
Champaign

Cliff Hastings Kelvin Mischo Michael Morrison

MATHEMATICA®

and Programming with the Wolfram Language™

HANDS-ON START TO WOLFRAM

SECOND EDITION

����� �� ��������

Introduction vii

���� � THE COMPLETE OVERVIEW 1

Chapter 1 The Very Basics 3
Chapter 2 A Sample Project in Mathematica 11
Chapter 3 Input and Output 21
Chapter 4 Word Processing and Typesetting 43
Chapter 5 Presenting with Slide Shows 59
Chapter 6 Fundamentals of the Wolfram Language 73
Chapter 7 Creating Interactive Models with a Single Command 93
Chapter 8 Sharing Mathematica Notebooks 115
Chapter 9 Finding Help 125

���� �� EXTENDING KNOWLEDGE 133

Chapter 10 2D and 3D Graphics 135
Chapter 11 Visualizing Data 157
Chapter 12 Styling and Customizing Graphics 179
Chapter 13 Creating Figures and Diagrams with Graphics Primitives 213
Chapter 14 Algebraic Manipulation and Equation Solving 233
Chapter 15 Calculus 245
Chapter 16 Differential Equations 261
Chapter 17 Linear Algebra 271
Chapter 18 Probability and Statistics 289
Chapter 19 Importing and Exporting Data 305
Chapter 20 Data Filtering and Manipulation 327
Chapter 21 Working with Curated Data 359
Chapter 22 Using Wolfram|Alpha Data in Mathematica 393
Chapter 23 Statistical Functionality for Data Analysis 419
Chapter 24 Creating Programs 437
Chapter 25 Creating Parallel and GPU Programs 459

Index 477

CHAPTER 7
Creating Interactive Models with a
Single Command

Introduction
One of the most exciting features of Mathematica is the ability to create interactive models
with a single command calledManipulate. The core idea ofManipulate is very simple: wrap
it around an existing expression and introduce some parameters; Mathematica does the rest
in terms of creating a useful interface for exploring what happens when those parameters are
manipulated. This single command is a powerful tool for learning and teaching about
phenomena and for creating models and simulations to support research activities.

Building a First Model
A common workflow is to start with something static, such as a plot, and then to make it
interactive usingManipulate. Take the following plot as an example, which plots sin(x)
from 0 to 2 π.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

The goal may be to compare the curve of sin(x) with the curve of sin(2 x), the curve of
sin(3 x) and so on. In other words, to examine the behavior of sin(f x) when f is varied
among a large quantity of numbers.Manipulate provides an easy way to perform this
investigation by constructing an interactive model to explore this behavior.

��

To begin, it is important to know that usingManipulate requires three components:

1. Manipulate command
2. Expression to manipulate by changing certain parameters
3. Parameter specifications

An easy way to keep track of these components is to write commands involvingManipulate
as follows.

Manipulate[
expression to manipulate,
parameter specifications]

This approach keeps each component on a separate line and provides an easy way to keep
track of each separate component.

For the example introduced above, theManipulate command might be as follows.

Manipulate[
Plot[Sin[frequency*x], {x, 0, 2π}],
{frequency, 1, 5}]

���������

� � � � � �

-���

-���

���

���

The result is an interactive model with a slider bar that can be clicked and dragged to
interactively explore what happens as the value of frequency is changed. This specific
model can be quite useful for explaining concepts of periodicity and frequency and was
built from a single line of code—pretty impressive, and a representative example of the
power ofManipulate.

������� �

��

The plus icon immediately to the right of the slider bar can be clicked to open an Anima-
tion Controls menu for that controller. Animation Controls can be used to animate the
model, incrementally step through different values for the parameter or assign a particular
value to the parameter through the use of an input field.

� You do not have to follow this multiline convention; you could put aManipulate
command on a single line, like:

Manipulate[Plot[Sin[f*x],{x,0,2π}],{f,1,5}]

To some, it reads more cleanly to have the command on one line; to others, having
the components on different lines makes the code more readable. Choose the style
that makes the most sense to you.

