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Introduction 
 
 Hadoop represents a Java-based distributed computing framework that is 
designed to support applications that are implemented via the MapReduce 
programming model.  In general, workload dependent Hadoop performance 
optimization efforts have to focus on 3 major categories: the systems HW, the systems 
SW, and the configuration and tuning/optimization of the Hadoop infrastructure 
components.  From a systems HW perspective, it is paramount to balance the 
appropriate HW components in regards to performance, scalability, and cost.  It has to 
be pointed out that Hadoop is classified as a highly-scalable, but not necessarily as a 
high-performance cluster solution.  From a SW perspective, the choice of the OS, the 
JVM, the specific Hadoop version, as well as other SW components necessary to run 
the Hadoop setup do have a profound impact on performance and stability of the 
environment.  The design, setup, configuration, and tuning phase of any Hadoop project 
is paramount to fully benefit from the distributed Hadoop HW and SW solution stack.  
 
 A typical Hadoop cluster consists of an n-level architecture that is comprised of 
rack-mounted server systems.  Each rack is typically interconnected via some (as an 
example GbE) switch while channel bonding may have to be considered depending on 
the workload.  Each rack-level switch may be connected to a cluster-level switch, which 
typically represents a larger port-density 10GbE switch.  Those cluster-level switches 
may also interconnect with other cluster-level switches, or may be uplinked to another 
level of switching infrastructure.  From a functional perspective, the Hadoop server 
systems are categorized as  
(1) JobTracker system that performs task assignment,  
(2) NameNode that maintains all file system metadata (if the Hadoop Distributed File 
System is used).  Preferably (but not required), the NameNode should represent a 
separate physical server, and should not be bundled with the JobTracker.  
(3) Secondary NameNode that periodically check-points the file system metadata on the 
NameNode.  
(4) TaskTracker nodes that perform the MapReduce tasks.  
(5) DataNode systems that store HDFS files and handle the HDFS read/write requests.  
It is suggested to co-located the DataNode systems with the TaskTracker nodes to 
assure optimal data locality.  Please see [HEGE2012] for a more detailed introduction to 
the Hadoop architecture.  
 
 One of the most important design decisions to be made while planning for a 
Hadoop infrastructure deployment is the number, type, and setup/configuration of the 
server nodes in the cluster.  As with any other IT configuration, the workload dependent 
Hadoop application threads may be CPU, memory, and/or IO bound.  For a lot of 
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Hadoop installations, contemporary dual-socket server systems are used.  These server 
systems are normally preferred to larger SMP nodes from a cost-benefit perspective, 
and do provide good load-balancing and thread concurrency perspectives.  For most 
Hadoop installations (workload dependent), configuring a few hard drives per server 
node is sufficient.  For Hadoop workloads that are highly IO intensive, it may be 
necessary to configure higher ratios of disks to available cores.  Most Hadoop 
installation use >= 1TB drives.  While it would be feasible to use RAID solutions, the 
usage of RAID systems with Hadoop servers is generally not recommended, as 
redundancy is build into the HDFS framework (via replicating blocks across multiple 
nodes).  Sufficient memory capacity per server node is paramount, as executing 
concurrent MapReduce tasks at high throughput rates is required to achieve good 
aggregate cluster performance behavior.  From an OS perspective, it is suggested to 
run Hadoop on a contemporary Linux kernel.  Newer Linux kernels provide a much 
improved threading behavior and are more energy efficient. With large Hadoop clusters, 
any power inefficiency amounts to significant (unnecessary) energy costs.   
 
Opportunities and Challenges 
 
 Hadoop is considered a large and complex SW framework that incorporates a 
number of components that interact among each other across multiple HW systems.  
Bottlenecks in a subset of the HW can cause overall performance issues for any 
Hadoop workload. Hadoop performance is sensitive to every component of the stack, 
including Hadoop/HDFS, JVM, OS, NW, the underlying HW, as well as possibly the 
BIOS settings.  Every Hadoop version is distributed with a VERY large set of 
configuration parameters, and a rather large subset of these parameters can potentially 
impact performance.  It has to be pointed out though that one cannot optimize a 
HW/SW infrastructure if one does not understand the internals and interrelationships of 
the HW/SW components.  Or in other words, one cannot tune what one does not 
understand, and one cannot improve what one cannot measure.  Hence, adjusting 
these configuration parameters to optimize performance requires the knowledge of the 
internal working of the Hadoop framework.  As with any other SW system, some 
parameters impact other parameter values.  Hence, it is paramount to use a 
pragmatic/iterative process, as well as several measurement tools, to tune a Hadoop 
environment.  The approach outlined in this paper is based on an actual tuning cycle 
where Hadoop and Linux workload generators are used, data is collected and analyzed, 
and potential bottlenecks are identified and addressed until the Hadoop cluster 
meets/exceeds expectations.  It is paramount to not only address the HW or the OS, but 
also to scrutinize the actual MapReduce code and potentially re-write some of the 
procedures to improve the aggregate performance behavior. 
 
