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Abstract

While multiprocessors have existed for many years, most parallel architectures are difficult

to program efficiently. The key challenge is how to simplify the programming model so

that programmers can write portable highly efficient parallel programs with minimal effort.

For example, cache-coherent shared-memory architectures trade the memory system com-

plexity of the coherence protocol for a simpler programming model that does not require

communication to be programmed explicitly.

Software developers, operating systems researchers, and hardware architects have work-

ed in their respective areas to improve the parallel efficiency of general-purpose applica-

tions. A critical question remains unanswered: how do advancements in each of these areas

behave collectively? Using the FLASH machine, a large-scale cc-NUMA multiprocessor,

this dissertation explores the interaction between hardware and software design trade-offs

and quantifies the performance gains of memory system enhancements.

Researchers working on multiprocessor memory systems have advocated easing the

programming burden by adding enhancements to the memory system designed to reduce

memory latency and coherence overhead. Of course, these enhancements also add com-

plexity and affect the speed of basic memory operations. Analogous to the lessons learned

during the RISC movement over 20 years ago, this dissertation demonstrates that at large

processor counts, simpler memory system designs are faster than more complicated ones,

primarily because the additional contention present in the memory system overwhelms mi-

nor reductions in latency that more complicated protocols provide. Thus, architects should

focus on minimizing memory controller occupancy on large-scale multiprocessors rather

than just latency.

Even setting aside contention, the coherence protocol is a smaller bottleneck than other

system aspects including the operating system’s scheduling policies and the application’s

v



effective or ineffective use of the cache coherent memory system. Our results indicate that

to achieve reasonable performance, programmers still need to tune their programs to a spe-

cific architecture; such tuning limits portability. While coherence protocols might be able

to provide a reduction in remote communication, the mismatch between an application and

the architecture are often more significant and prevent major performance improvements.

Our results indicate that large-scale multiprocessors continue to remain difficult to pro-

gram because the memory system alone cannot eliminate the need for programmers to

remain aware of implicit communication. The software libraries, compiler, and operating

system must apply complex machine-specific optimizations to reduce second- and third-

order performance bottlenecks. Therefore, the memory system should provide meaningful

visibility and feedback to programming monitoring tools and compilers. Without such

tools to assist programmers, the programming advantages of a coherent shared memory

multiprocessor versus a message passing multiprocessor are likely to be small for larger

processor counts.
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Chapter 1

Introduction

Parallel computing is a natural and old idea. The famous Illiac IV [9], developed in the

late 1960s at the University of Illinois, is one of the earliest large parallel computers. This

ambitious project ultimately took too long to design, cost too much to build and failed

to deliver expected performance gains. In the intervening 40 years, large multiprocessors

have continued to serve a specialized market for high-performance scientific or commercial

applications for similar reasons.

In contrast, microprocessors have benefiting from dramatic advances in semiconductor

technology and processor architecture, doubling in performance every one-and-a-half to

two years. As a result, most people still use uniprocessor machines, based on the micropro-

cessor. Pessimists have long predicted that Moore’s Law will end sooner rather than later.

Often, their dire predictions prove false because of the ingenuity of researchers and engi-

neers who continue to develop novel fabrication techniques and processor architectures to

improve microprocessor performance. In many ways, microprocessor performance growth

has limited wider research and development of the general-purpose multiprocessor because

there was no compelling performance reason to shift.

Lately, however, power constraints, longer on-chip wire delays, and limitations in in-

struction-level parallelism (ILP) are starting to limit microprocessor performance growth.

Eventually fundamental physical communication limits and increasing power demands

will limit our ability to improve microprocessor performance unless some fundamental

paradigm shift occurs.

Parallel computing is one such paradigm shift. Once the microprocessor approaches

1



2 CHAPTER 1. INTRODUCTION

fundamental scaling limits, architects will leverage multiprocessors in an unprecedented

way to continue performance trends. Already companies like Intel and AMD propose

small-scale multiprocessor cores that leverage thread-level parallelism. Due to the pro-

grammer’s heavy reliance on legacy software, the multiprocessor-programming model must

remain as close to the uniprocessor-programming model as possible. In addition, program-

mers prefer efficient, yetmachine-independent, program performance because the under-

lying multiprocessor architectures dramatically change as technology and machine sizes

shift.

While small-scale cache-coherent multiprocessors are successful, many larger parallel

machines abandon cache coherency. Somehow, the cache-coherent abstraction has failed

to provide efficient, machine-independent performance with little programming effort at

larger processor counts. The research and methodology presented in this dissertation seek

to understand why programming large-scale multiprocessors remains difficult.

