CHAPTER - III

HAMILTON’S PRINCIPLE AND HAMILTON’S
FORMULATION

Unit 1: Hamilton’s Principles:
o Introduction :

In the Chapter II we have used the techniques of variational principles of
Calculus of Variation to find the stationary path between two points. Hamilton’s
principle is one of the variational principles in mechanics. All the laws of mechanics
can be derived by using the Hamilton’s principle. Hence it is one of the most
fundamental and important principles of mechanics and mathematical physics.

In this unit we define Hamilton’s principle for conservative and non-
conservative systems and derive Hamilton’s canonical equations of motion. We also
derive Lagrange’s equations of motion.

o Hamilton’s Principle (for non-conservative system) :
Hamilton’s principle for non-conservative systems states that “The motion of

a dynamical system between two points at time intervals f, to ¢, is such that the line

integral
I=[(T+W)dt
is extremum for the actual path followed by the system” , where T is the kinetic
energy and W is the work done by the particle.
It is equivalent to say that J variation in the actual path followed by the

system is zero. Mathematically, it means that
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§I:§j(T+W)dt:0

)
for actual path.
. Hamilton’s Principle (for conservative system) :
“Of all possible paths between two points along which a dynamical system

may move from one point to another within a given time interval from ¢, to ¢, the

actual path followed by the system is the one which minimizes the line integral of
Lagrangian.”’

This means that the motion of a dynamical system from ¢, to ¢, is such that

the line integral det is extremum for actual path. This implies that small &

Ty

variation in the actual path followed by the system is zero.

Mathematically, we express this as & j Ldt =0 for the actual path.

Iy

Note : We will show bellow in the Theorem (2) that the Hamilton’s principle

o I Ldt =0 also holds good for the non-conservative system.

Ty

° Action in Mechanics :

Let L= L(q 4 j,t) be the Lagrangian for the conservative system. Then the

integral

Izil[Ldt

Iy
is called the action of the system.
Hence we can also define the Hamilton’s principle as “Out of all possible

paths of a dynamical system between the time instants #, and ¢,, the actual path
followed by the system is one for which the action has a stationary value”
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= §I:§]Ldt:0

Iy
for the actual path.
Theorem 1 : Derive Hamilton’s principle for non-conservative system from
D’Alembert’s principle and hence deduce from it the Hamilton’s principle for
conservative system.

Proof: We start with D’ Alembert’s principle which states that

> (F-p,)or,=0. (D)

Note that in this principle the knowledge of force whether it is conservative or non-
conservative and also the requirement of holonomic or non-holonomic constraints

does not arise. We write the principle in the form

2 For=2 por.

= 6W=> por. )
where oW = z For, is the virtual work.

Now consider

Zﬁé‘rz‘ = Zmiiﬂ;é"ﬁi’
d, . . d
=2 midn) =2 mp;(9r).

i

Since we have o7, = %51} , therefore, we write
Zf).é'r. =i Zm.iéé'r. -0 Zlm.iéz )
i 1 1 dt l 11 1 l 2 11
Zﬁié'ri {Zmlr&’}
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where T=>» —mr

is the kinetic energy of the system. Substituting this in equation (2) we get

g

=  S(W+T)= {Zmr&;}.

Integrating the above equation with respect to t between ¢, to #, we get

I

jé (W +T)dt = {Zmr&r[} :

) Ty

Since, there is no variation in co-ordinates along any paths at the end points. i.e.,

(6r,)! =0. Hence from above equation we have
0

§J'(W+T)dt= 0.

fy

This is known as Hamilton’s principle for non-conservative systems.

.(3)

If however, the system is conservative, then the forces are derivable from potential.

In this case the expression for virtual work becomes
ow :ZE.é' =—Z—5r =—0V
Hence equation (3) becomes

5]'(T—V)dt= 0,

Iy

= 5]-ldt: 0

Iy

This is the required Hamilton’s principle for conservative system.

AC))
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Theorem 2 : Show that the Hamilton’s principle §j Ldt = 0 also holds for the

)
non- conservative system.

Proof : We know the Hamilton’s principle for non-conservative system is given by

S[(T+W)dr =0 (D)

Ty

for actual path. The expression for the virtual work is given by
W = Z F.ér = Z F, {Z }
g, |
W =3 {Z F, —}5%

oW =2 0,5q;, (2

or,
where 0. = Z F,—
J - aqj

are the components of generalized forces. In the case of non-conservative system the
potential energy is dependent on velocity called the velocity dependent potential. In

this case the generalized force is given by

oU d|dU
Q=—7F"+—
/ aq dt aq

Substituting this in equation (2) and integrating it between the limits ¢, to #, we find

[ [ [ oU d|[oU
jJWdt—jZQﬁqjdt—j{ Zl:—a—qj+5(a?jﬂdqj}dt,

Iy h J Iy J

Substituting this in equation (1) we get

fora-[ 5 2oy j{ Maq Hcsq}dt.
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Integrating the second integral by parts we obtain

jam—jz—a dt—Z(g—qU(?qu] j{ z[gg] (5qu)}dt.

th J J j

Since change in co-ordinates at the end point is zero. (5qj ):1 =
d .
and also E(qu):é'qj,

then we have

]5Tdt=]{ Z(g—Ua -+ gU 5 J}}dt.
o o q; q;
Since time t is fixed along any path hence, there is no variation in time along any
path therefore change in time along any path is zero. i.e., 9t =0

Hence we write above equation as

1 aU LY oU
j

Iy ly

]'5Tdt = ]'JUdt.

Iy Ty

= [8(T-U)at=o0,

0
= 5! Ldt =0.
)
This proves that the Hamilton's principle holds good even for non-conservative

systems.

Theorem 3 : State Hamilton’s principle for non-conservative system and hence

derive Lagrange’s equations of motion for non-conservative holonomic systems.
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Proof: Let us consider a non-conservative holonomic dynamical system whose
configuration at any instant t is specified by n generalized co-ordinates

4,-9,-4,----q,. Hamilton’s principle for non-conservative system states that

JJ(T +W)dt =0 for actual path. (D

fy

The virtual work done is given by
oW = ZFﬁr—ZF{Z :l§qj
9q,
or, '
oy
W =>0,q;, )
j

or.
where => F—
e z ' 9g,
are the components of generalized forces.

]LJWdt = }ZQﬁq_idt. N E)

Ty fh J

The kinetic energy of the particle 7 =T (q i q j,t).

oT oT
oT = 0q;+ ) ——0q,+—0ot . Y
Zaqj Zj:aqj ot

As the variation in time along any path is always zero. = Jt=0

This implies that
oT=%2

Integrating equation (5) between the limits 7, to #, we get

J'é‘Tdt —J'Z—ﬁ dt+J-Z—5qjdt

ty J ty J
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Since we have
d )
Eé‘ql = 5q] .

Therefore we write the above integral as

j&Tdt—jZ—d dr+ J'Z | 8q,)dt

Ty Ty

Integrating the second integral by parts, we obtain

jéTdt—jZ—é dt{ } IZ { ]5 dr .

ty ty J q/ J f
Since in & variation there is no change in the co-ordinates at the end points
= (5qj)? =0. Hence

jo”Td —JZF—T—%{;TH(S d . ... (6)

dq

Using equations (3) and (5) in equation (1) we get

t oTf d| oT
{Z{——E(aqj}Q }5q,dt— )

If the constraints are holonomic then Jg; are independent. (Note that if the
constraints are non-holonomic, then J¢q, are not all independent. In this case

vanishing of the integral (7) does not imply the coefficient vanish separately) Hence

the integral (7) vanishes if and only if the coefficient must vanish separately.

d(or | oT
— . ... (8
dt {aqi] aq ; =9 ®)

These are the Lagrange’s equations of motion for non-conservative holonomic

system.
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Theorem 4 : Deduce Hamilton’s principle for conservative system from
D’ Alembert’s principle.

Proof: We start with D’ Alembert’s principle which states that

> (F-p,)or,=0. (D)

1

We write the principle in the form

2 For=2 por, )

where Or, is the virtual displacement and occurs at a particular instant. Hence

change in time Ot along any path is zero.

Now consider

z Eé‘rz‘ = zmiiﬂ;é‘ri’

=3 o)~ Sm ()
. . d
Since we have oF, =—0or,,
dt

therefore we write

Zﬁié’r:di{Zmi/@é'/;}—é‘T )

where

is the kinetic energy of the system. Substituting equation (3) in equation (2) we get

ZE&=%{ZM&}5T )
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A%
Since the force is conservative= F, = ———

ar

a Zmi@5n = 5T—za—v§r
dt| < ~ or,
=0T -0V
Integrating the above equation with respect to t between ¢, to f, we get

gl

{Zmii’i&;} = 5]- Ldr .

ly

Since, there is no variation in co-ordinates along any paths at the end points.

4 .
i.e. (o)) =0. Hence from above equation we have
0

é'iI[Ldt:O. .9

Ty
This is the required Hamilton’s principle for conservative systems.
. Derivation of Lagrange’s equations of motion from Hamilton’s Principle :
Theorem 5 : Show that the Lagrange’s equations are necessary conditions for the
action to have a stationary value.

