor Internal Components

Alternative Inlet Flow Configurations Can Reduce Vessel Temperatures


Reference GT-MHR (channel box)


ATHENA code used to assess alternative flow configurations

Inner reflector configuration removes significant heat capacity, resulting in higher fuel temperatures during accidents

Inner Reflector

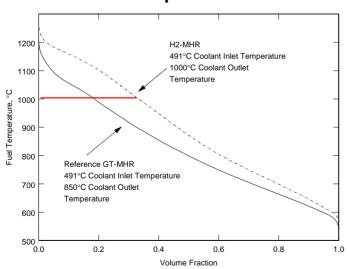
Permanent Side Reflector

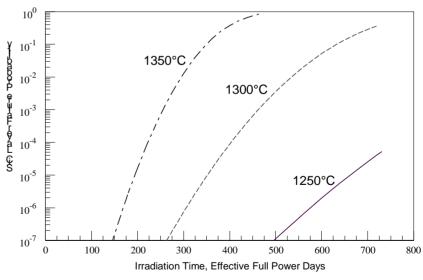
H2-MHR Point Design Options Have Been Evaluated

	GT-MHR	H2-MHR Orificed Core	H2-MHR Optimized Core
Power Level (MW _t)	600	600	600
Helium Inlet Temperature (°C)	490	490	590
Helium Outlet Temperature (°C)	850	1000	950
Coolant Flow Rate (kg/s)	320	226	320
Core Pressure Drop (kPa)	~50	~50	>50

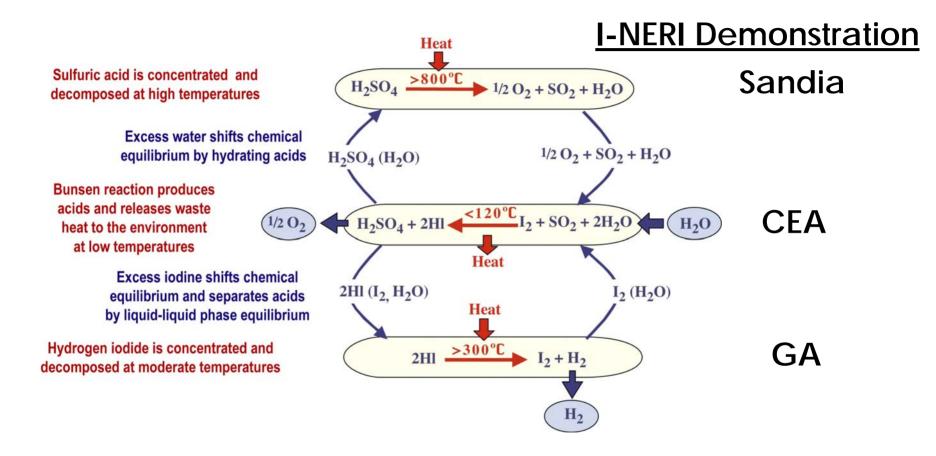
Orificed Core: Use of fixed orifices in upper/lower reflector Optimized Core: Possible limited use of fixed orifices on "cold"

columns for additional design margin on fuel temperatures

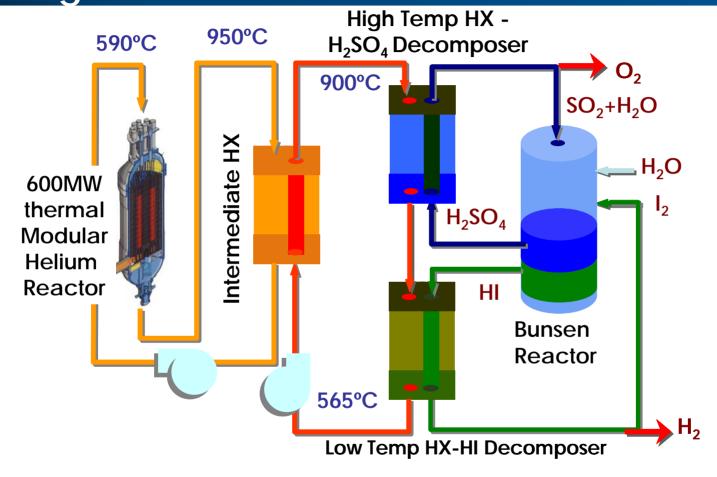



Core Nuclear / Thermal Hydraulic OptimizationScoping Studies

	Flow Control Scheme		
	None	Optimized by POKE	Optimized by POKE
Inlet Coolant Temperature (°C)	640	640	490
Coolant Flow Rate (kg/s)	320	320	225
Average Outlet Coolant Temperature (°C)	1000	1000	1000
Maximum Fuel Temperature (°C)	1309	1204	1239
Maximum Outlet Coolant Temperature (°C)	1124	1030	1042
Core Pressure Drop (kPa)	69	100	48

