

Hadoop: Big Data or Big Deal

Eduard Erwee

Introduction

- Eduard Erwee
- Data Soil Ltd (<u>www.datasoil.uk</u>)
- Background
 - Working with Microsoft data products over 20 years
 - MCSD VB6, SQL Server 7
 - 5 years as Microsoft Certified Trainer
 - ▶ 4 years as SQL Server PFE, Reading UK
 - ► Today, clean data toilets for the highest bidder
 - ► No Linux / No Big Data (until 9 months ago)

Agenda

- A) What is Big data?
 - i) Origins
 - ii) Technologies & Terminologies
 - ▶ iii) The Players
- B) How is Big Data Different?
 - i) Philosophies
- C) How to ride the Elephant?
 - ▶ i) All about the tools
 - ▶ ii) Sources of Inspiration
- ▶ D) BIG to the Future!
 - i) Current Common Use-cases
 - ▶ ii) Future Opportunities
- ► E) Summary
- F) Conclusion
- ► G) Q&A

What is Big data?

- ▶ i) Origins
 - Nutch-to-Google-to-Yahoo and beyond
 - ► Apache Who??
- ii) Technologies & Terminologies
 - Core Hadoop
 - Hive
 - HCatalog
 - Pig
 - Sqoop
 - Oozie
 - ► HUE (flavours-of)
 - Mahout
 - Loads of others
 - ► Ha-dump!
- iii) The Players
 - ► The Big 3
 - ▶ One to Watch : Cascading & Lingual

i) Origins

- Nutch-to-Google-to-Yahoo and beyond
- ► Apache Who??

Nutch-to-Google-to-Yahoo and beyond

Apache Who??

The Apache Software Foundation

Community-led development since 1999.

- ► The Apache Software Foundation (http://www.apache.org/)
- ► The ASF is made up of nearly 150 Top Level Projects (Big Data and more)
 - Most of the Hadoop components we will discuss

ii) Technologies & Terminologies

- Core Hadoop
 - ► Hadoop Common:
 - ► Hadoop Distributed File System (HDFS™)
 - ► Hadoop MapReduce:
 - ► Hadoop YARN
- ► HUE (flavours-of)
- Hive
- HCatalog
- Pig
- Sqoop
- Oozie
- Mahout
- Loads of others
- ► Ha-dump!

Core Hadoop

- Hadoop Common:
 - ▶ The common utilities that support the other Hadoop modules.
- ► Hadoop Distributed File System (HDFS™):
 - ▶ A distributed file system that provides high-throughput access to application data.

Core Hadoop

Hadoop MapReduce

Take word counting as an example, something that Google does all of the time.

Core Hadoop

- Hadoop MapReduce (continues):
 - MapReduce-V2
 - ▶ A YARN-based system for parallel processing of large data sets.
 - Built on top of Tez

- ► Hadoop YARN (Yet Another Resource Negotiator):
 - ▶ A framework for job scheduling and cluster resource management.

HUE (flavours-of)

- Hue aggregates the most common Apache Hadoop components into a single UI.
- "Just use" Hadoop web based interface without worrying command line.

Hive

- Managing large datasets residing HDFS.
- Mechanism to query the data using a SQL-like language called HiveQL.
- Runs in HUE

HCatalog

- ▶ Built on top of the Hive metastore and incorporates Hive's DDL
- ► HCatalog's table abstraction presents relational view of data in (HDFS)
- Removes worry about format their data is stored

- For me Very similar to a set of views in SQL Server over staging feeds
- Exposed to Pig / Map Reduce / Hive
- Runs in HUE

HCatalog - Sample

File options						
Input File	/user/sandbox/NYSE	:-2000-2001.tsv.gz				
Encoding	Unicode UTF8	•	Read column headers	•	Import data	•
Delimiter	Tab (\t)	•	Autodetect delimiter	•	Ignore whitespaces	
Replace delimiter with	Tab (\t)	•	Java-style comments		Ignore tabs	
Single line comment						

Table preview					
Column name	Column name	Column name	Column name	Column name	Column name
exchange	stock_symbol	date	stock_price_open	stock_price_high	stock_price_low
Column type	Column type	Column type	Column type	Column type	Column type
string	▼ string	▼ string	▼ double	▼ double	▼ double
Row #1 NYSE	ASP	array bigint	12.55	12.8	12.42
Row #2 NYSE	ASP	binary boolean decimal double	12.5	12.55	12.42
Row #3 NYSE	ASP		12.59	12.59	12.5
Row #4 NYSE	ASP	float	12.45	12.6	12.45
Row #5 NYSE	ASP	int map	12.61	12.61	12.61
Row #6 NYSE	ASP	smallint string	12.4	12.78	12.4
Row #7 NYSE	ASP	timestamp tinyint	12.35	12.58	12.35
Row #8 NYSE	ASP	2001-12-19	12.42	12.6	12.35
Row #9 NYSE	ASP	2001-12-18	12.37	12.5	12.37

