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1.1 Physical Constants

’ Symbol Quantity

\ Value

kg

KB
KN

Qo

agr

Ho
€0

eV

atm

Speed of light in free space
Planck constant

h/2m

Universal gravitation constant
Electron charge

Electron rest mass

Proton rest mass

Neutron rest mass

Atomic mass unit

Avogadro’s constant

Boltzmann constant
Gas constant = Nk

Bohr magneton

Nuclear magneton
Rydberg constant

Bohr radius
Stefan-Boltzmann constant
Fine structure constant
Thomson cross-section
Permeability of free space
Permittivity of free space

Electron volt

Standard acceleration of gravity

Standard atmosphere

2.998 x 103 ms~!

6.626 x 1073* Js

1.055 x 10734 J s

6.674 x 1071' Nm? kg2
1.602 x 107 C

9.109 % 10-%' kg

1.673 x 10~2 kg

1.675 x 102" kg

(15 mass of 12C)

—1.661 x 102" kg

6.022 x 10%* mol~*

= 6.022 x 10%® (kg-mole) !
1.381 x 1078 JK!

8.314 x 10® J K~ (kg-mole)~*
8.314 J K~ 'mol™!

9.274 x 1072 JT! (or Am?)
5.051 x 10727 JT~!
10973732 m ™!

5.292 x 107" m

5.670 x 1078 JK*m2s7!
1/137.04

6.652 x 1072 m?

47 x 107" Hm™!

1/ (ji0c?)

=8.854 x 1072 Fm™!

1.602 x 107 J

9.807 m s2

101325 N m~2 = 101325 Pa




1.2 Astrophysical Quantities

’ Symbol Quantity \ Value
Mg Mass of Sun 1.989 x 10 kg
Ro Radius of Sun 6.955 x 10 m
Lo Bolometric luminosity of Sun 3.846 x 10*0'W
M, Absolute bolometric magnitude of Sun | +4.75
Mg, Absolute visual magnitude of Sun +4.83
Te Effective temperature of Sun 778 K
Spectral type of Sun G2V
M; Mass of Jupiter 1.899 x 10*" kg
Ry Equatorial radius of Jupiter 71492 km
Mg Mass of Earth 5.974 x 10** kg
Reg Equatorial radius of Earth 6378 km
M¢ Mass of Moon 7.348 x 10?2 kg
R¢ Equatorial radius of Moon 1738 km
Sidereal year 3.156 x 107 s
AU Astronomical Unit 1.496 x 10" m
ly Light year 9.461 x 10 m
pc Parsec 3.086 x 10'%m
Jy Jansky 1072 Wm—2Hz!
Hy Hubble constant 72 £ 5kms~! Mpc!




1.3 Periodic Table
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1.4 Electron Configurations of the Elements

Electron configuration
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1.5 Greek Alphabet and SI Prefixes

The Greek alphabet

ST Prefixes

Z>X—QOIDINT>SW>

« alpha N v nu
154 beta = ¢ xi
v gamma O o omicron
) delta I = pi
€,€ epsilon P p,0 rho
¢ zeta ¥ o,¢ sigma
i eta T 7 tau
0,9 theta Y v upsilon
L iota ® ¢, phi
K kappa X x chi
A lambda v psi
1 mu Q w omega

Name Prefix Factor

yotta Y 10%

zetta 7 102

exa E 1018

peta P 101°

tera T 10'2

giga G 10°

mega M 106

kilo k 103

hecto h 102

deca  da 10*

deci d 1071

centi ¢ 1072

milli m 1073

micro p 10-¢

nano n 1079

pico p 1012

femto f 10715

atto a 10718

zepto 7z 10-2¢

yocto y 10~
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2.1 Mathematical Constants and Notation

Constants

T
e
In 10

log;, e
Inx
1 radian

1 degree

Notation

= 3.141592654 . ..
= 2.718281828...

= 2.302585093

2.302585093 . ..
0.434294481 .

log,,

(N.B. 72~ 10)

180/ ~ 57.2958 degrees

= 7/180 ~ 0.0174533 radians

Factorial n =n! =

STIRLING’S APPROXIMATION n!

Double Factorial n!

12

Inn! ~

nx(n—1)xn—-2)x...x2x1

n

nlnn —

n

(N.B. 0! = 1)

<€>n @) (n> 1)

(Error <4% for n > 15)

nx(n—2)x---x5x3x1 forn>0odd
l=¢ nx(n—2)x---x6x4x2 forn>0even

1
exp(x) = €*
Inx = log, x
arcsinz = sin" 'z
arccost = cos 'z
arctanx = tan 'z
YA = A+ A +A3+ 4+ A=
i=1
[T4 = AixAyxA;x---x A4,
i=1
+1
Sign function: sgn x = ¢ 0
—1

forn =—1,0

sum of n terms

product of n terms

ifx>0

fz=0
ifxz<0



2.2 Algebra

Polynomial expansions

(a+b)* = a*+ 2ab + b

(azx + b)* = a*2* + 2abx + b?
(a+b)* = a* + 3a®b + 3ab® + b*
(ax +b)* = a®2® + 3a*ba® + 3ab’x + b

Quadratic equations

ar’ +br+c = 0

—b £ Vb — dac
€T et
2a
Logarithms and Exponentials
Ify = a® then y=¢€""" and log,y==2x
a =1
a® = 1/a"
a* xa¥ = a"t
a®/a¥ = a7
@) = (@) =
Inl = 0
In(l/z) = —Inzx
In(zy) = Inz+Iny
In(z/y) = Inz—Iny
InzY = ylhx
1
Change of base: log,y = 26 Y
log, a
1
and in particular Iny = 6wl 2.303log;, v
logyge



