
1

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Hadoop Performance Tuning - A Pragmatic & Iterative Approach

Dominique Heger
DH Technologies

Introduction

 Hadoop represents a Java-based distributed computing framework that is
designed to support applications that are implemented via the MapReduce
programming model. In general, workload dependent Hadoop performance
optimization efforts have to focus on 3 major categories: the systems HW, the systems
SW, and the configuration and tuning/optimization of the Hadoop infrastructure
components. From a systems HW perspective, it is paramount to balance the
appropriate HW components in regards to performance, scalability, and cost. It has to
be pointed out that Hadoop is classified as a highly-scalable, but not necessarily as a
high-performance cluster solution. From a SW perspective, the choice of the OS, the
JVM, the specific Hadoop version, as well as other SW components necessary to run
the Hadoop setup do have a profound impact on performance and stability of the
environment. The design, setup, configuration, and tuning phase of any Hadoop project
is paramount to fully benefit from the distributed Hadoop HW and SW solution stack.

 A typical Hadoop cluster consists of an n-level architecture that is comprised of
rack-mounted server systems. Each rack is typically interconnected via some (as an
example GbE) switch while channel bonding may have to be considered depending on
the workload. Each rack-level switch may be connected to a cluster-level switch, which
typically represents a larger port-density 10GbE switch. Those cluster-level switches
may also interconnect with other cluster-level switches, or may be uplinked to another
level of switching infrastructure. From a functional perspective, the Hadoop server
systems are categorized as
(1) JobTracker system that performs task assignment,
(2) NameNode that maintains all file system metadata (if the Hadoop Distributed File
System is used). Preferably (but not required), the NameNode should represent a
separate physical server, and should not be bundled with the JobTracker.
(3) Secondary NameNode that periodically check-points the file system metadata on the
NameNode.
(4) TaskTracker nodes that perform the MapReduce tasks.
(5) DataNode systems that store HDFS files and handle the HDFS read/write requests.
It is suggested to co-located the DataNode systems with the TaskTracker nodes to
assure optimal data locality. Please see [HEGE2012] for a more detailed introduction to
the Hadoop architecture.

 One of the most important design decisions to be made while planning for a
Hadoop infrastructure deployment is the number, type, and setup/configuration of the
server nodes in the cluster. As with any other IT configuration, the workload dependent
Hadoop application threads may be CPU, memory, and/or IO bound. For a lot of

2

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Hadoop installations, contemporary dual-socket server systems are used. These server
systems are normally preferred to larger SMP nodes from a cost-benefit perspective,
and do provide good load-balancing and thread concurrency perspectives. For most
Hadoop installations (workload dependent), configuring a few hard drives per server
node is sufficient. For Hadoop workloads that are highly IO intensive, it may be
necessary to configure higher ratios of disks to available cores. Most Hadoop
installation use >= 1TB drives. While it would be feasible to use RAID solutions, the
usage of RAID systems with Hadoop servers is generally not recommended, as
redundancy is build into the HDFS framework (via replicating blocks across multiple
nodes). Sufficient memory capacity per server node is paramount, as executing
concurrent MapReduce tasks at high throughput rates is required to achieve good
aggregate cluster performance behavior. From an OS perspective, it is suggested to
run Hadoop on a contemporary Linux kernel. Newer Linux kernels provide a much
improved threading behavior and are more energy efficient. With large Hadoop clusters,
any power inefficiency amounts to significant (unnecessary) energy costs.

Opportunities and Challenges

 Hadoop is considered a large and complex SW framework that incorporates a
number of components that interact among each other across multiple HW systems.
Bottlenecks in a subset of the HW can cause overall performance issues for any
Hadoop workload. Hadoop performance is sensitive to every component of the stack,
including Hadoop/HDFS, JVM, OS, NW, the underlying HW, as well as possibly the
BIOS settings. Every Hadoop version is distributed with a VERY large set of
configuration parameters, and a rather large subset of these parameters can potentially
impact performance. It has to be pointed out though that one cannot optimize a
HW/SW infrastructure if one does not understand the internals and interrelationships of
the HW/SW components. Or in other words, one cannot tune what one does not
understand, and one cannot improve what one cannot measure. Hence, adjusting
these configuration parameters to optimize performance requires the knowledge of the
internal working of the Hadoop framework. As with any other SW system, some
parameters impact other parameter values. Hence, it is paramount to use a
pragmatic/iterative process, as well as several measurement tools, to tune a Hadoop
environment. The approach outlined in this paper is based on an actual tuning cycle
where Hadoop and Linux workload generators are used, data is collected and analyzed,
and potential bottlenecks are identified and addressed until the Hadoop cluster
meets/exceeds expectations. It is paramount to not only address the HW or the OS, but
also to scrutinize the actual MapReduce code and potentially re-write some of the
procedures to improve the aggregate performance behavior.

