
Operating System Security

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 1 / 71

http://www.macs.hw.ac.uk/~hwloidl

1 Overview

2 Operating System Components

3 User Authentication

4 Access Control

5 SELinux

6 Secure Programming

7 SetUID

8 Buffer Overflow

9 Other Pitfalls

10 File System Encryption

11 Summary & Further Reading

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 2 / 71

The Role of an Operating System

An Operating System (OS) provides the interface between the
user and the hardware.
The OS abstracts over low-level system-specifics (e.g. physical
memory size, by providing virtual memory).
The OS manages the available resources and shares them
among several users (e.g. multi-tasking).
The OS can be seen as the glue linking application programs and
the system.
One current trend in OSs is virtualisation and more generally
Cloud computing.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 3 / 71

Operating Systems and Security

Operating Systems are very complex.
Dealing with complexity is one of the main challenges in computer
security.
Therefore, OS security is not only of interest in itself, but can also
be seen as a case study of how to design security principles and
mechanisms for complex systems.
Many of these principles also apply to bespoke applications, that
need to manage several classes of users, share resources among
the users etc.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 4 / 71

Scope of this Part of the Course

We will study,
how operating systems work, in principle;
how they can be attacked;
how they can be protected.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 5 / 71

Multi-user Systems

Early operating systems, such as DOS, were single-user
systems
All modern operating systems support multiple-users
In this setup confidentially is highly desirable, preventing the
unauthorized reading of data
To ensure confidentially, a mechanism for securing file access is
needed
The most common approach to ensure confidentiality is to classify
users by “roles” and implement role-based access control
More generally, confidentiality presumes a security (access) policy
saying who or what can access our data.
The security policy is used for access control.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 6 / 71

Access controls at different levels in a system

0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 7 / 71

The OS connects the application-layer with the hardware-layer.
Additionally, a middleware-layer might provide a common interface
to frequently used abstractions outside the OS (e.g. database
access).
The OS itself is structured into

I the OS kernel, which has direct, exclusive access to low-level
resources (e.g. device drivers);

I the OS applications, which perform non-essential operations
inside the kernel.

Because kernel code has direct access to hardware, its security
requirements are highest.
An indication of this is the fact that program verification techniques
are often applied to device driver code.
Another important security principle is to minimise the code in the
OS kernel.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 8 / 71

Interacting with the Operating System

An application interacts with the OS by performing system calls.
The kernel provides a library of functions that directly interact with
the hardware.
An example of such a library is libc with functions for
opening/closing files etc.
Often a system call is implemented by an interrupt, which stops
the normal flow of computation, and starts code in kernel mode.
The usage of such system calls in an application is crucial for the
security of the entire application.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 9 / 71

Processes

A process is an execution environment of a program, with its own
set of resources.
Such resources are memory area, file handles etc.
Several processes may share available resources, e.g. writing to
the same file.
The kernel is in charge of assigning physical resources to
processes, e.g. which memory area to use for each process.
The kernel uses time-slicing to seemingly run several processes
at the same time: each process is executed for a short period of
time (time slice); then a context switch is performed and another
process is executed.
Details on how to perform time-slicing and resource allocation
depend on the concrete usage of the system: a server system
may behave quite differently from a desktop system.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 10 / 71

Processes and Security

The OS must ensure that different processes do not interfere in
a harmful way.
Each process is owned by one user (user ID), determining its
access to shared resources.
Additionally, the process may temporarily assume the identity of
another user (effective user ID) for example to gain access to
restricted resources.
The handling of such change in effective user IDs is one common
pitfall and multi-user systems.
A process can fork a sub-process, which inherits the permissions
from its parent.
This generates a process tree, which can be shown using the
command pstree.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 11 / 71

Inter-Process Communication

If several processes share resources, they often need to
communicate with each other.
This is usually done through inter-process communication
(IPC).
IPC can be realised by reading from/writing to files. However,

I this is usually not very efficient;
I prone to attacks, if other users can delete files while the application

is running.

