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| ABSTRACT
‘lA new alloy series, Fe-9%Ni-9%Co with O to 5% Ti, has been designed to
investigate the formation and hardening of Laves phases in Fe-base alloys. The
general microstructural features and hardness properties were investigated after
different heat treatments. In addition, the age hardening process was studied.
Laves precipitates were formed in the forged, normalized, and annealed condi-
tions. The age hardening was due to the precipitation of Laves phases from the
solution-treated matrix. Maximum hardening was developed by aging the solution-
treated 5%-Ti alloy at 500°C for 10 hr. No hardening response was observed in
the Ti-free alloy. Both optical and scanning electron microscopy were used to
follow the aging process and the morphological changes of the precipitate phases.
Analysis of precipitation kinetics and morphology indicates that the nucleation
of Laves phases is controlled by the martensitic substructure, particularly the
}martensitic lath boundaries. The level of hardening obtained is significantly
greater than that reported for similar ferritic and austenitic steels. Identi-
fication of the Laves phases chemistry by microprobe analysis showed t precip-
itates in the matrix proper to be the FejyTi type compound while the precY{pitates
long grain boundaries are the Ti,Fe;0 and/or TisNi type compounds; all precip-
itates were in the complex forms with possible substitutions among the Fe, Ni,
jand Co atoms, (Fe, Ni, Co)y Ti and Tij (Fe, Ni, Co).
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' INTRODUCT ION
pt! In Fe-base alloys, precipitation hardening by intermetallic phases plays a key
). role in the development of new materials with optimum mechanical properties.l’2

Among the various types of intermetallic compounds that can be used as the strength-
ening agents, the Laves phases have been the least studied. Laves phases are inter-
2 metallic compounds of the general formula AB,. Since the original work by Laves and
= White3 in Mg binary and ternary systems, the formation of Laves phases among transi-
: tion elements has also been extensively studied.“’3 All investigations were limited
to the determination of lattice parameters and physical properties of various binary
Laves phases. Little has been done on how to incorporate these phases into new
alloy systems to produce materials with high strength and hardness. The objective
of this investigation is to develop optimum hardness properties from the formation
of Laves phases in a martensitic Fe-9Ni-9Co base alloy with Ti as the additional
F‘. element for Laves phase formation. The purpose of utilizing Fe-9Ni-9Co as the base
] alloy was to produce a martensitic ferrite matrix (from Co) solid solution strength-
ened (from Ni) in which precipitation of Laves phases (FeoTi and/or CoyTi) can pro-
duce the best hardening properties.

" MATERIALS AND PROCEDURES
-

. Four initial heats (25 1b each) were made in a vacuum induction furnace. The

. melt was poured under an atmosphere of 200-mm Ar at a temperature of approximately
e 15409C. A tapered cast iron mold was used for casting in order to avoid the forma-
- tion of center line shrinkage. All the ingots were hot pressed into 5/8 in. square
bars with an intermediate reheat at 1150°C for 30 min. The actual chemical analysis
and hardness values of the forged specimens are listed in Table 1. The first ingot
(H858), the matrix alloy, contains no Ti. The other three ingots (H893, H894, H895)
contain nominally 1, 2.5, and 5% Ti. The contents of interstitial elements are low
and uniform for all the alloys.

The central tasks of this investigation were to verify that Laves phases could
be formed by the presence of Ti in the Fe-9Ni-9Co base alloy with different heat
treatments and that the precipitation of Laves compounds would produce a significant
age hardening reaction. Since the alloy series represents a new system, no data of
phase relations and T-T-T (time-temperature-transformation) diagrams are available
in the literature. This lack of information was remedied by making two preliminary
determinations:

1. LE;J‘A‘ A. J. Precipitation Reactions in Iron-Base Alloys, in Precipitation From Solid Solution, ASM, Cleveland, Ohio, 1959,

P. .

DECKER, R.F., and FLOREEN, S. Precipitation From Substitutional lron-Base Austenite and Martensite Solid Scolution, in
Precipitation in Iron-Base Alloys, Gordon and Breach Science Publishers, 1963, p. 60.