Monitoring and Profiling Tools

Some of the tools used to monitor Hadoop jobs include:

• Ganglia and Nagios represent distributed monitoring systems that capture/report
various system performance statistics such as CPU utilization, NW utilization,

3

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

memory usage, or load on the cluster. These tools are effective in monitoring the
overall health of the cluster

• The Hadoop task and job logs capture very useful systems counters and debug

information that aid in understanding and diagnosing job level performance
bottlenecks

• Linux OS utilities such as dstat, top, htop, iotop, vmstat, iostat, sar, or netstat aid

in capturing system-level performance statistics. This data is used to study how
different resources of the cluster are being utilized by the Hadoop jobs, and
which resources may be under contention

• Java Profilers (such as Hprof) should be used to identify and analyze Java hot-

spots

• System level profilers such as Linux perf or strace should be used to conduct a
deep-dive analysis to identify potential performance bottlenecks induced by
SW/HW events.

Methodology

 The tuning methodologies and recommendations presented in this paper are
based on experience made by designing and tuning Hadoop systems for varying
workload conditions. The tuning recommendations made here are based on optimizing
the Hadoop benchmark TeraSort workload. Other Hadoop workloads may require
different/additional tuning. Nevertheless, the methodology presented here should be
universally applicable to any Hadoop performance project. The base configuration used
for this study consisted of a Hadoop (1.0.2) cluster consisting of 8 Ubuntu 12.10 server
nodes that were all equipped with 8 cores (Nehalem 2.67GHz), 24GB RAM (1333 MHz),
and hence provided 3GB of memory per core. The setup consisted of 7 slave nodes
(DataNodes, TaskTrackers) and 1 master node (NameNode, SecondaryNameNode,
JobTracker). Each data node was configured with 6 1TB hard disks (10,000RPM) in a
JBOD (Just a Bunch Of Disks) setup. The interconnect consisted of a GbE (switched)
network.

 It is always paramount to assure that performance oriented SW engineering
practices are applied while implementing the Hadoop jobs. Some initial capacity
planning has to be done to determine the base HW requirements. After the cluster is
designed and setup, it is necessary to test if the Hadoop jobs are functional. The
following sanity/stability related steps are suggested prior to any deep-dive action into
the actual tuning phase of any Hadoop cluster:

• Verify that the HW components of the cluster are configured correctly
• If necessary, upgrade any SW components of the Hadoop stack to the latest

stable version
• Perform burn-in/stress test simulations at the Linux level

4

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

• Tweak OS and Hadoop configuration parameters that may hamper Hadoop jobs
to complete

Correctness of the HW Setup

 Apart from the configuration of the HW systems, the BIOS, firmware and device
drivers, as well as the memory DIMM configuration may have a noticeable performance
impact on the Hadoop cluster. To verify the correctness of the HW setup, the
suggestion made is to follow the guidelines provided by the HW manufacturers. This is
a very important first step for configuring an optimized Hadoop cluster. The default
settings for certain performance related architectural features are controlled by the
BIOS. Bug fixes and improvements are made available via new BIOS releases. Hence,
it is recommended to always upgrade the systems BIOS to the latest stable version.
Systems log messages have to be monitored during the cluster burn-in and stress-
testing stage to rule out any potential HW issues. Upgrading to the latest (stable)
firmware and device driver levels addresses performance as well as stability issues.
Optimal IO subsystem performance is paramount to any Hadoop workload. Faulty hard
drives identified in this process have to be replaced. Appropriate systems memory
configuration is necessary (check the DIMM setup/speed). Confirming the baseline
performance of the CPU, memory, IO, and NW subsystems (via benchmarks) is
paramount prior to conducting any actual Hadoop performance analysis. To
summarize, the following steps are required to correctly setup the Hadoop cluster
hardware infrastructure:

• Follow manufacturer’s guidelines on installing and configuring HW components
of the cluster

• Establish detailed HW profiles (describe the performance potential of the Hadoop
cluster)

• Upgrade to the latest (stable) BIOS, firmware, and device driver levels
• Perform benchmark tests to verify baseline performance of all the systems

subsystems (see below)

Upgrade SW Components

 The Linux OS distribution level, the Hadoop distribution level, the JDK version,
and the version of any other 3d-party libraries that comprise the Hadoop framework
impact the performance of the Hadoop cluster. Hence, installing the latest (stable) SW
components of the Hadoop stack (that allow the execution of the Hadoop jobs) is
recommended. Performance and stability enhancements, as well as bug fixes released
with newer Linux distributions may improve Hadoop performance. Linux kernel
functionality is improved on an on-going basis, and components such as the file
systems or the networking stack, which play an important role in Hadoop performance,
are continuously improved in this process. The Hadoop environment is evolving all the
time as well. A number of bug fixes and performance enhancements are integrated into
basically every new release. So the suggestion made is to upgrade to the latest stable

