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rtificial intelligence is vulnerable to cyber attacks. Machine 
learning systems—the core of modern AI—are rife with vulnera-
bilities. Attack code to exploit these vulnerabilities has already 

proliferated widely while defensive techniques are limited and struggling 
to keep up. Machine learning vulnerabilities permit hackers to manipu-
late the machine learning systems’ integrity (causing them to make mis-
takes), confidentiality (causing them to leak information), and availability 
(causing them to cease functioning). 

These vulnerabilities create the potential for new types of privacy 
risks, systemic injustices such as built-in bias, and even physical harms. 
Developers of machine learning systems—especially in a national security 
context—will have to learn how to manage the inevitable risks associated 
with those systems. They should expect that adversaries will be adept at 
finding and exploiting weaknesses. Policymakers must make decisions 
about when machine learning systems can be safely deployed and when 
the risks are too great. 

Attacks on machine learning systems differ from traditional hacking ex-
ploits and therefore require new protections and responses. For example, 
machine learning vulnerabilities often cannot be patched the way tradi-
tional software can, leaving enduring holes for attackers to exploit. Even 
worse, some of these vulnerabilities require little or no access to the victim's 
system or network, providing increased opportunity for attackers and less 
ability for defenders to detect and protect themselves against attacks. 

Accordingly, this paper presents four findings for policymakers’  
consideration:

• Machine learning introduces new risks: Using machine learn-
ing means accepting new vulnerabilities. This is especially true in 

Executive Summary 
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the context of national security, but also in critical infrastructure, and even in 
the private sector. However, this does not mean machine learning should be 
prohibited. Rather, it is incumbent upon policymakers to understand the risks 
in each case and decide whether they are outweighed by the benefits.

• New defenses may only offer short-term advantage: Attackers and 
defenders of machine learning systems are locked in a rapidly evolving cat-
-and-mouse game. Defenders appear to be losing; their techniques are cur-
rently easily defeated and do not seem well-positioned to keep pace with 
advances in attacks in the near future. Still, defensive measures can raise the 
costs for attackers in some narrow instances, and a proper understanding of 
machine learning vulnerabilities can aid defenders in mitigating risk. None-
theless, the effectiveness of defensive strategies and tactics will vary for 
years and will continue to fail at thwarting more sophisticated attacks.

• Robustness to attack is most likely to come from system-level defens-
es: Given the advantages that attackers have, for machine learning systems 
to function in high-stakes environments, they must be built in with greater 
resilience than is often the case today. To aid this effort, policymakers should 
pursue approaches for providing increased robustness, including the use of 
redundant components and ensuring opportunities for human oversight and 
intervention when possible.

• The benefits of offensive use often do not outweigh the costs: The 
United States could employ the types of attacks described in this primer to 
good effect against adversaries’ machine learning systems. These offensive 
techniques could provide another valuable arrow in the U.S. national se-
curity community’s quiver and might help prevent adversaries from fielding 
worrisome AI weapons in the first place. On the other hand, the United 
States can lead by setting norms of restraint. The United States must also be 
cautious to ensure its actions do not alienate the community that is develop-
ing these technologies or the public at large who rely on machine learning.

Machine learning has already transformed many aspects of daily life, and it is 
easy to see all that the technology can do. It likewise offers the allure of reshaping 
many aspects of national security, from intelligence analysis to weapons systems and 
more. It can be hard, however, to perceive machine learning’s limitations, especially 
those—like its susceptibility to hacking—that are most likely to emerge in highly con-
tested environments. To better understand what the technology can and cannot do, 
this primer introduces the subject of machine learning cybersecurity in a detailed but 
non-technical way. It provides an entry point to the concepts and vocabulary need-
ed to engage the many important issues that arise and helps policymakers begin the 
critical work of securing vital systems from malicious attacks.  
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Introduction

s he removes his hands from the steering wheel and leans back, 
the driver becomes a passenger. Now under its own control, the 
car accelerates toward the skyscrapers in the distance, yet to 

notice a small, innocuous-looking sticker on the road ahead. If spotted 
at all, the sticker might be confused for a paint smudge. Suddenly the car 
swerves left. Alarms sound and warnings flash. Then, a voice speaking in 
Chinese backed by ominous music sheds light on what is happening: the 
machine learning system in the car has been hacked. 

