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1.1 Regression Model and the Outlier Problem
Example Air Quality (I)
False colour maps for NO2 pollution (with R. Locher)
The actual air quality can be assessed insufficiently at a location far away from a
measurement station.

More attractive would be a false colour map which shows daily means highly
resolved in time and location.

today/future until recently

see also www.idp.zhaw.ch/OLK
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Example Air Quality (II)

Available are

Daily means at a few sites

False colour map of yearly means for NO2 based on a physical model

Idea:

Construct a false colour map which is highly resolved in time and space.

The idea is feasible because there is a nice empirical relationship between the
daily and the yearly means:

log 〈daily mean〉 ≈ βo + β1 log 〈yearly mean〉

βo and β1 are weather dependent
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Example Air Quality (III)
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Left: Stable weather condition over the whole area
Right: The weather condition is different at a few measurement sites.
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The Regression Model
In regression, the model is

Yi =
m∑
j=0

x
(j)
i βj + Ei ,

where the random errors Ei , i = 1, . . . , n are independent and Gaussian
distributed with mean 0 and unknown spread σ.

In residual analysis, we check all assumptions as thoroughly as possible.
Among other things, we put a lot of effort in finding potential outliers and
bad leverage points which we would like to remove from the analysis
because they lead to unreliable fits.

Why? - Because real data are never exactly Gaussian distributed.
There are gross errors and its distribution is often longer tailed
than the Gaussian distribution.
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The Oldest Informal Approach to Robustness
(which is still a common practise) is to

1 examine the data for obvious outliers,

2 delete these outliers

3 apply the optimal inference procedure for the assumed model to the cleaned
data set.

However, this data analytic approach is not unproblematic since

Even professional statisticians do not always screen the data

It can be difficult or even impossible to identify outliers, particularly in
multivariate or highly structured data

cannot examine the relationships in the data without first fitting a model

It can be difficult to formalize this process so that it can be automatized

Inference based on applying a standard procedure to the cleaned data will be
based on distribution theory which ignores the cleaning process and hence
will be inapplicable and possibly misleading
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1.2 Measuring Robustness

How robust an estimator is, can be investigated by two simple measures:

influence function and gross error sensitivity

breakdown point

Both measures are based on the idea of studying the reaction of the
estimator under the influence of gross errors, i.e. arbitrary added data.

Gross Error Sensitivity
The (gross error) sensitivity is based on the influence function and measures the maximum
effect of a single observation on the estimated value.

Breakdown Point
The breakdown point gives the minimum fraction of unsuitable observations which cause
completely unreliable estimates.
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Example: Prolongation of Sleep

(Cushny and Peebles, 1905)

0 1 2 3 4 5

Data on the prolongation of
sleep by means of two Drugs.
These data were used by Stu-
dent (1908) as the first illu-
stration of the paired t-test.

ȳ =
1

10

10∑
i=1

yi = 1.58

med = median{yi , i = 1, . . . , 10} = 1.3

ȳ10% =
1

8

9∑
i=2

y(i) = 1.4

ȳ∗ =
1

9

9∑
i=1

y(i) = 1.23

For ȳ∗ the rejection rule
|y(n)−ȳ|

s
> 2.18

is used, where the value 2.18 depends on
the sample size.
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Sensitivity Curve - Influence Function

Let β̂ 〈y1, . . . , yn〉 be the estimator. The sensitivity curve

SC
〈
y ; y1, . . . , yn−1, β̂

〉
=
β̂ 〈y1, . . . , yn−1, y〉 − β̂ 〈y1, . . . , yn−1〉

1/n

describes the influence of an single observation y on the estimated value.