5

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

versions of Hadoop and the JVM that allows the correct functioning of the Hadoop jobs.
To summarize:

• Use the latest (stable) Linux distribution that allows for the correct functioning of
the Hadoop jobs

• Use the latest (stable) Hadoop distribution for the Hadoop workload at hand
• Use the latest (stable) JVM and 3d-party libraries that the underlying Hadoop

workload depends on

Baseline Performance Stress-Test

 Stress testing the different subsystems of a Hadoop cluster prior to moving any
Hadoop jobs into production is paramount to help uncover any potential performance
bottlenecks. These tests/benchmarks are also used to establish/verify the baseline
performance of the different subsystems of the cluster. In general, in a 1st phase, non-
Hadoop benchmarks (Linux CPU, memory, IO, and NW benchmarks) are used, while in
a 2nd phase, actual Hadoop benchmarks are executed. While running these
benchmarks, the log files are monitored to identify any potential cluster level
performance bottlenecks. Following is a list of some of the benchmarks that aid in
performing these tests:

• Linux micro and macro benchmarks such DHTUX, FFSB, STREAM, IOzone, or
Netperf can be used to establish the cluster node and interconnect performance
baseline

• Hadoop micro-benchmarks such as TestDFSIO, NNBench, TeraSort, or
MRBench can be used to stress-test the setup of the Hadoop framework (these
micro-benchmarks are part of the Hadoop distributions).

 Depending on the nature of the Hadoop workload, some default values of certain
OS and Hadoop parameters may cause MapReduce task and/or Hadoop job failures, or
may contribute to noticeable performance regressions. Hence, from a baseline
perspective, for most Hadoop workloads, the following configuration parameters may be
of interest:

Initial OS Parameters:

• The default maximum number of open file descriptors (FD) (as configured by
using ulimit) may cause the FD's to be exhausted depending on the nature of the
Hadoop workload. This may trigger exceptions that lead to job failures.
Increasing the FD value as a baseline configuration is normally suggested.

• Fetch failure scenarios may occur while running Hadoop jobs with default
settings. In some cases, these failures are due to a low value of the
net.core.somaxconn Linux kernel parameter. The default value equals to 128,
and may have to be increased to 512 or 1,024

6

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Initial Hadoop Parameters:

• Depending on the nature of the Hadoop workload, the MapReduce tasks may not
indicate any progress for a period of time that can exceed mapred.task.timeout
(set in mapred-site.xml). In some Hadoop distributions, this value is set to 600
seconds by default. If necessary, the value may have to be increased based on
the workload requirements. It has to be pointed out though that if there are
actual task hang-ups due to HW, cluster setup, or workload implementation
issues, increasing the value may mask some actual Hadoop cluster issue

• If java.net.SocketTimeoutException exceptions are encountered (check error
logs), the dfs.socket.timeout and dfs.datanode.socket.write.timeout values (in
hdfs-site.xml) have to be increased. As above, it is paramount to determine
though if the change is necessary due to the actual workload, or if some
underlying HW issue is causing the exceptions

• The replication factor for each block of an HDFS file (as specified by
dfs.replication) is typically set to 3 (for fault tolerance). It is normally not
suggested to set the parameter to a smaller value. To reiterate, RAID systems
are normally not deployed with Hadoop clusters.

Performance Tuning

 After the initial HW and SW (setup) components of the cluster are verified and
determined to be operating at the currently best possible performance level, a deep dive
into fine-tuning the actual workload onto the logical and physical resources can be
commenced. As already discussed, parameters at all levels of the Hadoop stack do
impact aggregate Hadoop application performance. The next few paragraphs discuss
how to establish a performance baseline for a particular Hadoop workload, and how to
utilize tuning to achieve a maximum level of resource utilization and performance. For
this study, after executing DHTUX and FFSB on the Hadoop cluster nodes and hence,
assuring that no faulty HW components or logical Linux OS resources are hampering
performance, the Hadoop TeraSort benchmark was used as the workload generator.
Without compression, the Map phase of the TeraSort workload processes 1TB of read
and 1TB of write IO operations, respectively (excluding any spill related IO operations).
The Reduce phase also performs 1TB of read and 1TB of write IO operations (excluding
any spill related IO operations). Overall, the TeraSort benchmark is considered as being
IO intensive.