LAVES, F., and WHITE, H. Die Kristallstruktm der MgNi2 and seine Bejiehunger Zu den Typen des MgCu2 and MgZn2,
Metaliwirstschaft, v. 14, 1935, p. 645.

KUO, K. Ternary Laves and Sigma-Phases of Transition Metals, Acta Met., v. 1, 1953, p. 270.

EL6L‘I'7OT' R. P., and ROSTOKER, W. The Occurrence of Laves-Type Phase Among Transition Elements, Trans. ASM, v. 50, 1957,
P. .
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Table 1. CHEMICAL COMPOSITION AND HARDNESS OF FOKGED Fe-9Ni-9Co-Ti ALLOYS

Composition (WT%) Hardness
Heat No. Ni Co Ti c 0 N (30-kg 1o0ad)
H858 9.1 9.16 -- 0.015 0.012 0.002 199.4
H893 8.88 9.33 0.94 0.015 0.022 0.002 293.0
H894 8.92 9.19 2.32 0.015 0.038 0.001 358.5
H895 8.95 9.73 4.80 0.020 0.011 0.002 428.3

1. the solid solubility of Ti in the Fe-9Ni-9Co base alloy and,

2, the As and Mg temperatures in the austenite Z martensite transformation of
this new alloy system.

From these determinations, the necessary information for understanding Laves phase
hardening can be achieved in terms of formation of martensite, effects of Ti, iden-
tification of Laves phases, and the kinetics of precipitation hardening. The exper-
imental procedures of thils investigation consisted of the following steps:

1. Investigation of the general microstructural features and hardness of the
forged, normalized, annealed, and solution-treated conditions,

2. Determination of solid solubility of Ti in the base alloy by lattice param-—
eter and electrical resistance measurements,

3. Study of the austenite Z martensite transformation during the heating-
cooling cycle with electrical resistance vs temperature plots,

4, Characterization of age hardening behavior by microstructural examination
and hardness measurements,

5. Identification of Laves phases by electroprobe analysis.
Based on these reéults, alloy compositions, microstructures, and thermal treat-

ments can be developed for maximum hardening by Laves phase precipitation. Harden- |
ing mechanisms can be correlated with Laves phase formation, growth, and morphology.

EXPERIMENTAL RESULTS

Microstructure and Hardness of the Forged, Normalized, Annealed, and Solution-
Treated Conditions

A normal experimental procedure of precipitation hardening was established by
studying the metallographic features and hardness properties of the four alloys in
the forged, normalized (air-cooled), annealed (furnace-cooled), and solution-treated
(quenched) conditions. Twelve specimens were prepared from each forged alloy for
each heat treatment at three different temperatures for four different time intervals.
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The microstructures of the forged alloys are shown in Figure 1. The base alloy
[Figure 1(a)] generally shows polygonal grains without precipitates and the Ti-
containing alloys [Figure 1(b)-1(d)] exhibit the fine precipitates uniformly dis-
tributed throughout the matrix. Each alloy was then given a normalizing heat
treatment at three temperatures; 1000, 1150, and 1300°C for time intervals from

1 to 4 hr. It was found that the microstructure and hardness are mainly related
to the Ti content and normalizing temperature. Figure 2 shows the microstructure
of the alloys normalized at 1300°C. It can be seen that both the matrix- and Ti-
containing alloys display mixed microstructures of ferrite and martensite and that
the 5%-Ti alloy [Figure 2(d)] shows grain-boundary melting at 1300°C. Figure 3
shows the hardness response to the normalizing heat treatment. Based on these
results, one appropriate normalizing treatment was chosen at 1250°C for 2 hr. to
bring all the precipitates of the forged alloys into solution.

Similar studies of annealing heat treatment were also carried out for each
alloy composition in the temperature range from 1000 to 1300°C. Higher hardness
values were produced from higher annealing temperatures for time intervals up to
2 hr. With longer holding times up to 4 hr., the hardness decreases slightly. The
transformation products and their microstructures produced on annealing are quite
different from those on normalizing as shown in Figure 4. Fine precipitates exist
in the Ti-containing alloys, and the presence of retained austenite becomes quite
significant in the 2.5 and 5% Ti compositions.