Pig

- Pig is a high-level platform used for creating MapReduce.
- The programming language is called Pig Latin
- Optimizer turns Pig into optimized Java Mapreduce.


```
1 a = LOAD 'nyse_stocks' using org.apache.hcatalog.pig.HCatLoader();
2 b = filter a by stock_symbol == 'IBM';
3 c = group b all;
4 d = foreach c generate AVG(b.stock_price_open) , AVG(b.stock price close);
5 dump d;
```

- Similar to M in Power Query
- It's the VB.net Vs C++ debate all over again.
- Structure
 - Hive require data to be more structured
 - ▶ Pig allows you to work with unstructured data.
- Compatible with Hcatalog
- Runs in Hue

The Job job_1404726436893_0007 has been started successfully. You can always go back to Query History for results after the run.

(109.02535999999999,109.08895999999983)

- ► Apache Sqoop(TM) is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases.
- Runs in Hue

- Workflow scheduler system to manage Apache Hadoop jobs.
- Oozie Coordinator jobs
 - Recurrent Oozie Workflow
 - Jobs triggered
 - by time (frequency)
 - data availabilty.
- Integrated with the rest of the Hadoop stack
- Scalable, reliable and extensible system.
- Available in HUE

Mahout

- Goal : scalable machine learning library.
- Examples of Mahout use cases:
 - Recommendation mining
 - ▶ takes users' behaviour and from that tries to find items users might like. (Netflix)
 - Clustering
 - ▶ Group documents, web pages and articles based on
 - contained topics
 - their related documents.
 - ▶ Most common use of this is search engines, which cluster pages based on keywords, page links, etc.
 - Classification
 - Based on <u>prior categorization</u> of documents
 - Evaluates new documents and determine best categories.
 - Filter new mail into INBOX
 - Auto-organize new content
 - flag potential spam comments.

Steaming pile of Data

Inside the Elephant!?

iii) The Players

- ► The Big 3
- One to Watch: Cascading & Lingual

The Big 3

- Hortonworks claims to be the only fully open source distribution.
- Cloudera is close on their heals with everything based on open source but has some additional maintenance and installation functionality that is proprietary
- MAP-R on the other hand re-wrote the storage engine from scratch to improve performance at the cost of being vendor specific
- My Opinion ?
- Benchmarking -- Altoros

Altoros did some significant benchmarking between the 3, and can be found here: http://www.altoros.com/hadoop_benchmark.html

One To Watch: Cascading & Lingual

- Developed by Chris Wensel & Team from Concurrent:
 - http://www.concurrentinc.com/
- Cascading is a development platform for building data applications on Hadoop
 - Developed on top of Cascading:
 - Lingual
 - Simplifies systems integration -- ANSI SQL compatibility -- JDBC driver
 - Pattern
 - Machine learning scoring algorithms through PMML compatibility
 - Scalding
 - ▶ Enables development with Scala, a powerful language for solving functional problems
 - Cascalog
 - ► Enables development with Clojure, a Lisp dialect
 - Driven
 - ▶ Understand data usage + accelerate Cascading application development and management

Driven -- Visualize Development of Flows

- Like SSMS Execution Plans
- Breaks up Query
- Shows Data flow
 - Drill down

Driven -- Application Insights

- Drill down into steps
 - Execution Time
 - Bottle-necks
 - Resource usage

Why Watch: Cascading & Lingual?

- ▶ All 3 Big data platform vendors mentioned before
 - supports Cascading integration
 - investing in ensuring continued support for Cascading on their own platforms
- Used by

- ▶ Single platform to develop code on that evolves with changing big data landscape.
- Single JAR deployment.
- Ansi-92 interface via JDBC for moving data between systems / platforms
- ► All Open-Source (no vendor lock-in)
- ▶ Data Soil is contributing to develop the SQL Server Plug-in for Cascading & Lingual.
 - (see our blogs for getting into Cascading using Microsoft Technologies)

B) How is Big Data Different?