2.3 Trigonometrical Identities

Trigonometric functions

a
0 O
b

sinQ:g 0080:é tanQZg

c c b
1 1 1

cscl = — secl = cotd =
sin 6 cos 6 tan

Basic relations

(sin@)? + (cos0)* = sin? 6 + cos’ 6 = 1
1+tan®0 = sec’f
1+ cot’d = csc?d

sin 6
= tand
cos 6
Sine and Cosine Rules
3
a c
¥ a
b
b
SINE RULE ,a = — = ,C
sina  sinf3  sinvy
COSINE RULE a® = b2 + % — 2bccos a

10




Expansions for compound angles

cos Acos B
sin Asin B
sin A cos B

cos Asin B
sin2A

cos2A = cos? A —sin? A

tan 24

Factor formulae

sin A + sin B
sin A —sin B
cos A + cos B

cos A — cos B

sin A cos B + cos Asin B
sin A cos B — cos Asin B
cos Acos B —sin Asin B
cos Acos B + sin Asin B
tan A + tan B

1—tanAtan B
tan A — tan B

1+ tan Atan B
+ cos

sin (W — 6’)
2

coS (W — 0)
2

—sind
—sin6

—cosf cos(m — )

;[COS(A + B) + cos(A — B)]
;[COS(A — B) — cos(A + B)]
;[sin(A + B) +sin(A — B)]

;[Sin(A + B) —sin(A — B)]
2sin Acos A
2cos? A —1
1—2sin® A
2tan A
1 —tan? A

s
|
Sy

+2sin

—
|
+ o)+
W 1™

N TN N
o
+ o
&
— N~ T

| Do

+2 cos

BN
Sy

| DN
o
~ —— ~—

+2 cos

Q
o
9

&,
=

M~ N/~
I

N
+ o
oy
I o

2
[
R

s

b
™
~——

—2sin

[\

11

+ cos 6

= +sind
sin(m —0) = +sind

—cosf



2.4 Hyperbolic Functions

Definitions and basic relations

et —e "
sinhz =
2
x —Z
2
sinhr > —1
tanhx = =
coshz e? 41
sech x 1/ coshx cosh®z — sinh® z 1
cosech x 1/sinh z 1 — tanh?z sech’x
coth x 1/tanhx coth?z — 1 cosech’z

sinh 'z = log,[rv + Va2 + 1]
cosh 'z = =log,[r+ Va2 — 1]

1 1+ 9
210g€<1_x> (xz® < 1)

tanh 'z =

Expansions for compound arguments

sinh(A+ B) = sinh Acosh B + cosh Asinh B
cosh(A+ B) = cosh Acosh B + sinh Asinh B
tanh A &+ tanh B
(1 + tanh A tanh B)
sinh2A = 2sinh Acosh A
cosh2A = cosh® A +sinh® A = 2cosh®? A — 1 =1+ 2sinh* A

tanh2A = M
(14 tanh® A)

tanh(A+ B) =

Factor formulae

sinh A +sinh B = 2sinh (A;B> cosh (A;B>
sinh A —sinh B = 2cosh (A;B) sinh (A;B>
coshA+coshB = 2cosh (A;B> cosh <A;B>
coshA —coshB = 2sinh (A;LB> sinh (A;B>

12



2.5 Differentiation

Definition

[H(x) = df f(x) = the n'" order differential,
xn

obtained by taking n successive differentiations of f(x).

The overdot notation is often used to indicate a derivative taken with respect to time:

= @ 1 = @ etc
Y= dt’ Y= Q2 .
Rules of differentiation
If u=wu(x) and v = v(z) then:
SUM RULE d (u+v) = du + v
dx dz ' dx
d du :
FACTOR RULE — (ku) = K2 where k is any constant
dx dz
PRODUCT RULE 4 (uwv) = ud—v + vd—u
dx dx dx
UOTIENT RULE 4 (u> L / 2
@ de \v) ~ \Yaz " “az ) /"
dy dy du
CHAIN RULE il

Leibnitz’ formula

Leibnitz’ formula for the n'* derivative of a product of two functions u(z) and v(z):

n(n—1 n(n—1)(n—2
=D,y 1= Din=2

[uv], = upv 4+ nuy v + Up_3U3 + =+ + UV,

where u,, = d"u/dx™ etc.

13



2.6 Standard Derivatives

d (In(ax + b))

dx
d
% (loga l’)

d .
. (sin(az + b))

d
. (cos(az + b))

d
. (tan(az + b))

d , .
. (sinh(azx + b))

d
. (cosh(azx + b))

d
. (tanh(azx + b))
d .

e (arcsin(ax + b))

;; (arccos(ax + b))

d
e (arctan(ax + b))
& (explar)

% (Sil’l2
d
e (cos® x)

z)

14

nxn—l

aexplazx]

a*lna

l’_l

(ax + b)

z'log, e

acos(ax + b)
—asin(ax + b)
asec’(az +b)

a cosh(ax + b)
asinh(ax + b)
asech?(az + b)

all — (azx + b)?~/?
—a[l — (ax 4 b)?] /2
a[l + (ax + b)? ™"
anz "V exp [az"]
2sinzcosw

—2sinx cosx



2.7 Integration

Definitions

The area (A) under a curve is given by
A= Jim 3 (i) = / (o) de

The Indefinite Integral is

/f (x)+C

where F'(x) is a function such that F'(x) = f(z) and C' is the constant of integration.
The Definite Integral is

/abf(x) dz = F(b) — Fla) = [F(x)]

where a is the lower limit of integration and b the upper limit of integration.

Rules of integration
SUM RULE / (f(z) + g(x)) dz = / Flz)de + / g(z) de

FACTOR RULE /kf(ac) dr =k / f(z)dx where k is any constant

SUBSTITUTION /f(m) dx = /f(x)ji du where u = g(z) is any function of x

N.B. for definite integrals you must also substitute the values of u into the limits of
the integral.

Integration by parts

An integral of the form / (x) dxr can sometimes be solved if ¢(x) can be integrated

and u(z) differentiated. So if we let g(z) = d—v, SO U = /q(x) dx, then the Integration by

Parts formula is
/u%d:ﬁ—uv—/v—dw

Note that if you pick v and d— the wrong way round you will end up with an integral
x
dv
that is even more complex than the initial one. The aim is to pick u and e such that
x

d—u is simplified.
dx

15



2.8 Standard Indefinite Integrals

In the following table C' is the constant of integration.