Performance Baseline Setup

 The default number of MapReduce slots, as well as the default Java heap size
configuration, is normally not sufficient for most Hadoop workloads. Therefore, the first
step while establishing the performance baseline is to scrutinize and potentially adjust
these configuration parameters. The goal is to maximize the HW resource utilization
(including the CPU's) of the cluster. The Java heap size requirements, the number of
MapReduce task, the number of HW cores, the IO bandwidth, as well as the amount of

7

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

available RAM impact the baseline setup. A methodology that aids in the setup is
focused on:

1. Configure enough disk space to accommodate the anticipated storage
requirements

2. Configure sufficient Map and Reduce slots to maximize CPU utilization
3. Configure the Java heap size (for Map and Reduce JVM processes) so that

ample memory is still available for the OS kernel, buffers, and cache subsystems

The corresponding Hadoop configuration parameters are:

 mapred.map.tasks,
 mapred.tasktracker.map.tasks.maximum,
 mapred.reduce.tasks,
 mapred.tasktracker.reduce.tasks.maximum,
 mapred.map.child.java.opts,
 mapred.reduce.child.java.opts

and are located in mapred-site.xml. For larger Hadoop clusters, the rule of thumb is to
set the maximum number of Map and Reduce tasks that execute simultaneously on a
TaskTracker in the range between [cores per node / 2] and [cores per node * 2].
Further, it is suggested to assure that the number of input streams (files) to be merged
at once via the MapReduce tasks is appropriately configured for the workload at hand.
The corresponding parameter is labeled io.sort.factor, and depending on the Hadoop
workload, the value may have to be increased to a sufficiently large number. Another
rule of thumb is that each Map task should run for a few minutes. Short running Map
tasks encounter too much startup overhead and are not efficient in the shuffle phase
(during the shuffle phase, MapReduce partitions data among the various Reducers).
On the other hand, very long running Map tasks limit/hamper cluster parallelism and
cluster sharing.

Utilizing the above discussed approach, the following baseline configuration was setup:

 Configuring 4 data disk drives per DataNode
 Allocating 1 Map slot and 1 Reduce slot per CPU core
 Allocating 1GB of initial and max Java heap size for Map and Reduce JVM

processes

 Hence, the 2 JVM processes per core may allocate up to 2GB of heap space per
core (3GB of RAM per core is available). So the remaining 1GB of memory per core
can be used by the OS kernel, application executables, and cache subsystems. This
baseline configuration was chosen based on the TeraSort workload behavior. Based on
this setup, a first set of 10 benchmark runs were executed, the collected performance
data was post-processed and analyzed (the CV revealed a less than 4% fluctuation
among the runs), and a first baseline performance document was compiled.

8

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Sensitivity Study 1 - Data Disk Scaling

 One of the first speedup questions to be answered is how well the workload
scales while additional disks are made available. In a Hadoop environment, that
requires adjusting mapred.local.dir (in mapred-site.xml) as well as dfs.name.dir and
dfs.data.dir (in hdfs-site.xml) to reflect the number of data disks utilized by the Hadoop
framework. For this study, the TeraSort benchmark was executed (10 times each) with
5 and 6 disk drives available per data node. Based on the rather high IO demand of the
TeraSort workload, the benchmark runs revealed that performance scales rather well
while adding additional data disks. Using the 4 disk setup as the normalized
performance baseline (aka 100%), scaling the number of disks to 5 and 6, resulted in
lowering the normalized execution time by 19% and 34%, respectively. Hence, the
decision was made to execute the other sensitivity studies with 6 data disks per data
node.

Sensitivity Study 2 - Data Compression

 Hadoop supports compression at the input data, intermediate Map output data,
and Reduce output data stages, respectively. Hadoop further supports multiple codecs
to perform the compression/decompression tasks (see Table 1). Some codecs provide
better compression factors, but take longer to compress/decompress the data, while
others strive to balance the compression factor with the compression/decompression
related overhead. The TeraSort workload does not support input data compression or
Reduce output data compression. Hence, only compression at the intermediate Map
output stage can be benchmarked. Enabling Map output compression reduces the disk
and the network IO overhead at the expense of utilizing additional CPU cycles to
compress/decompress the data. Therefore, compression in Hadoop may reflect an
exercise in compromises where based on the workload and the HW setup, the decision
has to be made to either or not utilize a codec (and if yes, at what stage). The
configuration files for data compression in Hadoop are:

 mapred.compress.map.output,
 mapred.map.output.compression.codec,
 mapred.output.compress,
 mapred.output.compression.type,
 mapred.output.compression.codec

all located in mapred-site.xml.