BuildingModels withMultiple Controls
Manipulate can be used to construct interactive models with an arbitrary number of
controllers. To control a model with multiple parameters, simply introduce the new
parameters and their corresponding parameter specifications. With two parameters, the
basic outline changes to the following.

Manipulate[
expression to manipulate,
first parameter specifications,
second parameter specifications]

The previous example can be expanded by introducing a new parameter, phase, along with
a range of values for the minimum and maximum of this new parameter. Mathematica will
automatically create separate controllers for each parameter and label them accordingly.

�������� ����������� ������ ���� � ������ �������

��

Manipulate[
Plot[Sin[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10}]

���������

�����

� � � � � �

-���

-���

���

���

Manipulate can be used to give parameters a list of discrete choices instead of a
continuous range for their values. For example, the Sin command can be replaced by a
new parameter called function, and then a list of choices can be given as the parameter
specification for function.

� Since curly braces are used to denote lists, this will create a parameter specification
with a nested list: the outermost list contains the parameter name and the specifica-
tion, and the specification itself is a list that contains discrete choices—in this case,
Sin, Cos and Tan—for the parameter to assume.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan}}]

������� �

��

���������

�����

�������� ��� ��� ���

� � � � � �

-���

-���

���

���

Mathematica has built-in heuristics to select appropriate controller types based on
the parameter specifications that have been given. For example, giving a long list of
choices causes Manipulate to display the controller as a drop-down menu instead of
a list of buttons.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan, Csc, Sec, Cot}}]

�������� ����������� ������ ���� � ������ �������

��

���������

�����

�������� ���

� � � � � �

-���

-���

���

���

� Like most everything in Mathematica, the output from commands can be cus-
tomized through the use of options. If you want to force Mathematica to use a
particular control type, the ControlType option can be used with values such as
Setter, Slider and RadioButtonBar. For example, if you add ControlType→
RadioButtonBar between the two closing curly braces in the last parameter
specification in the preceding example, Mathematica will create a row of radio
buttons to set the value of function instead of giving you a drop-downmenu.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan, Csc, Sec, Cot}, ControlType→ RadioButtonBar}]

������� �

��

���������

�����

�������� ��� ��� ��� ��� ��� ���

� � � � � �

-���

-���

���

���

TheManipulate command is not restricted to graphical manipulation and can be used
with anyMathematica expression. For example, symbolic expressions can be manipulated
just as easily as graphical expressions.

Manipulate
Expand (a + b)n ,
{n, 2, 10, 1}

�

a2+2 a b+b2

In the preceding example, the range {n, 2, 10, 1} was used to restrict the values of n to be
from 1 to 10 in increments of 1, since exponentiation is not defined for noninteger values.

�������� ����������� ������ ���� � ������ �������

��

Some Tips for Creating Useful Models

� The default results returned byManipulate are generally very useful and do not
require any special customization. However, there are a few important points to be
aware of, so we will discuss them here in order to help you avoid potential problems.

The Importance of PlotRange

The default behavior of commands like Plot is to automatically choose an appropriate
viewing window unless a specific range is given. This means that whenManipulate is used
to change the value of a parameter, which has a resulting effect of changing the appearance
of a plot, the plot will immediately be redrawn with a new viewing window. The end result
is that manipulating a parameter may appear to change the axes for the plot rather than the
plot itself.

The following screen shot shows an example of this behavior. On the left, the value of the
parameter a is set to 3, and the plot axes are automatically chosen to fully display the behav-
ior of the plot. On the right, the value of a is set to 6, and the plot is drawn accordingly.

This behavior can be avoided by specifying an explicit range to plot over. This can be
accomplished by using the PlotRange option for the Plot command, which forces the plot
to be drawn with the specific plot range the user provides. PlotRange takes a list as its
argument (remember: lists are enclosed by curly braces), where the first element of the list
is the minimum value for the plot range, and the second element of the list is the maximum
value for the plot range.

������� �

���

� The arrow (→) in the PlotRange option is constructed by using the hyphen (-) and
the greater-than symbol (>), which Mathematica then formats into the arrow.