Proof: We know the action of a particle is defined by

Izil[Ldt . (D

)

where L is the Lagrangian of the system. Consider

Sl = 5[ Ldt,
aL

= —&1 > —dq,

j 7 0q, 704,

J

As there is no variation in time along any path, hence 6t =0
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5J'Ldt—jZ—5 dt+jZ—5qjdt.

tol zO/

dq

. d
Since 5d_t]:E( q;),

therefore, we write

5det—IZ—5 dr+ Iza “a (8q; )t )

Ty Ty Ty

Integrating the second integral on the r. h. s. of equation (2) we get

adet—IZ—5 ‘”*Laq_ } IZ [ J

Ty Ty q J

Since there is no variation in the co-ordinates along any path at the end points, hence

change in the co-ordinates at the end points is zero. i.e.,

(6q,), =

)
Thus we have

5ILdt—IZ{a—L—%(§qL Ha dr. .3

dq;
If the system is holonomic, then all the generalized co-ordinates are linearly
independent and hence we have

5;[Ldt— jZ{%—%( oL Ha dr=0

g

§de¢:0 oOL _dfdL)_, L4
dg, dt aq

Ty
These are the required Lagrange’s equations of motion derived from the Hamilton’s
principle. The equation (4) also shows that the Lagrange’s equations of motion for
holonomic system are necessary and sufficient conditions for action to have a

stationary value.
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Worked Examples

Example 1 : Use Hamilton’s principle to find the equations of motion of a particle of

unit mass moving on a plane in a conservative force field.

Solution: Let the force F be conservative and under the action of which the particle

of unit mass be moving on the xy plane. Let P (x, y) be the position of the particle.

We write the force

F=iF + jF,.

Since F is conservative, we have therefore,

The kinetic energy of the particle is given by
L., .
T=—|x"+ .
S(¥+57)
Hence the Lagrangian of the particle becomes
L:%(}'cz +37)-V(x,y).
The Hamilton’s principle states that

5]Ldt =0,

0

j a—L5x+a—L5y+a—L.§x+a—§§y' dt=0,
| Ox dy ox ay

- j (x5x+y'5y')—a—v5x—a—v5y dt=0.
L ox dy
Consider
]')'cﬁ)'cdt = ]'xi(éx)dt
dt

Iy Iy

Classical Mechanics
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Integrating by parts we get

]

h

[ x65dt = (%6x)" — [ %(Sx)dr .

Iy

fy

Since 0x =0 at both the ends #, and ¢, along any path, therefore,

]

J

Iy

Similarly, we have

]

J

Ty

iSsdt =~ %(Sx)dt

yay'dtz—jy(ay)dr.

.4

0

.. (5)

Ty

Substituting these values in equation (3) we get

h

J

Iy

(

ox

jé+a—Vj5x+(y+%—Vj5y}dt=0.
y

Since ox and Jy are independent and arbitrary, then we have

oV

P+ =0,

ox

_9V _
ox
g_

X=

V=

These are the equations of motion of a particle of unit mass moving under the action

of the conservative force field.

Example 2: Use Hamilton’s principle to find the equation of motion of a simple

pendulum.

Solution: In case of a simple pendulum, the only generalized co-ordinate is €, and

oV
y+—=0.
y %

F,

X

.. (6)
F.

y

the Lagrangian is given by (Refer Ex. 26 of Chapter I)

L =%m1292 —mgl(1-cos8).

Classical Mechanics
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The Hamilton’s Principle states that “the path followed by the pendulum is one along

which the line integral of Lagrangian is extremum”. i.e.,

5][Ldt=0,

Ty

j&Bmzzéz —mgl (1-cos 9)}1; =0,

]-[mlzéﬁé —mglsin eéa]dr =0.

Iy

Since, we have 1) i = i 1)

dt dt

Therefore

| [mzze'%(ae) —mgl'sin 959}& =0.

Ty
Integrating the first integral by parts we get

mi* (656)' —]m[12é+ glsin6 |69d = 0.

Since (5(9)? =0, we have therefore,
j m[lzé + glsin 0]54% =0.

lo
As 00 is arbitrary, we have

1’6+ glsin@=0
= é+§sin9=0.

This is the required equation of motion of the simple pendulum.
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. Spherical Pendulum :

Example 3 : A particle of mass m is moving on the surface of the sphere of radius r
in the gravitational field. Use Hamilton’s principle to show the equation of motion is
given by

2
" cos @
9—p¢——§sin920,

mirisin’@ r

where p, is the constant of angular momentum.
Solution: Let a particle of mass m be moving on the surface of a sphere of radius r.

The particle has two degrees of freedom and hence two generalized co-ordinates

6,¢ . The Lagrangian of the motion is (Refer Ex. 28 of Chapter I) given by
L:%mrz(éz+sin29¢2)—mgrcos0. ... (D

The Hamilton’s Principle states that “the path followed by the particle between two

time instants f, and f, is one along which the line integral of Lagrangian is

extremum”. i.e.,

J]'Ldtzo,

].5{%%”2 (6’2 +sin? 0¢2)—mgrcos 0} dt=0,

}[mrz (656 -+sin’ 6956+ sin 6 cos 65°58) + mer sin 650 |dt = 0.

)

Since, we have o a0 = 4 o0 .

dt dt

Therefore,

J[mrz (9%(50)"‘ sin’ 6¢5%(5¢))+ (mr2 sin @ cos 89* + mgrsin 0)56’}# =0.

Ty

Integrating the first two integrals by parts we get
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mr* (668)" +mr*sin 6(¢op)" ~ j {mrz (é —sin @cos 64 —E sin aj 549} dt —
I f g r

—]Ler%(sinz 09)opdt = 0.

Since (86)' =0=(d¢)",

we have therefore,
J.{mr2 (é —sin@cos 89 —E sin 6) 549}0,7 +J.mr2 di(sin2 6¢3)5¢dl =0
; r ) t

Since @ and ¢ are independent and arbitrary, hence we have

6 —sin 6 cos 6p° —ﬁsinﬁzo,
r
mr’ di(sin2 0¢) =0= mr’sin’ @9 =p, (const.)
t

Eliminating ¢ we obtain

. 2 cos @
gL %Y 8 ino=0. e

2.4 3
mrisinn @ r

as the required differential equation of motion for spherical pendulum.

Unit 2:
. Hamiltonian Formulation :
Introduction:

We have developed Lagrangian formulation as a description of mechanics in
terms of the generalized co-ordinates and generalized velocities with time t as a
parameter in Chapter I and the equations of motion were used to solve some
problems. We now introduce another powerful formulation in which the independent
variables are the generalized co-ordinates and the generalized momenta known as

Hamilton’s formulation. This formulation is an alternative to the Lagrangian
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formulation but proved to be more convenient and useful, particularly in dealing with
problems of modern physics. Hence all the examples solved in the Chapter I can also
be solved by the Hamiltonian procedure. As an illustration few of them are solved in
this Chapter by Hamilton’s procedure.

° The Hamiltonian Function:

The  quantity Z pq;,—L when  expressed in  terms  of
j

q,-955--4,5 P> Py»---P,»t 18 called Hamiltonian and it is denoted by H.
Thus H:H(Qj’pj’t):zquj_L'
i

. Hamilton’s Canonical Equations of Motion :
Theorem 6 : Define the Hamiltonian and hence derive the Hamilton’s canonical
equations of motion.

Proof : We know the Hamiltonian H is defined as

H=H(qj,pj,t)=2qu'j—L. (D
J

Consider ~ H=H(q,,p,t). )

We find from equation (2) that

oH oH oH
dH:Zadpj+Zquj+§dt. .3

Now consider H = ijc']j -L.
j
Similarly we find
dH =Y g,dp,+) dg;p;—dL,
j j

_ . oL
= dH = Zq‘,-dp,- + qujpj _ngqj -
3 7

J j J

oL . oL
—dg. ——dt . ...(4
zaq'j L @

We know the generalized momentum is defined as
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oL
pP;=

i aqj :
Hence equation (4) reduces to
oL oL
dH =) gdp,— ) —dq,——dt ...(5
Zj:q’ " Zj:aqj S )

Now comparing the coefficients of dp;,dq; and dr in equations (3) and (5) we get

OH oL _ dH 3L _ oH

qj:apj, 9q; ) dq, a A ©
However, from Lagrange’s equations of motion we have
. oL
p;= %
Hence equations (6) reduce to
. OH i oH
q‘;:a, Pj=—£j . )]

These are the required Hamilton’s canonical equations of motion. These are the set of
2n first order differential equations of motion and replace the n Lagrange’s second
order equations of motion.