In 2019 Tencent, a leading Chinese technology company unveiled a 
set of three attacks against Tesla automobiles and posted a video demon-
strating them.1 Two of the attacks were directed at machine learning com-
ponents, the second of which made the car veer while driving. The fact that 
AI can be hacked in this way comes as little surprise to researchers who 
study machine learning cybersecurity, but the subject receives insufficient 
attention in national security circles. That situation must end.

Machine learning is starting to deliver on promises of enhanced 
support to the warfighter, to reconnaissance teams, and in streamlined 
operations and logistics.2 It is increasingly becoming a predominant, albeit 
hidden, force in the daily lives of many Americans. It will increasingly 
route and control the vehicles on our roads and secure and manage our 
homes by interpreting our voice commands. Lying dormant in those systems 
are vulnerabilities that are different from the traditional flaws with which 
we have decades of experience. These vulnerabilities are pervasive and 
inexpensive to exploit using tools that have proliferated widely and against 
which there is often little defense.

A
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This report summarizes and contextualizes machine learning vulnerabilities for 
policymakers, providing a starting point for familiarizing themselves with the broad 
set of concepts and potential concerns. These concepts have broad applicability, 
since machine learning affects society in many ways; its vulnerabilities create the 
potential for new types of privacy leaks, injustices, and even physical harm. This 
report briefly describes some of the most popular types of attacks and then discuss-
es the range of possibilities. It also highlights the pervasiveness of the vulnerabilities, 
the ease of exploiting them, and the state of defenses. First, though, it offers a primer 
on the basics of machine learning.
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achine learning systems use computing power to execute algo-
rithms that learn from data. These systems learn patterns that they 
then use to make classifications or predictions. Together, the com-

ponents of machine learning enable systems that have proven remarkably 
adept in a wide variety of fields, including automated imagery intelligence 
analysis important for national security. Understanding the threats against 
machine learning requires only a cursory understanding of the technology.

THE MODEL
The centerpiece of machine learning is the “model” itself. The model could 
be a neural network or a list of yes/no questions or a variety of other 
possible techniques, some of which have not been invented yet. The model 
is composed of anywhere from a few to hundreds of billions of parameters 
that can each be adjusted to make it more accurate. In one type of model 
the parameters might be basic yes/no questions, like “Did the number 
of tweets with #overthrowthegovernment exceed 40,000 last week?” In 
complex models, such as neural networks, the parameters can instead rep-
resent the strength of connections between neurons. For our purposes, only 
one principle matters: the machine learning model will be more accurate if 
the parameters are tuned well and inaccurate if they are not. This is where 
the process of training comes in. 

TRAINING
Data fuels machine learning systems; the process of training shows how. 
This process is shown on the left side of Figure 1, illustrating explicitly 
that the data has to be collected or mined from somewhere, such as a 
surveillance drone, a Twitter feed, or computer data. During training, the 
machine learning system extracts patterns from this data. The system learns 

The Basics of 
Machine Learning

1
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by adjusting the parameters of its model to correspond to these patterns. Different 
kinds of machine learning systems learn from data in distinct ways, but the idea of 
matching the model to the training data generally holds. Crucially, the system does 
not know which patterns are desirable to learn and which, like those corresponding to 
human biases, are not. It simply learns everything it can from the data. Once training 
is complete, the model can be used as a component in a larger system, as shown to 
the right in Figure 1. In some cases, the model can continue to be updated and trained 
while deployed for use, but in other cases it is frozen as is before it is deployed.

USE AS PART OF A DEPLOYED SYSTEM
The deployed system may use many models to perform similar tasks and could 
have humans involved at various stages. Autonomous cars, for example, collect 
data from the environment through video or radar and use it to decide whether to 
brake, accelerate, or turn. There might be one machine learning model analyzing 
video and another analyzing the data from the car’s laser or radar sensors, while 
still another model synthesizes information from several data sources and makes 
a decision. And there may be a human driver who can choose to accept or reject 
the decision before it becomes an action. In essence, the machine learning system 
uses the models to convert real-world input data, which is hopefully similar to the 
training data, into decisions and then actions. 

INPUTS

DATA STORAGE

DATA COLLECTION

TRAINING

MODEL A

HUMAN-IN-THE-LOOP

DECISIONMODEL B ACTION

MACHINE LEARNING DEPLOYED SYSTEM

FIGURE 1  

Once a machine learning model is trained, it becomes part of a larger 
system that converts inputs to decisions and subsequently into actions.