 To reiterate, Hadoop clusters that are already CPU bound (scenarios where the
cores do not stall much for IO activities and hence not many CPU cycles are available
for compression/decompression tasks), may not benefit from using a codec. For this
study, benchmarks with Snappy, LZO, and gzip where conducted. Based on the
TeraSort workload, the LZO codec provided the best performance behavior. Compared
to the normalized execution time baseline, using LZO compression reduced the
execution time by approximately 32%. While the other 2 codecs provided improved

9

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

performance behaviors, neither one was close to LZO. Hence, the decision was made
to use the LZO codec for the next rounds of sensitivity studies.

Table 1: Some Hadoop Compression Formats

Compression

Format
Hadoop Compression Codec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec
LZ4 org.apache.hadoop.io.compress.Lz4Codec

Snappy org.apache.hadoop.io.compress.SnappyCodec

 Note: The LZO libraries are GPL-licensed and may not be included in some
distributions. Depending on the Hadoop environment, next to compression, it may also
be beneficial to implement a combiner to reduce the amount of data to be transferred.
The combiner function is used as an optimization for the MapReduce job. The
combiner function runs on the output of the Map phase, and is used as a filtering or
aggregating step to lessen the number of intermediate keys that are being passed to the
Reducers.

Sensitivity Study 3 - JVM Reuse Policy

 The Hadoop parameter mapred.job.reuse.jvm.num.tasks determines whether or
not the spawned MapReduce JVM threads can be reused (aka execute more than 1
task). The parameter is defined in mapred-site.xml with a default value of 1, which
implies that the JVM is not being reused. Adjusting the value to -1 changes the
behavior in a way that allows an unlimited number of tasks can be scheduled per JVM
instance. Enabling the JVM reuse feature may reduce the JVM startup and shutdown
overhead and improve performance, as the JVM spends less time interpreting Java
bytecode (JIT compilation). The JVM reuse feature is normally beneficial in cases
where the workload consists of a large number of very short running tasks. Having said
that, enabling JVM reuse did not have a significant impact on the TeraSort workload.

Sensitivity Study 4 - HDFS Block Size

 Each Map task operates on what is labeled an input split [2]. The
mapred.min.split.size, mapred.max.split.size (in mapred-site.xml), and dfs.block.size (in
hdfs-site.xml) configuration values determine the size of the input split. The input split
size and the total input data size of the Hadoop workload govern the total number of
Map tasks spawned by the Hadoop framework. For a workload such as TeraSort, the
best way to adjust the input split size is by adjusting the HDFS block size via

10

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

dfs.block.size. If a Hadoop thread is spawning a large number of Map tasks, it is
suggested to evaluate the performance behavior with larger HDFS block sizes.
Reducing the number of Map tasks by using larger block sizes may decrease the Map
JVM start and shutdown overhead. Further, it may also reduce the cost incurred while
merging Map output segments during the Reduce phase. Larger block sizes normally
also aid in prolonging the execution time for each Map task.

 With Hadoop, it is beneficial to execute a small number of long(er) running Map
tasks compared to a setup with a large number of (very) short running Map tasks. It has
to be pointed out though that that if the Map output size is proportional to the HDFS
block size, bigger block sizes may trigger additional Map-side spills if the spill related
properties are not adjusted accordingly (see below). For this study, HDFS block sizes
of 64MB (default), 128MB, and 256MB were benchmarked. The conducted
benchmarks disclosed that for the TeraSort workload, a 256MB HDFS block size
provides the most effective setup. To illustrate, compared to the 64MB baseline, with a
256MB HDFS block size, the normalized execution time was reduced by approximately
18%.

Sensitivity Study 5 - Map Side Spills

 The number 1 goal of the Map task optimization phase is to assure that the
workload only spills once (during the final spill). While the Map tasks are being
executed, the (intermediate) output is stored in a buffer. This buffer basically reflects a
chunk of reserved memory that is part of the Map JVM heap space. The default buffer
size equals to 100 MB (total buffer space governed by io.sort.mb in mapred-site.xml).
Further, a portion of that buffer is reserved for metadata (for the spilled records). The
default value for io.sort.record.percent equals to 0.5 (5%) (in mapred-site.xml) and
hence, for the default 100MB buffer size, the metadata buffer size equals to 5MB (see
Figure 1). As each metadata record equals to 16 bytes, a total of 327,680 metadata
records can be stored in the buffer. The actual spills occur as soon as a certain
threshold is reached, either by the data or the metadata portion of the buffer. The
default threshold value io.sort.spill.percent (in mapred-site.xml) equals to 0.8 (80%). In
a lot of Hadoop installations, the crux of the issue is that the metadata buffers are
saturated much faster than the data buffers.

 The process of spilling Map outputs n times to disk prior to the final spill
generates additional overhead due to reading/merging the spilled records. If sufficient
Java heap memory is available for the Map JVM's, the goal has to be to eliminate all the
intermediate spills. If the available heap space is limited, the focus has to be on
minimizing the number of spills by adjusting the io.sort.record.percent parameter. To
determine if a Hadoop setup is encountering intermediate spills requires monitoring the
Map Output Records and the Spilled Records counters via the JobTracker Web
interface. This has to be done immediately after the Map phase for a job is completed.
If the number of Spilled Records is greater than Map Output Records, additional spilling
is occurring in the Hadoop setup. For the TeraSort benchmark and a HDFS block size
of 256MB (each record is 100 bytes long), io.sort.mb was set to 300MB,

11

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

io.sort.record.percent to 0.15 (15% of 300MB) and io.sort.spill.percent to 0.95 (95%) to
eliminate Map-side spills. The Map side tuning resulted into an approximately 2%
performance improvement (normalized execution time). While tuning a Hadoop setup, it
is imperative to understand that the value for io.sort.mb has to fit into the Java heap
(plus whatever memory the Mapper requires plus an additional memory overhead that is
normally approximated at 30%). Note: As of Hadoop 2.0, it is no longer necessary to
adjust io.sort.record.percent.

Figure 1: MapOutputBuffer (Hadoop 1.x)

Note: Picture courtesy of Hadoop/Apache

Sensitivity Study 6 - Copy Phase Tuning

 In Hadoop setups where the Reduce phase does not complete copying Map
outputs soon after all the Map tasks are processed, additional tuning may be necessary.
A slow copy phase may be due to several possible scenarios:

• The default maximum number of parallel MapOutput copy threads
(mapred.reduce.parallel.copies in mapred-site.xml) equals to 5, and hence could
be the limiting factor. It is suggested to increase that value (especially on larger
Hadoop clusters). It has to be pointed out though that higher values may lead to
IO contention and hence, benchmarking to detect an optimal balance for the
workload at hand is necessary

• The default maximum number of worker threads (at the TaskTracker level) used
to serve Map outputs to the Reducers (tasktracker.http.threads) may be

12

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

configured too small. This is a TaskTracker level property, and adjusting the
value (in small increments) may improve performance in the copy phase

• Parameters such as dfs.namenode.handler.count (in hdfs-site.xml) or
mapred.job.tracker.handler.count (in mapred-site.xml) may have to be adjusted.
These parameters govern the number of NameNode and JobTracker server
threads that handle remote procedure calls (RPC's) and for some installations,
the default values are too small

• The dfs.datanode.handler.count (in hdfs-site.xml) parameter may have to be
adjusted, as the default value may be too small, especially if a large number of
HDFS clients are active in the cluster. It has to be pointed out though that each
additional thread increases the demand on the memory subsystem

• Reduce side spill scenarios could be the culprit (see below)
• Network related constraints may be contributing to the behavior. Using Linux

NW benchmarks allow quantifying the throughput potential of the network
subsystem

Sensitivity Study 7 - Reduce Side Spills

 For most Hadoop workloads, from a performance perspective, the Reduce phase
is paramount in regards to the total execution time. In general, the Reduce phase is
network and IO intensive, as all the output data generated by (potentially) a large
number of Map tasks has to be copied, aggregated/merged, processed, and written
back into HDFS. Hence, depending on the total number of allocated Reduce slots, the
Java heap requirements for the Reduce JVM's may (greatly) exceed the Map JVM's
demand. As the Map tasks start completing their work, the Map output is sorted,
partitioned (per Reducer), and written to the TaskTracker disks. Next, these Map
partitions are copied to the appropriate Reduce TaskTrackers. A buffer governed by
mapred.job.shuffle.input.buffer.percent (in mapred-site.xml) is used to store the Map
output data. If the buffer is too small to store all the data, the Map output has to be
spilled to disk. The default value for mapred.job.shuffle.input.buffer.percent equals to
0.70, which implies that 70% of the Reduce JVM heap space is reserved for storing the
copied Map output data. If the buffer reaches a certain threshold (controlled by
mapred.job.shuffle.merge.percent in mapredsite.xml and set to 0.66 (66%) by default),
the accumulated Map output data is merged and spilled to disk. As the Reduce-side
sort phase completes, part of the Reduce JVM heap (restricted by
mapred.job.reduce.input.buffer.percent in mapred-site.xml) can be used to retain the
Map outputs prior to feeding it into the final reduce function of the Reduce phase. By
default, the mapred.job.reduce.input.buffer.percent parameter is set to 0, which implies
that all of the Reduce JVM heap is allotted to the final reduce function. For some
Hadoop environments, benchmarks have show that setting
mapred.job.reduce.input.buffer.percent to 0.7 or 0.8 is sufficient to keep all of the
reducer input data in memory.