The evaluation of solution treatment has also been done for each alloy at
three temperatures; 1000, 1150, and 1300°C. For each solution temperature three
different quenching media were applied, e.g., ice brine, water, and oil. It was
found that the hardness values and martensite morphology of solution-treated alloys
are determined by the Ti content and solution temperatures, but they are not
sensitive to the quenching rates obtained from the different quenching media.
Therefore, water quenching was used throughout this investigation. The plot of
hardness vs solution temperature for different Ti contents is shown in Figure 5(a).
Figure 5(b) shows the plot of hardness vs Ti content for different solution temper-
atures. Based on these preliminary studies and the following determination of solid
solubilities, it is considered that 1250°C is the most suitable temperature for
bringing the substitutional element Ti into solution. This is verified by the
microstructures shown in Figure 6. This figure clearly depicts that the microstruc-
tures of solution-treated alloys are all massive or lath martensite, but the details
of the martensite morphology of the matrix alloy [Figure 6(a)] are quite different
from those of the Ti-containing alloys [Figure 6(b)-6(d)]; the former consists of
martensite blocks much finer and thinner than the latter.

In summary, hardness is plotted in Figure 7 as a function of Ti content for all
heat treatments under similar solution-treatment conditions (1250°C for 2 hr). It
is interesting to note that the order of hardening in the base alloy is just the re-
verse of that in the Ti-containing alloys. For the Ti-containing alloys the
quenched condition yields the lowest hardness due to the absence of precipitates
found in the forged, normalized, and annealed conditions. However, for the base
alloy the solution-treated condition actually yields, among the different heat-
treatments, the highest hardness due to the difference in martensite morphology.
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Figure 1. Microstructures of forged Fe-9Ni-9Co-Ti alloys. Mag. 500X. (Forged at 1150°C with intermediate
reheat at 1150°C for % hr.)
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Figure 3. Hardness properties of Fe-9Ni-9Co-Ti alloys normalized at dif-
ferent temperatures.

Solid Solubility of Ti in Fe-9Ni-9Co Matrix

It is well known that Ni and Co exhibit an extended range of solid solution in
fcc or beec iron, but Ti has only limited solid solubility, which decreases with
decreasing l:etnpet‘at:ure.6 For this work, it is necessary to know the change of
lattice parameter of Fe due to the presence of 97 Ni and 9% Co in the matrix and

[} HANSEN, M. Constitution of Binary Alloys, McGraw-Hill Book Co., New York, 19568.
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Figure 5. Hardness properties of Fe-9Ni-9CO-Ti alloys solution-treated
- from different temperatures.

o the additions of 1 to 5% Ti. Also, it is necessary to know the solid solubility of

fj:. Ti in the base alloy at different solution temperatures. The former question uti-
lized the alloy series in the quenched condition; the latter used the 5% Ti alloy
. quenched from different solution temperatures. Both determinations were done by

two parametric methods: lattice paramcter and electrical resistance. Both methods
yielded the same results that are given in Figure 8. Solubility limits are indi-
cated by the compositions at which the lattice parameter and resistance values
flatten.

The solid solubility of Ti in the basic alloy was determined in the temperature
range from 1000 to 1300°C in order to select suitable temperatures for solution
treatment. Since the precipitation-hardening behavior is related to the solute
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content, it is essential to bring the highest Ti content, 5.55% at (4.80% wt) into
solution by heat treatment. The present results show that this is accomplished by
1250°c.

450 |—

b Annealed

g

w
b4

8

Hardness, DPH

, | ] ] i |
0 1 2 3 4 5

Titanium Content, wt %

Figure 7. Hardness properties of Fe-9Ni-8Co-Ti alloys after different
heat-treatments.

The Martensite T Austenite Transformation

In order to understand the hardening behavior of Fe-base alloys, one of the
most indispensable considerations is the investigation of the martensite (a) ¥
austenite (y) transformation from which the Ag and Mg temperatures can be deter-
mined. The a % y transformation of the Fe-9Ni-9Co-Ti system was followed by elec-
trical resistance measurements at temperatures up to 1000°C with a heating and
cooling rate of about 1 to 2°C per minute. From the resulting resistance vs
temperature curves, the Ag; and Mg temperatures are identified by abrupt changes in
resistance on heating and cooling, respectively. The numerical values of Ag and Mg
thus determined for the alloy series are listed in Table 2.