A more efficient way of IPC is through shared memory, managed
by the kernel.
Another mechanism that is commonly used are pipes and sockets:
these act as tunnels between processes, using send and receive
to exchange data.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 12 / 71

Other OS concepts

Signals are asynchronous messages used to communicate
between processes.
One specific signal (INT signal, number 9), kills one running
processes.
When receiving a signal, the OS interrupts the process and
performs the associated action.
Remote Procedure Calls (RPCs) provide a way to execute
system code within another processes or even on a remote
machine.
Typically an OS uses daemons to provide services that should be
continually available (e.g. print server).
They are typically forked when booting the machine, and run with
higher privileges than other processes.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 13 / 71

Memory Management

One important task of an OS is to ensure that processes do not
interfere.
One aspect of this task is to ensure that separate processes work
on separate memory areas (memory management).
During runtime the OS also has to decide which logical memory
areas should be kept in the physical memory, and which areas
can be kept on disk.
The OS uses a specific paging policy to make these decisions.
Typically, the most recently used (youngest) processes will be kept
in memory, whereas older processes can be swapped to disk.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 14 / 71

Memory Structure

In most Unix-based systems the memory area associated to one
process, i.e. its address space, is structured into 5 segments:

Text, containing the machine code of the program.
Data, containing static program variables that have been
initialised.
BSS, containing static program variables that have not been
initialised.
Heap, containing dynamically allocated memory.
Stack, managing the function/method call structure during the
execution.

Each of these areas has its own set of permissions (readable, writable,
executable) and is owned by the user id that started the process.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 15 / 71

Memory Structure

In most Unix-based systems the memory area associated to one
process, i.e. its address space, is structured into 5 segments:

Text, containing the machine code of the program.
Data, containing static program variables that have been
initialised.
BSS, containing static program variables that have not been
initialised.
Heap, containing dynamically allocated memory.
Stack, managing the function/method call structure during the
execution.

Each of these areas has its own set of permissions (readable, writable,
executable) and is owned by the user id that started the process.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 15 / 71

Virtual Memory

Modern OSs abstract over the amount of physical memory, giving
the illusion of a huge amount of available memory.
In order to manage access to such virtual memory, the system
partitions the memory into pages.
If a process tries to access data on a page that is not in physical
memory a page fault occurs.
In this case the OS kicks in and transfers the page from disk into
physical memory.
Additionally, with virtual memory blocks of data can be treated
contiguously, although they are physically split into chunks.
A basic understanding of these mechanisms is needed to
understand system-level attacks such as buffer overflow and
stack thrashing attacks.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 16 / 71

Virtual Machines
A current trend in operating systems is to use virtual machines in
order to encapsulate a certain set of services.

A virtual machine (VM) is a container that behaves like an
independent OS.
VMs are a generalisation of the separation of the address space
between processes: VMs separate all resources.
Therefore, one VM behaves like a completely separate machine,
running its own OS.
To implement such separation a hypervisor or virtual machine
monitor has to be implemented, which handles all resource and
hardware access.
The hypervisor can implement hardware access in two different
ways:

I Using emulation it converts access to hardware of different types.
I Using virtualisation it transfers access from the virtual to the

physical hardware layer.
A common use of VMs is to run a different OS, e.g. to run
Windows on a Linux system.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 17 / 71

Advantages of Virtualisation

Hardware efficiency: Several VMs can be run on the same
(powerful) server machine.
Portability: The entire state of the guest operating system can be
saved an run on the concrete host machine.
Security: The VM acts as a sandbox, isolating potentially harmful
code from the host systems and the actual hardware.
Management Convenience: It is easy to take system snapshot
and to restore a system to a previous, save state.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 18 / 71

Virtualisation Technologies

VMware http:

//www.vmware.com/products/desktop_virtualization/

Commercial. Market leader on all kinds of virtualisation. Basic
package (vmplayer) is free. Supports Windows, Linux (not sure
about Macs). Probably highest quality of services.
Parallels: http://www.parallels.com/
Commercial. Fairly expensive (reduced rates might apply for
students) Supports Macs, Windows, Linux. Requires hardware
virtualization support. Very good performance especially on Macs.
Supported Linux version seem quite dated.
VirtualBox: https://www.virtualbox.org/
OpenSource, GPL. Community effort in building a virtualisation
platform. VirtualBox runs on Windows, Linux, Macintosh, and
Solaris hosts VirtualBox 4.1.6 was released today Not sure how it
compares with above two in terms of services and perf.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 19 / 71

http://www.vmware.com/products/desktop_virtualization/
http://www.vmware.com/products/desktop_virtualization/
http://www.parallels.com/
https://www.virtualbox.org/

Virtualisation Technologies (cont’d)
Xen: http://xen.org/
Supports Linux, Solaris, BSD-variants and Windows. Probably the
most stable of the Linux-based packages
KVM: http://www.linux-kvm.org/page/Main_Page
OpenSource Runs on Linux, using its kernel-support for VMs.
Performs hardware emulation, so likely to be slower than other
packages.
LinuX Containers (LXC): http://lxc.sourceforge.net/
Light-weight virtualisation support by the Linux kernel with a fairly
minimal set of tools, shipped with most recent distros. Good for
wrapping up separated services in an VM. Uses command-line
tools for configuration (no shiny GUI interface): lxc-execute,
lxc-create and the like.
There are good HOWTOs online, some are distro specific.
http://www.ibm.com/developerworks/linux/library/
l-lxc-containers/

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 20 / 71

http://xen.org/
http://www.linux-kvm.org/page/Main_Page
http://lxc.sourceforge.net/
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/

File System

Modern OSs organise files into a tree of folders.
File permissions are used to control access to these files.
This is one example of using role-based access control to shared
resources.
We now look into this concept in more general terms.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 21 / 71

User Authentication

As a prerequisite for securing resources, the system needs to
authenticate users
This tackles the question, How does the operating system
securely identify its users?
The most common technique are passwords, i.e. secrets only
known to that user.
Alternatives are biometric data (e.g. fingerprints), or physical
devices (e.g. smartcards).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 22 / 71

Password-based Authentication
When using passwords to authenticate users, several security-relevant
issues need to be taken care of:

The password must be stored securely, e.g. in an encrypted form.
Typically systems use a one-way hash function to store the
passwords.
To prevent dictionary attacks on weak passwords, the input is
often salted before applying the hash function, i.e. a random bit
pattern is added to the user id, and both, the salted user id and
the password are hashed.
The system has to store the salt in an encrypted way. Note that
this encryption is completely under system control and therefore
not susceptible to weak passwords.
Most Unix systems use either salted MD5 or a DES variant as
hash function. Often the sysadmin can choose a different
algorithm from a list of safe choices (e.g. blowfish).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 23 / 71

Access Control

Once a user has been authenticated,
the next question is How does the operating system determine
what users have permission to do?
This is called the Access Control Problem.
The purpose of access control is to control which principals
(persons, processes, machines, etc) have access to which
resources in the system, e.g. which files they can read, which
programs they can execute, how they share data with other
principals, and so on.
This involves

I Authenticate principals, e.g. through passwords,
I mediate access to system resources, e.g. by using roles.

We now look into the mediation part.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 24 / 71

Access Control Lists

Access to system resources is usually managed by an access control
matrix, e.g.

Note that this matrix needs an entry for each user and therefore
doesn’t scale well.

0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 25 / 71

Access Control Lists

Access to system resources is usually managed by an access control
matrix, e.g.

Note that this matrix needs an entry for each user and therefore
doesn’t scale well.

0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 25 / 71

Roles

“Roles” classify the potentially huge set of users, into a small set
of groups.
All members in one group use the same protection mechanism for
the available resources.
Therefore the access control matrix only needs one row per role.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 26 / 71

Access Control Lists

Access control lists (ACLs) are the columns in the access control
matrix, stored separately with the resource they are controlling.
ACLs are widely used in environments where users manage their
own file security, such as the Unix systems
Where the access control policy is set centrally, they are suited to
environments where protection is data- oriented
ACLs are very flexible (control access for each user) but not very
efficient (the OS has to check the entire list on resource access).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 27 / 71

Unix Operating System Security

Attributes: read, write, execute
Roles: owner, group, others
Example ACL: -rw-r--- Alice Accounts

This records that the file is not a directory; the file owner can read
and write it; group members can read it but not write it; nongroup
members (others) have no access at all;
The file owner is Alice; and the group is Accounts.
Note that the user trying to read the file, also needs execute
permissions on all directories on the path to this file.
Note that root always has full privileges
Thus, an intruder, who gains root access, can delete all traces of
his changes afterwards.
FreeBSD addresses this problem: Files can be set to be
append-only, immutable or undeletable for user, system or both

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 28 / 71

Unix Operating System Security
Additionally, the owner can define extended attributes for his/her
files.
Some examples are to make a file append-only or immutable.
The Unix commands lsattr and chattr are used to show and
modify such settings.
A complete list of possible attributes:

I append only (a),

I compressed (c),

I no dump (d),

I immutable (i),

I data journalling (j),

I secure deletion (s),

I no tail-merging (t),

I undeletable (u),

I no atime updates (A),

I synchronous directory updates (D),

I synchronous updates (S),

I top of directory hierarchy (T).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 29 / 71

Optional ACL-based Permissions

Recent Linux distributions extend this scheme of base
permissions.
Named users and named groups can be created.
This lifts the restriction of associating only 1 user (owner) and 1
group to a file or folder.
For each named user and named group, an own set of
permissions can be defined.
A mask defines the maximal permissions allowed for owner,
named users and named groups
The respective commands are: getfacl and setfacl

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 30 / 71

Optional ACL-based Permissions

The output of getfacl for a directory looks like this:

1: # file: somedir/
2: # owner: lisa
3: # group: staff
4: user::rwx
5: user:joe:rwx #effective:r-x
6: group::rwx #effective:r-x
7: group:cool:r-x
8: mask:r-x
9: other:r-x

10: default:user::rwx
11: default:user:joe:rwx #effective:r-x
12: default:group::r-x
13: default:mask:r-x
14: default:other:---

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 31 / 71

Security-enhanced Linux (SELinux)
SELinux develops the ACL principle even further:

It uses mandatory access control, as opposed the discretionary
access control discussed so far.
Users are not allowed to change permission; this is delegated to
the security policy administrator.
Almost every operation is checked against a rule-base, defining
the permissions.
Each rule defines a subject (the process trying to perform the
operation) and an object (the resource attempted to be accessed).
In principle, a sequence of rules has to be checked on every
resource access.
SELinux operates on the principle of least privileges: each
process receives the minimal set of permissions needed to
perform its job.
SELinux achieves the most refined resource control, but has a
considerable performance impact.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 32 / 71

Capabilities

Capabilities are the rows in an access control matrix.
Advantages: Runtime security checking is more efficient, and we
can do delegation without much difficulty
Disadvantages: changing a file’s status can suddenly become
more tricky, as it can be difficult to find out which users have
access
Recently capabilities are making a comeback in the form of public
key certificates.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 33 / 71

Granlularity of Access Control

The smallest unit, for which access can be controlled
(granularity), is a file.
Thus, access control cannot be used to hide parts of file.
Such functionality needs to be coded in the application.
If a database is used as the data-storage back-end, it needs to
use its own access control mechanism.
This generates layers of access control and complicated security
management.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 34 / 71

Hardware Protection

Hardware protection prevents processes from interfering with
each other.
This requires a mechanism that will stop one program from
overwriting another’s code or data.
Such hardware access control must be integrated with the
processor’s memory management functions.
A typical mechanism is segment addressing:

I an address consist of a segment address and an offset into the
segment

I the segment address is controlled by the operating system
I only the owning process of a segment can write to it

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 35 / 71

Dynamically Changing Attributes: setuid
Sometimes we want to specify that a file can only be modified by a
certain program.
Thus, we want to control access on a per-program, rather than a
per-user basis.
We can achieve this by creating a new user, representing the role
of a modifier for these files.
Mark the program, as setuid to this user.
This means, no matter who started the program, it will run under
the user id of this new user.
Example:

Beware: setuid programs are a major security pitfall!
0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 36 / 71

Example code for setuid
static uid_t euid, uid;
int main(int argc, char * argvp[]) {
FILE *file;
/* Store real and effective user IDs */
uid = getuid(); euid = geteuid();
/* Drop privileges */
seteuid(uid);
/* Do something useful ... */
/* Raise privileges, in order to access the file */
seteuid(euid);
/* Open the file; NB: this is owned and readable only by a different user */
file = fopen("/tmp/logfile", "a");
/* Drop privileges again */
seteuid(uid);
/* Write to the file */
if (file) {
fprintf(file, "Someone used this program: UID=%d, EUID=%d\n", getuid(), geteuid());

} else {
fprintf(stderr, "Could not open file /tmp/logfile; aborting ...\n");
return 1;

}
/* Close the file and return */
fclose(file); return 0; }

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 37 / 71

Testing this prgram
As normal user do the following:

do everything in an open directory
> cd /tmp
download the source code
> wget http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

compile the program
> gcc -o s1 setuid1.c
change permissions so that everyone can execute it
> chmod a+x s1
check the permissions
> ls -lad s1
-rwxrwxr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1
generate an empty logfile
> touch /tmp/logfile
change permissions to make it read/writeable only by the owner!
> chmod go-rwx /tmp/logfile
check the permissions
> ls -lad /tmp/logfile
-rw------- 1 hwloidl hwloidl 0 2011-11-11 22:06 /tmp/logfile