IETH_I
“dr = -1
/x x n+1+0 (n# —1)
/:E_ldx = Inlz|+C

/1n|:17|dx = zlhhe—2+C
/sinxdm = —cosz+C
/cosxdx = sinz +C

/tanxd:c = —In|cosz|+C
/cot:cd:v = In|sinz|+C

/sechdx = tanx +C

/CSCQSBdZE = —cotx+C
, 11,
/cos rdr = §x+§smxcosa:+0
. 9 1 1 .
/sm rdr = gx—gsmxcosx—kc
coon—1
—1
/sin”xdx M TeosT + (n )/sin”2xd:c+C
n n
n—1 : -1
/cos”xd:c _ v Tend + (n )/COSn2JJd$ +C
n n

1
/Sinxcoszvdx = §sin2x+C'

/COS mx cosnrdr = Sl;((:: : Z)):E + Slgégiz))x +C  (m* #n?)

, , _ sin(m —n)z  sin(m+n)x 5 , 9
/smma:smnxd:z: = Sm—n) 2m + ) +C  (m*#n°)
/sin mx cosnzdr = _cos(m —m)z_ cos(m + n)z +C  (m?®#n?)

B 2(m —n) 2(m+n)

/wQCosxdx = (2* —2)sinz + 2wcosz + C

/ZBQSinZde = (2— 2% cosx + 2rsinz + C

rsinnxr  cosSnx
rcosnrdr = + +C

/ o
/

rcosnxr  sinnx

rsinnrdr = -— + 5 +C

n n
ar

/e‘md:c = 6—+C’
a

16



/xe‘” dz
/:L‘e_mz dz

/ e™ sin kx dx

/ e cos kx dx

/ sinh x dx
/ coshx dz
/ tanh z dx
/ sech’z dx

/ csch?x dx

1
/a2+x2dx

1
/az—xzdx

e(x—1/a)/a+C

n

e“(asinkx — k cos kx)

1/1 -
— ( + m) e+ C
n

@+ )

e (acoskx + ksin kx)

(a® + k?)
coshx +C

sinhz + C
Incoshz +C
tanhx + C

cothz +C

1
— arctan (x) +C

a a

1
~tanh™! (x)
a a

2a a—x

arcsin <x) +C
a
— arccos (:p) +C
a

cosh™! (gC) +C

a

T — a arctan (:17) +C
a

In[z + (22 + a®)Y?] + C

sinh ! (I) +C
a

. T
sin {arctan (>
a

1 T

1ln<a+x>+c

5 + C

a? (a2 4 x2)1/2

+C

+C

Ja* + C

aarcsin (v/(z/a)) —ay/x/a — (x/a)? + C

(a®+2H)Y2 4+ C

X

1

2a(a+b2) " 2av/(ab)
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2.9 Definite Integrals

00 00 1/2
/ P20 gy — N4 / x dr — 2.61y/m
0 o (e —1) 2

o) 1 \"
/ e dr = / (ln ) =I'(n+1) the Gamma function
0 0

T

Note: for n an integer greater than 0, I'(n+ 1) =nl, I'(1) =0l =1

2 w 2
I / e “dr = erf(u)  the Error function
7 Jo

V

o0 2 1
oy =
/0 e x Ja

o T
/ e dr =/ —
—0o0 a

0 2 I1x3xHx--- 2n —1
/ x2ne—am d.T: X X X( n ) T

0 on+lgn a

2
Note that erf(co) = 1, so that
T

=S (n=123...

/ e dr — 98

n!

oo 2 1 2 .
/ ey = ——
0 2an+1

(a>0;n=0,1,2...)

) :

+oo 2
/ ¥ e dy = 0

[e.o]

4

/0 2?In(l — e *)dr = %
/OOO e cos(kx)dx = ﬁ

/OO 1 dp — /2n
0

142 0 sin(m/2n)
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2.10 Curvilinear Coordinate Systems

Definitions

Spherical Coordinates
x = rsinfcos¢
= rsin#sin ¢
z = rcosf

Cylindrical Coordinates

r = Trcoso

7 sin ¢

Elements of area and volume
Elements of Area

Cartesian (x,y) dS =dzdy
Plane polar (r,0)  dS =rdrdf

Elements of Volume

Cartesian (z,y,z) dV =dxdydz
Spherical polar (r,0,¢)  dV = r?sinfdr df d¢
Cylindrical polar (r,¢,2)  dV =rdrdpdz

MISCELLANEOUS

Area of elementary circular annulus, width dr, centred on the origin: dS = 27rdr
Volume of elementary cylindrical annulus of height dz and thickness dr: dV = 2nrdrdz
Volume of elementary spherical shell of thickness dr, centred on the origin: dV = 4mr?dr
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z direction

* P92

direction

Cylindrical polar co-ordinates

Z X=rsin 6 cos @
y=rsin 6sn@
z=rcos @

Spherical Polar co-ordinates X

= . Y
b dz
dr
rde
Volume e ement
Z
dr
rsind do

rde

Volume e ement

Figure 2.1: Coordinate Systems and Elements of volume.
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Solid angle

Normal to
elementary areada

dQ =dacos 6 i
Elementary S steradians

solid angled Q

Figure 2.2: Solid angle.

1. The solid angle subtended by any closed surface at any point inside the surface is
4T;

2. The solid angle subtended by any closed surface at a point outside the surface is
Zero.

21



2.11 Vectors and Vector Algebra

Vectors are quantities with both magnitude and direction; they are combined by the
triangle rule (see Fig. 2.3).
A+B=B+A=C

Figure 2.3: Vector addition.