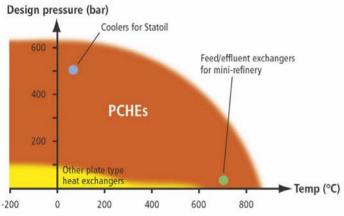

Fuel Temperatures

Fuel Performance



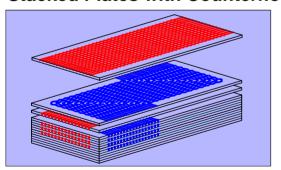
Sulfur-Iodine Cycle

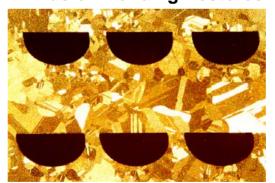
MHR Coupled to S-I Thermochemical Water Splitting



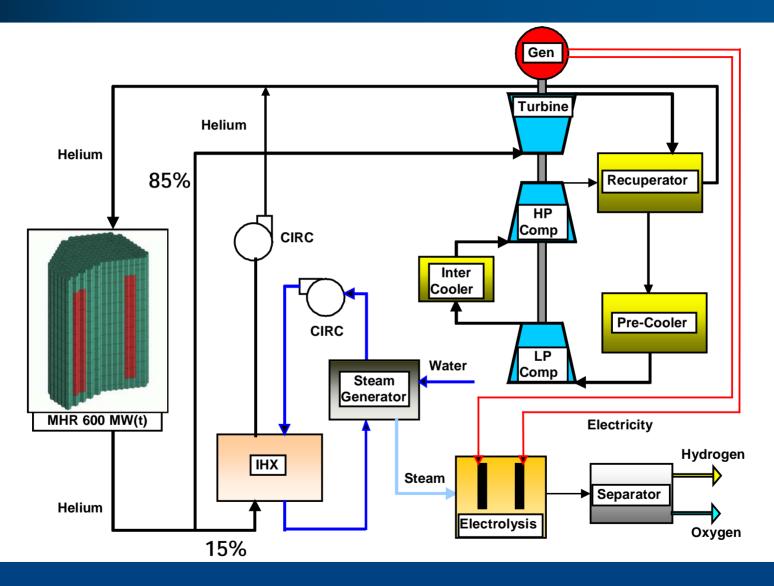
Aspen flowsheet evaluations show efficiencies of about 45% based on HHV of H₂

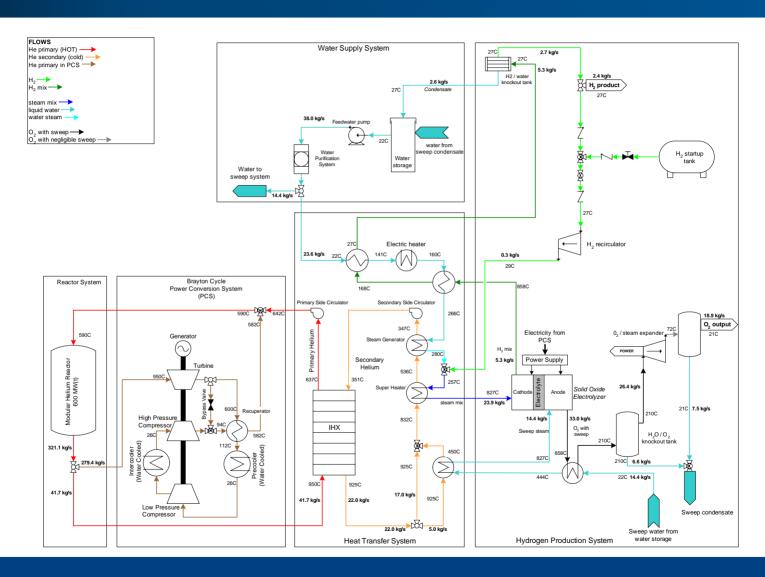
Conceptual IHX Design has Been Developed Based on HEATRIC Printed Circuit Heat Exchanger (PCHE)