10
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Figure 8. Determination of solid solubility of Ti in Fe-9Ni-9Co matrix.

Table 2. AS AND MS TEMPERATURES OF Fe-9Ni-9Co-Ti ALLOYS

g
N o o
o Alloy A.°C M, ,°C
o
b Fe-9Ni-9Co 759 659
3
¢ Fe-9Ni-9Co-1Ti 763 638
&
- Fe-9Ni-9Co-2.5Ti 793 544

Fe-9Ni-9Co-5Ti 797 544
¢

11
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Prior work on Fe-97Ni alloy has indicated the Ag at 700°C and Mg at 500°c.7*8
The present data indicates that the presence of 9%Co in the Fe-97%Ni alloy raises Ag
from 700 to 759°C and Mg from 500 to 659°C. This verifies that Co functions as a
stabilizer of a-ferrite in the gresent alloy system. This effect was also observed
in alloys of higher Ni-content.’~ 1l The present study shows that the Ti additions
cause a slight increase of Ag and a large uniform decrease of Mg with respect to
the base alloy (Table 2). A similar phenomenon was also observed in Yeo's work!?
on the addition of Ti to the Fe-22.5%Ni alloys.® In that work, the rate of Mg
decrease is about 22°C per 1% Ti as compared to the 32°C per 1% Ti in this study.
Since Ti generally functions as a stabilizer of a~ferrite, it is unclear what
effect aging will have on the matrix. From the data presented in Table 2, it seems
certain that the present alloy compositions under study would produce a martensitic
ferrite matrix with little formation of austenite during aging below 700°C. With
Ti as the key element for Laves phase formation, a unique precipitation hardening
would be expected on aging.

Characteristics of Age Hardening

The aging behavior of the Fe-9Ni-9Co-Ti system was studied with samples
vacuum-annealed at 1250°C for 2 hr, water-quenched and aged in salt baths. The
changes in hardness as a function of aging time (from 1l min to 88 hr) during
isothermal aging at 500, 600, 700, and 800°C are shown in Figure 9. Peak hardness
occurs for all alloy compositions at an aging temperature of 500°C [Figure 9(a)].
Some scattered data at 400°C showed hardness peaks slightly lower than those at
500°C. Maximum hardness decreases with increasing aging temperature [600°C-Figure
9(b), 700°C-Figure 9(c)]. At 800°C, over-aging, not hardening, occurs [Figure
9(d)]. The maximum hardness peaks are generally shifted to shorter times with
higher temperatures and increased Ti content [Figures 9(b) and 9(c)]. The base
alloy exhibits little change in hardness over the temperature range 500 to 700°C
and decreases slightly at 800°C. This is beneficial as it implies that a stable
matrix is preserved while high strength is developed by precipitation of the Laves
compounds. The initial age-hardening response, i.e., the initial rate of hardness
increase, became faster and steeper with either increasing temperature from 500 to
700°C. at constant Ti content or increasing Ti content from 1 to 5% at constant
temperature [Figures 9(a)-9(c)]. No incubation period appears, as shown by the
acceleration of the precipitation reaction at the first minute of aging at 700°C.
The over-aging process is slow at 500°C and only becomes predominant as the temper-
ature is increased to 800°C.

RUDMAN, P. S. The Atomic Volumes of the Metallic Elements, Trans. Met. Soc. AIME, v. 233, 1965, p. 864.

TOFANTI, W., and BUTTINGHANS, A.  Arch Eisenhuettenw, v. 12, 1938-1939, p. 33.

COLLING, D. A. Martensite-to-Austenite Reverse Transformation in Fe-Ni-Co Alloys, Met. Trans., v. 1, 1970, p. 1677.