Figure 1.1: Multiprocessor and Distributed Computing Papers published between 1970 and
2004 [44]

The scarcity of useful large-scale shared-memory machines is not from a lack of effort

by the architecture community. Figure 1.1 illustrates the rate of publications on multi-

processor and distributed computing papers from 1970 to today. Through the mid-1990s,
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interest in parallel computing steadily increased because this area looked increasingly at-

tractive. However, in the late 1990s, the community hit a research wall. Scarcer government

funding, industry difficulties encountered in building and selling larger multiprocessor sys-

tems and a lack of new ideas from the architecture community contributed to the decline in

parallel research.

Nor is the lack of these machines caused by the absence of parallelism in high-level ap-

plications. Parallelism frequently exists in these applications, but exposing this parallelism

in software or extracting parallelism automatically in hardware proves challenging. The

programmer, software interface, or parallel compiler fails to implement concise, machine-

independent parallel algorithms. The hardware fails to provide a clear interface to the

software or poorly extracts parallelism automatically.

1.1 Research Contributions

The primary contributions of this dissertation are:

• Measurements and analysis of performance and bottlenecks using a real large-scale

multiprocessor to measure and analyze performance. The FLASH system [35, 36]

was designed specifically to study design trade-offs present in large-scale multipro-

cessors. Using realistic multiprocessor provides a mechanism for studying a wider

range of application complexity and data set sizes than what is typically available via

simulation.

• Evaluation of operating system scheduling techniques to maximize system through-

put when used in a high performance parallel processing context and a multi-user

environment. This work illustrates that the traditional models of space-sharing and

time-sharing fail to scale to larger processor counts, at least at a fine-grain level.

• Comprehensive analysis of complexity and performance trade-offs present in coher-

ence protocol design for large-scale multiprocessors. This analysis consists of two

parts: a practical study using coherence protocols implemented on the FLASH ma-

chine and a limit study using FLASH as an emulator to model ideal coherence pro-

tocols.



4 CHAPTER 1. INTRODUCTION

• Evaluation of software bottlenecks in high-level applications. These optimizations

demonstrate that most of the performance bottlenecks present in high-level applica-

tions are well known problems with clear solutions in software—provided that the

programmer is aware of the presence and location of bottlenecks in their programs

and has significant understanding of the details of the architecture.

1.2 Organization of the Dissertation

To understand what types of problems limit the wider adoption of cache-coherency on

large-scale multiprocessors, Chapter 2 explores scaling problems that led to the develop-

ment of the shared-memory model and scaling problems encountered within high-level

applications. The shared-memory model, developed in part to solve scaling issues encoun-

tered in earlier systems, and a variety of application-specific behaviors limit performance

on these machines.

Naturally, we need to select a representative set of benchmarks that expose typical

performance bottlenecks because often a trade-off exists between hardware and software

solutions. Therefore, Chapter 3 discusses SpecOMP2001, a set of high-level applications

that experience these application-specific effects, to provide a mechanism for exposing

scaling problems. The next three chapters categorize why performance is lost at larger

processor counts on the FLASH multiprocessor and explore potential solutions in hardware

and software.

Unexpectedly, we encounter some bottlenecks related to the global scheduling of par-

allel programs and the virtualization of system resources provided by the operating system.

Therefore, Chapter 4 investigates how the operating system influences—and in many cases

degrades—performance at larger processor counts. Operating system-specific bottlenecks

arise from multiprocessor scheduling policies that balance the needs of one parallel process

against the throughput of the entire multiprocessor.

Perhaps we need only design a more efficient multiprocessor that exposes fewer pit-

falls to the programmer. Chapter 5 explores how hardware architects have tried to do just

this to reduce the challenge of efficient programming by increasing the memory system

complexity. The FLASH multiprocessor was designed to provide an effective mechanism
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for analyzing efficient and scalable memory system design for building larger multipro-

cessors. We find through this chapter that practical limitations restrict our ability to solve

performance bottlenecks in hardware on larger multiprocessor systems.

Therefore, Chapter 6 shifts focus to the high-level application’s software to evaluate the

effectiveness of applying machine-specific tuning that remove performance bottlenecks.

Using hardware-assisted instrumentation, the chapter identifies performance bottlenecks

and removes them. The critical bottleneck remains the programmer’s ability to apply well

known—but difficult to identify—optimizations.

The dissertation concludes in Chapter 7 with a discussion of the fundamental barriers

to effectively programming larger cache-coherent shared-memory multiprocessors.
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Chapter 2

Evolving towards cc-NUMA

Multiprocessors

The cache-coherent non-uniform memory access (cc-NUMA) multiprocessor originally

emerged as an attractive architecture because the programming model presented to the user

remains similar to the uniprocessor-programming paradigm. Surprisingly, while small-

scale systems show some of the intended benefits of shared-memory, larger systems do

not. The cc-NUMA architecture evolved precisely to provide a scalable and efficient pro-

gramming interface. Furthermore, the expected performance bottlenecks are well known,

but not all arise directly through the choice of the cc-NUMA architecture.