Vectors may be denoted by bold type A, by putting a little arrow over the symbol ff, or
by underlining the symbol A. Unit vectors are usually denoted by a circumflex accent

(e.g. 1).
Magnitude etc.
Al = V(A A) = V(A + A) + AD)

The angle 6 between two vectors A and B is given by

A'B A,B, + A,B, + A.B,
[AlIB] /(A2 + A2+ A2)(B2 + B2 + B?)

cosf =

Unit vectors

Unit vector in the direction of A = A/|A]

Cartesian co-ordinates: i,j, k are unit vectors in the directions of the x, Y, z cartesian axes
respectively.

If A,, A,, A, are the cartesian components of A then

A =14, +jA, + kA,

Addition and subtraction

A+B=B+ A (Commutative law)

(A+B)+C=A+(B+C) (Associative law)
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=

A

Figure 2.4: Vector (or Cross) Product; the vector p is directed out of the page.

Products

SCALAR PRODUCT
A -B=|A|B|cosf =B-A (a scalar)

fisj =k k=1
i5=j k=k.i=0
A-B=A,B,+A,B,+A.B,
A-(B+C)=A-B+A-C
VECTOR (OR CROSS) PRODUCT

See Fig. 2.4

AxB=-BxA=(A|B|sind)p (a vector)

where P is a unit vector perpendicular to both A and B. Note that the vector product is
non-commutative.

AxB = (A,B.-A.B)i+ (A.B, — A,B.)j+ (A.B, — A,B,)k

Y Y
i j k
— |4, A, A,
B, B, B
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Scalar triple product

(AxB)-C = (BxC)-A=(CxA)-B (a scalar)
(Note the cyclic order: A—B—C)

A, A, A,
- |B, B, B.

c, C, C.
= A,(B,C, - B.,Cy)+ A,(B.C, — B,C,) + A,(B,C, — B,C;)

Vector triple product

Ax(BxC)=(A-C)B—-(A-B)C (a vector)

Ax(BxC)+Bx(CxA)+Cx(AxB)=0 (Note the cyclic order: A— B—C)

24



2.12 Complex Numbers

z = a + ib is a complex number where a,b are real and i = v/—1 (N.B. sometimes j is
used instead of 7).

a is the real part of z and b is the imaginary part. Sometimes the real part of a complex
quantity z is denoted by R(z), the imaginary part by (z).

If a1 + iby = ag + iby then a; = ay and by = bs.

Modulus and argument

The modulus of z = |z| = va? + b2
The argument of z = 6 = arctan(b/a)

Complex conjugate

To form the complex conjugate of any complex number simply replace ¢ by —¢ wherever
it occurs in the number. Thus if z = a + ib then the complex conjugate is z* = a — b.
If 2 = Ae™™ then z* = A*et®®,

Note: |z| = Vz2* = \/(a +1ib)(a — ib) = Va® + b?

Rationalization

If 2= A/B, where A and B are both complex numbers, then the quotient can be ‘ratio-

nalized’ as follows:
A AB*  AB”

*= B~ BB |BP

and the denominator is now real.

Polar form

See Fig. 2.5. If z = a+ib then |z| = va? + b? and 0 = arctan(b/a). Note when evaluating
arctan(b/a), 6 must be put in the correct quadrant (see Fig 2.6).

e =cosf +isinf (Euler’s identity)
0 _ —i0 0 —if
sinf = % cos ) = €+26
z = a-+1ib
= |z|cosf +i|z|sind
= J2lexplif
If 2z = |z|explibh] and 2z = | 25| exp[ifs]
then Z1R9 = |Zl||2’2| exXp 2[91 + 92]
and L = ] expilf; — 6s]
Z9 |Z2‘
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Imaginary part

of z
b
a=|z|cosd
E .
b=|z|sind
0 Real part
a of z
Figure 2.5: Argand diagram.
If 2" = w where w = |w|explif]
then 2z = |w|Y"exp[i(d + 2kn)/n] where k =0,1,2...(n—1)
2" = [2"
2|z = [T
al _ lal
z9 ‘22|

DeMoivre’s theorem
inb

™ = (cosf +isinf)" = cosnf +isinnf where n is an integer

Trigonometric and hyperbolic functions

sinh(i¢) = isinf sin(i#) = isinh6
cosh(if) = cosf cos(i) = coshf
tanh(if) = itan6 tan(if) = itanh6

Figure 2.6: Selecting the correct quadrant for § = arctan(b/a)
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2.13 Series

Arithmetic progression (A.P.)
S=a+(a+d)+(a+2d)+ (a+3d)+ -+ (a+ [n — 1]d)
Sum over n terms is n
Sy = 5[2@ + (n —1)d]

Geometric progression (G.P.)

S=a+ar+ar’+ar®+-- +ar"?

Sum over n terms is

g a(l —r")
(=)
If || < 1 the sum to infinity is
g __
)
Binomial theorem
—1 —1 -2
(a+b)" =a" +na" b+ n(n2| )a"_2b2 + n(n 3)'(n )a”_3b3 + .-

If n is a positive integer the series contains (n + 1) terms. If n is a negative integer or a
positive or negative fraction the series is infinite. The series converges if |b/a| < 1.
Special cases:

1 ~1)(n—2
(1£a2)" = 1:|:nx+n(n2')m2:|:n<n 3)'(” )

(1+a2)t = lFoe+22F84+24F- -
(1+2)? = 1520 +32° F42® + 52" F---

22 + -+ Valid for all n.

2 3 brt

1 X
ltag)p = 1222 48 20T 4
(1£)> 28 16 128

1 r 32 b5a% 35t
lda) 3 = 132428 220 | 99T
(1) ot 5 T 1T

Maclaurin’s theorem

2% d*f

2! dx?

x> dBf

" d"f
L E s

n! dxn
T

daf

+...
xdx

=0

f(x) = f(0) +

where, for example d?f/dx?|,—o means the result of forming the second derivative of f(z)
with respect to x and then setting x = 0.
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Taylor’s theorem

d _ 2 d2 _ 3 d3
)= )+ e —a) | P ot S T
(z—a) df
AT

where, for example d?f/dz?|,—, again means the result of forming the second derivative
of f(x) with respect to x and then setting x = a.