. Derivation of Hamilton’s equations of motion from Hamilton’s Principle :
Theorem 7 : Obtain Hamilton’s equations of motion from the Hamilton’s principle.
Proof: We know the action of a particle is defined by

Izil[Ldt (D

where L is the Lagrangian of the system. If H ( p j,qj,t) is the Hamiltonian of the

motion then we have by definition

H=2 pg,~-L. )
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Replacing L in equation (1) by using (2) we have the action in mechanics as

ol i

I:]'Ldt:J. > pg,—H |dr. .03
J

Iy hhL

Now by Hamilton’s principle, we have

5de¢=0 = 5[1 > pg,—H|dt=0. @
J ]

Ty L

This is known as the modified Hamilton’s principle. Thus we have

5de¢_ 5[{2;) g, - }

Ty Ty

Ty Ty

é'det—j{Zé'pq +Zp§q Z—é'q z <——5}d

Since time is fixed along any path, hence change in time along any path is zero. i.e.
ot =0 along any path. Hence above equation becomes
1 [ oH oH
S| Ldt = Z(q.——Jap.+zp.5q.—Z—5q. dt ... (5

Now consider the integral

jzpj5q/dt—jzpjd q/

to J
Integrating the integral on the r. h. s. by parts we get

IZPﬁ%dZ = {Z pjaqjj —IZPﬁ%df :

o J j W T d

Since (5q ) =0. We have therefore

ij 0q dt——ij 0qdt .

Ty Ty
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Substituting this in equation (5) we get

1 ’ oH oH
O| Ldt = 1 ———Op. + . +—— |0qg. dt .
= (o3 e o

Now we see that
f * oH oH
O|Ldt=0  ——— Op. + . +—— 0qg. dt=0.
-0 13 0,20 i 2 o

For holonomic system we have ¢, p; are independent, hence

5det:0<:>q'j—a—H:0, pj+aﬂ:0.
o 9p, dq,

- 5det:0<:>qj:a—H, pj:—a—H. ... (6)
o 9p; dq,

These are the Hamilton’s canonical equations of motion.
Remark :

We see from equation (6) that the Hamilton’s canonical equations of motion
are the necessary and sufficient conditions for the action to have stationary value.

Example 4 : Show that addition of the total time derivative of any function of the

form f (q j,t) to the Lagrangian of a holonomic system, the generalized momentum

and the Jacobi integral are respectively given by

of Ki

. +— and .
PiTag o1

Does the new Lagrangian L’ unchanged the Hamilton’s principle? Justify your
claim.

Solution: Let the new Lagrangian function after addition of the time derivative of

any function of the form f (q j,t) to the Lagrangian L be denoted by L . Thus we

have
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L':L+£. (D

dt
Thus the generalized momentum corresponding to the new Lagrangian L’is defined
by

, :% - (2)
Thus ; :%Jr%(%j

N P :p~"+8%j[zk:§7fk% +%j

= P :p~"+§_c];j' .(3)

This is the required generalized momentum corresponding to the new Lagrangian L .

Similarly, the Jacobi integral for new function L’ is given by

H'=>p4,-L,
J
, <ol df
H'=Y—¢,-|L+—|.
gaq',-q’( dtj

On using equation (3) we get

= H=H-2. @)

This is a required Jacobi integral for the new Lagrangian L.
Now we show that the new Lagrangian L also satisfies the Hamilton’s principle.

Therefore, consider
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5]2' L'dt :5J2' Ldt + 5}%&,
1 1 1

5]2' L'dt :5J2' Ldt + 5]2' df,
1 1 1

2 2
JIL’dt quLdH(éf)f,
1 1

ot

J

2
2 2
§J‘L’dt:5J'Ldt+|ZZ§—f5qj+ai5t} .
1 1 qj 1

But in O variation time is held fixed along any path and hence o7 =0 along any
path.

Further, co-ordinates at the end points are held fixed.
2
= (4, )1 =0.
Hence we have from the above equation that
2 2
5J'L’dt = 5J-Ldt :
1 1
Thus the Hamilton’s Principle
2 2
§[Ldt=0 < &[Ldt=0.
1 1

This shows that the new Lagrangian L~ satisfies the Hamilton’s principle.

. Lagrangian from Hamiltonian and conversely :

Example 5: Obtain Lagrangian L from Hamiltonian H and show that it satisfies
Lagrange’s equations of motion.

Solution: The Hamiltonian H is defined by

H=3 pg,-L. (D)

which satisfies the Hamilton’s canonical equations of motion.
oH ) oH
g =—, p.=—"7— . .2
" dp, b g
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Now from equation (1) we find the Lagrangian

L=2 pg,—H. N E)

and show that it satisfies Lagrange’s equations of motion. Thus from equation (3) we

have
o __on
aqj aqj’

oL

and —=
aq;

Dj-

Now consider

oL _djoL|_ o d
dq, di\oq,) og, '
oL _dfoL)_ . .

oq, dr\ag, ) D"

oL _dfoL)_,

dq; dt| 94, .

This shows that the equation (3) gives the required Lagrangian which satisfies the

Lagrange’s equations of motion.

Example 6 : Obtain the Hamiltonian H from the Lagrangian and show that it
satisfies the Hamilton’s canonical equations of motion.

Solution: The Hamiltonian H in terms of Lagrangian L is defined as

H=2 pg,~L. (D)

where L satisfies the Lagrange’s equations of motion viz.,

dL _d B_L =0, .2
dg; dt| dq,
oL d| dL
= — ==,
dg; dt| dq;
d
_E(p.i)'
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oL .

v =p;- ...03
q;

Now from equation (1) we find

OH oL

— = .4
dq; dq;
From equations (3) and (4) we have
oH
—=—p.. ... (5
dq; !
Similarly, we find from equation (1)
oH
—=g.. ... (6
@;% (6)
Equations (5) and (6) are the required Hamilton’s equations of motion.
o o
. Physical Meaning of the Hamiltonian :
Theorem 8 :
1. For conservative scleronomic system the Hamiltonian H represents both a
constant of motion and total energy.
2. For conservative rheonomic system the Hamiltonian H may represent a
constant of motion but does not represent the total energy.
Proof : The Hamiltonian H is defined by
H=Ypq,-L. (D)
j
where L is the Lagrangian of the system and
oL
p;= 8_ .(2)
9,

is the generalized momentum. This implies from Lagrange’s equation of motion that
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d| oL oL
y =2 22|22 ..
& dt(aq/} 9q; ©

Differentiating equation (1) w. r. t. time t, we get

oL . oL oL
=2.P4;+ 2. p4; : —; —— )
; J4J Z J1j Zaql J Zaql J at
On using equations (2) and (3) in equation (4) we readily obtain
dH BL
.(5
dr ot ©)
Now if L does not contain time t explicitly, then from equation (5), we have
dH _0
dr

This shows that H represents a constant of motion.

However, the condition L. does not contain time t explicitly will be satisfied by
neither the kinetic energy nor the potential energy involves time t explicitly.

Now there are two cases that the kinetic energy T does not involve time t explicitly.

1. For the conservative and scleronomic system :

In the case of conservative system when the constraints are scleronomic, the
kinetic energy T is independent of time t and the potential energy V is only function
of co-ordinates. Consequently, the Lagrangian L does not involve time t explicitly
and hence from equation (5) the Hamiltonian H represents a constant of motion.
Further, for scleronomic system, we know the kinetic energy is a homogeneous

quadratic function of generalized velocities.

T=Ya,44,. ... (6)
J.k

Hence by using Euler’s theorem for the homogeneous quadratic function of

generalized velocities we have

Z%@ ()
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For conservative system we have

oL  dT
p;= % = a_qj . - (8)
Using (7) and (8) in the Hamiltonian H we get
H=2T—-(T-V),
H=T+V=E. ... 09

where E is the total energy of the system. Equation (9) shows that for conservative

scleronomic system the Hamiltonian H represents the total energy of the system.

2. For conservative and rheonomic system :

In the case of conservative rheonomic system, the transformation equations
do involve time t explicitly, though some times the kinetic energy may not involve
time t explicitly. Consequently, neither T nor V involves t, and hence L does not
involve t. Hence in such cases the Hamiltonian may represent the constant of motion.
However, in general if the system is conservative and rheonomic, the kinetic energy

is a quadratic function of generalized velocities and is given by

T=>a,q,g.+).a,,+a ...(10)
J.k J
where
1 o dr
W23 g 90,
i q; 04, (1
_ Jr, or,
,—Zmz-a—a—,
i q; ot

We see from equation (10) that each term is a homogeneous function of generalized
velocities of degree two, one and zero respectively. On applying Euler’s theorem for

the homogeneous function to each term on the right hand side, we readily get
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DG, —=2T,+T,. ... (12)

where

are homogeneous function of generalized velocities of degree two, one and zero

respectively. Substituting equation (12) in the Hamiltonian (1) we obtain
H=T-T,+V

showing that the Hamiltonian H does not represent total energy. Thus for the

conservative rheonomic systems H may represent the constant of motion but does not

represent total energy.

. Cyclic Co-ordinates In Hamiltonian :

Theorem 9 : Prove that a co-ordinate which is cyclic in the Lagrangian is also cyclic

in the Hamiltonian.

Solution: We know the co-ordinate which is absent in the Lagrangian is called cyclic

L
co-ordinate. Thus if g, is cyclicin L = ;— =0.
9q;
Hence the Lagrange’s equation of motion reduces to
d| dL
dt (aq,} P; )

oL . . .
where p,=—— is the generalized momentum. However, from Hamilton’s
j

canonical equations of motion we have

py = )
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Equations (1) and (2) gives

H
8_ =0. ...%
aqj
This shows that the co-ordinate q; is also absent in the Hamiltonian, and

consequently, it is also cyclic in H. Thus a co-ordinate which is cyclic in the

Lagrangian is also cyclic in the Hamiltonian.