The FLASH machine, proposed, built, and evaluated over a period of 10 years, pro-

vides a valuable test-bed for analyzing the performance of high-level applications on cc-

NUMA multiprocessors. However, during the last decade, multiprocessor architectures

have shifted away from cc-NUMA and towards clusters of symmetric multiprocessors

(SMPs) or clusters of standalone PCs. Traditional large-scale multiprocessors like the SGI

Origin 2000 [38] proved too difficult to efficiently program high-level applications to jus-

tify the multiprocessor’s large cost.

This chapter fleshes this story out in more detail to understand why multiprocessors

remain difficult to program. Understanding this problem remains critical, because future

single-chip multiprocessors are likely to follow a similar evolutionary track towards mul-

tiprocessor. Today, the number of processors per chip is small, but future chips could

approach the number of processors present in typical SMPs.

7
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First, the chapter reestablishes the key advantages and design goals of the cc-NUMA

architecture. Section 2.1 defines key characteristics of the multiprocessor programming

model. Section 2.2 explores how the cc-NUMA architecture evolved from the uniproces-

sor and earlier multiprocessor architectures and describes how each step changed the pro-

gramming model. Every multiprocessor architect makes design decisions to partition key

performance responsibilities among the programmer, compiler and software tools, memory

system architecture and network. During each step of the evolution, key responsibilities

shift between the software and the hardware.

Section 2.3 presents a systemic description of performance bottlenecks encountered

when writing programs for cc-NUMA machines. The programmer and compiler hold most

of the optimization responsibilities for these machines. Therefore, this section provides a

guide to most of the pitfalls programmers are likely to encounter when writing for high-

performance.

The differentiating feature of the FLASH machine is the programmable memory con-

troller called MAGIC. In most other machines, the memory controller is hard-wired. While

the latency overheads for replacing a hard-wired memory controller with programmable

one are small, there are some FLASH-specific performance bottlenecks that are discussed

in Section 2.4.

2.1 Programming Model Design

Programmers use aprogramming modelinterface to write correct and efficient programs

for a specific architecture. Initially, programmers develop correct programs, and then apply

tuning to increase overall performance.

Choices in architecture design often create a trade-off between ease of programming

and overall hardware performance. By shifting the burden of program optimization away

from the hardware, the programmer or compiler writer must manage the additional com-

plexity of the programming model. However, this shift may simplify the hardware design

or yield greater overall performance. The rise of the RISC processor typifies this relation-

ship: simplifying the hardware allows the processor to benefit from faster clock speeds and

instruction pipelining. However, the complexity of writing efficient programs increases



2.1. PROGRAMMING MODEL DESIGN 9

because the assembly writer or compiler arranges instructions correctly to express a pro-

gram’s semantics and hide pipeline stalls.

Figure 2.1: The programming design process

To simplify our understanding of writing programs, we divide the programming model

into two design phases, illustrated in Figure 2.1. During thecorrectness phase, the pro-

grammer implements a new program idea, from a formal specification of a system, or an

existing program written for another architecture using a programming language and the ar-

chitecture’s programming model. Once the programmer completes the correctness phase,

the program precisely implements the original idea but potentially at suboptimal perfor-

mance. Thereafter, the programmer enters theperformance phaseby applying optimiza-

tions that remove application-centric, architectural and application-created, and machine-

dependent performance bottlenecks until the program achieves an acceptable level of per-

formance. In the performance phase, the program’s functionality does not change. The

programmer may return to the correctness phase to remove high-level or systemic perfor-

mance bottlenecks that require rewrites of major portions of the program.

The memory consistency model[20] portion of the programming model specifies the

required relationship between load and store operations. Generally, programming under

strong consistency is easier than under a weaker model because the programmer manages

fewer memory ordering details. However, a strong consistency model requires the hardware

to properly order memory operations.

The full complexity of performance phase depends on the final implementation details

of the architecture. For example, a program running on a simple pipelined uniprocessor

can leverage software pipelining to improve the performance of loops. However, correct
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program execution does not require software pipelining. The optimal sequence of machine

instructions depends on the instruction delays and functional units in the final hardware

implementation of the processor.

An critical performance factor discussed in later chapters is the proper organization of

a program’s instruction and data memory in a distributed memory system. Propermemory

placementis critical because some memory layouts can lead to poor cache locality and long

memory latencies. Assuming a single address space, the program will execute correctly, if

slowly, independent of how efficiently a program uses the caches or where data is physically

stored.

2.2 Evolution of Multiprocessor Architectures

This section describes the evolution from the simple uniprocessor to the large-scale cc-

NUMA multiprocessor and the resulting changes in the programming model. These changes

shift the responsibilities of the programmer, compiler, and architect and impact the com-

plexity of expressing functionality and performing optimizations.