SC 〈. . .〉 depends on the data y1, . . . , yn−1.
A similar measure, but one which characterises only the estimator, is the influence
function

SC
〈
y ; y1, . . . , yn−1, β̂

〉
n↑∞−−−→ IF

〈
y ;N , β̂

〉
(The data y1, . . . , yn−1 have been replaced by the model distribution N .)
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Sensitivity Curve (Empirical Influence Function)

for the prolongation of sleep data. The “outlier” y = 4.6 hours has been
varied within −3 < y < 5.
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with rejection rule
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Definition of Robustness

A robust estimator has a bounded gross error sensitivity

γ∗
〈
β̂, N

〉
:= max

x

∣∣∣IF 〈x ; β̂,N
〉∣∣∣ <∞

Hence

Ȳ is not robust and

med, Ȳ10%, Ȳ ∗ are robust
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Breakdown Point
How do the estimation methods respond to two outliers?

We consider the worst case scenario of having two observations moving to infinity:
y(10) = y(9) →∞

ȳ →∞ ε∗n 〈ȳ〉 =
0

n
= 0

med = 1.3 as before ε∗n 〈med〉 =
4

10
= 0.4

n large−→ 0.5

ȳ10% →∞ ε∗n 〈ȳ10%〉 =
1

10
= 0.1

ȳ∗ →∞

The breakdown point is the maximum ratio of outlying observation such
that the estimator still returns reliable estimates.

More formally, call Xm the set of all data sets y∗ = {y∗1 , . . . , y∗n } of size n having (n −m)

elements in common with y = {y1, y2, . . . , yn}. Then the breakdown point ε∗n 〈β̂; y〉 is
equal to m∗/n, where

m∗ = max
{
m ≥ 0 :

∣∣β̂〈y∗〉 − β̂〈y〉∣∣ <∞ for all y∗ ∈ Xm

}
.
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1.3 Location M-Estimation and Inference

Location model Yi = β+Ei , i = 1, . . . , n , with Ei i.i.d. ∼ N ,
〈
0, σ2

〉
Let us find a weighted mean, wherein the weights are designed to prevent the influence of
outliers on the estimator as much as possible:

β̂M =

∑n
i=1 wiyi∑n
i=1 wi

.

In order to determine appropriate weights (or weight functions), it helps to consult the

corresponding influence function IF . Theory tells that the influence function of β̂M is equal
to

IF
〈
y , β̂,N

〉
= const · w · r̃ def

= const · ψ 〈r̃〉 ,

where r̃ is the scaled residual (y − β)/σ.

Hence, the influence function of an M-estimator is proportional to the just
defined ψ-function.

For a robust M-estimation the ψ-function must be bounded – see next page

The corresponding weight function can be determined by wi = ψ(r̃ i )/r̃ i
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Influence and Weight Function
ψ- and weight function for

ordinary least squares estimation (not robust) – on the left

a robust M-estimator (ψ-function is also known as Huber’s ψ-function) – on the right
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Note that the weights depend on the estimation β̂M and hence is only
given implicitly.

Usually, the M-Estimator is defined by an implicit equation,

n∑
i=1

ψ

〈
ri
〈
β̂,
〉

σ

〉
= 0 with ri 〈β〉 = yi − β ,

where σ is the scale parameter.
Note: Basically, this equation corresponds to the normal equation of least-squares

estimators.

A monotonously increasing, but bounded ψ-function leads to a
breakdown point of ε∗ = 1

2 .

The tuning constant c defining the kink in Huber’s ψ-function is
determined such that the relative efficiency of the M-estimator is 95% at
the Gaussian location model: Hence, c = 1.345
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Estimation of the Scale Parameter
The scale parameter σ is usually unknown. But it is needed to determine the
position at which unsuitable observation will lose its influence.

The standard deviation as an estimator for σ however is extremely non-robust.
(Therefore the rejection rule breaks down with 2 outliers out of 10 obs., cf slide 14.)

A robust estimator of scale with a breakdown point of 1
2

is, e.g., the median of
absolute deviation (MAD)

sMAD
def
=

mediani

〈∣∣yi −mediank 〈yk〉
∣∣〉

0.6745

(The correction 1/0.6745 is needed to obtain a consistent estimate for σ at the

Gaussian distribution.)

There are more proposals of suitable scale estimators. Among them are versions where
the scale parameter is estimated in each iteration of the location estimation as e.g. in
Huber’s Proposal 2.