Worked Examples o

Example 7 : Describe the motion of a particle of mass m moving near the surface of
the Earth under the Earth’s constant gravitational field by Hamilton’s procedure.

Solution: Consider a particle of mass m moving near the surface of the Earth under
the Earth’s constant gravitational field. Let (x, y, z) be the Cartesian co-ordinates of

the projectile, z being vertical. Then the Lagrangian of the projectile is given by
L:%m(x2+y2+z'2)—mgz. (D

We see that the generalized co-ordinates x and y are absent in the Lagrangian,
hence they are the cyclic co-ordinates. This implies that any change in these co-
ordinates can not affect the Lagrangian. This implies that the corresponding
generalized momentum is conserved. In this case the generalized momentum is the
linear momentum and is conserved.

p, = mx = const.

ie., ) .2
p, =my = const.

p.=mz.
This shows that the horizontal components of momentum are conserved.

The Hamiltonian of the particle is defined by

H = ijqj -L,
F
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1
H=prc+pyy+pzz'—5m(5c2+j)2+z'2)+mgz. ... (3)
Eliminating x, y,7 between equations (2) and (3) we get

1 2 2 2
H=— +p+ +mgz . ...4
2m(px pi+pl)+mg )

The Hamilton’s equations of motion give

px:——:()p = O,p‘:— =

po=oH —mg. BNE
ox ! dy "8 ©)

and g2 OH _pe o OH P, _OH _p. . (6)
op, m dp, m dp, m

From these set of equations we obtain

X=0,y=0,7=-g .. (7
These are the required equations of motion of the projectile near the surface of the
Earth.
Example 8 : Obtain the Hamiltonian H and the Hamilton’s equations of motion of a
simple pendulum. Prove or disprove that H represents the constant of motion and
total energy.
Solution: The Example is solved earlier by various methods. The Lagrangian of the

pendulum is given by

L:%mlzéz—mgl(l—cosﬁ), (D)
where the generalized momentum is given by
aL 2 A b p
=—=ml’d= =2 -2
Pe =36 mi? @

The Hamiltonian of the system is given by
H=p0-L,

= H =p96"—%mlz6"2+mgl(1—cos0).
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Eliminating @ we obtain

2
H ==Lt mgl(1-cos6). ..3)
2ml

Hamilton’s canonical equations of motion are

J apj ’ J aqj :

These equations give

6= Do

_m—lz, p, =—mglsin@. NG

Now eliminating p, from these equations we get
é+§sm9:0. .05

Now we claim that H represents the constant of motion.

Thus differentiating equation (3) with respect to t we get

d_H:Pe_PZeergzsineé,
dt ml
— ml*60 + mgl sin 06 ,
:m129(5+§sin0j,
a _
dt

This proves that H is a constant of motion. Now to see whether H represents total

energy or not, we consider

T+V =%mlz6"2 +mgl(1—cos8).
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Using equation (4) we eliminate & from the above equation, we obtain

2
T+V = p92+mgl(1—cosﬁ). ... (6)
2ml

This is as same as the Hamiltonian H from equation (3). Thus Hamiltonian H
represents the total energy of the pendulum.
Example 9: The Lagrangian for a particle moving on a surface of a sphere of radius r

is given by
L :%mr2 (6’2 +sin’ 0¢2)—mgrc0s6’.

Find the Hamiltonian H and show that it is constant of motion. Prove or disprove that
H represents the total energy. Is the energy of the particle constant? Justify your
claim.

Solution: We are given the Lagrangian of a particle moving on the surface of a

sphere (Spherical Pendulum) in the form
L=%rn;’2(0.2+sin2 0¢2)—mgr0050. . (D)

We see that ¢ is a cyclic co-ordinate. This implies the corresponding generalized

momentum is conserved. i.e.

Py = g—; = mr? sin’ 0¢5 = const. R 7))
Similarly, Dy = g—g =mr’0. ...3

The Hamiltonian of the particle is defined as
H:épg+¢}p¢—%mr2(92+sin20¢2)+mgrcos6’. (4

Using equations (2) and (3) we obtain the Hamiltonian function

2 2
H:l[”9+ Pe J+mgrcos0. ..(5)

2\ mr*  mr’sin® @
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The Hamilton’s canonical equations of motion give

cosép,

6~ 2 .
mr- Sin
p¢ =0,
Do ... (6)

2 b

-—+mgrsing,

0=

mr’sin® @
Eliminating p, from equation (6) we get the equation of motion of spherical

pendulum as

. cos@p’
mr26’—2—,pf—mgrsin0=0. ...(D
mr”sin” @
@) Now we claim that H is a constant of motion, differentiate equation (5) with

respect to t, we get

dH:pgp9+ PsPy B p;cosﬁ

0 —mgrsin 60,
dt mr’  mr’sin’@ mr’sin’ @

Putting the values of p,, p, from equation (6) we get

dH  p, cos@p; . Do COS@P; p .
= +mgrsin@ |— -9 mgrsin@
dt mrz(mr2 sin’ @ & m*rtsin®@ mr? &
H
aH _,
dt

showing that H is a constant of motion.
(i1) Now consider the sum of the kinetic and potential energy of the spherical

pendulum, where
1 2 2 « 2 12
T=—mr(0 +sin” 8¢~ ),
5 ( W)

V =mgrcos @
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Thus
T+V=%mr2(92+sin29¢2)+mgrcos9. ... (8)

We eliminate 6, ¢ from equation (8) by using equation (6) to get

1 p2 p2
T+V=—| 2+ 4 +mgrcos@. ... 09
2(mr2 mr? sin® 9] & ©)

We see from equations (5) and (9) that the total energy of the spherical pendulum is

the Hamiltonian of motion. Now to see it is constant or not, multiply equation (7) by

0 we get
.. p’cosf0 .
mr’66 —% —mgrsin80 =0
mr”sin” @
2
4 lmrzé’2 +i % +i(mgrcos0):0.
dt\ 2 dt\ 2mr~sin” @ | dt

Integrating we get

2
(l mrzézj + (L] +(mgrcos @) = const.

2 2mr’ sin* @

Eliminating @ on using equation (6) we get

2 2
%( Do + p¢ - ]+mgrc050:c0nsl.. RN (10)

mr®  mr®sin® @
We see from equations (5), (9) and (10) that the Hamiltonian H represents the total
energy and the energy of the particle is conserved.

Example 10: Two mass points of mass m, and m, are connected by a string passing
through a hole in a smooth table so that m, rests on the table surface and m, hangs
suspended. Assuming m, moves only in a vertical line, write down the Hamiltonian

for the system and hence the equations of motion. Prove or disprove that
1) Hamiltonian H represents the constant of motion.

ii) H represents total energy of the system.
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Solution: The example is solved in Chapter I. (please refer to Example 24). The

Lagrangian of the system is given by
1 .2 2 '2 1 .2
inml(r +r°60 )+5m2r +m,g(l-r) ... (D)

We see that the co-ordinate € is cyclic in the Lagrangian L and hence the

corresponding generalized momentum is conserved.

aL 2 b
=—=mr 0 =const. .2
Po==5=m ()
Similarly, we find
prza—lfz(ml+m2)f=c0nst. .3
or
Now the Hamiltonian function is defined as
H= fa—lf +62L_ L,
or 06

H =%(ml +m2)f2+%m1r292 -myg(l—r).

Eliminating # and @ we obtain

2 2

pr pg
H= + - [—r). ...(4
2(m +m,) 2mr? g (1=7) @)

The Hamilton canonical equations of motion viz.,

p; aqj’ q; op,
give
: oH p, : oH
= —— = —m. s :—_:0. 5
Pr o mr’ 8 Po= "5 ©)
S A T A 7 6)
ap, (m+m,)’ dp, mr’

From equations (5) and (6) we have

Classical Mechanics Page No. 190



2
(ml+m2)f—%+m2g=0. .. (D
1

This is the required equation of motion.
1) To prove H represents a constant of motion, we differentiate equation (4)

with respect to t. Thus we have

dH ' Dy Dol .
— prpr +p€p2€_p9’;+m2gr
de  (m+m,) mr’ mr

Using equations (5) and (6), we have

dH _  ppy _ pmg  ppp, ., magp,
dt  (m+m)mr’ m+m, (m+m)mr (m1+m2)r’
H

A _

dt

This shows that The Hamiltonian H represents a constant of motion.
ii) We have the kinetic and potential energies of the system are respectively

given by
1 ) : | B
T =§m1 (r2 + r202)+5m2r2,
V=-mg(l-r).
Now consider

T+V:%ml(f”2+r26"2)+%m2f”2—ng(l_r)' -+ ()

Eliminating 7 and € from equation (8) on using equations (6) we obtain

2 2

pr p19
T+V = + - - ...09
2(m1+m2) 2mlr2 ng( r) ©)

From equations (4) and (9) we see that the total energy is equal to the
Hamiltonian function. Thus Hamiltonian H represents total energy of the system. To
prove that the total energy is conserved, multiply the equation of motion (7) by 7,

we get
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2 .
r .
(m, +m2)rr——p‘9 - +m,gir=0.
mr

This we write as

Hmrm) 2o 2o )=

dr 2 | dt\2mr? ) dt

Integrating and then eliminating 7 we get

2

2
pr pe
+ +m,gr = const. . ...(10
2(m +m,) 2mr’ 8 (10)

Equations (9) and (10) show that the total energy of the system is conserved.
Note : Equation (10) is the first integral of equation of motion. Its physical
significance is that the Hamiltonian H represents the constant of total energy.