Monitoring and Profiling Tools 
 
Some of the tools used to monitor Hadoop jobs include: 
 

• Ganglia and Nagios represent distributed monitoring systems that capture/report 
various system performance statistics such as CPU utilization, NW utilization, 
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memory usage, or load on the cluster.  These tools are effective in monitoring the 
overall health of the cluster 

 
• The Hadoop task and job logs capture very useful systems counters and debug 

information that aid in understanding and diagnosing job level performance 
bottlenecks 

 
• Linux OS utilities such as dstat, top, htop, iotop, vmstat, iostat, sar, or netstat aid 

in capturing system-level performance statistics. This data is used to study how 
different resources of the cluster are being utilized by the Hadoop jobs, and 
which resources may be under contention 

 
• Java Profilers (such as Hprof) should be used to identify and analyze Java hot-

spots 
 

• System level profilers such as Linux perf or strace should be used to conduct a 
deep-dive analysis to identify potential performance bottlenecks induced by 
SW/HW events.  

 
Methodology 
 
 The tuning methodologies and recommendations presented in this paper are 
based on experience made by designing and tuning Hadoop systems for varying 
workload conditions.  The tuning recommendations made here are based on optimizing 
the Hadoop benchmark TeraSort workload.  Other Hadoop workloads may require 
different/additional tuning.  Nevertheless, the methodology presented here should be 
universally applicable to any Hadoop performance project.  The base configuration used 
for this study consisted of a Hadoop (1.0.2) cluster consisting of 8 Ubuntu 12.10 server 
nodes that were all equipped with 8 cores (Nehalem 2.67GHz), 24GB RAM (1333 MHz), 
and hence provided 3GB of memory per core.  The setup consisted of 7 slave nodes 
(DataNodes, TaskTrackers) and 1 master node (NameNode, SecondaryNameNode, 
JobTracker).  Each data node was configured with 6 1TB hard disks (10,000RPM) in a 
JBOD (Just a Bunch Of Disks) setup.  The interconnect consisted of a GbE (switched) 
network. 
 
 It is always paramount to assure that performance oriented SW engineering 
practices are applied while implementing the Hadoop jobs.  Some initial capacity 
planning has to be done to determine the base HW requirements.  After the cluster is 
designed and setup, it is necessary to test if the Hadoop jobs are functional.  The 
following sanity/stability related steps are suggested prior to any deep-dive action into 
the actual tuning phase of any Hadoop cluster: 
 

• Verify that the HW components of the cluster are configured correctly 
• If necessary, upgrade any SW components of the Hadoop stack to the latest 

stable version 
• Perform burn-in/stress test simulations at the Linux level 
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• Tweak OS and Hadoop configuration parameters that may hamper Hadoop jobs 
to complete 

 
Correctness of the HW Setup 
 
 Apart from the configuration of the HW systems, the BIOS, firmware and device 
drivers, as well as the memory DIMM configuration may have a noticeable performance 
impact on the Hadoop cluster.  To verify the correctness of the HW setup, the 
suggestion made is to follow the guidelines provided by the HW manufacturers.  This is 
a very important first step for configuring an optimized Hadoop cluster.  The default 
settings for certain performance related architectural features are controlled by the 
BIOS. Bug fixes and improvements are made available via new BIOS releases.  Hence, 
it is recommended to always upgrade the systems BIOS to the latest stable version.  
Systems log messages have to be monitored during the cluster burn-in and stress-
testing stage to rule out any potential HW issues.  Upgrading to the latest (stable) 
firmware and device driver levels addresses performance as well as stability issues.  
Optimal IO subsystem performance is paramount to any Hadoop workload. Faulty hard 
drives identified in this process have to be replaced. Appropriate systems memory 
configuration is necessary (check the DIMM setup/speed).  Confirming the baseline 
performance of the CPU, memory, IO, and NW subsystems (via benchmarks) is 
paramount prior to conducting any actual Hadoop performance analysis.  To 
summarize, the following steps are required to correctly setup the Hadoop cluster 
hardware infrastructure: 
 

• Follow manufacturer’s guidelines on installing and configuring HW components 
of the cluster 

• Establish detailed HW profiles (describe the performance potential of the Hadoop 
cluster) 

• Upgrade to the latest (stable) BIOS, firmware, and device driver levels 
• Perform benchmark tests to verify baseline performance of all the systems 

subsystems (see below) 
 
Upgrade SW Components 
 
 The Linux OS distribution level, the Hadoop distribution level, the JDK version, 
and the version of any other 3d-party libraries that comprise the Hadoop framework 
impact the performance of the Hadoop cluster.  Hence, installing the latest (stable) SW 
components of the Hadoop stack (that allow the execution of the Hadoop jobs) is 
recommended.  Performance and stability enhancements, as well as bug fixes released 
with newer Linux distributions may improve Hadoop performance.  Linux kernel 
functionality is improved on an on-going basis, and components such as the file 
systems or the networking stack, which play an important role in Hadoop performance, 
are continuously improved in this process.  The Hadoop environment is evolving all the 
time as well.  A number of bug fixes and performance enhancements are integrated into 
basically every new release.  So the suggestion made is to upgrade to the latest stable 
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versions of Hadoop and the JVM that allows the correct functioning of the Hadoop jobs. 
To summarize: 
 

• Use the latest (stable) Linux distribution that allows for the correct functioning of 
the Hadoop jobs 

• Use the latest (stable) Hadoop distribution for the Hadoop workload at hand 
• Use the latest (stable) JVM and 3d-party libraries that the underlying Hadoop 

workload depends on 
 
Baseline Performance Stress-Test 
 
 Stress testing the different subsystems of a Hadoop cluster prior to moving any 
Hadoop jobs into production is paramount to help uncover any potential performance 
bottlenecks.  These tests/benchmarks are also used to establish/verify the baseline 
performance of the different subsystems of the cluster.  In general, in a 1st phase, non-
Hadoop benchmarks (Linux CPU, memory, IO, and NW benchmarks) are used, while in 
a 2nd phase, actual Hadoop benchmarks are executed.  While running these 
benchmarks, the log files are monitored to identify any potential cluster level 
performance bottlenecks.  Following is a list of some of the benchmarks that aid in 
performing these tests: 
 

• Linux micro and macro benchmarks such DHTUX, FFSB, STREAM, IOzone, or 
Netperf can be used to establish the cluster node and interconnect performance 
baseline  

• Hadoop micro-benchmarks such as TestDFSIO, NNBench, TeraSort, or 
MRBench can be used to stress-test the setup of the Hadoop framework (these 
micro-benchmarks are part of the Hadoop distributions). 

 
 Depending on the nature of the Hadoop workload, some default values of certain 
OS and Hadoop parameters may cause MapReduce task and/or Hadoop job failures, or 
may contribute to noticeable performance regressions.  Hence, from a baseline 
perspective, for most Hadoop workloads, the following configuration parameters may be 
of interest: 
 
Initial OS Parameters: 
 

• The default maximum number of open file descriptors (FD) (as configured by 
using ulimit) may cause the FD's to be exhausted depending on the nature of the 
Hadoop workload.  This may trigger exceptions that lead to job failures.  
Increasing the FD value as a baseline configuration is normally suggested.  

• Fetch failure scenarios may occur while running Hadoop jobs with default 
settings.  In some cases, these failures are due to a low value of the 
net.core.somaxconn Linux kernel parameter.  The default value equals to 128, 
and may have to be increased to 512 or 1,024 
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Initial Hadoop Parameters: 
 

• Depending on the nature of the Hadoop workload, the MapReduce tasks may not 
indicate any progress for a period of time that can exceed mapred.task.timeout 
(set in mapred-site.xml). In some Hadoop distributions, this value is set to 600 
seconds by default.  If necessary, the value may have to be increased based on 
the workload requirements.  It has to be pointed out though that if there are 
actual task hang-ups due to HW, cluster setup, or workload implementation 
issues, increasing the value may mask some actual Hadoop cluster issue 

• If java.net.SocketTimeoutException exceptions are encountered (check error 
logs), the dfs.socket.timeout and dfs.datanode.socket.write.timeout values (in 
hdfs-site.xml) have to be increased.  As above, it is paramount to determine 
though if the change is necessary due to the actual workload, or if some 
underlying HW issue is causing the exceptions 

• The replication factor for each block of an HDFS file (as specified by 
dfs.replication) is typically set to 3 (for fault tolerance).  It is normally not 
suggested to set the parameter to a smaller value.  To reiterate, RAID systems 
are normally not deployed with Hadoop clusters.  