A better rejection rule is Huber-type skipped mean:∣∣∣∣ yi −mediank 〈yk 〉
sMAD

∣∣∣∣ > 3.5 .
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Inference
A point estimation without a confidence interval is an incomplete (and often
useless) information.
Distribution of the M-estimator: Theory shows that

β̂
a∼ N

〈
β,

1

n
τ σ2

〉
with τ =

∫
ψ2 〈u〉 f 〈u〉 du(∫
ψ′ 〈u〉 f 〈u〉 du

)2

The correction factor τ is needed to correct for downweighting good
observations. It is larger than 1 and can be

either calculated using the assumption that f 〈〉 = φ 〈〉
(+ an exercise in calculus)

or estimated using the empirical distribution of the residuals:

τ̂ =

1
n

∑n
i=1 ψ

2
〈
r̃ i
〈
β̂
〉〉

(
1
n

∑n
i=1 ψ

′
〈
r̃ i
〈
β̂
〉〉)2 with r̃ i

〈
β̂
〉

=
Yi − β̂
sMAD
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Confidence Interval

The confidence interval is calculated based on the z-test because of the
asymptotic result.
The confidence interval is formed by all values of β which are not rejected by the

asymptotic z-test.

Hence, the (1− α) confidence interval is

β̂ ± qN1−α/2

√
τ̂
sMAD√

n
,

where qN1−α/2 is the (1− α/2) quantile of the standard Gaussian distribution.

To adjust for estimating the scale parameter in a heuristic manner, N may be
replaced by tn−1.
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Example Prolongation of Sleep

> y # data

> n <- length(y)

> library(robustbase)

> (y.hM <- huberM(y))

$mu # 1.384222

$s # 0.59304

$SE # 0.2302046

## Confidence interval

> h1 <- qt(0.975, n-1) * y.hM$SE

> y.hM$mu + c(-1,1)*h1

## 0.8503317 1.8918499

## Classical estimation

> t.test(y) # One Sample t-test

95 percent confidence interval:

0.7001142 2.4598858

Using Huber’s M-estimator with
c = 1.345 results in β̂M = 1.38

Remember, Ȳ = 1.58

The robust scale estimator results in
sMAD = 0.59 and√
τ̂ is
√

1.507 = 1.227

The 95% confidence interval is

1.37±2.26·0.59/
√

10·1.227 = [0.85, 1.89]

The classical one is [0.70, 2.46]
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2.1 Regression M-Estimation

The linear regression model is

Yi = β1 · 1 + β2 · x (2)
i + . . .+ βp · x (p)

i + Ei with Ei i.i.d.

If the errors Ei are exactly Gaussian distributed, then the least-square
estimator is optimal.

If the errors Ei are only approximately Gaussian distributed, then the
least-square estimator is not approximately optimal but rather inefficient
already at slightly longer tailed distributions.

Real data are never exactly Gaussian distributed. There are gross errors and
its distribution is often longer tailed than the Gaussian distribution.
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Example Modified Air Quality (IV)

Recall the Example Air Quality:
Two outliers suffice to give unusable least squares lines

To keep the world simple (at least at the moment) we modify the data set
such that it contains just one outlier:
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From OLS to M-estimation
Analogously to the location model, we will replace the ordinary least squares
(OLS) estimator by a weighted least squares(WLS) estimator, where the
weights should reduce the influence of large residuals.

Normal equations of the WLS estimator: XT
W r = 0 or equivalently,

n∑
i=1

wi · ri · x i = 0 ,

where ri 〈β〉 := yi −
∑m

j=0 x
(j)
i βj are the residuals.

Replacing again (wi · ri ) by ψ 〈ri/σ〉 yields the formal definition of a

regression M-estimator β̂M:

n∑
i=1

ψ

〈
ri 〈βM〉
σ

〉
x i = 0 .
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The influence function of a regression M-estimator

In order to determine appropriate weights (or weight functions), it again helps to
consult the corresponding influence function IF of the regression M-estimator:

IF
〈
x , y ; β̂M,N

〉
= ψ

〈 r

σ

〉
M x .