10. JONES, F. W., and PUMPHREY, W. |. Free Energy and Metastable State in the Fe-Ni and Fe-Mn Systems, JI1S|, October 1949,
p. 121,

1. KAUFMAN, L., and COHEN, M. The Martensitic Transformation in the Fe-Ni System, Trans. AIME, October 1956, p. 1393.

12, YEO, R. B. G. The Effect of Some Alloying Elements on the Transformation of Fe-22.5 Pct Ni Alloys, Trans. AIME, v. 227,

1963, p. 884.
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The microstructures of the alloys aged at 500°C are given in Figure 10. For
the base alloy, Fe-9Ni-9Co, [Figures 10(a)-10(d)] no precipitation occurs during
the entire period. The essential change in microstructure is the change in morphol-
ogy of the martensite ferrite. Since no precipitates formed in the base alloy,
this indicates that Ti is the key element in forming Laves compounds. For the Ti-
containing alloys, precipitation increases with time and Ti-content [Figures 10(e)-
10(1)]. All precipitates are finely dispersed. No apparent over-aging appears,
even at 88 hr at T = 500°C. Thus, maximum hardness peaks developed at 500°C. As
temperatures were increased from 500 to 800°C, over-aging reactions develop. This
process is illustrated by the microstructures of the 5%-Ti alloy in Figure 11.

The maximum hardness (670 DPH) for the series was achieved by holding the 5%~
Ti alloy at 500°C for 10 hr. The mechanism for this hardening is the dense pre-
cipitation of irregularly shaped plates in a closely interlocking arrangement, as
illustrated by the scanning electronmicrographs [Figures 12(b)-12(d) and 13(a)].
The over-aging phenomenon appears as the separation of these plates at higher
temperatures [Figures 13(b) and 13(c)]. Finally, the increase of the volume frac-
tion of the Laves precipitates with increasing Ti content is shown in the carbon
replica photographs in Figure 14.

Identification of Laves Phases

The identification of the Laves phases was done by the electron~probe analysis
of the metallographic specimens. Figure 15 shows the second phase precipitates
produced by annealing the forged 5%-Ti alloy at 1300°C for 2 hr followed by very
slow cooling. The result of electron-probe analysis of the particles in this spec-
imen is summarized in Table 3. These results indicate that the majority of the
precipitated phases contain a chemistry similar to the Laves compound Fe,Ti (30.01
weight’% Ti) with some substitution of Fe by Ni and Co. However, the particles
precipitated along the grain boundaries appear tan-colored under the polarized
microscope, which indicates the presence of oxygen; their chemistry shows a dif-
ferent type of Laves compound Ti,Fe,0, also with possible substitution of Fe by
Ni and Co. This compound is reported to be similar to the FeTi, (63.17 weightZ Ti)
type Laves phases. The formation of these two types of Laves phases will be
explained in the discussion.

Table 3. MICROPROBE CHEMISTRIES OF SECOND PHASES IN Fe-9Ni-9Co-5Ti
ALLOY (WEIGHT%)

Area Ti Fe Co Ni Remarks
Large Particles 34.6 53.5 6.9 5.3 (Fe-Co-Ni)zTi
Small Particles™ 24.5 62.7 7.2 5.0 (Fe-Co-Ni),Ti"
Grain Boundary 63.0 28.4 2.7 2.8 TidFeZO and/or

Tan Particles Tiz(Fe,Co.Ni)

*
Includes unavoidable matrix excitation.

14
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Figure 14. Electron replica photography showing increasing amounts of precipitates with Ti contents in

Fe-ONi-9Co-Ti alloys aged at 800°C for 17 hr. Mag. 10,000X.
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Figure 15. Laves precipitates after annealing at 1300°C for 2 hr fol-
lowed by very slow cooling of the forged Fe-ONi-9Co-5Ti alloy. Mag.
500X.

DISCUSSION
The Formation of Laves Phases in Fe-9Ni-9Co-Ti Alloys

One aim of this investigation was to demonstrate that Laves phases could be
formed with the addition of the key element Ti to the Fe-9Ni-9Co base alloy with
various thermal treatments. The present results show that such Laves phases did
occur in Ti-containing alloys in all heat-treated conditions. The most interesting
discovery was that two types of Laves phases exist: a FezTi type compound precip-
itating in the matrix-proper and Ti,Fe0 and/or Ti)Ni type compound along the grain
boundaries. All these types are complex forms with possible substitutions among
Fe, Ni, and Co. 1In studies of formation of intermetallic compounds in the Ti-Fe,
Ti-Ni, and Ti-Co systems, there were controversies regarding the existance of
T12Fe.13‘1G Recent investigations”’18 confirmed that TisFe is not an equilibrium
phase. The presence of a very small amount of oxygen can shift the alloy composition
into a ternary phase involving the formation of T14Fe20 whose structure resembles

13. LAVES, F., and WALLBAUM, H. J. NaturWissenschafteu, v. 27, 1939, p. 674.

14. ‘D'LgEY,iP‘.:’;nd TAYLOR, J. L. The Structure of Intermetallic Phases in Alloys of Ti with Fe, Co and Ni, Trans. AIME, v. 188,
, P. .