Example 11: A particle of mass m is moving on a xy plane which is rotating about z

axis with angular velocity @. The Lagrangian is given by
L:%m[(x_a)y)z+(y-+a)x)2}v(x,y).
Show that the Hamiltonian H is given by

1
H 2%(]))3 +p.)+ p,@y—p ox+V.
Find the equations of motion and hence prove or disprove that
1) H represents a constant of motion and
ii) H represents the total energy.

Solution: The Lagrangian of the particle is given by
L:%m[(a’c—a)y)z+()')+a)x)2}—V(x,y). (D)

where the generalized momentum p, and p, are given by

_oL
ox

D, =m(x-wy)= xzp)‘+a)y, )
m

Classical Mechanics Page No. 192



_aL:m()')_a)x): y:&—wx. ...(3)

Py—a—y. "

The Hamiltonian H is defined by H=xp +yp,—L

H:p;+py-%mﬂx-@gﬁqy+mﬂﬂ+v(&ﬂ.

Using equations (2) and (3) we eliminate x and y from the above equation to get

the Hamiltonian of the system

1
H:%(pf+p§)+a)(pxy—pyx)+v. . @
The Hamilton’s canonical equations of motions give
__OH_ 9% . __oH__ .,
P ox 7 ox’ Py dy Ps dy )
a px aH py .
=—=—"4wy, y=E—-=—"-0
op, m op, m
Solving these equations we obtain the equations which describe the motion
m(x—Zw)') —a)zx) = —a—V,
ox
. (6)
m(y+2a)x—a)2y) = —a—V
dy
Now to prove whether H is a constant of motion or not, differentiate equation (4)
w.r. t. tto get
£E==l( > +p,p,)+o(py+py—px- 5c)+)‘c§X-+'§K
dt mpxpx pypy pxy pxy py pyy ax yay'
Using (5) we have
dH
—=0.
dt

This shows that H represents the constant of motion. Now to show whether H
represents total energy or not, we have the total energy of the system

E=T+V,
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1
E=5;Uf+pQ+thﬂ-

(7

We see from equations (4) and (7) that the Hamiltonian H does not represent total

energy.

Example 12 : A bead slides on a wire in the shape of a cycloid described by

equations

x=a(@-sind), y=a(l+cosf), 0<6<2rx.

Find the Hamiltonian H, hence the equations of motion. Also prove or disprove that

1) H represents a constant of motion
ii) H represents a total energy.

Solution: A particle describes a cycloid whose equations are
x=a(@-sinf), y=a(l+cosf), 0<0<2x.

The kinetic energy of the particle is given by
1 .2 )
T=—m(x"+ ,
Sm(#+5?)

where
x=af(1-cosh),
y =—asin 66.
Hence the kinetic energy of the particle becomes
T =ma’0* (1-cosb),
The potential energy of the particle is given by
V =mga(1+cos).
Hence the Lagrangian of the particle becomes
L=ma’8* (1-cos8)—mga(l+cos8).
The Hamiltonian H of the particle is

H=9§£—L,
00

Classical Mechanics
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where from equation (2) we have

%=p9=2ma29(1—00s9). (@)

Using equations (2) and (4) in (3) we obtain the expression for Hamiltonian as
H =ma*6” (1-cos 8)+mga(1+cos ). ... (5
Using equation (4) we eliminate 6 from equation (5) to get the required Hamiltonian

H as

__
4ma’* (1—cos 6)

+mga(1+c080). ... (6)

The Hamilton’s canonical equations of motion are

OH _ p,  sin#

p,=——— = +mgasin @, . (7
¢ 060  4ma’ (1—cosl9)2
oH
ek I . . (®)
dp, 2ma’(1—cosb)
From equations (7) and (8) we obtain the equation of motion of the particle
2 .
6(1-cos )+ Po S0 _ 8 Gno=0 ()

8m’a* (1-cos 0)3 2a
Eliminating p, from equation (9) we obtain the equation which describes the motion
of the particle in the form
2ma’* (1—cos 8) @ +ma’® sin 06 —mgasin§=0. ... (10)
Now to prove
1) H is a constant of motion, differentiate equation (6) with respect to time t we
get

dH 2P Py 3 2 sin 60
dt 4ma’(1-cos@) 4ma’ (1-cos@)

~—mgasin 60 .
Using equations (7) and (8) we readily get
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dH
== -0
dt
This shows that the Hamiltonian H is a constant of motion.

i1) H represents the total energy

We find from the expressions for kinetic energy and potential energy that

T+V =ma’6* (1—cos ) +mga(1+cos6). (1)

Eliminating @ from equation (11) we get equation (6) that gives the required
expression for the Hamiltonian. Now multiply equation (10) by 8 we get
2ma’ (1—cos 8) 60 +ma’ sin 60" —mgasin 66 =0 .

This can be written as

d 2 2
— 1-cos@)0” + I+cos@) |=0.
" [ma (1-cos8) mga(1+cos )]

Integrating we get
H=T+V =ma’8* (1-cos 8) +mga(1+cos §) = const.
This shows that the Hamiltonian H represents the constant of total energy.

Example 13 : Obtain the Hamilton’s equation of motion for a one dimensional

harmonic oscillator.

Solution: The one dimensional harmonic oscillator consists of /AL
a mass attached to one end of a spring and other end of the
spring is fixed. If the spring is pressed and released then on
account of the elastic property of the spring, the spring exerts a
force F on the body in the opposite direction. This is called

restoring force. It is found that this force is proportional

to the displacement of the body from its equilibrium position.
Focx
F =—kx
where k is the spring constant and negative sign indicates the force is opposite to the

displacement. Hence the potential energy of the particle is given by
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V:—jﬂk,
\% =jkxdx+c,

2
V=—+c,
2

where ¢ is the constant of integration. By choosing the horizontal plane passing

through the position of equilibrium as the reference level, then V=0 at x=0. This

gives c=0. Hence potential energy of the particle is

Vzlm?
2

The kinetic energy of the one dimensional harmonic oscillator is
T =—mx".
2

Hence the Lagrangian of the system is

Lzlmﬁ—lm?
2 2

The Lagrange’s equation motion gives
k

i+w'x=0, & =—.
m

This is the equation of motion. @ is the frequency of oscillation.

The Hamiltonian H of the oscillator is defined as
H=xp —-L,
Hzna—lmﬁ+lm{

2 2

where

oL : . _ D,
p=—=mxi=> x=-—%.
ox m

Substituting this in the above equation we get the Hamiltonian

2
H=Pylie
2m 2

Classical Mechanics
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Solving the Hamilton’s canonical equations of motion we readily get the equation (4)

as the equation of motion.

Example 14: For a particle the kinetic energy and potential energy is given by

respectively,

%)
r=Lmiz, v=2{1+2].
2 r c
Find the Hamiltonian H and determine

1. whether H =T +V

2. whether d—H =0.
dt

Solution: The kinetic and potential energies of a particle are given by

respectively. The Lagrangian function is therefore given by

.2
Lzlmf”z—l(1+r—].
2

2
r C

(D

We see that the particle has only one degree of freedom and hence it has only one

generalized co-ordinate. The generalized momentum is defined by

AL . 2F

= —_— m—_’
pr or re’
2
I
(mrc —2)

Thus the corresponding Hamiltonian function is defined by

H=p r—-L,

A ST | i’
H=p r——mr +—|1+—|.
Py r( czj

Eliminating 7 between (2) and (3) we obtain the Hamiltonian H as

Classical Mechanics
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2 2
H:l%ﬁ. L@
2 (mrc —2) r
1. Now the sum of the kinetic and potential energies is given by
)
T+U=lmf2+l(l+r—2j. ... (5
2 r c

Eliminating 7 between (2) and (5) we get

2 2 2
ryy o Lprelme j2)+1. ... (6)
2 (mrc2—2) r

We see from equations (4) and (6) that the Hamiltonian H does not represent the total

energy.
= T+U=#H.

2. Now differentiating equation (4) w. r. t. time t we get
dH _ p,p,rc’ 3 plic’ o )
dt (m’”cz—z) (mrcz—Z)2 rt

where

N 2\ 27
pr_ m——2+22.

rc rc

Substituting this in equation (7) and simplifying we get

d_H— }';+ ’:3 _L'
dt P: 2t ot
H
= d—;ﬁO.
dt

This shows that the Hamiltonian H is not a constant of motion.
Example 15 : A particle is thrown horizontally from the top of a building of height h
with an initial velocity u. Write down the Hamiltonian of the problem. Show that H

represents both a constant of motion and the total energy.
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Solution: Let the particle be thrown horizontally from the top of a building of

" height h with an initial velocity u. The motion

of the particle is in a plane. If P (x, y) are the

position co-ordinates of the particle at any
P(x, y) instant, then its kinetic energy and the potential
N energy are respectively given by
K
0 X
T:lm(x2+y'2), (D)
2
V=—mg(h—y). ... (2

Hence the Lagrangian of the particle becomes
_ 1 .2 ) _
L—Em(x +y )+mg(h y). ...(3)

The particle has two degrees of freedom and hence two generalized co-ordinates. We
see that the generalized co-ordinate x is cyclic in L, hence the corresponding

generalized momentum is conserved.

oL )
P, =——=mX=const.
ox @)
oL |
py a}.} y'
The Hamiltonian function H is defined as
H=%pd-L
j
H=pxx+pyy—%m(x2+y2)—mh(h—y) .. (3

Eliminating the velocities from equations (4) and (5) we obtain the Hamiltonian of

motion as
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Lo oy _
H—%(px+py) mg(h-y). ... (6)

The corresponding Hamilton’s canonical equations of motion are

s=OH _pe  _OH _ Dy
op, m’ ap, m’
and pxz—a—HzO, pvz—a—Hz—mg
ox ’ dy

Solving these equations we get the equations of motion as
X=0, y=-g. N))
Now differentiating equation (6) with respect to t we get

dH 1, | . .
E—Z(pxpﬁpypyﬁmgy

dH

= =0,
dt

This proves that H is a constant of motion.

Now to see whether H represents total energy or not, we consider
_ 1 ) )
T+V —Em(x +y*)—mg(h—y)
Putting the values of x and y we obtain the expression for the Hamiltonian as

1
T+V=%(pf+p)2,)—mg(h—y). ... (8)

This represents the Hamiltonian H, proving that H represents the total energy of the

particle.

Example 16: A particle is constrained to move on the arc of a parabola x* =4ay
under the action of gravity. Show that the Hamiltonian of the system is

2a°p;  mg

) 4
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Is the Hamiltonian of the particle representing total energy? Is it a constant of
motion?
Solution: Given that a particle is constrained to move on the arc of the parabola

x> =4ay (D
where y is vertical axis, under the action of gravity. The kinetic energy of the particle

is given by
1
Tzzm()'c2+j}2) ()
and the potential energy is given by
V =mgy. ...(3)
However, x and y are not the generalized co-ordinates, because they are related by

the constraint equation (1). Eliminating y from equations (2) and (3) on using (1) we

obtain

2 2
Lzémfcz(l+x—2]——mg. .

Now we see that the system has one degree of freedom and only one generalized co-

ordinate Xx.

A P
Pe=%5% 4a* )’

. 4a2px
= x_—m(4a2+x2) . ...(5

Now the Hamiltonian H becomes

H=xp —L
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2 2
H=ip. —%mx2(1+%j+%mg. ...(6)

On using (5) we write equation (6) as

24’ pf mgx’

H:m(4a2+x2) 4a

(7

This is the required Hamiltonian function. Now to see whether this H represents total

energy or not, we consider

1 ) XZ .x2
T+V=—mx"|1+— |[+—mg. ... (8
2 ( 4a2j a8 ®)
Using equation (5) we obtain
2a’ pf mgx’

Tr+V = .9

m (4(12 +x° ) 4a
Which is the Hamiltonian of the motion, showing that it represent the total energy of
the particle. Now to show that the Hamiltonian H represents constant of motion, we
first find the equation of motion. From equation (4) we have

oL m ., mgx
— =X -,
ox 4a 2a

oL ( x* J )
- = 1+ — mx.
ox 4a

Hence the equation of motion becomes

2
4%)-20m 1 i |- x4 2,
dt\ox ) ox dt 4a 4a 2a

= (4a+x7)i+xi” +2agx=0. ... (10)

Now differentiating equation (7) with respect to t we get

a,’H:4a2 p.p. xip? Lme .
dt m | (4a”+x*) (4az+xz)2 2a
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Eliminating p_, p, we obtain

dH m
= | (4a* + x* ) ¥+ xx* + 2aex | x.
A 4a’ [ ) &)
.. . ) dH
This implies from equation (10) that >y =0.
t
This shows that the Hamiltonian H is a constant of motion.

Example 17 : Set up the Hamiltonian for the Lagrangian
L(g.q.t)= %[(f sin” @t + g4 sin 2ax + qza)z} .

Derive the Hamilton’s equations of motion. Reduce the equations in to a single
second order differential equation.

Solution: The Lagrangian of the system is given by
L@,g,r):%[gz sin’ @r +gqsin 20t + ¢’ | (D

The system has only one degree of freedom and hence only one generalized co-

ordinate q. The generalized momentum is given by

oL m
=— ="—(2¢gsin’ @t + gwsin 2w¢ .2
P= 5 2( g q ) (2)
sin“at|m 2

Now the Hamiltonian function H is defined as
. o m,L . . )
H—pq—z(q sin a)t+qqa)s1n2(0t+qa)). .4

Substituting the value of g from equation (3) in (4) and simplifying we get

2 2 2

0
H :I?—z—pqa)cota)t+q m
2msin” wt

cos’ a)t—%qza)z. ... (5

This is the Hamiltonian of the system. The Hamilton’s canonical equations of motion

give
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.:aH_ p

q ——.—z—qa)cota)t. (6)
op msin” arx
and  p= pwcotwt—qw’mcos’ @t +mqw’ . ..(D
From equation (6) we find
m . .2 .
p =E[2q sin” @¢ + gwsin 2(0@ ... (8

Differentiating equation (8) w. r. t. t we get
p= %[Zq sin” @t +4g@sin @t cos @ + gwsin 2wt +2g@" cos Za)t] ... 9

Equating equations (7) and (9) we get
j+2mqcotaxt —2qw” =0. ...(10)
This equation determines the motion of the particle.

Example 18 : A Lagrangian of a system is given by
Sy m ) .. .0 k ) 2
L(x,y,%,5) —E(ax +2bxy +cy )—E(ax +2bxy +cy ),
where  a,b,c,k,m are constants and b*—ac#0. Find the Hamiltonian and

equations of motion. Examine the particular cases a=0,c=0and b=0,c=-a.

Solution: Given that
L(x,y,%,5) :%(ajc2 + 2bxy+cy2)—§(ax2 + 2bxy+cy2), (D

where a,b,c,k,m are constants and b* —ac #0. We see that the system has two

generalized co-ordinates x and y. Hence the corresponding generalized momenta are

px=a—€=m(afc+by'), ()
ox

and pyza—lfzm(bx+cy). ... (3
dy

Solving these equations for x and y we get
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_ cp.~bp, . bp,—ap,

m(bz——ac)’ _m(bz—ac)'

.4

The Hamiltonian H is defined by

j
H=px+py —%(afcz +2bxy +cy’ ) +§(ax2 +2bxy +cy’ ) . ...(5)
Using equations (4) in (5) we obtain after simplifying

H= ﬁpi —£p§}+§(ax+2bxy+cy2)....(6)

m (b2 — ac) 2 2
This is the required Hamiltonian of the system. The Hamilton’s equations of motion

corresponding to two generalized co-ordinates X, y are

pxz—a—Hz—k(ax+by),
ox
3l )]
p, =———=—k(bx+cy).
dy
and
oH 1
* ap, m(bz—ac)( Py cpx)
.. (8
. oH _ 1 (b . ) ®)
y 8py m(bz—ac) P, —CD,
From equations (2), (3) and (7) we have
m(ax+by)+k(ax+by)=0,
(a+05) £ (ax-+by) o

m(bx+cy)+k(bx+cy)=0.
These are the required equations of motion. Solving these equations for X and y we

obtain respectively
mx+kx=0. ... (10)
my+ky =0. ... (11)
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The solutions of these equations are

xX=c cos(ﬁjt+c2 sin(ﬁjt, ...(12)
m m

and y=d, cos(kjt+d2 sin(kjt. ...(13)
m m

Now the cases a=0,c=0and b=0,c=-a yield from equations (9) the same set
of equations (10) and (11).

Example 19 : The Lagrangian for a system can be written as
L=ax’ +bl+cz'y+f;v25cz'+gy—k\/x2 +y%,
X
where a, b, ¢, f, g and k are constants. What is Hamiltonian? What quantities are

conserved ?

Solution: The Lagrangian of the system is
L=ai® +bX+ciy+ i+ gy—ky +y° (D)
X

where a, b, ¢, f, g and k are constants. The system has three degrees of freedom and
has three generalized co-ordinates (X, y, z), of which z is cyclic. This implies the

corresponding generalized momentum p, is conserved.

p. :a—lf:cy+fy25c=const. .. (2)
02
Similarly, we find
pxzaizzax+ﬁzz, N G))
ox
and pvza—lf=2+cz'+g. )]
ooy x

Solving these equations for x, y,7 we get
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Z'=l(py—é—gj. .. (5)

The Hamiltonian of the system is defined as

H=px+py+pzi—L

H = pitp y4p,i —ai’ —b2 —ciy— iz —gy+kJ¥ 3. ...(6)
X
The required Hamiltonian is obtained by eliminating x, y,Z from equation (6).