Series expansions of trigonometric functions

. 0 05 07

sinf = 9_§+5_ﬁ+”'
92 94 96

cosf = 1_E+E_§+...

For 6 in radians and small (i.e. § < 1):
sinf ~ 6 Error <S4 % for 0 < 30° ~ 0.52 radians

tanf o~ 6 Error S4 % for 0 < 30° ~ 0.52 radians

cos 6 1 Error <4 % for 6 <16° ~ 0.28 radians

12

Series expansions of exponential functions

2?2 2t
et = 1j:x+§j:§+j+--- Convergent for all values of x
22 23 2t
In(1+2z) = l’—?—i-?—z—i-"' Convergent for —1 <z <1

For x small (i.e. z < 1):
et =explfa] 14z
In(l+z)~+z---

Series expansions of hyperbolic functions

. 1, . . x> 2d

Slnhx = 2(6 — € ):.’L’—i—y—‘—g_i_.
1, . 2zt

coshr = §(e +e ):14_54_1_1_...
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L’Hopital’s rule
If two functions f(x) and g(x) are both zero or infinite at = a the ratio f(a)/g(a) is
undefined. However the limit of f(z)/g(z) as x approaches a may exist. This may be

found from
f@) _ f

=ag(z)  g'(a)
where f’(a) means the result of differentiating f(x) with respect to x and then putting
T =a.

Convergence Tests

D’Alembert’s ratio test
(o) an
In a series, E ay, let the ratio R = lim ( +1).
n—00 a,

e If R < 1 the series is convergent

n=1

o If R > 1 the series is divergent

o If R =1 the test fails.

The Integral Test

o
A sum to infinity of a, converges if / ay, dn is finite. This can only be applied to series

where a,, is positive and decreasing as n gets larger.
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2.14 Ordinary Differential Equations

General points

1. In general, finding a function which is ‘a solution of” (i.e. satisfies) any particular
differential equation is a trial and error process. It involves inductive not deductive
reasoning, comparable with integration as opposed to differentiation.

2. If the highest differential coefficient in the equation is the n'* then the general
solution must contain n arbitrary constants.

3. The known physical conditions-the boundary conditions—may enable one particular
solution or a set of solutions to be selected from the infinite family of possible
mathematical solutions; that is boundary conditions may allow specific values to be
assigned to the arbitrary constants in the general solution.

4. Virtually all the ordinary differential equations met in basic physics are linear, that
is the differential coefficients occur to the first power only.

Definitions

ORDER OF A DIFFERENTIAL EQUATION
The order of a differential equation is the order of the highest differential coefficient it
contains.

DEGREE OF A DIFFERENTIAL EQUATION
The degree of a differential equation is the power to which the highest order differential
coefficient is raised.

DEPENDENT AND INDEPENDENT VARIABLES

Ordinary differential equations involve only two variables, one of which is referred to as
the dependent variable and the other as the independent variable. It is usually clear from
the nature of the physical problem which is the independent and which is the dependent
variable.
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First Order Differential Equations
Direct Integration

The equation Zy = f(x) has the solution y = /f(x)dx Thus it can be solved (in
x

principle) by direct integration.
Separable Variables

d
First order differential equations of the form d—y = f(z)g(y), where f(x) is a function of
x

x only and ¢(y) is a function of y only. Dividing both sides by ¢g(y) and integrating gives

/dy = /f(x) dx + C, which can be used to obtain the solution of y(z).

9(y)
The linear equation

d
A general first order linear equation of the form d—y + P(z)y = Q(x)
x

This can be solved by multiplying through by an ‘integrating factor’ e!, where I =
J P(z)dz, so that the original equation can be rewritten as

d

2 (yet) = QM)

Since () and [ are only functions of z we can integrate both sides to obtain

ye! = /Q(a:)eldx

Second Order Differential Equations

Direct Integration

2

Equations of the form d—g = f(x), can be solved by integrating twice:
x

y:/{/f(m)dx—l—(?} dxz/[/f(x)dx]da:—i—Cm%—D

Note that there are two arbitrary constants, C' and D.
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Homogeneous Second Order Differential Equations

Py o dy
— 2 b= 4y =0
ad:c2 -+ dr +cy

where a, b and ¢ are constants. Letting y = Ae®*, gives the auxiliary equation
ac® +ba+c=0

This is solved for « using the quadratic equation, which gives two values for a;, oy and
as. The general solution is the combination of the two, y = Ae®'® + Be®?,

The auxiliary equation has real roots When b? > 4ac, both a; and oy are real. The
general solution is y = Ae™'* + Be®*.

The auxiliary equation has complex roots When b? < 4ac, both a; and ay are com-
plex. Using Euler’s Equation, substituting C' = A+ B and D = i(A— B), the general
solution can be written as

y = €** (C cos(fx) + Dsin(fx))

where « = —b/(2a) and § = y/(4ac — b?)/(2a).

The auxiliary equation has equal roots When b? = 4ac, there is only one o. The
general solution is given by y = (A + Bz)e™”

Non-homogeneous Second Order Differential Equations

Non-homogeneous second order differential equations are of the form

d? d
a2 + b2

T bty = f(z)

To solve, first solve the homogeneous equation (i.e. for right-hand side = 0),

d? d
a2 +pY

dx? dx+cy:0

using the method given above to get the solution
y = Ae*? + Be*?*

which is known as the complementary function (CF). Then we find a particular solution
(PS) for the whole equation. The general solution is CF + PS.

The particular solution is taken to be the same form as the function f(z).

flz)=Fk assume y=0C
f(z) =kxr assume y=Cx+ D
f(z) =ka® assume y=Ca2?’+Dz+FE
f(z) =ksinz or kcosz assume y = Ccosz+ Dsinz

f(z) =e"™ assume y = Cet”
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2.15 Partial Differentiation

Definition

If f= f(x,y) with x and y independent, then

ox y

dx—0 ox

= derivative with respect to x with y kept constant

- = lim
dy ), 5y—0 oy
= derivative with respect to y with x kept constant

The rules of partial differentiation are the same as differentiation, always
bearing in mind which term is varying and which are constant.