2.2.1 The Uniprocessor Programming Model

The uniprocessor programming model is simple and straightforward: instructions com-

plete in sequence. The simple and logical flow of operations leads to the development of

programming tools that allow higher-level statement execution. Therefore, we can write a

high-level language (e.g.C, C++, FORTRAN, Perl , Python , etc.) and develop compilers

or translators to understand the low-level programming model. Dividing the labor between

the programmer and the compiler simplifies programming in the correctness phase. The

programmer only encounters the programming model as seen through the high-level lan-

guage.

While the underlying hardware might transparently reorder memory operations to hide

latency, it must maintain the uniprocessor’sstrict consistencymodel: any read returns the

value of the most recent write.

During the performance phase, the programmer need only understand a few architec-

tural details. Often programmers optimize uniprocessor programs by simply activating

aggressive compiler optimizations to implement techniques like loop unrolling or software
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pipelining. Capturing simple spatial and temporal cache locality by properly organizing

data frequently happens automatically. Assuming the OS does not place pages in a patho-

logical way (i.e. poor page-coloring algorithm), a program benefits from caching regardless

of where the OS places data in memory. Some programmers may use tools to perform sim-

ple optimizations that reduce memory conflicts and improve performance.

The fewer programming model details required by the programmer during the correct-

ness and performance phases, the easier the programmer finds writing correct and efficient

programs. Multiprocessor architectures hope to keep the programming model equivalent

to the uniprocessor—where both the correctness and the performance phases require little

architecture specific knowledge.

2.2.2 Small-scale Symmetric Multiprocessors

Figure 2.2: Symmetric multiprocessor architecture (SMP). Contention for the shared bus limits the
effective size of this architecture

Uniprocessors naturally evolved into small-scale symmetric multiprocessors orSMPs.

Additional processors and memories share information through a shared memory or a

shared address space—in small-scale usually implemented with a coherent bus. Figure 2.2

illustrates a typical SMP configuration. The SMP, dubbed aparacomputer[53] in 1980,
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predates more modern non-uniform memory access (NUMA) multiprocessors built during

the early and mid-1990s. Modern SMPs include the Sun’s Wildfire [14], Gemini Ultra-

sparc [31] and Niagara [34] processors.

The programmer has the additional responsibility of identifying parallel sections of the

program and managing thread synchronization using a parallel program interface likeANL

macros or OpenMP. This added interface increases the complexity of the correctness

phase. Research projects such as the Stanford Hydra project [46] and parallel compil-

ers such as Stanford’sSUIF [4, 61] andSAPIENT, the University of Illinois at Urbana-

Champaign’sPOLARIS [11] investigate ways of automatically discovering parallelism

present in sequential programs. These tools simplify identifying and constructing paral-

lel portions of the program but are not sophisticated enough to shield the programmer from

understanding the parallel programming model.

To minimize the knowledge required by the programmer during the correctness phase,

the hardware architect designs caches that snoop memory traffic broadcast across a shared

bus to update their cache-line states. Thecoherence protocolspecifies how to resolve data

race conditions. This strategy keeps the correctness phase simple such that the programmer

does not have to explicitly remove race conditions.

If multiple threads on each processor access the same memory location, memory op-

erations broadcast on the shared bus providesequential consistency[37]. Multiprocessor

systems do not provide strict consistency because maintaining global timing proves too ex-

pensive. However, the sequential consistency model remains practically equivalent to the

uniprocessor’s strict consistency model. Thus, the programmer does not have to manage

memory ordering during the correctness phase.

The performance phase is somewhat more complex than the uniprocessor’s program-

ming model. A program’s memory accesses continue to benefit from temporal and spatial

locality. An SMP’s memory system provides a uniform memory access model (UMA);

unloaded access time to each memory bank is identical. Therefore, the programmer does

not have to manage memory placement beyond the effort required to tune uniprocessor

programs. Communication among processes, however, leads to unavoidable cache misses,

which are costly. The additional communication costs of shared cache misses are the key

difference from the uniprocessor model.

Typically, SMPs use a broadcast model to communicate shared information between
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processors. Every cache misses broadcasts across an interconnection network (typically

a shared bus). In a system with few processors, network contention is usually negligible

because the required bandwidth of the network to service cache misses is not high. How-

ever, as the number of processors increases both the length of the bus and the number of

requests it must handle increase. Because the performance of a bus is inversely related to its

length, eventually the required traffic exceeds the bus bandwidth, and some more complex

interconnection network is needed.

2.2.3 Message-Passing Multiprocessor

Figure 2.3: Message-passing multiprocessors scales well, but expressing communication proves
difficult

To avoid contention present in broadcast models, architects turn to a distributed pro-

cessor architecture where communication only occurs when explicitly requested by the

processor. This architecture abandons cache coherence because broadcast operations are

too expensive. The memory system no longer provides a shared address space between the
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processors. Each processor holds only a portion of the total system memory. If a processor

needs to access remote data, it must send a message to the remote node. Hence, this ar-

chitecture is calledmessage passingbecause every node must explicitly communicate with

another node using a message. Figure 2.3 illustrates a typical message passing architecture

configuration.