 
Performance Tuning 
 
 After the initial HW and SW (setup) components of the cluster are verified and 
determined to be operating at the currently best possible performance level, a deep dive 
into fine-tuning the actual workload onto the logical and physical resources can be 
commenced.  As already discussed, parameters at all levels of the Hadoop stack do 
impact aggregate Hadoop application performance.   The next few paragraphs discuss 
how to establish a performance baseline for a particular Hadoop workload, and how to 
utilize tuning to achieve a maximum level of resource utilization and performance.  For 
this study, after executing DHTUX and FFSB on the Hadoop cluster nodes and hence, 
assuring that no faulty HW components or logical Linux OS resources are hampering 
performance, the Hadoop TeraSort benchmark was used as the workload generator.  
Without compression, the Map phase of the TeraSort workload processes 1TB of read 
and 1TB of write IO operations, respectively (excluding any spill related IO operations).  
The Reduce phase also performs 1TB of read and 1TB of write IO operations (excluding 
any spill related IO operations). Overall, the TeraSort benchmark is considered as being 
IO intensive.  
 
Performance Baseline Setup 
 
 The default number of MapReduce slots, as well as the default Java heap size 
configuration, is normally not sufficient for most Hadoop workloads.  Therefore, the first 
step while establishing the performance baseline is to scrutinize and potentially adjust 
these configuration parameters.  The goal is to maximize the HW resource utilization 
(including the CPU's) of the cluster.  The Java heap size requirements, the number of 
MapReduce task, the number of HW cores, the IO bandwidth, as well as the amount of 
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available RAM impact the baseline setup.  A methodology that aids in the setup is 
focused on: 
 

1. Configure enough disk space to accommodate the anticipated storage 
requirements 

2. Configure sufficient Map and Reduce slots to maximize CPU utilization 
3. Configure the Java heap size (for Map and Reduce JVM processes)  so that 

ample memory is still available for the OS kernel, buffers, and cache subsystems 
 
The corresponding Hadoop configuration parameters are: 

 mapred.map.tasks,  
 mapred.tasktracker.map.tasks.maximum,  
 mapred.reduce.tasks,  
 mapred.tasktracker.reduce.tasks.maximum,  
 mapred.map.child.java.opts,  
 mapred.reduce.child.java.opts  

and are located in mapred-site.xml.  For larger Hadoop clusters, the rule of thumb is to 
set the maximum number of Map and Reduce tasks that execute simultaneously on a 
TaskTracker in the range between [cores per node / 2] and [cores per node * 2].  
Further, it is suggested to assure that the number of input streams (files) to be merged 
at once via the MapReduce tasks is appropriately configured for the workload at hand.   
The corresponding parameter is labeled io.sort.factor, and depending on the Hadoop 
workload, the value may have to be increased to a sufficiently large number.  Another 
rule of thumb is that each Map task should run for a few minutes.  Short running Map 
tasks encounter too much startup overhead and are not efficient in the shuffle phase 
(during the shuffle phase, MapReduce partitions data among the various Reducers).  
On the other hand, very long running Map tasks limit/hamper cluster parallelism and 
cluster sharing.   
 
Utilizing the above discussed approach, the following baseline configuration was setup: 

 Configuring 4 data disk drives per DataNode 
 Allocating 1 Map slot and 1 Reduce slot per CPU core 
 Allocating 1GB of initial and max Java heap size for Map and Reduce JVM 

processes 
 
 Hence, the 2 JVM processes per core may allocate up to 2GB of heap space per 
core (3GB of RAM per core is available).  So the remaining 1GB of memory per core 
can be used by the OS kernel, application executables, and cache subsystems.  This 
baseline configuration was chosen based on the TeraSort workload behavior.  Based on 
this setup, a first set of 10 benchmark runs were executed, the collected performance 
data was post-processed and analyzed (the CV revealed a less than 4% fluctuation 
among the runs), and a first baseline performance document was compiled.  
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Sensitivity Study 1 - Data Disk Scaling 
 
 One of the first speedup questions to be answered is how well the workload 
scales while additional disks are made available.  In a Hadoop environment, that 
requires adjusting mapred.local.dir (in mapred-site.xml) as well as dfs.name.dir and 
dfs.data.dir (in hdfs-site.xml) to reflect the number of data disks utilized by the Hadoop 
framework.  For this study, the TeraSort benchmark was executed (10 times each) with 
5 and 6 disk drives available per data node.  Based on the rather high IO demand of the 
TeraSort workload, the benchmark runs revealed that performance scales rather well 
while adding additional data disks.  Using the 4 disk setup as the normalized 
performance baseline (aka 100%), scaling the number of disks to 5 and 6, resulted in 
lowering the normalized execution time by 19% and 34%, respectively.  Hence, the 
decision was made to execute the other sensitivity studies with 6 data disks per data 
node. 
 
Sensitivity Study 2 - Data Compression 
 
 Hadoop supports compression at the input data, intermediate Map output data, 
and Reduce output data stages, respectively.  Hadoop further supports multiple codecs 
to perform the compression/decompression tasks (see Table 1).  Some codecs provide 
better compression factors, but take longer to compress/decompress the data, while 
others strive to balance the compression factor with the compression/decompression 
related overhead.  The TeraSort workload does not support input data compression or 
Reduce output data compression.  Hence, only compression at the intermediate Map 
output stage can be benchmarked. Enabling Map output compression reduces the disk 
and the network IO overhead at the expense of utilizing additional CPU cycles to 
compress/decompress the data.  Therefore, compression in Hadoop may reflect an 
exercise in compromises where based on the workload and the HW setup, the decision 
has to be made to either or not utilize a codec (and if yes, at what stage).  The 
configuration files for data compression in Hadoop are: 
 

 mapred.compress.map.output,  
 mapred.map.output.compression.codec, 
 mapred.output.compress,  
 mapred.output.compression.type,  
 mapred.output.compression.codec  

 
all located in mapred-site.xml.  
 
 To reiterate, Hadoop clusters that are already CPU bound (scenarios where the 
cores do not stall much for IO activities and hence not many CPU cycles are available 
for compression/decompression tasks), may not benefit from using a codec.  For this 
study, benchmarks with Snappy, LZO, and gzip where conducted.  Based on the 
TeraSort workload, the LZO codec provided the best performance behavior.  Compared 
to the normalized execution time baseline, using LZO compression reduced the 
execution time by approximately 32%.  While the other 2 codecs provided improved 
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performance behaviors, neither one was close to LZO. Hence, the decision was made 
to use the LZO codec for the next rounds of sensitivity studies.  

 

Table 1: Some Hadoop Compression Formats 

 
Compression 

Format 
Hadoop Compression Codec 

DEFLATE org.apache.hadoop.io.compress.DefaultCodec 
gzip org.apache.hadoop.io.compress.GzipCodec 
bzip2 org.apache.hadoop.io.compress.BZip2Codec 
LZO com.hadoop.compression.lzo.LzopCodec 
LZ4 org.apache.hadoop.io.compress.Lz4Codec 

Snappy org.apache.hadoop.io.compress.SnappyCodec 
 
  
 Note: The LZO libraries are GPL-licensed and may not be included in some 
distributions.  Depending on the Hadoop environment, next to compression, it may also 
be beneficial to implement a combiner to reduce the amount of data to be transferred.  
The combiner function is used as an optimization for the MapReduce job.  The 
combiner function runs on the output of the Map phase, and is used as a filtering or 
aggregating step to lessen the number of intermediate keys that are being passed to the 
Reducers. 
 
Sensitivity Study 3 - JVM Reuse Policy 
 
 The Hadoop parameter mapred.job.reuse.jvm.num.tasks determines whether or 
not the spawned MapReduce JVM threads can be reused (aka execute more than 1 
task).  The parameter is defined in mapred-site.xml with a default value of 1, which 
implies that the JVM is not being reused.  Adjusting the value to -1 changes the 
behavior in a way that allows an unlimited number of tasks can be scheduled per JVM 
instance.  Enabling the JVM reuse feature may reduce the JVM startup and shutdown 
overhead and improve performance, as the JVM spends less time interpreting Java 
bytecode (JIT compilation).  The JVM reuse feature is normally beneficial in cases 
where the workload consists of a large number of very short running tasks.  Having said 
that, enabling JVM reuse did not have a significant impact on the TeraSort workload. 
 
Sensitivity Study 4 - HDFS Block Size 
 
 Each Map task operates on what is labeled an input split [2].  The 
mapred.min.split.size, mapred.max.split.size (in mapred-site.xml), and dfs.block.size (in 
hdfs-site.xml) configuration values determine the size of the input split.  The input split 
size and the total input data size of the Hadoop workload govern the total number of 
Map tasks spawned by the Hadoop framework.  For a workload such as TeraSort, the 
best way to adjust the input split size is by adjusting the HDFS block size via 
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dfs.block.size.  If a Hadoop thread is spawning a large number of Map tasks, it is 
suggested to evaluate the performance behavior with larger HDFS block sizes.  
Reducing the number of Map tasks by using larger block sizes may decrease the Map 
JVM start and shutdown overhead.  Further, it may also reduce the cost incurred while 
merging Map output segments during the Reduce phase.  Larger block sizes normally 
also aid in prolonging the execution time for each Map task.  
 
 With Hadoop, it is beneficial to execute a small number of long(er) running Map 
tasks compared to a setup with a large number of (very) short running Map tasks.  It has 
to be pointed out though that that if the Map output size is proportional to the HDFS 
block size, bigger block sizes may trigger additional Map-side spills if the spill related 
properties are not adjusted accordingly (see below).  For this study, HDFS block sizes 
of 64MB (default), 128MB, and 256MB were benchmarked.  The conducted 
benchmarks disclosed that for the TeraSort workload, a 256MB HDFS block size 
provides the most effective setup.  To illustrate, compared to the 64MB baseline, with a 
256MB HDFS block size, the normalized execution time was reduced by approximately 
18%. 
 
Sensitivity Study 5 - Map Side Spills 
 
 The number 1 goal of the Map task optimization phase is to assure that the 
workload only spills once (during the final spill).  While the Map tasks are being 
executed, the (intermediate) output is stored in a buffer.  This buffer basically reflects a 
chunk of reserved memory that is part of the Map JVM heap space.  The default buffer 
size equals to 100 MB (total buffer space governed by io.sort.mb in mapred-site.xml).  
Further, a portion of that buffer is reserved for metadata (for the spilled records).  The 
default value for io.sort.record.percent equals to 0.5 (5%) (in mapred-site.xml) and 
hence, for the default 100MB buffer size, the metadata buffer size equals to 5MB (see 
Figure 1). As each metadata record equals to 16 bytes, a total of 327,680 metadata 
records can be stored in the buffer.  The actual spills occur as soon as a certain 
threshold is reached, either by the data or the metadata portion of the buffer. The 
default threshold value io.sort.spill.percent (in mapred-site.xml) equals to 0.8 (80%).  In 
a lot of Hadoop installations, the crux of the issue is that the metadata buffers are 
saturated much faster than the data buffers.   
 
 The process of spilling Map outputs n times to disk prior to the final spill 
generates additional overhead due to reading/merging the spilled records.  If sufficient 
Java heap memory is available for the Map JVM's, the goal has to be to eliminate all the 
intermediate spills.  If the available heap space is limited, the focus has to be on 
minimizing the number of spills by adjusting the io.sort.record.percent parameter.  To 
determine if a Hadoop setup is encountering intermediate spills requires monitoring the 
Map Output Records and the Spilled Records counters via the JobTracker Web 
interface.  This has to be done immediately after the Map phase for a job is completed.  
If the number of Spilled Records is greater than Map Output Records, additional spilling 
is occurring in the Hadoop setup.  For the TeraSort benchmark and a HDFS block size 
of 256MB (each record is 100 bytes long), io.sort.mb was set to 300MB, 
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io.sort.record.percent to 0.15 (15% of 300MB) and io.sort.spill.percent to 0.95 (95%) to 
eliminate Map-side spills.  The Map side tuning resulted into an approximately 2% 
performance improvement (normalized execution time).  While tuning a Hadoop setup, it 
is imperative to understand that the value for io.sort.mb has to fit into the Java heap 
(plus whatever memory the Mapper requires plus an additional memory overhead that is 
normally approximated at 30%). Note: As of Hadoop 2.0, it is no longer necessary to 
adjust io.sort.record.percent. 
 

Figure 1: MapOutputBuffer (Hadoop 1.x) 
 

 
 
 
Note: Picture courtesy of Hadoop/Apache 

 
 
Sensitivity Study 6 - Copy Phase Tuning 
 
 In Hadoop setups where the Reduce phase does not complete copying Map 
outputs soon after all the Map tasks are processed, additional tuning may be necessary.  
A slow copy phase may be due to several possible scenarios: 

• The default maximum number of parallel MapOutput copy threads 
(mapred.reduce.parallel.copies in mapred-site.xml) equals to 5, and hence could 
be the limiting factor. It is suggested to increase that value (especially on larger 
Hadoop clusters).  It has to be pointed out though that higher values may lead to 
IO contention and hence, benchmarking to detect an optimal balance for the 
workload at hand is necessary  

• The default maximum number of worker threads (at the TaskTracker level) used 
to serve Map outputs to the Reducers (tasktracker.http.threads) may be 
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configured too small.  This is a TaskTracker level property, and adjusting the 
value (in small increments) may improve performance in the copy phase 

• Parameters such as dfs.namenode.handler.count (in hdfs-site.xml) or 
mapred.job.tracker.handler.count (in mapred-site.xml) may have to be adjusted.  
These parameters govern the number of NameNode and JobTracker server 
threads that handle remote procedure calls (RPC's) and for some installations, 
the default values are too small 

• The dfs.datanode.handler.count (in hdfs-site.xml) parameter may have to be 
adjusted, as the default value may be too small, especially if a large number of 
HDFS clients are active in the cluster.  It has to be pointed out though that each 
additional thread increases the demand on the memory subsystem 

• Reduce side spill scenarios could be the culprit (see below) 
• Network related constraints may be contributing to the behavior.  Using Linux 

NW benchmarks allow quantifying the throughput potential of the network 
subsystem 

 
Sensitivity Study 7 - Reduce Side Spills 
 
 For most Hadoop workloads, from a performance perspective, the Reduce phase 
is paramount in regards to the total execution time.  In general, the Reduce phase is 
network and IO intensive, as all the output data generated by (potentially) a large 
number of Map tasks has to be copied, aggregated/merged, processed, and written 
back into HDFS. Hence, depending on the total number of allocated Reduce slots, the 
Java heap requirements for the Reduce JVM's may (greatly) exceed the Map JVM's 
demand.  As the Map tasks start completing their work, the Map output is sorted, 
partitioned (per Reducer), and written to the TaskTracker disks.  Next, these Map 
partitions are copied to the appropriate Reduce TaskTrackers.  A buffer governed by 
mapred.job.shuffle.input.buffer.percent (in mapred-site.xml) is used to store the Map 
output data. If the buffer is too small to store all the data, the Map output has to be 
spilled to disk.  The default value for mapred.job.shuffle.input.buffer.percent equals to 
0.70, which implies that 70% of the Reduce JVM heap space is reserved for storing the 
copied Map output data.  If the buffer reaches a certain threshold (controlled by 
mapred.job.shuffle.merge.percent in mapredsite.xml and set to 0.66 (66%) by default), 
the accumulated Map output data is merged and spilled to disk.  As the Reduce-side 
sort phase completes, part of the Reduce JVM heap (restricted by 
mapred.job.reduce.input.buffer.percent in mapred-site.xml) can be used to retain the 
Map outputs prior to feeding it into the final reduce function of the Reduce phase.  By 
default, the mapred.job.reduce.input.buffer.percent parameter is set to 0, which implies 
that all of the Reduce JVM heap is allotted to the final reduce function.  For some 
Hadoop environments, benchmarks have show that setting 
mapred.job.reduce.input.buffer.percent to 0.7 or 0.8 is sufficient to keep all of the 
reducer input data in memory. 
 
 Configuring (via mapred.job.shuffle.input.buffer.percent and 
mapred.job.reduce.input.buffer.percent) large buffers normally aids in avoiding 
unnecessary IO operations caused by Reduce-side spills.  In cases where Identity 



13 
 

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013 

 

Reducers (an identity reducer simply outputs each value) are used (such as by the 
TeraSort workload), the reduce function normally does not require a large Java heap.  
In such a scenario, performance may be improved by increasing the 
mapred.job.reduce.input.buffer.percen value.  For the TeraSort benchmark, increasing 
mapred.job.shuffle.input.buffer.percent to 0.85 and 
mapred.job.reduce.input.buffer.percent to 0.75 resulted into a nice performance gain of 
approximately 8% (based on the normalized execution time).  Depending on the 
workload, minimizing the number of Map slots, and hence allocating the freed up 
memory resources to the Reduce JVM's may substantially boost performance.  In other 
words, large heap space setups for the Reduce side may noticeably improve aggregate 
performance.  Another parameter to scrutinize is mapred.inmem.merge.threshold, the 
threshold number of map outputs for starting the process of merging the outputs and 
spilling to disk.  A value of 0 or less implies no threshold, and hence the spill behavior is 
governed solely by mapred.job.shuffle.merge.percent.  
 
Sensitivity Study 8 - JVM Configuration Tuning 
 
 The next step in the tuning process focuses on the JVM.  The JVM vendors 
normally strive to optimize/improve performance with any new release.  Nevertheless, 
there is always ample opportunity to improve performance via a flag tuning exercise.  
The suggestion made is to study the available flags for the particular JVM version being 
used in the Hadoop setup.  Some of the JVM flags (the Oracle JDK was used for this 
TeraSort study) that may have a profound impact on performance are: 
 

• AggressiveOpts – An umbrella flag that governs whether certain optimizations 
are enabled or not by the JVM. The optimizations vary depending on the JVM 
version, and hence the suggestion made is to experiment with this flag, 
especially when the systems are upgraded to a newer JVM version  

• UseCompressedOops – Compressed Ordinary Object Pointers represent 
compressed pointers that aid in reducing the memory footprint of 64-bit JVM's (at 
the expense of reduced addressable Java heap space) 

• UseBiasedLocking - The biased locking feature may improve performance in 
scenarios where locks are generally not contended 