Manipulate[
Plot[a*Sin[x], {x, 0, 2π},
PlotRange→ {-11, 11}],

{a, 1, 10}]

�

� � � � � �

-��

-�

�

��

� In the preceding example, the Plot function now spans two lines as a result of
adding the PlotRange option. Notice how the PlotRange line is nicely indented
to show that it is part of the Plot statement, while the list with the amplitude
parameter is indented to show that it is an argument that belongs with the
Manipulate command. You should experiment with deleting and adding extra
line breaks like this based on your preference for how the code looks.

Since the plot range is now fixed, adjusting a appears to stretch or flatten the plot, which
may be the desired behavior for this model to show.

�������� ����������� ������ ���� � ������ �������

���

Optimizing Performance for 3D Graphics

When 3D graphics are manipulated with controllers like slider bars, they may appear
jagged while the controllers are being moved, and then smooth again when the controllers
are released. The following example shows this behavior in action.

Manipulate[
Plot3D[Sin[a x y], {x, -2, 2}, {y, -2, 2}],
{a, 1, 5}]

�

Mathematica's default behavior is to optimize the performance while the controller is being
moved, and then to optimize the appearance once the controller is released. This allows a
fast interaction between users and the controllers, and nicely rendered results when fin-
ished. However, if rendering is more important than fast interaction, then the use of
options like PerformanceGoal can be handy.

Manipulate[
Plot3D[Sin[a x y], {x, -2, 2}, {y, -2, 2}, PerformanceGoal→ "Quality"],
{a, 1, 5}]

������� �

���

�

Now when the slider bar is dragged, the appearance of the plot remains smooth. The
tradeoff is that the slider bar may be slightly less responsive than it was in the preced-
ing example.

Labeling Controllers and Displaying Current Values

Manipulate creates a unique controller for each parameter that can be manipulated. By
default, Mathematica will use the name of the parameter when it labels its corresponding
controller, so if the parameter is named frequency, then "frequency" is what the label for
the controller will say.

There are times, though, when it is desirable to name the parameter one thing and to have
the controller label display something else. A user might do this to save on keystrokes: use a
short variable name, like f, for a parameter, but then label the control for f with something
different, like "frequency," to improve readability of the model.

Labeling is also useful in situations where the label is comprised of multiple words. Since a
parameter in Mathematica has to be a single symbol without spaces, a parameter cannot be
named something like phase shift. However, a parameter could be named ps, and then the
label corresponding to the controller for ps could be given as "phase shift."

�������� ����������� ������ ���� � ������ �������

���

To label a controller, a set of nested braces is used in the parameter specification, and values
are entered as follows.

������������ ������� ������ "��������� �����"�� �������� ��������

Using this idea, an example from earlier in this chapter could be modified to use different
parameter names and labels for each of the controllers.

Manipulate[
Plot[fn[f*x + ps], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5},
{{ps, 1, "phase shift"}, 1, 10},
{{fn, Sin, "function"}, {Sin, Cos, Tan, Csc, Sec, Cot}}]

���������

����� �����

�������� ���

� � � � � �

-���

-���

���

���

The labels appear to the left of each controller, and the actual names of the parameters—in
this case, f, ps and fn—are not visible in the output at all.

� You do not have to make the initial value of the parameter the same as the lower
bound of the controller; you can set the initial value to be, say, 3 for a controller
that ranges from 1 to 5.

������� �

���

Another useful option to set for the controllers is Appearance→"Labeled", which will
display the current value of the parameter to the right of its Animation Controls button.
(There is no need to set this option for the fn parameter, since the function name is already
displayed within the controller as part of the buttons.)

Manipulate[
Plot[fn[f*x + ps], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{ps, 1, "phase shift"}, 1, 10, Appearance→ "Labeled"},
{{fn, Sin, "function"}, {Sin, Cos, Tan, Csc, Sec, Cot}}]

��������� �

����� ����� �

�������� ���

� � � � � �

-���

-���

���

���

Creating an Interactive Plot Label

While labeling individual controllers in aManipulate can be useful, it can also be desirable
to create an interactive plot label that takes all of these labels into consideration and prints
a single expression, like the equation of the function being graphed.