Convenient notation

_of _0*f _0*f _of _0*f _0*f
Jo = oz’ Jow = Ox?’ Joy = Oxdy’ Ju = oy’ Jow = oy?’ Jow = OyOx
Note that for functions with continuous derivatives f,, = Of = Of =f
W oxdy  oyor V"

Total Derivatives

Total change in f due to infinitesimal changes in both z and y:
df = <8f> dz + <E)f> dy
ox y oy ),

ﬁ = a—f + g @ is the total derivative of f with respect to x.
dx ox y dy ) dx

ﬁ = g + g d—a: is the total derivative of f with respect to y.
dy oy ), Ox , dy

For a function where each variable depends upon a third parameter, such as f(z,y) where
x and y depend on time (t):

g _(0r do (0F) dy

dt — \ox) dt ~ \dy), dt
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Maxima and Minima with two or more variables

If f is a function of two or more variables we can still find the maximum and minimum
points of the function. Consider a 3-d surface given by f = f(z,y). We can identify the
following types of stationary points where gradients are zero:

peak — a local mazximum
pit — a local minimum

pass or saddle point — minimum in one direction, maximum in the other.

Figure 2.7: Surface plots showing a peak (left) and a saddle Point (right)

At each peak, pit or pass, the function f is stationary, i.e.

or _of _,
or Oy

Let f(xo,y0) be a stationary point and define the second derivative test discriminant as

(PN (0 2f\°
o~ (32) (32)- (24 - oo

which is evaluated at (zg,yo) and,

if D >0 and f,,; > 0 we have a pit (minimum)
if D >0 and f,, <0 we have a peak (maximum)

if D < 0 we have a pass (saddle point)

if D = 0 we do not know, have to test further comparing f(zo, o), f(xo £ dz,yo),
f(zo,yo £ dy), i.e. compare with values close to f(zo,yo)-
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2.16 Partial Differential Equations

The following partial differential equations are basic to physics:

One dimension Three dimensions

—— VZ$ = 0 Laplace’s equation

—— VZ¢ = constant Poisson’s equation
0? 0 0
83:? _ D@f Vip = Daf Diffusion equation
0?¢ 1 0%¢ 9 1 0%¢ .
e - 2oz Vi = T Wave equation

In general a partial differential equation can be satisfied by a wide variety of different
functions, i.e. if ¢ = f(x,t) or ¢ = f(x,y, z), f may take many different forms which are
not equivalent ways of representing the same set of surfaces. For example, any continuous,
differentiable function of (x & ¢t) will fit the one-dimensional wave equation.

‘Solving’ these partial differential equations in a particular physical context therefore
involves choosing not just constants but also the functions which fit the boundary condi-
tions. Equations involving three or four independent variables, e.g. (x,y,t) or (z,y, z,t)
can be solved only when the ‘boundaries’ are surfaces of some simple co-ordinate sys-
tem, such as rectangular, polar, cylindrical polar, spherical polar. The partial differential
equations can then be separated into a number of ordinary differential equations in the
separate co-ordinates, and solutions can be expressed as expansions of various classical
mathematical functions. This is analogous to the general representation of the solution
f(z = ct) of the one-dimensional wave equation by a Fourier series of sine and cosine
functions.
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2.17 Determinants and Matrices

Determinants
The general set of simultaneous linear equations may be written as:
a1171 + A12%2 + Q1373 + -+ - + A1pTn = Y1

(21T + A22%2 + Q233+« + + A2 Ty, = Y2

(31%1 + A32%2 + A33T3 + + - + A3pTp = Y3

Am1T1 + AmaT2 + Ap3T3 + -+ - + CGpnTn = Ym

The solutions of these equations are:

1 n
=5 > y;iDj (Cramer’s rule)
Jj=1
where
ayj;p a2 aiz - Qip
Qo1 Gz2 Q23 - d2p
D =

Am1 Gm2 Gm3  *° Qmn

is the determinant of the coefficients of the z; and where

Djr = (—1)* x  [determinant obtained by suppressing the ;"
row and the £ column of D]

Djy, is called the co-factor of aj;. The determinant D can be expanded, and ultimately
evaluated, as follows:

D = a1 Dy + ajoDya + -+ - + a1, D1,y (‘expansion by the first row’)

or
D =a11Dy1 + ag Doy + -+ + a1 D1 (‘expansion by the first column’)

The expansion procedure is repeated for D, etc. until the remaining determinants have

dimensions 2 x 2. If

D= then D = (ad — bc)

a b
d
Note: this method is very tedious for m,n > 3 and it may be better to use a ‘condensation’

procedure (see text books).
EXAMPLE

11 a1z A3
Q21 Q22 Q23 | = 411
a31 daz2 a33

Q22 Q23
32 Aa33

= Cl11(@226133 - a32a23) - a12<a21a33 - a31a23) + a13(a216l32 - C122@31)

Note that the value of a determinant is unaltered if the rows and columns are interchanged.
See Sections on Vectors and Vector Calculus, where vector product and the curl of a
vector are expressed as determinants.
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Matrices

The general set of simultaneous linear equations above can be written as

ayy Qa2 - Qip € n
Q21 Q22 -+ QA2p ) Y2
Am1 Am2 **° Amn Tp Ym
(an [m x n] matrix) (column vectors)

where the arrays of ordered coefficients are called matrices. One of the coefficients, or
terms, is called an ‘element’ and a matrix is often denoted by the general element [a;;],
where ¢ indicates the row and j the column.