Center for Security and Emerging Technology 3

The notion that the machine learning model is part of a larger system highlights 
the main challenges attackers face. A properly designed system creates redundan-
cies that guard against bad outcomes. For example, if attackers cause the computer 
vision system to interpret a stop sign as a 45 mph speed limit sign, system-level 
defenses could avert a catastrophe. The car might still decide to stop at the sign if its 
laser or radar detects crossing traffic or if the car has been instructed to never cross 
a blind intersection at high speed.3 Moreover, if a human is present, he or she may 
be able to notice and override peculiar inputs or abnormal decisions. Even with 
failsafes, though, attackers can successfully compromise multiple systems or identify 
single points of failures. To figure out how to stop such threats, it is essential to under-
stand how they work. 
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n cybersecurity, possible harms are typically grouped into three 
broad categories represented by the acronym CIA: confidentiality, 
integrity, and availability. All three categories also apply to ma-

chine learning. Integrity attacks alter data to cause machines to make er-
rors and have attracted the most attention. Confidentiality attacks extract 
information meant to remain hidden; they also garner notable research 
focus. Availability attacks cause the machine learning component to run 
slowly or not at all. While availability attacks are starting to attract more 
attention, they have been the least popular.4 This section will only discuss 
integrity and confidentiality attacks. 

INTEGRITY ATTACKS
While there are many ways to cause the machine learning model to make 
errors,* two approaches stand out as the most popular: data poisoning 
and evasion. Both target different parts of the machine learning process, 
as shown in Figure 2. In “data poisoning,” attackers make changes to the 
training data to embed malicious patterns for the machine to learn. This 
causes the model to learn the wrong patterns and to tune its parameters 
in the wrong way. In “evasion,” attackers discover imperfections in the 
model—the ways in which its parameters may be poorly tuned—and then 
exploit these weaknesses in the deployed model with carefully crafted in-
puts.† Even the most well-trained models have a seemingly infinite supply 
of these imperfections that allow the model to be turned against itself.

Common Types 
of Attacks

2

I

*Attackers could retune the model’s parameters individually or they could create bugs in 
parts of the software that are used to tune the parameters, for example.
† This report only discusses evasion and data poisoning attacks in the context of integrity 
attacks, but they can also be used in confidentiality and availability attacks.
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Neither data poisoning nor evasion require directly breaking into the ma-
chine learning system. This means that attackers can manipulate machine learn-
ing systems even if they are unable to tamper with the system itself. For example, 
attackers might not need to get their hands on a spy drone to cause it to misiden-
tify its targets. Instead, they might make educated guesses about the model of 
the drone’s machine learning system and break into the company that designs 
the drone to uncover the model. Attackers might even alter the publicly available 
data that software developers often use as the foundation or starting points for 
their models.5 The range of possibilities underscores the fact that are many options 
for attackers to manipulate machine learning systems that do not require directly 
observing or breaking into the target. 

Data Poisoning Attacks
A machine learning model tries to find patterns in the data; if an attacker can 
control the data, they can control what the model learns. In some cases, just a few 
changes to the data can implant something akin to a Pavlovian bell, causing the 
machine learning system to respond to a particular input in a certain way.6 Further, 
the poisoned data patterns do not have to make sense to a human, making them 

INPUTS

DATA STORAGE

DATA COLLECTION

TRAINING

MODEL A

HUMAN-IN-THE-LOOP

DECISIONMODEL B ACTION

MACHINE LEARNING DEPLOYED SYSTEM

DATA POISONING EVASION

FIGURE 2 
Data poisoning attacks manipulate the training data from which a model 
learns, while evasion attacks control the inputs to the deployed system to 
exploit pre-existing weaknesses.
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easy for attackers to hide or disguise. As a hypothetical example, imagine an auto-
matic order placement system for a manufacturing company that uses past data on 
monthly demand to send the right number of parts to each factory the next month. An 
adversary could poison the dataset so that when more than 10,000 screws are sent 
to Kazakhstan then in the next month, only half the usual amount of oil for tanks is sent 
to Syria. If the attacker can send extra screws to Kazakhstan, he or she could cause a 
shortage of tank oil in Syria, which could reduce the effectiveness of operations.

There are many opportunities for attackers to supply the system with data 
intended to subvert the model. They could hack into the victim’s servers to change 
the database or they could trick the victim into downloading a malicious datapoint 
when they are updating their model. These methods often take advantage of tradi-
tional offensive cyber techniques. For example, attackers could break into a victim’s 
network and manipulate the data stored within it.

A less intrusive means of data poisoning involves creating false precedent. For 
example, if an attacker would like to use a piece of malware but is worried that a 
machine learning-based antivirus program will detect them, the attacker can first 
distribute a similar but benign piece of code. The antivirus might learn that code with 
those characteristics is safe and therefore think that the malware is also safe once it 
is released. Data poisoning attacks like these are possible for nearly all models.

Evasion Attacks
The most common type of attack against machine learning systems is known as an 
evasion attack. In these operations, the attacker makes changes to the inputs that 
are so subtle humans have trouble noticing them but are significant enough for a 
machine to change its assessment; these inputs are often “adversarial examples.”  
To demonstrate how easy it is to perform this type of attack, we created one.  

We began with the picture of Georgetown University’s iconic Healy Hall (Figure 
3). A common image recognition system identified with 85.8 percent confidence that 
the picture was of a “castle.” This is a good guess because the system, which is basic, 
was not programmed to recognize schools or universities. Using openly published 
techniques, our attack program made a series of small changes to the image to trick 
the machine learning system into identifying Healy Hall as a triceratops dinosaur.7 
Human eyes would find the changes difficult to notice, but they were tailored to trick 
the machine learning system. Once all the changes were made, the picture looked the 
same to the human eye, but the machine was 99.9 percent sure the picture was of a 
triceratops (Figure 3). This is the power of adversarial examples in action.* 

*The image classifier was MobileNetV2 attacked using projected gradient descent with a l∞-norm 
bound run on Google Colab’s free GPU. Many other techniques and models and runtimes were also 
tried and could have been used interchangeably.
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Image classification algorithms are among the greatest triumphs of machine 
learning, so attacks like these are striking. While these kinds of attacks are easiest to 
visualize when they manipulate images, they also affect machine learning systems 
that perform other tasks such as voice recognition. Evasion attacks do not need to 
be as subtle as the Healy Hall example above, but can more significantly manipu-
late the input given to a machine learning system. 

CONFIDENTIALITY ATTACKS
In a confidentiality attack, attackers observe how machine learning systems re-
spond to different kinds of inputs. From this observation, attackers can learn infor-
mation about how the model works and about its training data. If the training data is 
particularly sensitive—such as if the model is trained on classified information—such 
an attack could reveal highly sensitive information. In essence, the machine learning 
system learns from the training data and might unintentionally reveal what it knows 
to others. There are three main kinds of confidentiality attacks.

Model Extraction
The easiest type of attack to understand is “model extraction.” By recording the 
inputs and outputs of the victim model enough times, the attacker can build a close 
facsimile of the model to be attacked. Model extraction poses two risks. First, steal-
ing the model provides the attacker with a copy that the victim may not have want-

FIGURE 3 
Classification of Georgetown’s Healy Hall unperturbed on top and 
attacked to appear to a machine learning system to be a triceratops 
on bottom. To human eyes, the two images look identical. 

ORIGINAL IMAGE

Castle: 85.8%
Palace: 3.17%
Monastery: 2.4%

ATTACKED IMAGE

Triceratops: 99.9%
Barrow: 0.005%
Sundial: 0.005%
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ed to share, revealing information about how the machine learning system works. 
Second, and more significantly for the purposes of cybersecurity, stealing a model 
facilitates all the other attacks discussed in this report. The understanding of how a 
system works makes it easier to determine how a system may be compromised. 

Membership Inference
In a membership inference attack, the attacker studies the machine learning sys-
tem’s inputs and outputs and learns details about the data on which the model was 
trained. For example, imagine a company that offers customers a medical diagno-
sis after they answer a list of questions about themselves and their symptoms. The 
company would want to protect the data used to build their model both for intellec-
tual property reasons and because it contains sensitive medical information about 
the participants. The company could delete its copies of patient data after training 
the model, but this may not be enough to guarantee confidentiality, since the model 
itself has learned information about the patients and the model is subject to mem-
bership inference attacks.  

To carry out such an attack, attackers often consider a model’s confidence 
rating—how sure it is that its output is correct. Machine learning models are often 
overconfident when they see real world examples that match those provided during 
training. For example, a machine learning system is likely to be more confident 
about John Doe’s medical data if his information was used to train the model; it will 
be less confident about Jane Doe, whose data was not used to train the model, 
even if the symptoms of the two patients are similar. Based on the higher confidence 
rating, the attacker might conclude that John was in the original dataset and thereby 
learn his sensitive medical history.

Model Inversion
Instead of looking for individual pieces of data, with model inversion attackers try to 
understand more about the model’s output categories. For a facial recognition sys-
tem that takes a facial image as an input, the output categories are people’s names. 
In model inversion, the attacker tries to do the opposite. In the facial recognition 
case, that means starting with a target’s name and trying to produce images of the 
corresponding face.8 

Attackers do not run the model in reverse. Instead, they start with a randomly 
generated image and make small changes to that image that make the model a little 
more likely to label the image as the target’s face. These machine learning attacks 
are the rough equivalent of a police sketch artist slowly building a composite image 
of a suspect.

With enough small adjustments—and continual feedback from the model’s 
evaluation of each iteration of the model—attackers can eventually draw a com-
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plete picture of the face. Model inversion is not limited to faces or pictures, though. 
Models of all types can be inverted, such as inferring a person’s purchasing tenden-
cies from a fraud detection model.

INPUTS

MODEL INVERSION

MEMBERSHIP
INFERENCE

TRAINING

MODEL A

HUMAN-IN-THE-LOOP

DECISIONMODEL EXTRACTION ACTION

MACHINE LEARNING DEPLOYED SYSTEM

ATTACKER

OBSERVE INPUTS

O
BSERVE

A
CTIO

N
S

FIGURE 4 
Popular confidentiality attacks require only that the attacker observe the 
inputs and the outputs of the deployed system. They can then extract 
models or invert the model to learn about the output categories, such as by 
exploiting a facial recognition system and a name to draw a person’s face. 
They can also perform a membership inference attack to learn specific 
traits of the data.
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ttackers must make a range of choices about when and how 
to carry out their operations. They can direct different kinds of 
attacks at different stages of the machine learning process, from 

data collection to deployment. For example, attackers can use both data 
poisoning and evasion attacks to cause misclassification, but poisoning 
attacks target the training process whereas evasion targets the model 
after deployment. 

Attackers can also choose how aggressive or stealthy to be. For 
example, evasion attacks have different degrees of subtlety.9 At one ex-
treme, the attackers can create whatever inputs they want, such as random 
squiggles to try to bypass a cellphone’s facial recognition system. Those 
attacks are obvious to a human inspecting the images either in real-time or 
forensically after an attack. At the stealthier extreme, attackers may restrict 
themselves to changes that are indistinguishable to humans, as the Healy 
Hall image demonstrates. Even just within the category of indistinguishable 
attacks, there are many options. For example, to attack an image detection 
system, attackers may limit the number of pixels that can be changed, the 
amount of change per pixel, or the average change across all pixels, and 
so forth. The technical details of how these attacks can be most efficient are 
not necessary to gain a conceptual understanding; we mention them only 
to suggest that there are many options for the attackers to choose from.

The Range 
of Possible Attacks

3

A
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As Figure 5 shows, in the Healy Hall example we chose to carry out an attack 
on integrity that forced a system to misclassify an image, and we carried out the 
attack against a machine learning system that was deployed by indistinguishably 
manipulating an image and only slightly changing a large number of pixels. In re-
sponse to different operational priorities, we might have used an alternative attack 
design, such as making larger changes to a smaller number of pixels or worrying 
less about making the original image and the manipulated image look more alike. 
We could have achieved a similar effect by data poisoning instead. Still other kinds 
of attacks would have targeted confidentiality and extracted information about the 
model rather than manipulating its outputs.  

Adversarial attacks are powerful, counterintuitive, and subtle. There are many 
tools available online for carrying out these kinds of operations, which are expect-
ed to become increasingly common. That said, there is a risk of focusing too much 
on adversarial examples and neglecting other serious types of attacks against 
machine learning systems. Recognizing the range of possible threats should lead to 
a broader and more robust defense of machine learning systems; to best inform this 
defense, we need to examine the ease, persuasiveness, and severity of the threats. 

EFFECT 
CATEGORY

SPECIFIC
EFFECT

ML STAGE
ATTACKED

CONSTRAINT
CATEGORY

SPECIFIC
CONSTRAINT

Confidence
Reduction

Max change 
per pixel

Availability

Integrity

Confidentiality

...

...

...

...

...

Misclassification

Deployment

Indistinguishable
Quantitative

Error

Data Collection

Training

Testing

Content-
Preserving

Content-
Constrained

Non-Suspicious

Unconstrained

Sum of
all changes

Number of
pixels changed

FIGURE 5  
Attackers have many options to choose from when they target machine learning 
systems. The blue path in Figure 5 shows the attack used to make Figure 3, in 
which Georgetown University’s Healy Hall was turned into a triceratops (at least 
according to a machine learning system).
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he attacks described in this report are likely to become common in 
the future. They are easy to conduct, the vulnerabilities they exploit 
are pervasive, and the attacks are difficult to defend against. The 

combination of these three characteristics means that managing machine 
learning vulnerabilities is a complex problem, even when compared to 
other problems in cybersecurity.

EASE OF ATTACK
Conducting attacks on machine learning systems often requires less exper-
tise than it takes to design the models and fewer resources than it takes to 
train them; it is easier to destroy than to create. Just as the offense has long 
held an advantage in traditional cyber operations, it appears to also have 
the edge in machine learning for the time being. 

The tools for conducting the common attacks discussed in this report 
have already proliferated widely. They can be found and downloaded 
freely from the internet and are not difficult to build. We were able to make 
many versions of the attack shown in Figure 3 over the course of a single 
afternoon. None of the versions took more than 20 lines of code and each 
could run in about a second. 

The attacks in Figure 3 executed quickly because they avoided the hard 
part of machine learning: training the model. Not all attacks avoid the train-
ing stage, so some can require substantially more than a second of effort. At-
tackers who cannot steal the model either have to build one of their own or 
use trial-and-error on the victim’s deployed system.10 For example, attackers 
often need large amounts of time to train a model for data poisoning attacks 
to confirm that the poison will have the desired effect. 

Assessing the Threat: 
Ease, Pervasiveness, 
and Defenses

4

T
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Even when the attacks are sometimes time-consuming, the number of actions an 
attacker must take can be surprisingly small.11 Changing as little as a single data-
point can sometimes be enough to have the desired negative effects on the model’s 
performance.12 The same is true for confidentiality attacks, where observing the in-
puts and outputs of a machine learning system just a few hundred or thousand times 
can be enough to determine how machine learning models work.13 And, as we have 
seen, evasion attacks can be successful with only imperceptible changes.14

Of course, coding the attacks is only one part of an operation. The attacker 
needs information to conduct the attack and a way to launch it against the target. To 
do this, the three confidentiality attacks previously discussed only need to observe 
the inputs and outputs of the model or the deployed system. Similarly, neither data 
poisoning nor evasion require direct access to the target. In short, there are many 
opportunities for attackers to achieve their goals and the attacks themselves do not 
require much expertise to create. However, the difficulty of introducing them to the 
victim and ensuring they cause the intended malicious outcome will vary on a case-
by-case basis. 

Some attacks do require substantial information about the target, and obtaining 
that information can be somewhat complicated. For the Healy Hall attack, there 
was an exact copy of the model to be attacked. It was as if a crashed spy drone 
had been recovered and could be used to design camouflage to fool a similar 
drone’s machine learning systems. Depending on our objective, we may not need 
such direct access to the target; oftentimes information about something similar to 
the targeted model will work. The techniques used in the Healy Hall attack can be 
used to simultaneously fool many different image classifiers.15 Without knowing 
what model the other classifiers used, we could send them our doctored image of 
Healy Hall and there is a good chance they would misclassify it. Absent having the 
model, though, it would be harder to force these classifiers to misidentify the build-
ing as a triceratops.16 In general, causing specific failures—such as getting a facial 
recognition system to misclassify someone as a specific other person—requires more 
information about the target model. 

PERVASIVENESS
All machine learning models are susceptible to attack; different kinds of models 
are vulnerable in different ways. In models with few inputs, for example, the victim 
stands a better chance of noticing data poisoning attacks. Similarly, models with 
few inputs are often more robust against evasion attacks because there are fewer 
ways for an attacker to manipulate those inputs. In contrast, more complex models 
offer more opportunities for attackers. That partly explains why image recognition 
systems are so vulnerable: each pixel is an input, creating many manipulation op-
portunities for the attackers.
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But simpler models that are trained on just a few data points have drawbacks, 
too. For example, they are more vulnerable to confidentiality attacks. If there are 
only five people in a training database, then each of those people contributes a lot 
to the tuning of parameters in the model. In models trained on millions of people, 
each person contributes only a little to any parameter and so information can be 
harder to extract via confidentiality attack. 