High Temperature and High Pressure Capability


Compact, Lighter-Weight Design

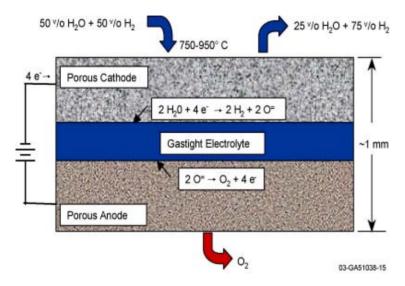
Stacked Plates with Counterflow


Diffusion Bonding Restores Properties of Base Metal


PCHEs using higher temperature alloys are currently being developed by HEATRIC. 600 MW(t) IHX would consist of 40 15-MW(t) modules.

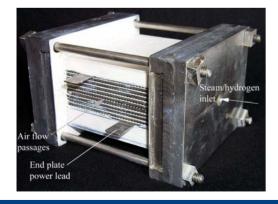
MHR Coupled to High-Temperature Electrolysis

HTE-Based H2-MHR Flowsheet

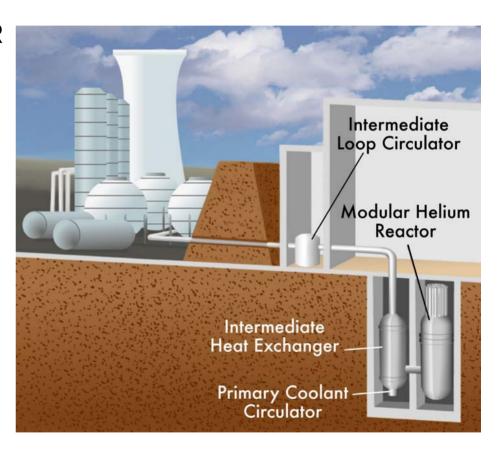

Results of HTE Flowsheet Using HYSYS Process Simulation Software

MHR Module Thermal Power	600 MW(t)
MHR Coolant Outlet Temperature	950°C
PCS Power Generation	312 MW(e)
PCS Thermal Efficiency	52%
Thermal Power Supplied for Hydrogen Production	68 MW(t)
SOE Process Temperature	827°C
Power Supplied to SOE Modules	292 MW(e)
Hydrogen Production Rate	2.36 kg/s
Hydrogen Production Efficiency (based on HHV of H ₂)	55.5%
Auxiliary Power Generation	9.3 MW(e)
Overall Process Efficiency	59.9%

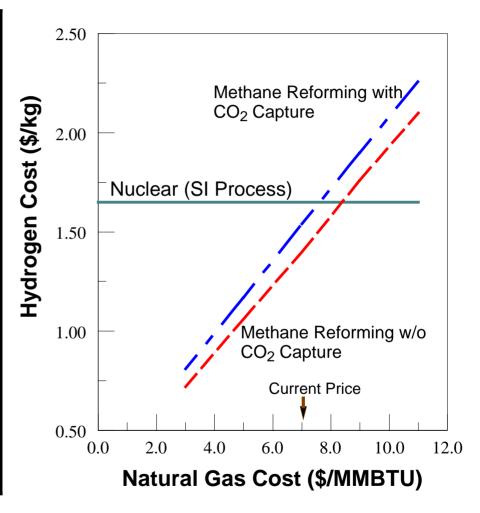
Solid Oxide Electrolyzer Technology Has Been Successfully Tested