Because each processor contains independent address spaces, message passing ma-

chines are often referred to asmulticomputersor clusters. For these machines, the hard-

ware effort shifts to creating a scalable, high-speed interconnection network. To minimize

communication overheads, smaller messages are often aggregated into larger ones. The

memory system provides low-overhead send and receive protocols and data buffers to sup-

port arbitrary message lengths. A message passing multiprocessor places a large burden on

the programmer, because in the correctness phase any communication or data sharing must

be explicitly programmed.

Once the program executes correctly, the programmer finds tracking where commu-

nication occurs easier in message passing than in an implied communication architecture

(i.e. an SMP) because the inter-processor communication patterns are well documented

in the code. Once understood, however, fixing bottlenecks often is more difficult. In the

performance phase, the programmer must repartition data among processors to reduce com-

munication latency and network contention and this may require restructuring of the code.

The scale of modern message-passing multiprocessors demonstrates that these ma-

chines can scale to large sizes. Many message-passing systems are built with thousands

of nodes, notably the Earth Simulator [18, 47] with over 5000 nodes, currently third on

the list of top 500 supercomputers in the world [59]. Universities and research laboratories

routinely connect workstations using a fast network to build larger clusters. Other exam-

ples include ASC-Q in Los Alamos National Laboratory with 512 nodes and 16-processor

SMPs [6] and Lawrence Livermore Laboratory’s Thunder system connecting 4096 Intel

Itanium 2 processors running Linux [58].

Consider the University of Texas’slonestar 1024-processor supercomputer. Each

node in the multiprocessor is a 3.06GHz Intel Xeon processor connected together using a

Dell-Cray network. This system is number 40 on the top 500 supercomputer list. They

claim an overall performance of 6.34 Teraflops at peak performance, which is approxi-

mately the theoretical peak performance of 6.12 GFLOPS for each CPU multiplied by
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1024. The actual performance of theLINPACK [17] benchmark, used to compare all of

the top 500 supercomputers, only achieves 65% of the theoretical maximum, or 4.15 Ter-

aflops. FLOPS only measures how quickly these computers process math operations. The

programmer is lucky to get a similar parallel efficiency from this machine for any general-

purpose application without applying significant programmer effort.

The contract between the software, the compiler, and the hardware has fundamentally

changed. The hardware design ceases to be the major bottleneck to scaling. The main

obstacle to efficient performance becomes the programming model.

2.2.4 Simple NUMA Multiprocessors

An alternative approach, the NUMA multiprocessor, arose roughly at the same time as

the message passing multiprocessors. Initially these systems were built without cache-

coherence, because cache-coherence traffic on the shared bus was the barrier to scaling

SMPs to arbitrary sizes. In such simple NUMA architectures, any processor can address

and thereby access any of the memory distributed throughout the system. Non-shared

remote loads and stores complete by accessing memory across the interconnection network

and benefit from caching. Shared accesses maintain coherence by synchronizing at the

memory banks, but shared data is never cached.

The correctness phase on this architecture is equivalent to the small-scale bus-based

systems. The user does not have explicitly express communication or handle communi-

cation race conditions in shared portions of the program. However, the programmer must

correctly identify all of a program’s shared data segments.

The complexity of the performance phase requires more effort than SMPs because the

memory system is effectively partitioned between shared and non-shared data. Because

shared data remains uncached, the programmer must minimize sharing in a process similar

to message-passing architectures in which communication occurs explicitly. Otherwise,

the application’s memory accesses do not benefit from caching at all. Experiences with the

Cray T3D and T3E machines and DASH [39], a cache-coherent NUMA multiprocessor,

suggest that effectively programming shared memory machines requires caching shared

memory [28, 54]
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2.2.5 cc-NUMA Multiprocessors

The natural extension of the simple-NUMA architecture is to allow the caching of shared

data. This approach, called cache-coherence NUMA or cc-NUMA, allows the caching of

data regardless of its sharing patterns through the use of a directory that holds cache-line

state in memory (or in the cache line itself) and a coherence protocol. This architecture

retains the simple shared-memory model present in the smaller-scale symmetric multipro-

cessors. Examples of this architecture include the Stanford DASH and FLASH machines,

the SGI Origin 2000 and Origin 3800, the Sun Fire 15K, and the HP Superdome.

Figure 2.4: cc-NUMA Architecture. Design effort shifts to building a cache coherence protocol

Figure 2.4 illustrates a typical layout for a cc-NUMA machine. The memory controller

arbitrates access to local memory between the local processor and remote requesters. The

memory controller implements the coherence protocol to address communication races.