Unit 3: Routh’s Procedure :
Introduction:
The presence of cyclic co-ordinates in the Lagrangian L is not much

profitable because even if the co-ordinate g, does not appear in L, the corresponding
generalized momentum ¢, generally does, so that one has to deal the problem with all
variables and the system has n degrees of freedom. However, if g; is cyclic in the
Hamiltonian then p; is constant and then one has to deal with the problem involving

only 2n-2 variables, i.e., only n-1 degrees of freedom. Hence Hamiltonian procedure
is especially adapted to the problems involving cyclic co-ordinates. The advantage of
Hamiltonian formulation in handling with cyclic co-ordinates is utilized by Routh
and devised a method by combining with the Lagrangian procedure and the method

is known as Routh’s Procedure. The Method is described in the following theorem.
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Theorem 10: Describe the Routh’s procedure to solve the problem involving cyclic
and non-cyclic co-ordinates.
Proof: Consider a system of particles involving both cyclic and non-cyclic co-

ordinates. Let ¢,,q,,9;,....q, of q,,q,.4;,....q,are cyclic co-ordinates, then a new

function R, known as the Routhian is defined as
R(ql’qZ""’qn;pl’pZ""’ps;q.s+l’qs+2""’q'n’t) = zp/ql _L(Q,’Q,,t) s (1)
j=1

The Routhian R is obtained by modifying the Lagrangian L so that it is no longer a
function of the generalized velocities corresponding to the cyclic co-ordinates, but
instead involves only its conjugate momentum. The advantage in doing so is that p,
can then be considered one of the constants of integration and the remaining
integrations involve only the non-cyclic co-ordinates.

Now we take R=R(q,,qys-»qy Pis Paseees Ps3GoitsGosns-rq,st), and find the total

differential dR as

~ dR > OR . OR dR
dR=>Zdg +> dp + Y g+ S Q)
,Z_:‘aqj ‘ ,Z_:‘apj ‘ ,;laqj T ot

Now we consider
R= i;quj _L(qj’qj’t)
J=
and find the total differential as
dRzzs:‘pjdq'j +Zsl:q'jdpj —dL,
J= J=

Zn:a_L q.i_a_Ldt'

s s n aL
dR=) pdq.+) gdp,—) —dq, - .
; i jz_:; e jz_; p) q, J = p) q, ot
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5 dL 2, dL
dR = Zpdq +qup {Za_q.dqj—i_zadqjj_

j=1 aq, ’ ,-zma_c']j E
3 S, L oL
dR = qudpj _Za_dql - Z aq; —
=1 =199 j=stl aq]
- Z a_qu 9L NE)
j=s+1 aq a

Now equating the corresponding coefficients on both the sides of equations (2) and

(3) we obtain

oR . .
—=q,, j=12,..s NRNC))
ap;
oR oL _ . :
- = —p;» J=L2,...5 .9
d, 9,
R L

a_:—a—:—pj, j=s+1ls+2,...,n ... (6)
dq; dq;

and 8_{?_ aL —p;s j=s+ls+2,..n ... (D
%, 3,

We see that for cyclic co-ordinates g¢,,q,,...,q, equations (4) and (5) represent
Hamilton’s equations of motion with R as the Hamiltonian, while equations (6) and
(7) for the non-cyclic co-ordinates g; (j=s+1,5+2,...,n) represent Lagrange’s

equations of motion with R as the Lagrangian function. i.e., from equations (6) and

(7) we obtain
i(a—R]—a—RzO, j=s+Ls+2,....n ... (8)

Thus by Routhian procedure a problem involving cyclic and non-cyclic co-ordinates

can be solved by solving Lagrange’s equations for non-cyclic co-ordinates with
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Routhian R as the Lagrangian function and solving Hamiltonian equations for the
given cyclic co-ordinates with R as the Hamiltonian function. In this way The

Routhian has a dual character Hamiltonian H and the Lagrangian L.

Worked Examples o

Example 20 : Find Lagrangian L, Hamiltonian H and the Routhian R in spherical
polar co-ordinates for a particle moving in space under the action of conservative
force.

Solution: Let a particle be moving in a space. If (x, y, z) are the Cartesian co-

ordinates and (r,6,¢) are the spherical co-ordinates of the particle, then we have the

relation between them as

x=rsinfcos g,
y=rsin@sing, (D
z=rcosé.

The kinetic energy 7 = %m ()'c2 +3°+ z'z) of the particle, in spherical polar co-
ordinates becomes
T=%m(i2+r292+rzsin29¢fz). ... (2

Since the force is conservative, hence the potential energy of the particle is the

function of position only.
= V=V(r69¢). ...(3)
Hence the Lagrangian function of the particle becomes
L=%m(i2+r292+rzsin29¢2)—V(r,0,¢). )
We see that ¢ is cyclic in L, hence the corresponding generalized momentum is

conserved. i.e.,
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p¢=§—;=mr2 sin 6 ¢ = const. .. (5)

Similarly we find

p. = 8_L =mr
or (6)
0L
Py 90 .
Now the Hamiltonian function is defined as
H=%pd~L
j
(7

H = pri”+p60.+p¢q5—%m(fz + 776 +r*sin’ 0¢52)+V.

Eliminating the generalized velocities 7, 9,¢5 between equations (5), (6) and (7) we

get
Les, 1, 1 zj
H=— +— +— +V. ... (8
2m (p, r Pe r’sin’ @ Ps ©
Now the Routhian R is defined by
R=p¢¢5—L, ... 9

This becomes after eliminating 7, 9,(/5 between (5), (6) and (9) we get

2
R(r,0,¢,;>,é,t):W—%m(ﬂwzéz)w. ..(10)

Example 21 : A planet moves under the inverse square law of attractive force, Find

Lagrangian L, Hamiltonian H, and the Routhian R for the planet.

Solution: A motion of a planet is a motion in the plane. If (r,8) are the generalized

co-ordinates of the planet then it’s kinetic and potential energies are respectively
given by

1 . K

T:—m(i'2+r202), V=--—.

2 r
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Hence the Lagrangian function is defined by

L=%m(f2+r292)+

K

r

(D

We see that @ is the cyclic co-ordinate in L. This implies that the corresponding

angular momentum of the planet is conserved.

aL Y . p
=—=mr@=const.=> O=—-2L. .2
Ps 00 mr? @
Also prza—L,sz»: I .(3)
or m
Now the Hamiltonian function is defined as
j
H=pr+p, 0.—1171(#2 +r26’2)—£
2 r
On using equations (2) and (3) we obtain
2
H:L(pfﬂ_gj-f. 4
2m r r
This is the required Hamiltonian.
Now the Routhian is defined as
R(r,0,p,.it)=p,0-L
R(r, o, pe,i”,t) = 1996.’—lm(i”2 + rzéz)—g.
2 r
Eliminating 6 we get
2
) D, 1 ., K
R r’07 7r’t = ——mr ——- . 5
This can also be written as
2 2
: p, p, K
R(r,0,p,,r,t)= - . (6
( Po ) 2mr* 2m ©)
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. Principle of Least Action :
Action in Mechanics :
In Mechanics the time integral of twice the kinetic energy is called the action.

Thus

A= IZTdt

)

is called the action.
L

ie. A=[Y pa,di
oy J

1s called action in Mechanics.

Principle of Least Action :

There is another variational principle associated with the Hamiltonian
formulation and is known as the principle of least action. It involves a new type of
variation which we call the A - variation.

In A- variation the co-ordinates of the end points remain fixed while the time is
allowed to vary. The varied paths may terminate at different points, but still position
co-ordinates are held fixed.

Mathematically, we have

§I:£da, Al :ﬂda.
Ja do

Thus for the family of paths represented by the equation
q;=q;(a.1). 1=t(a)
We have

dq . 9q dt
Ag,=—~do=|—++q¢,— |da
U da (80{ 9 daj
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Jq, dt
Ag. =|—Lda+q —da
9 (aa % "do )

=04, +q,At

This shows that the total variation is the sum of two variations.

Worked Examples o
Example 22 : If f = f(qj,q'j,t) then show that
Af =0f + At /s .
dt

Solution: Consider a system of particles moving from one point to another. Let the
family of paths between these two points be given by
q,=q,(t.2). (D

In A variation time is not held fixed, it depends on the path. This implies that

1=t(x) .2
Since f=r(q,.4,.1) )
then we find A variation in f as
of of of
Af = Ag;+=—Aq; |+—=—At. Y
Z( dg; 9, j o
However, we have  Agq; =9dq, +q,At ... (%
Similarly we find
A, =0q;+q A, ... (6)

Using equations (5) and (6) in equation (4) we get

J

Af = Z{ (5ql+qAt)+§i(§ql+th)]+g—fAt
q
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9 o .. 9 of . J . d
Af :Z(é&zf +£5qj +8_];5t]+z(£qj +£qj +8—CJAt
J i J Y J J

Note here that the term ot added because it is zero, since in ¢ variation time t is

held fixed and consequently change in time t is zero. This can be written as
Af:§f+At'fl—f. N))
t

Since f is arbitrary, we can write it as

A=5+At~i. ... (8)
dt

Theorem 11 : For a conservative system for which the Hamiltonian H is conserved,
the principle of least action states that

4

Al Y pd,di=0.

o J
Proof: Consider a conservative system for which the Hamiltonian H is conserved.
Let AB be the actual path and CD be the varied path. In A- variation the end points
of the two paths are not terminated at the same point. The end points A and B after
At take the positions C and D such that the position co-ordinates of A, C and B, D
are held fixed. Now we know the action is given by

y

A=]ijqjdt

o J

A=](L+H)dt
A:]Ldt+H(t)t' ,

Ty
ly

I ! I
o b G +AL, G t, +At
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A:det+H(tl—t0). (D

fy

Thus

AAzAJLLdt+H(At) (2)

Ty

4
ty "
Since time limits are also subject to change in A-variation, therefore A can’t be
taken inside the integral. Let

]'Ldt:I = I=L.