 Configuring (via mapred.job.shuffle.input.buffer.percent and
mapred.job.reduce.input.buffer.percent) large buffers normally aids in avoiding
unnecessary IO operations caused by Reduce-side spills. In cases where Identity

13

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Reducers (an identity reducer simply outputs each value) are used (such as by the
TeraSort workload), the reduce function normally does not require a large Java heap.
In such a scenario, performance may be improved by increasing the
mapred.job.reduce.input.buffer.percen value. For the TeraSort benchmark, increasing
mapred.job.shuffle.input.buffer.percent to 0.85 and
mapred.job.reduce.input.buffer.percent to 0.75 resulted into a nice performance gain of
approximately 8% (based on the normalized execution time). Depending on the
workload, minimizing the number of Map slots, and hence allocating the freed up
memory resources to the Reduce JVM's may substantially boost performance. In other
words, large heap space setups for the Reduce side may noticeably improve aggregate
performance. Another parameter to scrutinize is mapred.inmem.merge.threshold, the
threshold number of map outputs for starting the process of merging the outputs and
spilling to disk. A value of 0 or less implies no threshold, and hence the spill behavior is
governed solely by mapred.job.shuffle.merge.percent.

Sensitivity Study 8 - JVM Configuration Tuning

 The next step in the tuning process focuses on the JVM. The JVM vendors
normally strive to optimize/improve performance with any new release. Nevertheless,
there is always ample opportunity to improve performance via a flag tuning exercise.
The suggestion made is to study the available flags for the particular JVM version being
used in the Hadoop setup. Some of the JVM flags (the Oracle JDK was used for this
TeraSort study) that may have a profound impact on performance are:

• AggressiveOpts – An umbrella flag that governs whether certain optimizations
are enabled or not by the JVM. The optimizations vary depending on the JVM
version, and hence the suggestion made is to experiment with this flag,
especially when the systems are upgraded to a newer JVM version

• UseCompressedOops – Compressed Ordinary Object Pointers represent
compressed pointers that aid in reducing the memory footprint of 64-bit JVM's (at
the expense of reduced addressable Java heap space)

• UseBiasedLocking - The biased locking feature may improve performance in
scenarios where locks are generally not contended

 It is always suggested to conduct a garbage collection (GC) performance
analysis to potentially further fine-tune the Map and Reduce JVM's (check for any
potential GC overhead via +PrintGCDetails –verbose:gc). For profiling purposes, add –
Xprof to mapred.child.java.opts and scrutinize the stdout task log. In addition,
depending on the JVM being used, the parameter java.net.preferIPv4Stack should be
set to true (to avoid timeouts in scenarios where the OS/JVM is presented with an IPv6
address and has to resolve the hostname). As a best practice systems implementation
task, for the conducted TeraSort benchmarks, the JVM configuration was optimized
prior to executing any actual benchmarks on the Hadoop cluster.

14

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

Sensitivity Study 9 - OS (Linux) Tuning

 The Transparent Huge Pages (THP) feature focuses on simplifying large page
management. Depending on the application and the workload, the feature may
significantly improve the overall performance behavior of Linux installations. However,
some Hadoop workloads (executing RedHat Linux with the THP feature enabled)
revealed high system CPU utilization (due to the THP compaction process) that let to
rather large Hadoop performance degradations. In such a scenario, it is suggested to
set the THP parameter to never (disabled).

 The local Linux filesystem, as well as the IO scheduler chosen for the Hadoop
setup have a profound impact on aggregate Hadoop cluster performance.
Contemporary Linux kernels support the CFQ, the deadline, as well as the noop IO
scheduler (the anticipatory IO scheduler has been retired as of 2.6.37). Depending on
the actual workload and the physical setup of the IO subsystem, any of the 3 IO
schedulers may perform best in any given Hadoop environment. The same holds true
for the local file systems. Some of the more popular Linux file systems are ext4, XFS,
JFS, and Btrfs. For most Hadoop installations, the ext4 file system reflects the preferred
choice. For this study, the ext4 filesystem was used in conjunction with the CFQ IO
scheduler. The normalized execution time delta between using the CFQ and the
deadline IO scheduler, respectively, was approximately 3% (in favor of CFQ). As the
noop scheduler reflects an IO scheduler solution that normally works well for SAN
subsystems, and as the benchmarked Hadoop cluster does not use any SAN solution,
the noop option was not further pursued.