As a result of these and other systemic weaknesses, all machine learning sys-
tems have vulnerabilities. Some of the most common examples of machine learning 
models are vision systems; evasion attacks against vision systems receive significant 
attention, as this report has shown, but there are prominent examples of attacks 
against audio and text systems, as well. Subtle changes can be made so that the 
computer “hears” whatever the attacker chooses. In voice-controlled homes or 
phones, attackers may gain unauthorized access. Systems that process text are also 
vulnerable to manipulation and evasion. For example, Twitter’s AI for identifying 
misleading tweets about COVID-19 flagged one reading, “Do not give oxygen 
to the idea, which comes up with great frequency, that we are approaching some 
kind of strong AI”—a statement that has nothing to do with COVID-19. These fail-
ures offer a reminder of the shortcomings of machine learning systems.17 It is easy to 
imagine that governments will benefit from the ability to manipulate an adversary’s 
machine learning systems and will perceive an imperative to defend their own. 

DEFENSES
Reliable defenses against these types of attacks are hard to come by, but some 
developments are more promising than others. Protecting information about the 
data sources used to train a model—to guard against membership inference, for ex-
ample—is an area of comparative promise. A technique called differential privacy 
can mathematically limit how much information can be gleaned about any individ-
ual person or datapoint.* The designers of machine learning systems can use those 
techniques to manage their degree of risk and constrain the information available 
to those seeking to breach confidentiality.18 Most of these techniques today force 
the defender to sacrifice performance for privacy and so they are not widely imple-
mented, but future privacy-preserving techniques may be more efficient.19 In mission 
critical systems or cases of extreme data sensitivity, however, these performance 
tradeoffs may be more acceptable. Differential privacy has other limits, too. For 
example, it only protects an individual’s contributions to the training data and will 
not help obscure traits common among groups of contributors. 

*Other mathematical techniques such as secure multi-party computing, homomorphic encryption, 
and federated learning are also promising. Those three techniques, though, solve the different 
problem of keeping the developer from accessing private data rather than keeping the developer’s 
data private. 
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Defenses against other attacks are less promising. To guard against the other 
confidentiality attacks of model inversion and model extraction, the defender can 
reduce their vulnerability by limiting the number of times customers can use their 
model or by intentionally decreasing its accuracy.20 But those steps can interfere 
with the business case and limit the value of machine learning; if a company makes 
money each time the model is used, then limiting the number of uses is not very 
appealing. Other approaches, like keeping the model on a classified server and 
making sure cleared analysts are the only ones who see its outputs, limit the risk of 
model stealing and model inversion but at the cost of restricting the model’s use and 
adding security constraints. 

Defending against attacks on integrity is harder still; it is a game of Whack-a-
Mole where new attacks are invented and defenses are developed, and then those 
defenses are defeated and so on.21 This dynamic applies both to defenses that try to 
detect attacks and those that try to make the models immune to them. And defend-
ing against one attack can invite others. For example, freezing a model and cutting 
off its access to new information means no additional data poisoning is possible, 
but letting it continue to update its defenses can pressure evasion attacks to evolve 
to keep pace.

These defenses are typically only somewhat effective and only for very highly 
constrained attacks of specific types.22 For example, to guard against attacks that 
make imperceptible changes to a picture, a defense might be effective against 
attackers who limit the average change per pixel while not protecting against those 
who limit the maximum change per pixel.23 A subtle change in an attacker’s opera-
tions can change how effective the defense is.†  

This is a vital and perhaps alarming point: machine learning vulnerabilities are 
hard to fix. Fixing them is more akin to addressing hardware vulnerabilities—which 
are notoriously challenging—than it is to the relative ease of patching traditional 
software vulnerabilities.24 For some of the attacks discussed in this paper there is no 
clear solution on the horizon. The persistence of these weaknesses should prompt 
caution when using machine learning in national security contexts against sophisti-
cated adversaries.   

† There are actually many ways to calculate the average and there are many more interesting ways 
to keep the changes small that are more esoteric, such as using the Wasserstein distance.25
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istorically, where vulnerabilities have existed in traditional cyber 
systems, attackers have often exploited them for nefarious or 
destructive ends. The same will likely be true of vulnerabilities in 

machine learning. This is not a call to eliminate machine learning from on-
going modernization, as vulnerabilities do exist in non-AI systems as well. 
Rather, it is a wake-up call: machine learning brings with it new vulnera-
bilities that must be understood well enough to make informed decisions 
about risks and investments. A few findings follow from our analysis. 