The following example plots Sin[f*x], where f is a manipulable parameter. The controller
for f uses the Appearance→"Labeled" option setting to print its values to the right of the
controller, which is helpful, but the user is still required to examine the code to ascertain
exactly what function is being plotted.

�������� ����������� ������ ���� � ������ �������

���

Manipulate[
Plot[Sin[f*x], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"}]

��������� �

� � � � � �

-���

-���

���

���

Creating an interactive plot label can make the function being plotted more obvious. First,
a quick explanation of the PlotLabel option is necessary. PlotLabel is an option for Plot
(and other plotting commands) that prints a label at the top of the plot. PlotLabel expects
a string to be passed as its option setting. A string in Mathematica is enclosed with quota-
tion marks.

Plot[Sin[x], {x, 0, 2π}, PlotLabel→ "My plot of sin(x)"]

� � � � � �

-���

-���

���

���
�� ���� �� ���(�)

Strings can also be joined together with the <> operator. This is useful when construct-
ing a single string from multiple pieces of information that might be coming from
different places.

������� �

���

Plot[Sin[x], {x, 0, 2π}, PlotLabel→ "My plot of " <> "sin(x)"]

� � � � � �

-���

-���

���

���
�� ���� �� ���(�)

To create an interactive plot label, the PlotLabel option has to be hooked up to the same
parameters as theManipulate command. By using the same parameter symbol name, when
the plot is manipulated, its plot label will simultaneously update. However, the PlotLabel
option expects a string, and parameters inManipulate commands are generally not strings.
A trick is to use the ToString command to convert an expression to a string, and then to
use <> to hook multiple strings together.

Manipulate[
Plot[Sin[f*x], {x, 0, 2π}, PlotLabel→ "sin(" <> ToString[f] <> "x)"],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"}]

��������� ����

� � � � � �

-���

-���

���

���
���(�����)

�������� ����������� ������ ���� � ������ �������

���

The same approach can be used to create an interactive plot label that updates based on the
values of several manipulable parameters.

Manipulate[
Plot[Sin[f*x + ps], {x, 0, 2π},
PlotLabel→ "sin(" <> ToString[f] <> "x+ " <> ToString[ps] <> ")"],

{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{ps, 1, "phase shift"}, 1, 6, Appearance→ "Labeled"}]

��������� �����

����� ����� �����

� � � � � �

-���

-���

���

���
���(������+ �����)

� The <> symbol is actually shorthand for a command named StringJoin, but since it
is used so often, the symbolic shorthand form exists. There are other commands
like this in Mathematica with symbolic shorthand forms, so if you see a symbol you
do not recognize, you can search the documentation to find the corresponding
formal command name.

Hiding Code

Manipulate commands especially lend themselves to hidden code because the input that
created the model is usually not as important as the model itself. Like other situations
where hidden input is desirable, simply double-click the cell bracket containing the output
(the interactive model created byManipulate) to hide the corresponding input.

������� �

���

Manipulate[
Plot[a*Sin[f*x + ps], {x, 0, 2π}, PlotRange→ 6],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{a, 3, "amplitude"}, 1, 5, Appearance→ "Labeled"},
{{ps, 0, "phase shift"}, 0, 2π, Appearance→ "Labeled"}]

��������� �

��������� �

����� ����� �

� � � � � �

-�

-�

-�

�

�

�

Obfuscating code can be taken one step further by deleting the input entirely or by copying
and pasting just the output (the interactive model) into a separate notebook. In many cases,
the interactive model will still function when the notebook is opened, although it will not
be operational if it references a function or data that is no longer available at the time of
future reuse. The next section outlines ways to makeManipulate statements self-contained
so that they include all necessary definitions.

� Double-clicking the output to hide the input is muchmore common than deleting it.
If you keep the input intact, you can addminor edits later quite easily. If the input is
deleted, you would likely have to start over and recreate theManipulate statement.

�������� ����������� ������ ���� � ������ �������

���

Remembering User-Defined Functions

While the examples so far have utilizedWolfram Language functions, theManipulate
command can be used with any expression, including user-defined functions. Once a
function is defined, thenManipulate can operate on it. As an example, the function f[x] is
defined as follows.

f[x_] := 2 x2 + 2 x + 1

� Remember, you can typeset an exponent using the Ctrl+6 keyboard shortcut or by
using one of the palettes to create a typesetting template.