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 38 / 71

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

As guest user do the following

> cd /tmp
try to run the program
> ./s1
Could not open file /tmp/logfile; aborting ...
this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

set the setuid bit
> chmod +s s1
> ls -lad s1
-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1

Now, as guest you can run the program:

> ./s1
now this succeeds, although the user still cannot read the file
> cat /tmp/logfile
cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701
Someone used this program: UID=12386, EUID=12386

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 39 / 71

As guest user do the following

> cd /tmp
try to run the program
> ./s1
Could not open file /tmp/logfile; aborting ...
this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

set the setuid bit
> chmod +s s1
> ls -lad s1
-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1

Now, as guest you can run the program:

> ./s1
now this succeeds, although the user still cannot read the file
> cat /tmp/logfile
cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701
Someone used this program: UID=12386, EUID=12386

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 39 / 71

As guest user do the following

> cd /tmp
try to run the program
> ./s1
Could not open file /tmp/logfile; aborting ...
this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

set the setuid bit
> chmod +s s1
> ls -lad s1
-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1

Now, as guest you can run the program:

> ./s1
now this succeeds, although the user still cannot read the file
> cat /tmp/logfile
cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701
Someone used this program: UID=12386, EUID=12386

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 39 / 71

Buffer Overflow Attacks

Often low-level programs use fixed-size arrays (buffers) to store
data.
When copying into such buffers, the program has to check that it
doesn’t exceed the size of the buffer.
There are no automatic bounds checks in low-level languages
such as C.
If no check is performed, the program would just overwrite the
following data block.
If the data beyond the bound is chosen to be malign, executable
machine code, an attacker can gain control of the system in this
way.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 40 / 71

Example 1: Rsyslog
The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ’:’;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 41 / 71

Example 2:
The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ’:’;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 42 / 71

Discussion

The goal of this code is to read tags and store them in a buffer.
The program reads from a memory location p2parse and writes
into the buffer bufParseTAG.
The fixed size of the buffer is CONF_TAG_MAXSIZE
The while-loop iterates over the input text, and also checks
whether the index i is still within bounds.
BUT: after the while loop, 1 or 2 characters are added to the buffer
as termination characters; this can cause a buffer overflow!
The impact of the overflow is system-specific. It can lead to
overwriting the variable i on the stack.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 43 / 71

Smashing the Stack

One common form of exploiting a buffer overflow is to manipulate
the stack.
This can happen through unchecked copy operations into a local
function variable or argument.
This is dangerous, because local variables are kept on the stack,
together with the return address for the function.
Therefore, a buffer-overflow can directly modify the control-flow
in the program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 44 / 71

Example of Smashing the Stack

Assume, we call this func-
tion:

int function() {
int a;
char b[5];
char c[4];
...

}

The stack-layout for this
function is:

c
b
a
...
return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.
Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 45 / 71

Example of Smashing the Stack

Assume, we call this func-
tion:

int function() {
int a;
char b[5];
char c[4];
...

}

The stack-layout for this
function is:

c
b
a
...
return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.
Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 45 / 71

Difficulties in exploiting the vulnerability

The attacker needs to locate the position of the return address,
and write the address of its own, malign code there.
Several techniques can be used to achieve this.
In a return-to-libc attack, the attacker overwrites the return
address with a call to a known libc library function (eg. system).
After this, the return address to the malign code and data for the
arguments to the libc function is placed.
This will cause a call to the libc function, followed by executing the
malign code itself.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 46 / 71

A Worst Case Scenario

A particularly dangerous combination of weaknesses is the following:
A setuid function, raising privileges temporarily,
which contains a buffer overflow vulnerability,
and an attacker that plants shellcode as malign code onto the
stack.
If successful, the shellcode will give the attacker access to a full
shell with the privileges used in that part of the application.
If these are root privileges, the attacker can do anything he wants!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 47 / 71

Prevention Mechanisms

Canary variables, eg. on the stack, can detect overflows.
Re-ordering variables on the stack can help to reduce the impact
of a buffer overflow.
Compiler modifications can change the pointer semantics, eg.
never store a pointer directly, but only a version that needs to be
XORed to get to the real address.
Some operating systems allow to mark address blocks as
non-executable.
Address randomisation (re-arranging data at random in the
address space) is frequently in modern operating systems to
make it more difficult to predict where to find a return address or
similar, attackable control-flow data.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 48 / 71