MACHINE LEARNING INTRODUCES RISK IN 
ACQUISITION AND MODERNIZATION
Machine learning is deeply integrated into various facets of society 
and will likely continue to gain traction. In some cases, such as integrity 
attacks against movie recommendation systems, there may be relatively 
little incentive to attack and so the risk of using machine learning is low. In 
contrast, the risks to national security systems are substantial, and there are 
many well-resourced and highly motivated adversaries seeking to attack. 
A first step in assessing the risks of deploying machine learning systems 
in such a competitive context is understanding the range of options avail-
able to the potential attackers, which include the model stealing, model 
inversion, membership inference, data poisoning and evasion attacks 
discussed in this report. A subsequent step is understanding the defensive 
options that exist and their effectiveness.

Conclusion and 
Recommendations

H

5



Center for Security and Emerging Technology18

NEW DEFENSES MAY ONLY OFFER SHORT-TERM ADVANTAGE
One of the perpetual questions in cybersecurity is whether the attacker or the de-
fender has the upper hand. It is hard to answer this question until the field of ma-
chine learning cybersecurity settles on specific offensive and defensive techniques. 
Even then the answer may not be clear, as attackers and defenders engage one 
another, both sides will discover new techniques. Currently, defenses do not look 
promising, and many traditional cybersecurity techniques are not easily applied to 
machine learning. In general, attackers can move more quickly than defenders and 
the costs are higher to retrain a model than they are to find a new attack. 

The offense-defense balance changes as machine learning systems reach 
different levels of model complexity. Some techniques that appear to be effective or 
ineffective at first behave differently when applied to more or less powerful systems. 
For example, some defenses that are promising for securing imaging systems that 
read low-resolution handwritten digits are not promising for imaging systems that 
are powerful enough to recognize high-resolution pictures of cars and animals. 

ROBUSTNESS TO ATTACK IS MOST LIKELY TO COME FROM 
SYSTEM-LEVEL DEFENSES
Given the difficulty in finding reliable defenses against the wide range of attack 
options, systemic defenses seem essential. Defenders should assume that attackers 
will successfully compromise some parts of machine learning systems. To limit the 
damage attackers can do, we should build redundancy and increase resilience. 
Especially given how hard it is to fix underlying weaknesses in machine learning 
systems, designing architectures that maximize robustness and prevent cascading 
failures is key. 

For instance, a commonly cited example of an attack involves placing a sticker 
on a stop sign that makes it appear to autonomous vehicles to be a 45 mph sign. 
Although this attack is possible and easy to perform, it only achieves a destructive 
effect if the car drives into a busy intersection. If the car has many ways to decide 
to stop, such as by knowing that intersections usually have stop signs, relying on 
lasers for collision avoidance, observing other cars stopping, or noticing high speed 
cross-traffic, then the risk of attack can remain low despite the car being made of 
potentially vulnerable machine learning components. The systemic-level defense—
to not rely on just one input in making the decision to accelerate through the inter-
section—thwarts the attack. 
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THE BENEFITS TO OFFENSIVE USE OFTEN DO NOT OUTWEIGH 
THE COSTS
The United States is not the only country fielding AI systems, and the opportunity 
to exploit these vulnerabilities in adversaries’ systems may be tempting. There are 
obvious military benefits of causing an enemy weapon to misidentify its targets or 
send an adversary’s autonomous vehicles off course. There are also the obvious 
intelligence benefits of stealing adversaries’ models and learning about the data 
they have used. 

On the other hand, the United States is among the countries best positioned to 
benefit from progress in AI technologies. It has the most to lose if these technologies 
are vulnerable. Demonstrating global norms of restraint against attacking AI may be 
a wise stance. Even if nation-states do not adhere to global norms against attacking 
military AI in conflict, there may be benefits to clarifying the lines against attacking 
civilian systems or critical infrastructure. Clarifying rules and norms would help man-
age the problem of machine learning security both domestically and internationally. 
A posture of restraint when it comes to attacking machine learning systems may also 
help the United States government win the support of AI talent that national security 
officials have been eager to court.

Norms alone will not solve this problem. Whether or not the United States 
decides to pursue attacks on machine learning systems, adversaries will make their 
own decisions about restraint, or lack thereof. Given that machine learning’s vulner-
abilities are pervasive, easy to exploit, and hard to defend, managing the risks they 
pose is too large a task for the technology community to handle alone. It is incum-
bent upon policymakers to understand the threats well enough to assess the dangers 
that the nation, its military and intelligence arms, and its civilians face when they use 
machine learning. In some cases, that exposure may be acceptable, and in others, 
it may not. But in all cases, the management of risk must be informed by technical 
understanding. This primer is meant to help with that endeavor.
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