Addition of matrices

If two matrices are of the same order m x n then

[ai;] + [bi] = laij + bij]

Scalar multiplication
If )\ is a scalar number then

Alaij] = [Aayj]
Matrix multiplication

Multiplication of two matrices [a;;], [b;;] is possible only if the number of columns in [a;;]
is the same as the number of rows in [b;;]. The product [¢;;] is given by

[cis] = D awmb;
k=1
Note

1. Matrix multiplication is not defined unless the two matrices have the appropriate
number of rows and columns.

2. Matrix multiplication is generally non-commutative: AB # BA

The unit matrix

The unit (or identity) matrix, denoted by I, is a square (n X n) matrix with its diagonal
elements equal to unity and all other elements zero. For example the 3 x 3 unit matrix is

100
I=10120
0 01

If we have a square matrix A of order n and the unit matrix of the same order then
IA=AI=A
and in general, provided the matrix product is defined (see above), multiplying any matrix

A by a unit matrix leaves A unchanged.
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The transpose of a matrix

If the rows and columns of a matrix are interchanged, a new matrix, called the transposed
matriz, is obtained. The transpose of a matrix A is denoted by AT. For example if

a11 Qa2
A= an ax
a31 a3z2

then
AT

I
1

11 Aa21 a31
Q12 Q22 432

The adjoint matrix

The adjoint of a matrix (denoted by adj A) is defined as the transpose of the matriz of the
cofactors, where the cofactors are as defined above (see Section on Determinants, p. 36).

The inverse of a matrix
The inverse A~! of a matrix A has the property that

ATTA = AA = ],

the unit matrix. It is evaluated as follows:

where | A| is the determinant of A.

Hermitian and unitary matrices

If a matrix A contains complex elements then the complex conjugate of A is found by tak-
ing the complex conjugate of the individual elements. A matrix A is said to be Hermitian
if

A=A

A wunitary matrix is defined by the condition

AA* =
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2.18 Vector Calculus

Differentiation of vectors (non-rotating axes)

dA  dA, .dA ~ dA
—i T f Y k z

dt @ a T u
A-B B A
D 2) (2

dt dt dt
d(A xB) dB\ (dA

Gradient of a scalar function

A
Z

~~

Figure 2.8: Cylindrical (left) and Spherical (right) polars.

CARTESIAN CO-ORDINATES
V=i—+j—+k— (a wvector operator).
x

VU = grad U, where U is a scalar. VU is a vector.
VU+V)=VU+VV U,V scalars.
VUV)=V(VU)+ (VU)V
CYLINDRICAL CO-ORDINATES

A A A
or 0z

v r 0¢

SPHERICAL POLAR CO-ORDINATES

szg+élé j L0
or r

00 Jrd)rsinO@iqﬁ
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Divergence of a vector function

CARTESIAN CO-ORDINATES

0A, 0A, 0A,
VoA = 8x+8y+8z

= divA a scalar
CYLINDRICAL POLAR CO-ORDINATES
VA= ij(m )+ 18;;’ 04,
SPHERICAL POLAR CO-ORDINATES
v A_7“12887*<r )+r811n9§9<1498m9)+rsiln988f(1;

Curl of a vector function

CARTESIAN CO-ORDINATES

VxA=cul A = . y
A, A, A,
I . 0A,  0A, i 04, 0A, i
oy z 0z ox J ox oy
CYLINDRICAL POLAR CO-ORDINATES
P org 2
1| 9 o) 0
VXA = 015 3 oz
A, A, A.
10A,  0Ay 0A, O0A.\ -, 1[0 0A,\ .
= (= - —| =—(rdy) —
(r 0o 82) +<8z 8r>¢+r<8r(r 2 8¢>Z

SPHERICAL POLAR CO-ORDINATES

0 rsin9g5
1 0 o)
VXA = 50| o 8 26
A, 1Ay T7Aysind
1 (9 9A, 1/ 1 0A, 8 )
A 0 T+ — — — —(rAy) | 0
rsinf (89( ssin0) = 8¢> + r <Sin¢9 )0 8r(r (b))
1/0 0A,\ -
o (87“(7%9) >¢

QO =
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Relations

Vx(VU) = 0
V- (VxA) =0
o*U  9*U  9*U
. — 2 —
v-(Vo) = VU O0x? N 0y? * 022
Vx(VxA) = V(V-A)- VA

The Laplacian operator V?

CARTESIAN CO-ORDINATES

CYLINDRICAL POLAR CO-ORDINATES

2800208

r|or \ Or 0¢ \r do 0z \ 0z
TR
or?2  ror  r2og? 022

SPHERICAL POLAR CO-ORDINATES
S U S A N A I
vio= A e 067‘ + a0 \>™" 089 + d¢ sin @ O

F 20 17 i) 1 &
or?2  ror  r200? r2 90  r2sin® 6 0¢?

Integral theorems

DIVERGENCE/GAUSS’ THEOREM

g;ﬁA-ds:j‘If(V-A)dV

STOKES’ THEOREM

%LA-dlsz(VxA)-ds
S

GREEN’S THEOREM

ﬁi (OVp — ¢V 0)-ds = Hj(ev% — $V20)dV
S 1%
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2.19 Fourier Series

If a function f(t) is periodic in t with period T', (i.e. f(t +nT) = f(t) for any integer n

and all ¢), then

2mnt 2mnt
—i—Z{ancos( 7;”)4-13 sm( 7;” )}

where
9 (T
aozf/ £(8) dt
2mnt
an, T/ f(t cos(gn)dt
2mnt
by, T/ sm< ™ ) dt
Notes:

1. t can be any continuous variable, not necessarily time.

2. The function f(¢) is a continuous function from ¢ = —oo to ¢t = +o00. For some
functions ¢ = 0 may be so chosen as to produce a simpler series in which either all

a, =0 or all b, =0, e.g. a ‘square’ wave. See Fig. 2.9.
f(t) f(t)

S N
—

—

t=0
t=0

T

Figure 2.9: Even function (left), f(+t) = f(—t) so b, = 0. Odd function (right), f(+t) =

—f(=t)soa, =0
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Complex form of the Fourier series

27mt)

Z Ch exp(

n=—oo

where

2mnt
C, = T/ exp(—z’ 7;”)(116

= 2(an— ib,) for n. > 0

1
= §(an +ib,) forn <0

Cyl T/ ) cos (27rnt> dt
S[C,] = _T/o £(#) sin (27;”) dt

Average value of the product of two periodic functions

FORD = Y (CulCo),

n=—oo

where the ‘bar’ means ‘averaged over a complete period’.