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 49 / 71

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 50 / 71

Discussion

This example is part of an IMAP server for emails.
This code segment handles wildcards to perform operations.
Its weakness is that it uses strcpy to copy a block of characters,
which copies an unbounded 0-terminated block of memory.
Instead, the function strncpy should be used, which takes the
size of the block to copy as additional argument.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 51 / 71

Race Conditions

Another common bug are race conditions.
Here, the behaviour of the application depends on the relative
speed of 2 or more concurrent processes.
These bugs are very difficult to find, because they depend on the
relative speed.
Therefore, program behaviour may be non-deterministic, i.e. for
the same input the program behaves differently.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 52 / 71

User Interface Failures

Trojan Horses: programs that pretend to perform a well-known
functionality, but gather sensitive information in the background
(login, ls etc)
Mandatory root privileges for installation (tailor your program to
just the privileges that are needed principle of least privilege)
Instead, create groups with limited power, and give appropriate
permissions to the group.
Changing privileges inside a program (setuid) should only be
used as a last resort.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 53 / 71

Design Failures

Monolithic OS structure:
I Operating systems tend to be huge (Linux kernel: 13,320,934 LoC

as of May 2010; was: 176,250 LoC as of March 1994)
I Programmers write bugs.
I OS bugs might be catastrophic, because they may give an intruder

un-privileged access.
I Solution: micro-kernel structured OS, which minimises the trusted

code base and implements all non-critical code in user space
Unrevisited design decisions

I Unix evolved out of a single-user, non-networked operating system
(Multics)

I Extensions for multiple users and networks were added on
I But, assumptions made in the initial design often don’t hold any

more, and sources for security bugs

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 54 / 71

Remedies

Buffer overflow: several online tools check for buffer overflow in C
(Cyclone, CCured)
Enforce the principle of least privilege
The default configuration of an application should be safe, and not
make implicit assumption on the OS configuration.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 55 / 71

Secure Storage

The goal of secure storage is to prevent unauthorised access to data
even in a situation where the adversary has physical access to a
device, e.g. USB stick.

The concept that needs to be ensured is confidentiality.

The most common form of ensuring secure storage is to use
encrypted filesystems.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 56 / 71

File vs Filesystem Encryption

With tools such as gpg it is easy to encrypt individual files that contain
confidential information.

An application such as an office suite, file browser or editor might
transparently en/decrypt files to minimise the intrusion encryption has
on the usual workflow.

There are several forms of file-encryption:
All the above techniques do user-selected, file-based
encryption: the user decides for each file whether it should be
encrypted (rare case)
Per-file filesystem encryption (or filesystem stacked level
encryption) integrates the encryption into the code for
reading/writing from/to filesystem.
Full-disk filesystem encryption (or block device level
encryption) encrypts an entire partition (logical disk).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 57 / 71

File vs Filesystem Encryption

With tools such as gpg it is easy to encrypt individual files that contain
confidential information.

An application such as an office suite, file browser or editor might
transparently en/decrypt files to minimise the intrusion encryption has
on the usual workflow.

There are several forms of file-encryption:
All the above techniques do user-selected, file-based
encryption: the user decides for each file whether it should be
encrypted (rare case)
Per-file filesystem encryption (or filesystem stacked level
encryption) integrates the encryption into the code for
reading/writing from/to filesystem.
Full-disk filesystem encryption (or block device level
encryption) encrypts an entire partition (logical disk).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 57 / 71

Application-integrated file encryption

Encryption of files can be integrated into another application:
Examples of integrated file encryption are Microsoft Office and
Adobe Acrobat.
Both use AES as block cipher.
Microsoft Office 2007 derives a secret key from the user’s
password, by iterating SHA-1 hashing on the password 50,000
times.
This does not increase cryptographic security, but is designed to
slow down a brute force attack of guessing passwords.
Adobe Acrobat 9 uses SHA-256, which stronger than SHA-1, and
hashes the password only once.
It has been reported, that brute-force password attacks on Adobe
Acrobat 9 can test 10,000 more passwords per seconds than on
Microsoft Office 2007.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 58 / 71

Filesystem Encryption: EFS
Encrypting File System (EFS) is a per-file file-system encryption
scheme available for Windows.

EFS transparently encrypts all files, performing automatic
encryption and decryption when the user opens, saves, and
closes a file.
Files and folders must be explicitly tagged as being encrypted to
enable this functionality.
For such tagged files and folders, the data on disk is never
represented in plain text.
EFS uses a combination of symmetric and asymmetric encryption.
The contents of files is encrypted with a filesystem encryption
key (FEK), using AES as symmetric block cipher.
The FEK is encrypted with the users public-key, using
asymmetric encryption, and stored in the files meta-data.
Decrypting the file involves first decrypting the FEK with the user’s
private key, and then decrypting the file contents.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 59 / 71

Filesystem Encryption: EFS (cont’d)
Encrypting File System (EFS) is a per-file file-system encryption
scheme available for Windows.

To enable sharing of files between users, several FEKs can be
associated with a file.
To retrieve data in case of lost passwords, data recovery agents
can be identified by the admin. These are allowed to decrypt all
data on an EFS filesystem, in effect giving them a master key for
all data.
Several short-comings have been identified with EFS:

I Only contents of files, but not meta-data, is encrypted.
I Encryption is only enabled on EFS filesystems, so copying data

between filesystem may lead to inadvertently decrypting the data.
I Contents may be exposed through temporary files, stored in an

un-encrypted filesystem.
I Since the private key is stored on disk in a hashed, salted form,

gaining access to the user’s password will also expose his private
key.

I Gaining access to the accounts of any data recovery agent will also
expose all encrypted data.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 60 / 71

Full-disk encryption

Rather than encoding individual files and folders, it is also possible to
encrypt an entire disk or partition.

Three commonly used full-disk filesystem encryption tools are:
BitLocker (Windows; closed source); supports AES etc
CipherShed, formerly TrueCrypt (Windows, Linux, Mac; open
source); supports AES etc
LUKS (Linux; open source); supports AES etc

These tools encrypt either an entire disk, a partition (logical disk), or a
container file, which can then be mounted as a logical disk and will
appear as a separate partition (Linux) or as a separate volume with
drive letter (Windows).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 61 / 71

Full-disk encryption: CipherShed
CipherShed, formerly TrueCrypt, is an open-source utility for full-disk
filesystem encryption:

The password used to encrypt a partition must be entered when
mounting the partition.
TrueCrypt also supports plausible deniability, which means it
can be configured to hide even the existence of encrypted data.
This is supported by hidden, encrypted volumes, which are stored
in the free space of another TrueCrypt encrypted volume.
Since TrueCrypt initialises unused space on an encrypted partition
with random data, a hidden, inner encrypted volume is
indistinguishable from such random data.
The weakness with hidden volumes is that opther applications
may leave a trace of, e.g. recently opened files, which will point an
adversary to the existence of a hidden volume.
For details see: https://ciphershed.org/

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 62 / 71

https://ciphershed.org/

Full-disk encrption: LUKS

Linux Unified Key Setup (LUKS) is the Linux standard for full-disk
encrption.

It is supported by all recent Linux kernels.
It is accessed by the dm-crypt package that supports tools for
creating, mounting and unmounting encrypted partitions.
The main tool to perform encryption is cryptsetup.
A detailed discussion on LUKS usage is given on the Linux Arch
Wiki: https://wiki.archlinux.org/index.php/
dm-crypt_with_LUKS

The main web page for the dm-crypt package is:
http://code.google.com/p/cryptsetup/

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 63 / 71

https://wiki.archlinux.org/index.php/dm-crypt_with_LUKS
https://wiki.archlinux.org/index.php/dm-crypt_with_LUKS
http://code.google.com/p/cryptsetup/

Example LUKS Usage

Sample session of creating and opening a file as a LUKS partition

testing installation
> rpm -qf ‘which cryptsetup‘
cryptsetup-1.4.1-1.mga2
generate an empty file, that can be used as a container
> dd if=/dev/zero of=verysecret.loop bs=52428800 count=1
connect that file with loop-back device /dev/loop0 to use it like a partition
> losetup /dev/loop0 verysecret.loop
format this partition using a 256-bit AES key in CBC mode (this will define the password)
> cryptsetup -c aes-cbc-essiv:sha256 -y -s 256 luksFormat /dev/loop0
open the partition (this will ask for the password)
> cryptsetup luksOpen /dev/loop0 verysecret
now, create a file-system on that partition
> mkfs.xfs /dev/mapper/verysecret
finally, mount the partition to dir /mnt/t
mount /dev/mapper/verysecret /mnt/t

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 64 / 71

Example LUKS Usage (cont’d)

Sample session of closing a LUKS partition

to close all files, first unmount the partition
> umount /mnt/t
then close the encrypted partition
> cryptsetup luksClose verysecret
and dis-connect the loop-back device from the file
> losetup -d /dev/loop0
check that there are no connected devices left
> losetup -a

to add a key, for opening a device
> cryptsetup luksAddKey verysecret
to delete a key
> cryptsetup luksDelKey /dev/loop0 0

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 65 / 71

Full-disk filesystem encrption: BitLocker

BitLocker is another full-disk filesystem encryption utility, specific to
Windows with NTFS partitions (and closed source).

Two partitions are used: one with operating system and user data,
the other is an unecrypted boot volume.
At boot time the user needs to authenticate, and at this time will
unlock the volume master key.
It supports AES and other symmetric encryption methods for
encrypting the bulk of the data.
Another way to unlock the data is to use a trusted platform
module (TPM), such as a USB stick.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 66 / 71

Trusted Platform Module (TPM)
Trusted Platform Module (TPM) is a crypto-co-processor chip, with a
unique RSA private key, that can generate and store cryptopgraphic
keys.

Platform configuration registers (PCRs) are used to store keys
and ciphertexts for several cryptographic operations.
It provides functionality for cryptographic hashes, for sealing
(encrypting) and unsealing (decrypting).
Sealing and unsealing are tied to the device and will not work on
other devices with a different private key.
This technology can be used to bind secret data to the TPM that
can only be extracted if the state of the device is identical to the
state when it was generated.
A concrete application is to test the integrity of trusted OS
components, before decrypting and enabling them.
This technology can also be used for digital-rights management
and software licencing.
TPM is being pushed by Microsoft to strengthen software lock-in.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 67 / 71

Steganography
Steganography is the science of writing hidden message within
unsuspicious information.

Intuitively, steganography “hides messages in plain sight”.
A concrete example is to use invisible ink to add text to, e.g. a
letter containing non-confidential information.
In computer science, there are several covert channels that can
be used to hide information.
For example, meta-data of files might contain unused byte, which
will not normally be displayed.
Another example is to embedd information within a picture, by
using the lowest bit in each RGB value for the hidden text.
In an 1024×768 picture, this allows to store ca 295kB of data,
which is enough to store compressed versions of Hamlet, King
Lear, Macbeth, The Merchant of Venice and Julius Caesar.
For a practical example see: http://www.cs.vu.nl/~ast/.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 68 / 71

http://www.cs.vu.nl/~ast/

Summary

Access control mechanisms are used at different levels, to restrict
access to resources

I application level
I operating system
I hardware level

Control on higher levels is more powerful but also more complex
to manage and thus more vulnerable
Effectively using the OS’s mechanism can make all of your
applications more secure
Being aware of hardware protection mechanisms is important to
understand potential attacks

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 69 / 71

Closing Remarks

The main function of access control in computer operating
systems is to limit the damage that can be done by particular
groups, users, and programs whether through error or malice
The general concepts of access control from read, write, and
execute permissions to groups and roles will crop up again and
again.
An example comes from public key infrastructures, which are a
reimplementation of an old access control concept, the capability.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 70 / 71

Further Reading

Michael T. Goodrich and Roberto Tamassia
Introduction to Computer Security,
Addison Wesley, 2011. ISBN-10: 0321512944
Chapters 3 (O.S. Security) and Section 9.7 (Secure Storage).

Ross Anderson, “Security Engineering” ,
John Wiley & Sons Ltd, 2001.
On-line: http://www.cl.cam.ac.uk/~rja14/book.html.
Chapter 4, 6.

Dieter Gollmann. Computer Security.
John Wiley & Sons, second edition, 2006.

Andrew S. Tanenbaum. Modern Operating Systems
Pearson Education; 3 edition; 2007. ISBN: 0138134596
Chapter 9 (with the Steganography example in Section 9.3)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 71 / 71

http://www.cl.cam.ac.uk/~rja14/book.html

	Overview
	Operating System Components
	User Authentication
	Access Control
	SELinux
	Secure Programming
	SetUID
	Buffer Overflow
	Other Pitfalls
	File System Encryption
	Summary & Further Reading