0

Therefore
Al =81+ 1Ar.

Thus we have

A]Ldt=5]Ldt+L(At)

Ty Ty

* f oL oL .. | oL ;
A.[LdZZJ-|:Z(£5qj+a—q5qjj+§5l:|dt+L(At)r(l.
ty J J J

4
fy

Since in ¢ variation, time is held fixed along any path, hence there is no variation in
time, therefore change in time is zero. Thus we have
1, 1,
( ‘ oL oL :
Al Ldt = —0q,+=—0q; dr+L(Ar) .
frar [ 3 00+ 20, oo,
Using Lagrange’s equations of motion we write this equation as
A 1
Adet =J'Z(pj5qj +pj5q'j)dt+L(At):) .
N to J
Since

54, _d

ar a4l
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Hence we have

[ (. d !
A.[Ldtzj.Z(pjﬁqj +ij5qjjdt+L(At)r0.

o J

= Alj] Ldt = lj%[z (p,0q, )} dr + L(At):) .

Ty Ty J

Since

A=5+Ati
dt

Hence above integral becomes

A.I[Ldt:Jl-d[zi:pj(A—At%jqj}dt+L(At)2).

] gl

{Z qujm} +L(Ar)!
J

Iy

AILdtz[ijqu}
j

l 1

Since in A variation, position co-ordinates at the end points are fixed.
4
= (Ag, )to =0.

Consequently above equation reduces to

A]Ldt = {Z(quj —L)At}tl

1 J o

AILdtz—(HAt)

Ty

4
lo
Substituting this in equation (2) we get

AA =0,

ie., Aj > pigdt=0
ty J

Thus the system moves in space such that A-variation of the line integral of twice

the kinetic energy is zero. This proves the principle of least action.
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Example 23 : A system of two degrees of freedom is described by the Hamiltonian

H=q,p,—q,p, —aq12+bq22, a,b are const.

Show that 1) w, ii)pz_—qu, iii) q,q, 1v)H are constant of motion.
4q, q,

Solution: The Hamiltonian of a dynamical system is given by
H=q,p,—q,p,—aq, +bq;, a,b are const. ... (D)
where we see that ¢g,,q, are the generalized co-ordinates. The Hamilton’s canonical

equations of motion are

pj:_a_H: P, =2aq, - p,,
aqj .. (2
P, =p,—2bg,,
and
qj:a_Hj ¢ =4,
ap, .3
9, =4,

Now to show

—aq, . . )
1) pmaq, is a constant of motion, consider

q,

i(ﬂ _a%): 0, (P —aq,)-(p —aq,) 4, .
di q, q;

Using equations (2) and (3) we obtain

i(—pl — %4, j 0= DT opg.
dt 9, q,

Similarly we prove that

b —aq, _ const., Py 709, _ const., q,q, = const.

q, q,
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Now to prove the Hamiltonian H is also constant, we differentiate equation (1) with

respect to t to get

H . o . . .
— =P, + 94, — 9P, — 4, P, —2aq,9, +2bq,q, -

dt
Using equations (2) and (3) we see that
d—H=0:> H =const..

dt

This shows that H is a constant of motion.
Example 24 : A Lagrangian for a particle of charge ¢ moving in the electromagnetic

field of force is given by
L:%mv2 +q(\7'Z)—q¢.

Find the Hamiltonian H, the generalized momenta.
Solution: The Lagrangian of a particle moving in the electromagnetic field is given

by
I, _ =
Lzamv +q(v-A)—q¢. ..(D
We write this expression as
_1 .2 ) ) . . .
L—Em(x +37+2°)+q(IA, + A, + 24 ) —q. (2

where ¢ is a scalar potential function of co-ordinates only. We see that x,y,z are

the generalized co-ordinates. Hence the corresponding generalized momenta become

oL .
p,==— = P, =mx+qgA,
T0q,

py:m).)—i_qu’
p.=mz+dqA,.

Solving these equations for velocity components we get
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y=—(p,-q4,), )

The Hamiltonian of the particle is given by

H=%pd-L
j

H:)'cpx+ypy+z'pz—%m()'c2+y2+z'2)—q(5ch+yAy+ZAZ)+q¢ @

Eliminating x, y,Z from equation (4) by using equation (3) we get

q

Hes(plep+p)-L

1
2m (prX+pVA}+pZAZ)+%q2(Af+A}2+AZZ)+Q¢(5)

This can be written in vector notions as

H—l(—— A) +qp (6)
. P—q q9. .
This is the required Hamiltonian of the particle moving in the electromagnetic field.

. . . . OH . .
The Hamilton’s equation of motion g, :8_ gives the same set of equations (3),
j

) . H .
while the equation p; = 3 gives
j

) OH ¢ d q> 9, ., 5 5 00
=0 (pA+p A +pA)-L (A A +A2)-¢2L.
P ox max(px x TP TP Z) 2m8x( ’ ) qax

This can be written as
) 0 ,_ — 00
=g—(V-A)—g—.
b, qax( ) a5

Similarly, other two components are given by
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h=a(v-7)-a3,

dy dy
N I
=q—(V-A)—qg—.
p.=ao(V-A)—a-
All these three equations can be put in to the single equation as
p=—qVp+qV(v-A). .(D
Exercise:
1. The Lagrangian of an anharmonic oscillator of unit mass is
L :% 2 —%a)zx2 —ax’ + fxx, «, B are constants.

Find the Hamiltonian and the equation of motion. Show also that
@) H is a constant of motion and

) H=T+V.
1 2 1 2 2 3
Ans: H:E(px—,ﬁx) +wa +ax’.

Equation of motion ¥+ @’ x+3ax’ =0.
2. Find the Hamiltonian and the equations of motion for a particle constrained to
move on the surface obtained by revolving the line x =z about z axis. Does
it represent the constant of motion and the constant of total energy?

Hint: Surface of revolution is a cone x* +y* = z°

2 p2
Ans.: H=Lry Lo +mgr .

4m  2mr’
p2
i— f 3+§:0, p¢=mr2¢ —a const. of motion .
2mrT 2
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3. Let a particle be moving in a field of force given by

L, =20
F=—|1- .
A=)

Find the Hamiltonian H and show that it represents the constant of motion

and also total energy.

Ans. : Refer Example (25) of Chapter I; the potential energy of the particle is

.2
V:l(1+r—2}
r Cc

The Hamiltonian becomes H =

given by

2
1
pr +

(i)

rc

4. A sphere of radius ‘a’ and mass m rests on the top of a fixed trough sphere of
radius ‘b’. The first sphere is slightly displaced so that it rolls without
slipping. Obtain the Hamiltonian of the system and hence the equation of
motion. Also prove that H represents a constant of motion and also total

energy.
Ans.: H= %m(a+b)2¢52+mg(a+b)cos¢.

5. A particle is constrained to move on the plane curve xy =c, c is a constant,

under gravity. Obtain the Hamiltonian H and the equations of motion. Prove
that the Hamiltonian H represents the constant of motion and total energy.
Ans. : Refer Example (20) of Chapter I for the Lagrangian L and is given by

2
L:%mxz(nc—}@.

4
X X

The Hamiltonian H becomes H =
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A body of mass m is thrown up an inclined plane which is moving
horizontally with constant velocity v. Use Hamilton’s procedure to find the
equations of motion. Prove that the Hamiltonian H represents the constant of
motion but does not represent the total energy.

Ans. : For the Lagrangian function, refer Example (28) of Chapter 1. The
Hamiltonian of motion is

2 ) 1 )
H :&—prvcos6’+mgrsm6’—(—1’11\/2 sin® @ |.
2m 2

A particle moves on the surface characterized by
x=rcos@, y=rsing, z=rcoté.
Find the Hamiltonian H and prove that it represents the constant of motion

and also the constant of total energy.

2 .2
Ans. : H:p’Sln 4

2
+ Pe ~+mgrcoté.
2m 2mr

The equation of motion is #—rsin® 8¢ + g cos@sin@ =0.
Find the Hamiltonian and the Hamilton’s canonical equations of motion for
the Lagrangian given by

L(r,i’,@,é) Z%m(i’2 +r292)+mgrcost9—%k(r—ro)2,

where k,m, g, r, are constants.

2 2
Ans: H=2Lr4 pgz —mgrcos6’+lk(r—r0)2
2m  2mr 2

Equations of motion:

mi' —mré” —mg cos @ +k(r—r,) =0,

G427 6+8sin0=0.
r r
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