10 ft

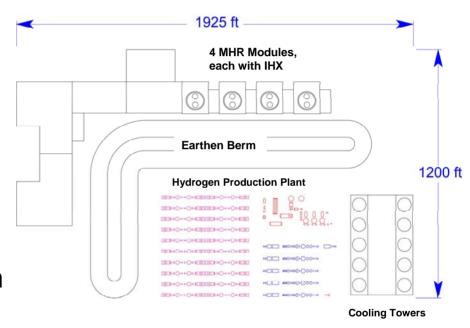
4-MW(e) Trailer Module


10-Cell Stack Tested at INL

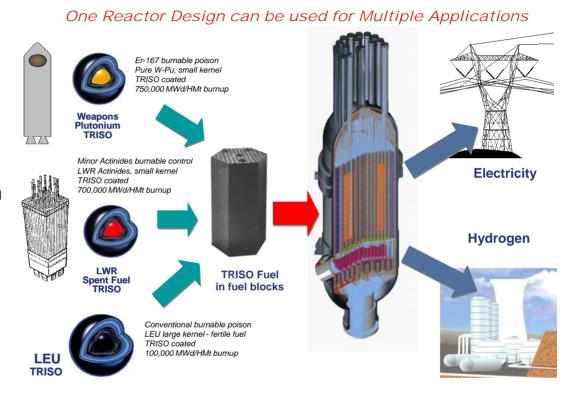
Hydrogen Plant Will Not Impact Passive Safety


- Licensing issue of most concern is co-location of MHR and Hydrogen Plant
 - Passive safety of MHR allows co-location
 - Earthen berm provides defense-in-depth
- Other reactors located in close proximity to hazardous chemical plants and transportation routes
 - NRC allows risk-based approach
 - INL recommends 60 to 100 m separation distance

Economics for Nuclear Hydrogen Production are Competitive With Steam-Methane Reforming


	SI-Based Plant	HTE-Based Plant
Capital Costs (\$M)		
Reactor System	1030	1284
Hydrogen System	738	TBD - Depends on SOE unit costs
O&M Costs (\$M/yr)		
Reactor System	27.8	34.6
Hydrogen System	70.9	TBD - Probably less than SI plant
Hydrogen Cost (\$/kg)	1.65	TBD

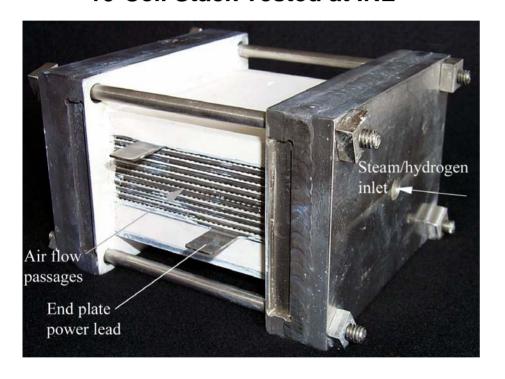
H2-MHR 4-Module Reference Design


- Standard MHR (850°C) or VHTR (950°C - 1000°C) reactor
- Intermediate Heat Exchanger (IHX) in adjacent cavity
- Intermediate heat transport loop
- MHR Passive Safety maintained
- H₂ plant separation by berm
- Non-nuclear H₂ plant
- 600 MWt ⇒ 200 tons/day hydrogen production

CONCLUSIONS

MHR is well suited for hydrogen production

- Passively safe reactor design
- Produces high temperature heat needed for SI process and HTE
- Proof of principle for both SI process and HTE have been demonstrated
- Both SI process and HTE show potential for economical production of hydrogen without producing carbon dioxide
- MHR technology can be applied to other missions


Thank you for your kind attention.

Solid Oxide Electrolyzer Technology Has Been Successfully Tested

10-Cell Stack Tested at INL

Requirements for a 600 MW(t) MHR Module

	T
Cell Area	
Individual Cell Width	10 cm
Individual Cell Active Area	100 cm ²
Total Number of Cells	12 x 10 ⁶
Total Active Cell Area	120,000 m ²
Cell Thickness	
Electrolyte	10 μm (Scandia Stabilized
	Zirconia)
Anode	1500 µm (Strontium Doped
	Lathanum Manganite)
Cathode	50 µm (Nickel Zirconia
	Cermet)
Bipolar Plate	2.5 mm (Stainless Steel)
Total Cell Thickness	4.06 mm
Stack Dimensions	
Cells per Stack	500
Stack Height	2.03 m
Stack Volume	0.0203 m ³
Stack Volume with Manifold	0.0812 m ³
Number of Stacks	24,000
·	· · · · · · · · · · · · · · · · · · ·