18. BAN THYNE, R. J. The System of Ilron-Chromium and Iron-Titanium, Trans. ASM, v. 44, 1952, p. 974.

16. WARNER, H. W. The Constitution of Ti-Rich Alloys of Fe-Ti, J. inst. Metals, v. 79, 1951, p. 173.

12. ROSTOKER, W. Observation on the Occurrence of TipX Phases, Trans. AIME, v. 194, 1952, p. 209.

18. ENCE, E., and MARGOLIN, H. Re-Examination of Ti-Fe-O Phase Relations, Trans., AIME, v. 206, 1956, p. 572.
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that of Ti_Fe. As to the other two isomorphous compounds, TizNi and Ti,Co, both
their simigarities in the formation and structure have been well establZshed.lg’20
It is thus concluded that the Laves precipitates along the grain boundaries are

Ti,Fep0 and TipNi type compounds (with the possible substitutions among Fe, Ni, and
Co).

The formation of several types of Laves phases in this material creates an
unusual case. This dual precipitation creates peculiar structures along grain
boundaries. The interfacial structures that result exert an influence on the harden-
ing properties. Since the crystallographic configuration along the interfacial
areas was not determined, no prediction can be made here on the influence of dual
formation of Laves precipitation upon the hardening properties of the experimental
alloys. Since it is generally believed that a cubic structure (Ti;Ni) may be more
ductile than the hexagonal structure (Fe,Ti), the formation of cubic Ti,%2,0 type
compound in the grain boundary arec coulg be a beneficial phenomenon for the devel-
opment of optimum mechanical properties.

The Kinetics and Morphology of Laves Phase Precipitation in Martensitic Fe-9Ni-9Co-Ti
Alloys

The study of aging characteristics of the present alloy series (Figure 9) has
shown that significant hardening can be achieved with Laves phase precipitation.
The kinetics of aging, using the general equations of Lement and Cohen, 1 can be
expressed as

where H¢ is the hardness at aging time t, Hy the initial hardness, K a constant, and
n the time or growth exponent. Figure 16 illustrates this relationship for the Ti-
containing alloys at two temperatures, 500°C (Figure 16) and 600°C [Figure 16(b)].
The values of the time exponent n, the slopes of these plots, varies with the aging
temperature, time, and Ti content. In this study, the magnitude of n in the initial
stages generally decreases with increasing aging temperature and Ti-content. The
value of n ranges from 0.48 to 0.10. Several theoretical studies of the mechanisms
of solute precipitations in iron-base alloys exist. Zener2? showed that the lowest
possible value of n would be 0.5 if volume diffusion of solute atoms is the basic
mechanism of the growth of spherical precipitates from solid solution. Lament and
Cohen?! studied the first stage of tempering of carbon steels using a dislocation
attraction model, and demonstrated that lower n values in the range observed here

19. YURKO, G. A.  The Crystal Structure of TigNi, Acta. Cryst., v. 12, 1959, p. 909.
20. ORRELL, F. L., and FONTANA, M. G. The Titanium-Cobalt System, Trans. ASM, v. 47, 1955, p. 664,
2. LAMENT, B. §., and COHEN, M. A Dislocation Attraction Model for the First Stage of Tempering, Acta Met., v. 4, 1956,

p. 469,
22, ZENER, C. Theory of Growth of Spherical Precipitates from Solid Solution, J. App. Phys., v. 20, 1949, p. 850.
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can be associated with the defect-assisted diffusional growth of heterogeneously
nucleated precipitates.

Heterogeneous precipitation on the lath martensitic substructure is strongly
suggested by the highly-oriented morphology of precipitation evident in Figures 11
through 14. The precipitate plates appear aligned with the lath packet structure
in a manner highly suggestive of precipitation on martensitic lath boundaries (e.g.,
Figures 12 and 13). If the precipitation kinetics are dominated by the martensitic
substructure, a possible benefit of Co in these alloys may be the inhibition of
recovery of this substructure as observed in a study of the tempering behavior of
10Ni-8Co steels.?23

Further support for the importance of the role of martensitic substructure
comes from comparison of the level of hardening obtained in this study with those
of previous studies of Ti Laves phase hardening in other steels, Table 4. The
hardening observed in the current martensitic steels is substantially greater than
that obtained in similar ferritic and austenitic steels.

T
o
=)
£
= 20 /X/X
X'n =0.44 {a.) 500°C Aging
10 v aaaunl ool Pl gt
1 10 100 1000

Aging Time, Minutes

2.5% Ti

I
& 1% Ti
- ______—-—_x'___x
(=] 50 X
= "
e xTi = 0.48

2&/ {b.) 600°C Aging

10 —t 1 lllllll i 1 11.-111 e 1 1 sl

10 100 1000

Aging Time, Minutes

Figure 16. Change in hardness vs aging time at (a) 500°C and
(b) 600°C for Fe-9Ni-9Co-Ti alloys.

23. SPEICH, G. R.,, DABKOWSKI, D. S., and PORTER, L. F., Met. Trans., v. 4, 1973, pp. 303-315.
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Table 4. LAVES PHASE HARDENING IN Fe-BASE ALLOYS

- Alloy System Matrix Weight% Ti Aging Treatment Max Hardness Reference
(‘ Type (DPH)

2
L-3 Fe-Ti Ferritic 5.8 700°C, 1 hr 310 6. R. Speich?*
ko 5.8 600°C, 10 hr 485

-

el Fe-9Mi-9Co-Ti Martensitic 2.3 500°C, 10 hr 610 this work

. 4.8 500°C, 10 hr 665

T Fe-15Cr-20Ni-Ti  Austenitic 2.7 700°C, 40 hr 340 R. Blower2S

. 3.8 700°C, 25 hr 400

Thus, it appears very promising to develop optimum mechanical properties from the
present Fe-9Ni-9Co-Ti alloy system due to its much higher hardening properties.

SUMMARY

1. A new alloy series Fe-97%Ni-97%Co (1 to 5% Ti) has been investigated in order
to develop optimum hardening properties by the formation of Laves phases.

2. The general features of the microstructures and hardness properties of the
alloys were investigated in the forged, normalized, annealed, and solution-treated
{ conditions.

3. The solid solubility of Ti in the Fe-9Ni-9Co matrix was determined as 5.5
A at. pct. (4.7 %Zweight) Ti at 1250°C by lattice parameter and electric resistance
measurements.

» 4. The martensite I austenite transformations of the whole series were studied
-, with resistance vs temperature plots, from which the Aj and Mg temperatures of each
alloy composition were determined. Ti additions lower Mg and slightly raise Ag.

¢ Ta

KR

5. No aging response was observed in the matrix alloy. The maximum hardness
of 670 DPH was developed by solution treating the 4.8 %-Ti alloy at 1250°C for 2 hr,
o followed by aging at 500°C for 10 hr.

6. The kinetics and morphology of precipitation indicate control by the marten-
sitic substructure. The resulting level of precipitation hardening is significantly
greater than that reported for similar ferritic and austenitic steels.

’ 7. The identification of the Laves phase chemistry by microprobe analysis

showed that the precipitate in the matrix proper is the type FesTi compound and the
s precipitate along grain boundaries is the Ti)Ni and/or TisFey0 type compound, both
.- in the complex forms with possible substitutions among the Fe, Ni, and Co, (Fe, Ni,
- Co),Ti and Ti,(Fe, Ni, Co).

ot 24, SPEICH, G. R. Precipitation of Laves Phases from Fe-Nb and Fe-Ti Solid Solution, Trans. AIME, v. 224, 1962, p. 850.
% 25. fE‘ET;I’ngi H. .19,1 .:R., and HAGAL, W. C. Intermetallic Compounds in Titanium-Hardened Alloys, Trans. AIME, J. of Metals,
- uly, . P -
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