ToE = icquzqqzzmﬁ

= + Z al +b2)
Fourier transforms
For non-periodic functions:
Flw) = / f(t) exp|—iwt] dt Fourier transform
1 oo . . .
f(t) = o / F(w) expliwt] dw inverse Fourier transform
T J—o00

The functions f(¢) and F(w) are called a Fourier transform pair. Some examples are
given in Figure 2.10.
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TOPHAT FUNCTION

) Fy = 3 Sn®%2
ooa/z
T = snc ‘*)3/2

=y

GAUSSIAN FUNCTION

()

A
f(®) = hexp[-€/52]
Fw)= ohﬁ exp[- o 032/ 4]
DELTA FUNCTION () F(w)
T Fw) =1
(@)
1
t 0
(o]
f(t) = 0 except fort =0 and ff(t) da=1
- 0

Figure 2.10: Examples of Fourier transforms
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2.20 Statistics

Mean and RMS

If 21,9, -z, are n values of some quantity, then

The arithmetic mean is

" 1

%

1
n

The geometric mean is

n 1/n
SIIGM:(HSQ) = 1 X Ty X -+ X Ty
i

The root-mean-square (RMS) is

RMS:\llzxg:\/$%+l‘%+"-—|—:p%
n -

n

Permutations

Permutations of n things taken r at a time

=nn—1)n—-2)--(n—r+1)= : 'E"PT

Combinations

Combinations of n things taken r at a time

n! N
= —— = C
rl(n —r)! "

Note that in a permutation the order in which selection is made is significant. Thus
ABC DEFG is a different permutation, but the same combination, as ACB DEFG.

Binomial distribution

Random variables can have two values A or B (e.g. heads or tails in the case of a toss of a
coin). Let the probability of A occurring = p, the probability of B occurring = (1—p) = q.
The probability of A occurring m times in n trials is

n!
Pmn(A) = ————p"¢"" N.B.0!' =1

ml(n —m)
This is the m' term in the binomial expansion of (p + ¢)™.
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Poisson distribution

Events occurring with average frequency v but randomly distributed, in time for example
(e.g. radioactive decay of nuclei, shot noise, goals, floods and horse kicks!). Probability
of m events occurring in time interval T is

Normal distribution (Gaussian)

For a continuous variable which is randomly distributed about a mean value p with
standard deviation o, (e.g. random experimental errors of measurement), the probability
that a measurement lies between x and = + dx is

p(@)de = —— exp <—W> da.

oV 2w 202

The quantity o2 is also known as the variance.

Given a sample of N measurements, the mean value of the sample, Z, is an unbiased

. 7)2
estimator of u, and the sample standard deviation, sy_1 = Elj(fil_lx) is an unbiased

estimator of o.

The standard error on the mean (SEM) is:

SN—-1

T

Oz —

For large N, the difference = — y is itself a normal distribution with mean 0 and standard
deviation oz.
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Selected Physics Formulae

3.1 Equations of Electromagnetism ... ..........

3.2 Equations of Relativistic Kinematics and Mechanics

3.3 Thermodynamics and Statistical Physics . ... ...
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3.1 Equations of Electromagnetism

Definitions
B i H = magnetic field
D = ¢6E = electric displacement
E = electric field
J = conduction current density
p = charge density

where €, and p, are the relative permittivity and permeability respectively. The definitions
for B and D are for linear, isotropic, homogeneous media.

Biot-Savart law

dB:@] dl xr

47 73

Maxwell’s equations

These are four differential equations linking the space- and time-derivatives of the elec-
tromagnetic field quantities:

0B
VB = vxH-D _
ot

They can also be expressed in integral form:

B.dS = 0

S

D.dS — /pdT

S T

y{E-dl _ _[B s
ot

H-dl = J+8—D -dS
faa = [(+3)

L : ereo
Energy density in an electric field = 5
oo H?
Energy density in a magnetic field = a M;
Velocity of plane waves in a linear, homogeneous
and isotropic medium © = (u€pee)
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3.2 Equations of Relativistic Kinematics and
Mechanics

Definitions

E = energy;

mgy = rest mass

p = linear momentum

v = relative velocity of reference frames in x, 2’ direction

=1/ /1- ?/e)

Lorentz transformations

Two inertial frames, S and S’, are such that S’ moves relative to S along the positive x
direction, with velocity v as measured in S; the origins coincide at time t =t = 0. The
Lorentz transformations are:

x = y(z' + vt') ' =~z —vt)
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3.3 Thermodynamics and Statistical Physics

Maxwell speed distribution

For a gas, molecular weight m, in thermodynamic equilibrium at temperature 7', the
fraction f(v)dv of molecules with speed in the range v — v + dv is

3/2 2
o m _mo
f(v)dv = 4mv <27Tk:BT> exp [ QkBT] dv

Thermodynamic variables

Helmholtz free energy: F=U-TS
Gibbs function: G=U-TS+ PV
Enthalpy: H=U+ PV

Maxwell’s thermodynamic relations

Statistical physics

Partition function: 7 = Z e PEi = Z e~ Bi/kT
Helmholtz free energy: F=—-kT'lnz
Entropy: S=knQ)=—k Zpi In p;

Blackbody radiation

The energy emitted per unit area, per unit time, into unit solid angle, in the frequency
range v — v + dv is

2h13 1
c? (explhv/kT]) —1)

B(T,v) =
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Quantum statistics

Distribution function:

Fermi-Dirac: + sign; u = Ep

Bose-FEinstein: — sign

N.B. for photons = 0.

For high energies F > k'T' both distributions reduce to the classical Maxwell-Boltzmann
distribution.
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