HALFPIPE PLANS

Includes plans for a
4' Inline Skate Halfpipe,
3' Skateboard Halfpipe and a
Grinding Rail
www.rickdahlen.com
rick@rickdahlen.com

Materials List and Directions.

$7 \quad 4 \times 8 \times 3 / 4$ " Exterior Plywood (sanded one side)
$8 \quad 4 \times 8 \times 3 / 8$ " Exterior Plywood (sanded one side)
$592 \times 4 \times 8$ Studs for skateboard version, 61 for the inline version
(18 of these should be pressure treated or sealed if you are choosing to put halfpipe on ground)
5-6 Ibs 2" Galvanized Wood Deck Screws
5-6 lbs 3" Galvanized Wood Deck Screws
16 3" Lag Screws
16 11/4" Washers
16 1-11/4" Panhead Screws
$2 \quad 11 / 2$ ID PVC Pipe 8 ' (you can use metal pipe if you prefer)

All measurements are exact, except where I refer to 2×4. This is a standard name for studs that are actually $11 / 2 \times 31 / 2$.

1. Measure and cut one curved end piece. Use this one to trace the other seven curved ends. (SEE PLAN A or B).
2. Mark out where the cross joists are positioned on the curved end pieces. Double check the position of the double joist for the plywood decking seam. (SEE PLAN C).
3. Measure and cut cross joists for the four curved end structures. I used pressure treated 2×4 's for the two bottom cross joists that touch the ground.
4. Assemble the four curved structures. The plywood tends to bow a little after it is cut. Try to pick two pieces with opposing bows for each of the curved sections. Start by attaching the cross joists at the top of the curved ends. PREDRILLING THE HOLES IN THE PLYWOOD HELPS! Use two 3" screws at each end. DO NOT ATTACH DECKING AT THIS TIME. (SEE PLAN D).
5. Assemble the frame for the bottom flat decking using $3^{\prime \prime}$ screws. I have provided two versions of the framework. One if your halfpipe is going to be on a hard flat surface and one if it is going to be on a slightly uneven or soft ground. DO NOT ATTACH DECKING AT THIS TIME. (SEE PLAN E or F).
6. Position your curved end structures and flat frame together where they will remain. (SEE PHOTO BELOW). Use 3" screws to fasten the pieces together. Screw the two curved ends together. Attach them to the flat framework, then fasten it to the two curved structures on other end. DRILL VENT HOLES IN EACH OF THE ROWS (SEE PLAN E or F).
7. Using the 2 " screws attach the two $4 \times 8 \times 3 / 4$ " sheets of plywood (smooth side up) to the flat framework. Screw spacing should be approximately 6-8" apart. Note the plywood grain is going from side to side. I feel it provides less chance of splinters. Predrilling was not necessary here.
8. Attach the coping on the corners of the curved ends with the panhead screws. (SEE PLAN G or H). I did it at this time because I could stand in between the joists. I laid the PVC pipe on the ground and drilled my first eight holes from the top straight through the bottom being careful to keep the drill at the same angle for all the holes. The first drilling was just big enough for the screw to enter. I then redrilled just the top hole so I could get my screwdriver through the hole. With the PVC pipe in position, using a MAGNETIC screwdriver, I inserted the screw through the top hole down to the bottom hole in the wood. (SEE PLAN G or H).
9. Wet the back side (not the smooth side) of the $4 \times 8 \times 3 / 8$ " plywood. It will curl a little aiding in attaching it to the curved ends. Put the bottom one on first with grain going from side to side. Attach the next bottom panel beside it. You may premeasure and cut this panel before attaching it, or attach it and then trim it in position just below the coping. Be careful you don't cut the coping though. Repeat the procedure for the next layer and the other side. (SEE PLAN J). If you premeasure, note that the second layer top panel is slightly wider than the one below. (SEE PLAN G or H). The curved decking is made of two layers of $3 / 8$ " plywood because it is bendable and you need $3 / 4^{\prime \prime}$ total thickness. I did not use as many screws on the bottom layer because I knew the top layer screws would do the job for both layers.
10. Measure and attached the top platform decking using 2" screws.
11. Measure, cut and attach the vertical supports for the railing. I used a couple of clamps to hold them while I screwed then in place. The horizontal supports were attached using two 3 " wood screws at each cross over. After it was all together I drilled holes and used the 3 " lag screws and washers to anchor the railing. (SEE PLAN K).
12. You can paint it whenever you feel like it. This will give it added protection from the elements.

Frames put togther before attaching the decking.

inline skate halfpipe transition curve (PLAN B)
I think the best way to get all curves the
same is cut one and use it as a template
to draw the others.
For an eight foot wide halfpipe you will need
eight curved sides.

$8^{\prime} \times 8^{\prime}$ HALFPIPE BOTTOM PLATFORM FRAMEWORK (PLAN E)

For unstable or slightly uneven ground

$8^{\prime} \times 8^{\prime}$ HALFPIPE BOTTOM PLATFORM FRAMEWORK (PLAN F)

For flat solid ground

4-2"x4" x 96"
26-2"x4" x 45" spaced approximately 7 7/8" apart 2-4’x8' x 3/4" plywood - - - - - - -

I made this frame work from pressure treated 2×4 's and drilled vent holes in every row because I knew it would not get much air circulation under decking.

Assemble the two 4'x8' frames with two 3" galvanized wood screws at each end, then screw the two frames together to make an 8'x8' frame DO NOT PUT PLYWOOD ON TOP UNTIL THE CURVED ENDS HAVE BEEN ATTACHED.

(SKATEBOARD HALFPIPE) COPING FRAMING DETAIL (PLAN G)

This detail is actual size. You can use it to trace the notch for the coping.

Drill hole for size of screw through both sides of PVC pipe, Then enlarge top hole for screwdriver.
Use a screwdriver with a magnetized head.

2-11/2" ID Plastic PVC Pipe 8" long 16-1-11/2" Panhead Screws

Make sure coping is a ittle higher than decking here.

Coping is approx. $\overline{1 / 2 "}$ above decking here.

This detail is actual size. You can use it to trace the notch for the coping.

Drill hole for size of screw through both sides of PVC , pipe, Then enlarge top hole

COPING Optional Attachment DETAIL (PLAN H-b)

This detail is shown on the Inline coping version. Can be used on either version.

So the threads will grab and hold the pipe.
3 or 4 ought to hold it.

CURVED DECKING (PLAN J)

Material List is for both ends of halfpipe

1. $4-4$ ' $\times 8^{\prime} \times 3 / 8^{\prime \prime}$
2. 4- ? $\times 8$ ' $\times 3 / 8$ " (Cut width to fit) WET BACK (UNFINISHED) SIDE OF PLYWOOD TO MAKE IT CURVE

RAILING ASSEMBLY (PLAN K)

GRINDING RAIL PLAN

11/2" ID Plastic PVC Pipe 10" long

$4 \times 6 \times 10^{\prime}$ Wooden Beam

8-11/2" Panhead Screws

First cut the groove down the middle of the beam and bevel the edges.
There is not an exact angle for the cuts, just don't make your groove cut too deep so the screws don't go into wood. I laid the PVC pipe on the ground and drilled my first eight holes from the top straight through the bottom being careful to keep the drill at the same angle for all the holes. The first drilling was just big enough for the screw to enter. I then redrilled just the top hole so I could get my screwdriver through the hole. With the PVC pipe in