And now this function can be used withManipulate.

Manipulate[
Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1}]

�

-� -� � � �

�

��

��

��

��

������� �

���

If the output cell of the above expression—the interactive model created byManipulate—
was copied to a new notebook, and the Mathematica session was ended, and the new
notebook was reopened later, then the interactive model would no longer function because
Mathematica would not remember the definition of the function f.

There are two different strategies that can be employed to useManipulatewith user-defined
functions. The first is to use Initialization, which allows the definition of symbols to be
performed when theManipulate command is evaluated. The syntax for Initialization uses
RuleDelayed, which is more commonly input using the escape sequence Esc :>Esc and
automatically converted to⧴ as its shorthand form. In the following example, the
Initialization option setting is placed on its own line for the sake of clarity.

Manipulate

Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1},
Initialization⧴ f[x_] := 2 x2 + 2 x + 1

�

-� -� � � �

�

��

��

��

��

Now if the output (or the input and output) is copied into a new document, saved and
reopened at a later time, the Manipulatemodel will work. The function definition for f in
the Initialization option is the initial state for the Manipulate function. If the function f
is redefined in another section of the notebook, that new definition will apply to the
Manipulate object as well.

�������� ����������� ������ ���� � ������ �������

���

A second approach is to use the SaveDefinitions option, which will save the current
definitions for every symbol in theManipulate command; these saved definitions will
travel with the interactive model, even when copied and pasted to a new notebook.

Manipulate[
Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1},
SaveDefinitions→ True]

�

-� -� � � �

�

��

��

��

��

As before, if the output is now copied into a new document, saved and reopened at a later
time, theManipulatemodel will work; it "remembers" the definition for the function f
since it was told to save the definitions.

� In general, using Initialization is good if you might want the recipient of your
document to see the underlying commands used to construct your interactive
model. If you would prefer to hide that information from your audience, then
SaveDefinitions can be a better approach.

Clear is used to remove all variable and function definitions from this chapter.

Clear[f]

������� �

���

Conclusion
The use ofManipulate to communicate ideas is quite popular withMathematica users, since
the results can be immediately understood without the audience having to understand or
even see anyWolfram Language commands. A good understanding and generous use of
Manipulate can go a long way in explaining ideas, illustrating concepts and simulating
phenomena—and all with a single command!

Exercises
1. Create a Manipulate statement to vary x2 + 1, where x is an integer ranging

from 1 to 10.

2. Similarly to Exercise 1, create aManipulate statement to produce a list of values of the
form {x, x2 + 1, x3 + 1}, where x is an integer ranging from 1 to 10.

3. Create aManipulate statement to show the list of {x, x2 + 1, x3 + 1} and then add a
fourth element to the list that is an expression that answers whether x2 > 2 x+ 1. As
before, use the same integer range of 1 to 10 for the variable x.

4. Use the Wolfram Language to create a plot of x2 + 3 x - 1 over the domain from
-5 to 5.

5. UseManipulate to visualize the behavior of x2 + 3 x- 1 when a constant c is used to
multiply x2, and where c ranges from 1 to 20.

6. When moving the slider from the example in Exercise 5, remember that Mathematica
is choosing the optimal plot range as the slider is moved. Use PlotRange to introduce
a fixed plot range of -5 to 100.

7. Copy the input from Exercise 6 and add a second constant d to change 3 x to 3 d x,
where d also ranges from 0 to 20.

8. Copy the input from Exercise 7 and add another function so that you are visualizing
both c x2 + 3 d x- 1 and 2 c x2 - d x+ 3. (Reminder: to visualize two functions on the
same set of axes, place the functions in a list.)

9. Use the ThermometerGauge command to create a gauge illustrating the temperature
of 10 on a scale of 0 to 50.

10. Now useManipulate to create a model of the temperature 10 x, where x can be
changed from 0 to 5.

�������� ����������� ������ ���� � ������ �������

���

