Happy Endings for Flip Graphs

David Eppstein
Univ. of California, Irvine
Computer Science Department

Rotation in binary trees

Rearrange links in and out of two adjacent nodes while preserving in-order traversal ordering of all nodes

Fundamental to many balanced binary search tree data structures

Equivalence of binary trees and polygon triangulations

Tree with n leaves

```
\Leftrightarrow
```

polygon with n vertices

Root + leaves of tree \Leftrightarrow
edges of polygon

Internal nodes of tree \Leftrightarrow
triangles of triangulation
(a form of planar duality)

Rotation between trees \Leftrightarrow
Flip between triangulations

Rotation graph and rotation distance

Vertices: n-node binary trees
Edges: rotations
Rotation distance:

minimum \#rotations

to change one tree into another
(shortest path length in rotation graph)

Rotation graph is skeleton of (n -1)-dimensional Stasheff polytope

D. Eppstein, UC Irvine, SoCG 2007

Rotation distance and hyperbolic geometry

[Thurston, Sleator, Tarjan 1986]
Max distance among n -node trees is exactly $2 \mathrm{n}-6$

- Use flipping of polygons instead of rotation of trees
- Form polyhedron with triangulations as its top and bottom
- Flip sequence = partition of polyhedron into tetrahedra
- Use hyperbolic geometry: all tetrahedra have volume $\leq \pi$
- Find polyhedra with large hyperbolic volume

Obvious open problem: how to compute flip distance?
Little progress since then...

Natural generalization: flip graphs of point sets

(shown: all triangulations of a 9-point square grid)

Flipping is important in mesh improvement

Flip distance can be quadratic [Lawson 1972]

More complex than polygons?

The Happy Ending theorem

Five points in general position have four forming a convex quadrilateral [E. Klein]
More generally, for any n, sufficiently many points (no three collinear) include the vertices of a convex n-gon
Erdős and Szekeres (1935); "happy ending" = Klein-Szekeres marriage

Empty convex polygons in point sets

Five points in general position always contain an empty quadrilateral
Ten points in general position always contain an empty convex pentagon [Harborth 1978]

Sufficiently many points in general position always contain an empty convex hexagon [Gerken 2006; Nicolás 2006]

Arbitrarily many points in general position do not always contain an empty convex heptagon [Horton 1983]

But what if they're not in general position?

Point sets without empty convex quadrilaterals: highly constrained (we'll see later: can describe them all simply)

Point sets without empty convex pentagons: many examples

points on two lines, any convex subset of a lattice, ...

Point sets with no empty quadrilateral

= point sets with exactly one triangulation
= vertices of planar graphs connecting any two points by a straight path

Four infinite families and one special case...
[E. 1997; Dujmovic, E., Suderman, Wood 2006]
Flip distance is trivial!

If there are empty quadrilaterals...

describe them all using the quadrilateral graph
vertices $=$ line segments between input points
edges $=$ pairs of diagonals of empty quadrilaterals

Partial cubes

Graphs that can be labeled by bitvectors so graph distance = Hamming distance

Examples:

Point sets with no empty pentagon

= point sets for which quadrilateral graph is a forest
= point sets for which flip graph is a partial cube
(our main results)

Idea for proof that no empty pentagon => forest:

- transform point set so Delaunay triangulation unique
- parent of edge = replacement edge of Delaunay flip
- there can be only one

Idea for proof that flip graph is partial cube:

- triangulation has one edge per tree in forest
- find short paths via constrained DT of shared edges

Algorithm for flip distance

(for point sets with no empty pentagon)
Flip both triangulations to Delaunay
Find edges that occur in one flip sequence but not both
Flip distance = number of such edges

Total time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Condition that input has no empty pentagon can also be tested in $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Estimating flip distance for more general point sets

Represent triangulation as subset of quad graph vertices
For each quad graph vertex in T1, find path connecting it to a corresponding quad graph vertex in T2

Minimize total length of paths (min weight matching)
Flip distance \geq total path length

Underestimate of true distance, suitable for A* algorithm

Point sets with no empty hexagon

necessary condition for estimated distance $=$ flip distance
conjecture: also sufficient condition

flip graph of a hexagon
top, bottom triangulation have flip distance $=4$ estimated distance $=3$

Conclusion

first progress on computing flip distance in nontrivial family of instances
complexity hierarchy for point sets? (bigger empty polygons => more complex)
sometimes general-position assumptions hide interesting geometry