Coherence operations are no longer broadcast across a shared bus, therefore cache interven-

tions and invalidations—which on smaller systems would be handled by the caches snoop-

ing the bus and invalidating data automatically—are sent as coherence messages across the

network.
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The architect’s responsibility is to design a memory controller that implements an ef-

ficient, scalable coherence protocol to service cache misses quickly. Most industrial mul-

tiprocessors have a hard-wired memory controller [38]. The FLASH multiprocessor uses

an efficient custom-built protocol processor. Alternatives include the University of Wis-

consin’s Typhoon project [51], which replaced the memory controller with a commodity

processor. The MIT Alewife [3] machine used a combination of custom logic and software

traps to the processor.

Like the simple NUMA multiprocessor, the correctness phase of a cc-NUMA multipro-

cessor is similar to the SMP’s correctness phase. Presumably in cc-NUMA architectures,

the programmer manages fewer shared-memory details in the performance phase compared

to simple NUMA. Shared and unshared data behave in identical ways and benefit from

caching, therefore partitioning the memory space between shared and unshared is unneces-

sary. However, the true complexity of the cc-NUMA’s performance phase remains unclear

especially for larger processor counts. This dissertation explores exactly this question.

2.2.6 Summary

Figure 2.5 illustrates the relationship between multiprocessor architectures discussed in

this section. The uniprocessor and message passing architectures form the ends of the

functional and performance programming complexity spectrum. For some applications, ar-

chitectures share similar performance complexities despite different programming models.

While the programming models of simple NUMA and message passing differ dramatically,

programmers must partition their data between shared and unshared portions for both. This

effect is illustrated in the figure by overlapping boxes.

At large scale, can more aggressive coherence protocols that leverage remote caching

deliver a simpler programming model? Alternatively, are architects forced to keep the

memory system simpler for performance reasons? Understanding the trade-off between

programming model and overall multiprocessor performance motivates the remainder of

this dissertation.
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Figure 2.5: Complexity of functional and performance programming

2.3 Performance Bottlenecks Present in cc-NUMA Multi-

processors

The answer to the questions posed at the end of the previous section depends on which per-

formance bottlenecks the programmer encounters when writing applications for cc-NUMA

architectures. This section details most of the common pitfalls encountered when writing

applications for shared memory. Performance bottlenecks fall into three general categories.

Section 2.3.1 discusses architecture-independent bottlenecks created by the programmer

when writing the application. Some bottlenecks form because of interactions between the

application and the architecture. Section 2.3.2 presents those bottlenecks. Finally, bottle-

necks arising due to particular machine parameters are discussed in Section 2.3.3.
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2.3.1 Application-Centric Bottlenecks

Application-centric bottlenecks are bottlenecks the application would experience regardless

of which architecture the application ran on, although, the precise impact of the bottleneck

would vary from machine to machine due to processor speeds, memory sizes, and other

machine-specific characteristics.

Removing or minimizing application-centric bottlenecks requires the programmer to

apply high-level algorithm changes. Modern compilers apply peep-hole optimizations well,

because the amount of information required is small. However, they are generally unable to

make high-level algorithm changes because they lack enough global information to apply

these complex parallel algorithm transformations.

Insufficient parallelism, Amdahl’s Law for multiprocessors, is the most obvious exam-

ple of this type of bottleneck. Most applications have some serial algorithm overhead or

contain some code with too many dependencies to benefit from parallelism. By choos-

ing and implementing a specific algorithm, the programmer implicitly limits the potential

speedups present in the application. Clearly, data set size impacts the relative sizes of the

serial and parallel sections of the application. Often increasing the data set size increases

the size of the parallel section and thereby improves the available parallelism.

Improving the memory system’s response time to memory requests reduces observed

communication latency. Clearly communication affects speedup, but in the ideal the com-

munication-to-computation ratio is programmer-determined because any parallel algorithm

must communicate some information. The degree of ideal communication—the required

minimum number of words to transmit between threads—determines the application-specific

communication costs.

Less common application-centric bottlenecks arise from programming mistakes made

in the parallel section that either cause excessive I/O traffic or OS system calls or traps. For

example, on some operating systems each thread simultaneously callingmalloc causes

contention for kernel locks for virtual memory data.
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2.3.2 Architecture and Application-Created Bottlenecks

This section presents bottlenecks created by interactions between the architecture and the

application. These bottlenecks exist, to an extent, on all multiprocessors. However, the rel-

ative impacts of these bottlenecks depend on the cost of operations in the implementation.

Excessive Thread Synchronization

A parallel program may include multiple parallel threads that must coordinate with one

another in a prescribed manner. However, race conditions between threads often create

unintended and incorrect behavior. Thread synchronization mechanisms eliminate race

conditions between parallel sections or access to shared data.