 With Hadoop, it is paramount to mount the data disk file systems with the
noatime attribute. Omitting the mount option results in triggering for each file read
operation a disk write call to maintain the last access time stamp for the file. For the
TeraSort benchmark, mounting the data disk file systems with noatime (on Linux,
noatime includes nodiratime) resulted into a significant performance gain (approximately
21%). For some Hadoop workloads, it is beneficial to tune the file system read-ahead
buffer size (especially for sequential read operations of large files) by prefetching
additional blocks into memory. The read-ahead tuning on Linux systems is conducted
via blockdev --setra. It has to be pointed out that additional Linux IO tuning may be
necessary to optimize the workload onto the logical and physical systems resources.
Please see [HEGE2010] for more information on optimizing Linux IO performance.

Summary & Conclusion

 Compared to the initial baseline configuration with 4 disks per data node, the
configuration and tuning adjustments discussed in this report resulted into a cumulative
performance improvement factor of 4.2 (for the TeraSort benchmark). A big portion of
the performance gain for the TeraSort benchmark was due to utilizing 6 instead of 4
disks per data node. Nevertheless, comparing the 6 disk setup tuned verses the 6 disk

15

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

non-tuned TeraSort benchmark runs still revealed an improvement factor (normalized
execution time) of 2.6.

 It has to be pointed out though that designing and configuring a Hadoop cluster
for optimal performance is considered a moving target that is heavily workload
dependent. To illustrate, while this study did incorporate an evaluation of the Linux IO
schedulers impact on the TeraSort benchmark, the study did not address the impact of
running the TeraSort workload against either the Fair or the Capacity Hadoop
scheduler, respectively. Due to the nature of the TeraSort workload, the behavior of the
Fair and the Capacity Hadoop scheduler, as well as the setup of the Hadoop cluster
used in this study, the decision made was to only run the benchmark with the Hadoop
default scheduler (FIFO).

 In general, achieving optimal performance behavior from any Hadoop setup
requires choosing the appropriate HW and SW stack. Fine-tuning the Hadoop
environment necessitates a fairly in-depth analysis of the code path, and ultimately the
physical and logical resources utilized by the application workload. Depending on the
Hadoop environment, this may be a rather time-consuming (but necessary) process. As
with most IT projects, the due diligence in the design and planning phase normally pays
off in regards to the performance, stability, and the TCO aspects while the Hadoop
cluster is ultimately moved into production.

References

INTE2010 Intel, "Optimizing Hadoop Deployments", Intel White Paper, 2010

HEGE2012 Heger, D. “Hadoop Design, Architecture & MapReduce Performance",
CMG Journal, 2012

JOSH2012 Shrinivas Joshi, "Hadoop Performance Tuning Guide", AMD White
Paper, 2012

AFRA2010 F. N. Afrati, J. D. Ullman, "Optimizing joins in a map-reduce
environment", EDBT, 2010

VERN2010 R. Vernica, M. J. Carey, C. Li, "Efficient parallel set-similarity joins
using MapReduce", SIGMOD, 2010

NAYL2010 Bruce F. Naylor, "A Tutorial on Binary Space Partitioning Trees",
Spatial Labs, 2010

WHIT2012 Tom White, "Hadoop: The Definitive Guide", 3rd Edition, O’Reilly Media,
May 2012

HEGE2010 Heger, D., "Quantifying IT Stability - 2nd Edition, Fundcraft Publication,
2010

16

Dominique A. Heger (DHTechnologies ‐ www.dhtusa.com), 2013

SHVA2010 K. Shvachko, H. Kuang, S. Radia, R. Chansler, "The Hadoop
distributed file system", In Proc. of the 26th IEEE Symposium on Massive Storage
Systems and Technologies (MSST), 2010.

GHEM2003 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, "The Google File
System", Proc. of SOSP 2003

DEAN2004 Jeffrey Dean, Sanjay Ghemawat, "MapReduce: Implied Data
Processing on Large Clusters", Proc of OSDI’04, 2004

VAQU2009 Luis Vaquero, Luis Rodero, Juan Caceres, et al., “A Break in the
Clouds: Towards a Cloud Definition” ACM SIG-COMM Computer Communication
Review, 2009

ZAHA2008 Matei Zaharia, Andy Konwinski, Anthony Joseph, "Improving
MapReduce Performance in Heterogeneous Environments", Proc of the 8th Usenix
Symp on Operating Systems Design and Implementation, 2008

Apache, "Fair Scheduler",
http://Hadoop.apache.org/common/docs/current/Fair_scheduler.html,2010

Apache, "Capacity Scheduler",
http://Hadoop.apache.org/common/docs/current/Capacity_scheduler.html, 2010

Hadoop: http://hadoop.apache.org/

HDFS: http://hadoop.apache.org/hdfs/

Hbase: http://hbase.apache.org/

Oracle, "Hadoop Sizing",
https://blogs.oracle.com/datawarehousing/entry/sizing_for_data_volume_or, 2012