- Philosophies
 - ► Current Architecture vs Schema-On-Read
 - ► S-O-R : Advantages & Disadvantages
 - ► Integration with SQL Server & Windows

Current Architecture vs Schema-On-Read

Current BI Architecture	Big Data BI Architecture			
Get Business Requirements and prioritize	Get Business Requirements and prioritize			
Find / Collect all relevant data sources	All Data is already in the Ha-dump			
Normalize / copy to staging / create structures / schemas / ETL	Create schema for question 1 / ETL			
Create Warehouse / Cube	Send processing instructions to data			
Start answering questions 1 / 2 / 3 / 4 / 5	Answer question 1 {& Repeat}			

S-O-R: Advantages & Disadvantages

- Advantages
 - Store first, ask questions later
 - Storage is cheap compare to high availability SAN
 - ▶ Format agnostic as not pre-normalization / conversion required
 - All data is available in a central place
 - ightharpoonup High degree of parallel processing ightharpoonup speeds up large batch processing
 - Possible to start answering business questions quicker
- Disadvantages
 - ▶ New skillsets & training required
 - Company may not support new software stack
 - Creating new schemas for proprietary data can be difficult

Integration with SQL Server & Windows

- ODBC
 - Hortonworks / Cloudera / MAPR all have supported ODBC drivers
 - Create Linked Servers directly from SQL Server
 - SSIS integration
 - Pull Data directly into Excel (see Hortonworks Sandbox)
- ▶ JDBC & Other
 - ► Tableau / squirrel-sql / Revolution R / Business Objects ext.
- Other ETL Tools
 - ► Talend (to be discussed later)
- Local Install
 - ► Hortonworks Data Platform (HDP)
 - ► HDInsight Emulator

C) How to ride the Elephant?

- ▶ i) All about the tools
 - ► Local VM platform providers
 - Online platform providers
 - Vagrant
 - ► Talend
 - ► Reuse of old machines
- ▶ ii) Sources of Inspiration
 - Sandbox's
 - ► The Apache Software Foundation
 - Github

i) All about the tools

- ► Local VM platform providers
- Online platform providers
- Vagrant
- Talend
- Pet Project : Reuse of old machines

Local VM platform providers

- Hyper-V (Microsoft)
 - Windows Server
 - ▶ Windows 8.1
- VMWARE
 - VMWARE Server Products
 - Workstation On Windows
 - ▶ Personally, I absolutely LOVE Workstation 10.0
 - ► Fusion On Mac
- Virtual Box (Oracle)
 - ► Runs on EVERTYHTING
 - Close second favourite
 - ► Integrates extremely well with Vagrant (to be discussed)

Online platform providers

- ► Azure & Big Data
 - ► HD-Insight (Based on Hortonworks HDP platform)
 - Real World Big Data (SQL-Bits Session)
 - Adam Jorgensen / John Welch
 - ▶ Restored my confidence in MS Big Data Cloud Solutions
- Amazon Cloud (AWS)
 - ► EC2
 - ► Host of supporting services

- Vagrant provides
 - easy to configure,
 - reproducible,
 - and portable work environments built on industry standards.
- Spins up / Hibernates / Destroys complex development environments with one line of code
- Supports Virtualbox / VMWARE / Docker / Hyper-V / Custom Providers
- Ability to spin up environments locally or directly to Amazon EC2

Enterprise grade development environment for creating data integration across just about anything.

Talend Open Studio for Big Data BASIC - Free

Eclipse-Based Tooling

Hadoop 2.0 and YARN Support

Big Data ETL and ELT

HDFS, HBase, HCatalog, Hive, Pig, Sqoop Components

Job Designer

Apache License 2.0

Broadest NoSQL Support

Fully Open Source

http://www.talend.com/download

Talend (i)

Talend (ii)

Supported Database & Data Source Connectivity		
Amazon RDS	HIVE	Oracle
Amazon Redshift	HSQLDB	ParAccel
Amazon S3	Informix	PostgresSQL
AS400	Ingres	PostgresPlus
DB2	InterBase	SAS
Derby DB	JavaDB	SQLite
Exasol	JDBC	Sybase
eXist-db	MaxDB	Teradata
Firebird	Microsoft OLE-DB	VectorWise
Google Storage	Microsoft SQL Server	Vertica
Greenplum	MySQL	Windows Azure Blob Storage
H2	Netezza	

Pet project: Reuse of old machines

- Challenge your manager
- If you can build a cluster from your old desktops that will outperform his current development server, he has to give you a raise!

You'd be surprised what you can do with a pile of these!

ii) Sources of Inspiration

- Sandbox's
- ► The Apache Software Foundation
- Github

- All three the Big Data Players have their pre-built Sandbox's you can download and experiment with
- Hortonworks
 - Current Version 2.1
 - Supports: VirtualBox / VMWare / Hyper-V
- Cloudera
 - Current Version CDH 5.0.x
 - ► Cloudera Live online (beta)
 - Supports: VirtualBox / Vmware / Linux KVM (Kernel-based Virtual Machine)
- MAPR
 - Supports: VirtualBox / Vmware
- Cascading & Lingual
 - ▶ Vagrant Image that spins up 4 Node Cluster via GitHub
 - Supports: VirtualBox

The Apache Software Foundation

- Want to know about BIG future technologies
- Apache Incubator (http://incubator.apache.org/)
 - ► Tez → Speed up MapReduce
 - ► Storm → high-performance realtime computation system
 - ▶ Optiq → SQL interface & advanced query optimization non-RDBMS systems
 - ► Falcon → quickly onboard their data, associated processing & management tasks on Hadoop clusters

- GitHub is a web-based hosting service based on Git.
- ► Git a distributed revision control and source code management (SCM) system initially designed and developed by Linus Torvalds for Linux kernel development
- Great source of Vagrant-Based VM's
 - ► Cascading & Lingual Cluster (Get Vagrant & Virtual Box)
 - ► https://github.com/Cascading/vagrant-cascading-hadoop-cluster

D) BIG to the Future!