Frequent global barriers cause a problem if the cost of the barrier is high or if the ex-

ecution times for parallel sections vary widely across threads. Any parallel thread must

wait for all threads to arrive at the barrier. Therefore, all threads experience the worst-case

execution time of any threads to the barrier. Most applications require barriers due to the

presence of race-conditions between parallel sections, calledparallel-section dependen-

cies. If all the barriers are necessary for correctness, the programmer can only decrease

number of barriers by changing the application.

Using a high-level parallel-programming interface likeOpenMPoften introduces im-

plied barriers between every parallel section. The programmer can ignore these parallel-

section dependencies. An intelligent compiler might be smart enough to identify and re-

move unnecessary barriers by checking for parallel-section dependences. However, the

compiler has difficulty doing this type of high-level analysis because often the parallel

sections reside in different procedures or are complex code segments in their own right.

The memory system could potentially resolve barrier waits as well by allowing execu-

tion of threads to continue beyond barriers and faulting or restarting in a stricter mode if

a parallel-section dependence violation occurs [49]. More commonly, the memory system

implements some hardware-assisted barrier mechanism such as fetch-and-op [23].

Unnecessary locking can also degrade parallel performance. Contention for locks

causes parallel threads to execute serially. As the thread count increases, more serialization

between threads occurs because the likelihood of lock contention increases. The mem-

ory system impacts this bottleneck because slow lock acquisition and release mechanisms

could make the bottleneck worse.
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However, hardware overheads are often trivial compared to the size of unnecessarily

long critical sections. Clearly, the programmer could resolve the situation in software by

shortening the critical section. An intelligent compiler might identify the smallest possible

critical section required, using the programmer’s lock acquisition and release code as a

guide. The memory system could use a fault model similar to the barrier technique, which

would work normally but this solution would only solve the problem if lock contention

occurred infrequently.

Operating Systems Bottlenecks

The operating system virtualizes the hardware to provide all processes with an identical

view of system resources. Most bottlenecks created by the OS design involve how virtual-

ization overheads are exposed to the user.

Any uniprocessor OS schedules and deschedules threads to allow many processes share

one processor. On a multiprocessor, the thread scheduler considers more variables when

making decisions. As machine sizes scale and the underlying architecture shifts, the sched-

uler takes longer to decide. On a symmetric shared-memory multiprocessor, the scheduler’s

decision is easy because the cost of thread migration is small. However, on a cc-NUMA

architecture, the scheduler must be more careful because the proper thread placement de-

pends not only on the available processing elements, but also the size and location of a

thread’s data.

There are also bottlenecks associated with multiprocessor scheduling policies that al-

low multiple parallel programs to share portions of the machine in space and time. These

bottlenecks increase an application’s exposure to thread scheduling overheads and context

switches if the multiprocessor scheduling policies create unnecessary thread interrupts.

Also, scheduling policies can disrupt an application’s data locality if threads migrate far

away from their data.Negative thread migrationsignificantly degrades memory system

performance.

Communication-To-Computation Ratio Changes

The bottlenecks presented in this section are well known to multiprocessor architects. As an

application scales to higher processor counts, the communication patterns for an application

can shift. The cost of this type of application-centric bottleneck is determined by the use
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of an architecture—a good example is a distributed address space (architecture visible) that

affects the communication.

As an application runs on larger processor counts, the size of available cache increases.

This cache aggregation effect causes the number of cache misses to decrease. Therefore,

the performance of the parallel application improves significantly. While this effect is not

a true bottleneck, cache aggregation can hide other bottlenecks by artificially inflating the

observer performance. Thus, cache aggregation hides the true performance of the memory

system from the programmer.

Alternatively, extra communication degrades the overall performance of the application.

This communication arises from the overheads required for a specific algorithm choice.

Most parallel sections introduce some per-thread communication overheads to set up the

parallel algorithm or initialize temporary data.

A higher communication-to-computation ratio creates an effect similar to insufficient

parallelism. The algorithm fails to scale because extra communication causes the parallel

sections to run longer. Each parallel thread is doing more work at larger processor counts

than at smaller processor counts. In most cases, the programmer must eliminate this extra

communication by changing the algorithm or increasing the problem size. The compiler

and the architecture can only mitigate the cost of remote communication because each

cannot remove necessary communication.

Communication Hot Spots

Communication hot spots arise in parallel programs when frequently accessed data falls on

the same node. Node-level false sharing is a special case of more general communication

hot spots discussed later in this section. A small subset of the program’s data can lead to

contention on a single node.

Perhaps the program appropriately distributes pages among the parallel threads. Ad-

ditional bottlenecks arise by the OS placing data on the page-level granularity. The local

processor accesses most of a page, but a remote processor exclusively uses an unused por-

tion. The remote requester must transmit across the network to retrieve the data, but it is

the only requester for that portion of the page.
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As processor counts increase, each thread in the parallel program accesses a smaller

portion of the total memory required by the algorithm. Therefore, remote misses in-

crease with processor count. This effect behaves in an identical fashion as increasing

communication-to-computation ratio, but differs in that it is caused by page placement

decisions made by the OS.