 
 It is always suggested to conduct a garbage collection (GC) performance 
analysis to potentially further fine-tune the Map and Reduce JVM's (check for any 
potential GC overhead via +PrintGCDetails –verbose:gc).  For profiling purposes, add –
Xprof to mapred.child.java.opts and scrutinize the stdout task log.  In addition, 
depending on the JVM being used, the parameter java.net.preferIPv4Stack should be 
set to true (to avoid timeouts in scenarios where the OS/JVM is presented with an IPv6 
address and has to resolve the hostname).  As a best practice systems implementation 
task, for the conducted TeraSort benchmarks, the JVM configuration was optimized 
prior to executing any actual benchmarks on the Hadoop cluster. 
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Sensitivity Study 9 - OS (Linux) Tuning 
 
 The Transparent Huge Pages (THP) feature focuses on simplifying large page 
management.  Depending on the application and the workload, the feature may 
significantly improve the overall performance behavior of Linux installations.  However, 
some Hadoop workloads (executing RedHat Linux with the THP feature enabled) 
revealed high system CPU utilization (due to the THP compaction process) that let to 
rather large Hadoop performance degradations.  In such a scenario, it is suggested to 
set the THP parameter to never (disabled).  
 
 The local Linux filesystem, as well as the IO scheduler chosen for the Hadoop 
setup have a profound impact on aggregate Hadoop cluster performance.  
Contemporary Linux kernels support the CFQ, the deadline, as well as the noop IO 
scheduler (the anticipatory IO scheduler has been retired as of 2.6.37).  Depending on 
the actual workload and the physical setup of the IO subsystem, any of the 3 IO 
schedulers may perform best in any given Hadoop environment.  The same holds true 
for the local file systems.  Some of the more popular Linux file systems are ext4, XFS, 
JFS, and Btrfs. For most Hadoop installations, the ext4 file system reflects the preferred 
choice.  For this study, the ext4 filesystem was used in conjunction with the CFQ IO 
scheduler.  The normalized execution time delta between using the CFQ and the 
deadline IO scheduler, respectively, was approximately 3% (in favor of CFQ).  As the 
noop scheduler reflects an IO scheduler solution that normally works well for SAN 
subsystems, and as the benchmarked Hadoop cluster does not use any SAN solution, 
the noop option was not further pursued.  
 
 With Hadoop, it is paramount to mount the data disk file systems with the 
noatime attribute.  Omitting the mount option results in triggering for each file read 
operation a disk write call to maintain the last access time stamp for the file.  For the 
TeraSort benchmark, mounting the data disk file systems with noatime (on Linux, 
noatime includes nodiratime) resulted into a significant performance gain (approximately 
21%).  For some Hadoop workloads, it is beneficial to tune the file system read-ahead 
buffer size (especially for sequential read operations of large files) by prefetching 
additional blocks into memory.  The read-ahead tuning on Linux systems is conducted 
via blockdev --setra.  It has to be pointed out that additional Linux IO tuning may be 
necessary to optimize the workload onto the logical and physical systems resources.  
Please see [HEGE2010] for more information on optimizing Linux IO performance.  
 
 
Summary & Conclusion 
 
 Compared to the initial baseline configuration with 4 disks per data node, the 
configuration and tuning adjustments discussed in this report resulted into a cumulative 
performance improvement factor of 4.2 (for the TeraSort benchmark). A big portion of 
the performance gain for the TeraSort benchmark was due to utilizing 6 instead of 4 
disks per data node.  Nevertheless, comparing the 6 disk setup tuned verses the 6 disk 
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non-tuned TeraSort benchmark runs still revealed an improvement factor (normalized 
execution time) of 2.6.  
 
 It has to be pointed out though that designing and configuring a Hadoop cluster 
for optimal performance is considered a moving target that is heavily workload 
dependent.  To illustrate, while this study did incorporate an evaluation of the Linux IO 
schedulers impact on the TeraSort benchmark, the study did not address the impact of 
running the TeraSort workload against either the Fair or the Capacity Hadoop 
scheduler, respectively.  Due to the nature of the TeraSort workload, the behavior of the 
Fair and the Capacity Hadoop scheduler, as well as the setup of the Hadoop cluster 
used in this study, the decision made was to only run the benchmark with the Hadoop 
default scheduler (FIFO).  
 
 In general, achieving optimal performance behavior from any Hadoop setup 
requires choosing the appropriate HW and SW stack.  Fine-tuning the Hadoop 
environment necessitates a fairly in-depth analysis of the code path, and ultimately the 
physical and logical resources utilized by the application workload.  Depending on the 
Hadoop environment, this may be a rather time-consuming (but necessary) process.  As 
with most IT projects, the due diligence in the design and planning phase normally pays 
off in regards to the performance, stability, and the TCO aspects while the Hadoop 
cluster is ultimately moved into production.  
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