- ▶ i) Current Common Use-cases
- ▶ ii) Future Opportunities

i) Current Common Use-cases

- Sentiment (twitter feeds / wordpress scrapes / facebook likes)
 - ► Natural Language Processing: Stanford (http://nlp.stanford.edu:8080/sentiment/rntnDemo.html)

- Recommendation Engines using Mahout / Other (Netflix)
- Anti Money Laundering ??
 - ▶ Live Transaction monitoring not that big for some reason
 - ▶ Graph Databases seems to be doing better here.

ii) Future Opportunities

- Sensors
- Self-Contained Clusters
- Combination ?

- These days, sensors can be installed everywhere to monitor all aspects of life / business
 - Temperature Sensors
 - Pressure Sensors
 - Gas Sensors
 - Smoke Sensors
- A better understanding of day to day happenings can save money and lives.

Self-Contained Clusters

BIGBOARDS 🕏

- Met these guys at the Hadoop Summit in Amsterdam 2014 (http://bigboards.io/)
- 5 data processing nodes
 20 CPU cores and 5TB of raw storage
 1GB ethernet to interlink everything
 1 management console with technology and data library

Self-Contained Clusters + Sensors

Self-Contained Clusters + Sensors

Self-Contained Clusters + Sensors

E) Summary

- Big data does not replace random read and reporting capabilities of SQL Server.
- Big Data is not close to replacing our
 - trusted
 - high volume
 - transaction safe
 - ▶ OLTP frameworks we built.
- ▶ Big data opens up opportunities for storing and processing date at a larger scale than we could never have dreamed of before.

▶ THE FUTURE is not going to be won by one OR the other ...

...but by a <u>combination</u> of BOTH!

Tools To Play With

- Hortonworks Sandbox
 - http://hortonworks.com/products/hortonworks-sandbox/
- Cloudera Sandbox
 - http://www.cloudera.com/content/support/en/downloads.html
- MAPR Sandbox
 - http://www.mapr.com/products/mapr-sandbox-hadoop
- ► Cascading & Lingual Cluster (Get Vagrant & Virtual Box)
 - https://github.com/Cascading/vagrant-cascading-hadoop-cluster
- Vagrant
 - http://www.vagrantup.com/
- Virtual Box
 - https://www.virtualbox.org/
- Talend
 - http://www.talend.com/download
- VMWARE Workstation 10
 - https://my.vmware.com/web/vmware/info/slug/desktop_end_user_computing/vmware_workstation/10_0
- ► HDInsight Emulator
 - ▶ <a href="http://azure.microsoft.com/en-us/documentation/articles/hdinsight-get-started-emulator/#install-documentation/articles/hdinsight-get-started-emu

Appendix : References

- **1) Hadoop : Distributed Data Procesing [Amr Awadallah]
 - ▶ http://www.slideshare.net/cloudera/hadoop-distributed-data-processing
- **2) Hadoop [K Subrahmanyam]
 - ► http://www.authorstream.com/Presentation/aSGuest129127-1356869-techseminar-on-hadoop-ppt/
- **3) An Introduction to Apache Hadoop MapReduce [Mike Frampton]
 - http://www.powershow.com/view/3fdd1b-MGRkZ/An_Introduction_to_Apache_Hadoop_MapReduce_powerpoint_ppt_presentation
- **4) Mahout Explained in 5 Minutes or Less [Josh Gertzen]
 - http://blog.credera.com/technology-insights/java/mahout-explained-5-minutes-less/
- **5) What is Apache Tez? [Roopesh Shenoy]
 - http://www.infoq.com/articles/apache-tez-saha-murthy

Thank you - COPY OF SLIDES ON WEB!

- Eduard Erwee
- Data Soil Ltd
 - ► E-mail: eduard.erwee@datasoil.uk
 - ► Web Site : <u>www.datasoil.uk</u>
 - ► Blog: <u>blog.datasoil.uk</u>
 - ▶ Twitter : @datasoil
 - Facebook: www.facebook.com/datasoil
- Please Remember to do the feedback form online
 - http://www.sqlbits.com/SQLBitsXIISaturday