M is a matrix, which only depends on the design matrix X .

Hence, the ψ function again reflects the influence of a residual (and
therefore of an observation) onto the estimator.

To obtain a robust regression M-estimator the
ψ-function must be bounded
as, e.g., Huber’s ψ-function

Figure on the right: ψ- and weight function for

ordinary least squares estimation (not robust)
– on the left

Huber’s M-estimator – on the right
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Example Modified Air Quality (V)

>

> f1 <- lm(...) # LS

> coef(f1)

Intercept Slope

1.440561 0.471861

> ## library("MASS")

> f2 <- rlm(...) # robust

> coef(f2)

Intercept Slope

0.9369407 0.6814527
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What should be done with outliers?

Diagnose Treatment
Transcription error Correct
Different population (e.g. diseased,
pregnant, . . . )

Remove observation/population

Implausible or dubious value Find explanation, insult assistant,
win Nobel prize

Prerequisite: Detect outliers!

Robust methods are called for, particularly in high dimensional data, because
robust methods

are not deceived by outliers,
help us detect outliers more easily and faster.
may help to automatize a statistical analysis in a safe way.
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2.2 Example From Molecular Spectroscopy

Model for the spectrum data:

Yi = θui − θ`i + Ei

which can be also written as

Y = Xθ + E ,

where

Y =


Y1

Y2

. . .
Yn

 , θ =



θA
θB
. . .
. . .
θa
θb
. . .


, and X =



0 1 0 . . . | 0 0 −1 0 . . .
1 0 0 . . . | 0 −1 0 0 . . .

... |
...

... |
...

... |
...
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Example Tritium Molecule:

Histograms of the residuals
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Example Tritium Molecule:
Estimated coefficients compared with theoretical ones (involves heavy
computation and many approximations)

WBL Statistik 2016 — Robust Fitting



Half-Day 1: Introduction to Robust Estimation Techniques 31 / 34

The Outlier Problem Measuring Robustness Location M-Estimation Regression M-Estimation Example From Molecular Spectroscopy

Appendix: Computational Aspects

M-estimator is defined implicitly by

n∑
i=1

ψ
〈
ri

〈
β̂M

〉/
σ
〉
· x(k)

i = 0 , k = 1,2, . . . , p. (1)

Define wi = wi

〈
ri

〈
β̂M

〉〉
=
ψ
〈
ri

〈
β̂M

〉/
σ
〉

ri

〈
β̂M

〉/
σ

(2)

Hence (1) can be written as
n∑

i=1

wi · ri
〈
β̂M

〉
· x(k)

i = 0 , k = 1,2, . . . , p. (3)

(normal equations of a weighted regression - but weights depend on the

solution β̂M).
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Iterated Re-Weighted Least Squares

1 Let β̂(m=0) be an initial solution for (1)

2 Calculate r
(m)
i = yi −

∑p
j=1 x

(j)
i · β̂j ,

σ(m) = median{|r (m)
i |}/0.6745 (MAV)

and w
(m)
i according to (2)

3 Solve weighted normal equations (3)

4 Repeat steps (ii) and (iii) until convergence.

Algorithm Based on Modified Observations
Replace step (3) above by solving the normal equation from the least-squares problem

n∑
i=1

y
(m)
i −

p∑
j=1

x
(j)
i · β̂j

2

!
= min

β̂

where y
(m)
i

def
=

p∑
j=1

x
(j)
i · β̂

(m)
j + w

(m)
i · r (m)

i are pseudo-observations.
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Illustration of the ”Modified Observations” Algorithm
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Take Home Message Half-Day 1

The least-squares estimator is the optimal estimator when the data is
normally distributed

However, the least-squares estimator is unreliable if contaminated
observations are present see, e.g., the example from molecular spectroscopy

There are better (=efficient, intuitively “correct”) estimators.
With M-Estimators, the influence of gross errors can be controlled very
smoothly.

Generally, influence function and breakdown point are two very important
measure for assessing the robustness properties of an estimator.

Be aware: Outliers are only define with respect to a model
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