2.3.3 Machine Dependent Bottlenecks

Performance bottlenecks arise because of implementation choices made by the architects of

a specific machine. In most cases, the programmer must be aware of these machine-specific

problems when programming applications for performance. These coherence effects deter-

mine the difference between the ideal communication costs and the real observed memory

latency. This section describes performance bottlenecks that are specific to the shared-

memory model.

The memory system organizes memory into fixed-size hierarchical blocks to take ad-

vantage of temporal locality present in memory accesses and to reduce the complexity of

memory management operations in software. Because data is aggregated into blocks, extra

communication arises when multiple processors share resources in a block but do not ac-

tually unnecessarily exchange data. Thisfalse-sharingcan occur at multiple levels in the

memory hierarchy including the cache-line, a page, or even a node’s memory.

Cache-line false sharing arises when multiple nodes exchange a cache line between

them but access mutually disjoint sets of data words. Thus, this communication is unnec-

essary and expensive. This bottleneck is well known to architects and programmers alike.

If cache line false sharing is systemic, an application will fail to scale well even at small

processor counts. The number of nodes falsely sharing the cache line is bounded by the

total words per cache line.

False sharing also occurs on a page or a node basis. Figure 2.6 illustrates three pro-

cessors falsely sharing a cache line, a page, and node’s memory. These bottlenecks share

the same underlying property—processors falsely sharing a resource. However, each false-

sharing bottleneck arises for different structural reasons in the program.

Page-level false sharing is less obvious to the programmer because the effect is often

negligible on smaller machine sizes. The OS places data in memory on a page-level gran-

ularity. Page-level false sharing occurs when many nodes access the same page, but each
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Figure 2.6: General false sharing types

node accesses disjoint sets of cache lines in the page. The total cache lines per page bound

the number of nodes that could falsely share a page. The cost of page-level false sharing is

bounded by the network latency to access the data on the page’s home. However, at larger

processor counts, contention arises as the accesses for the shared page contend with one

another. This contention introduces queuing delay accessing the page’s memory bank as

processor counts scale.

Typically, page-level false sharing occurs on pages that hold thread-private data. The

programmer solves the problem by separating unshared data into separate pages or seg-

ments. This process is similar to partitioning data between shared and unshared data in a

simple NUMA machine. The potential requesters for a page scale with processor count.

Therefore, on small-scale cc-NUMA machines, the programmer ignores this bottleneck

because the potential requesters for a page remain small, contention is negligible, and ap-

plications benefit from the positive aspects of spatial locality.

Node-level false sharing occurs even if nodes access a disjoint set of pages on the same

node. Contention occurs at larger processor counts where requests wait in the network

buffer or the input request queues on the memory controller but access separate local mem-

ory banks. Frequently, this bottleneck arises from the master thread initializing and placing

data before spawning parallel threads. This data placement causes all of the threads to

access their data on the master node creating a large communication hot spot. This bot-

tleneck arises from the programmer ignoring the distributed memory model and placing

pages indiscriminately.
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The compiler finds automatically removing false-sharing bottlenecks automatically dif-

ficult. The location of the bottlenecks in memory depends on the input set size, choice of

parallel algorithm, and OS placement decisions. Either the programmer must find the bot-

tlenecks and remove them by reorganizing data layout in software, or the memory system

must adapt to migrate data closer to requesters. Two techniques discussed in Chapter 5,

RAC and COMA, propose using remote request caching to mitigate these bottlenecks.

2.4 The FLASH Multiprocessor

Like any multiprocessor, the FLASH multiprocessor introduces machine-specific bottle-

necks that impact performance. However, FLASH’s architecture is unique in two important

ways. First, the use of a flexible node controller provides a mechanism for identifying and

quantifying performance bottlenecks. Second, the FLASH machine introduces machine-

dependent bottlenecks that are not present in a typical cc-NUMA multiprocessor.

As mentioned earlier, many shared-memory multiprocessor architects propose remov-

ing bottlenecks presented in the previous section in hardware. The side effects of their pro-

posals are primarily memory system complexity required to implement more aggressive

techniques. Most researchers use simulation to evaluate the impact of these more com-

plex proposals. Assessing the true costs and advantages of these proposals proves difficult

for high-level applications with large data sets and long execution time because there are

many opportunities for simulation error [22] and because simulation times are very long.

Analytical modeling is not much easier because low-level implementation details must be

accurate to produce meaningful results [56]. Fortunately, the FLASH multiprocessor pro-

vides a mechanism for exploring these designs in more detail using the same underlying

hardware.

This study uses the FLASH multiprocessor [36] designed, built and evaluated over the

last decade. FLASH is a 64-processor cc-NUMA machine with a programmable mem-

ory controller called MAGIC that runs software code sequences (protocol handlers) to

implement the cache coherence protocol. The operating system is a modified version of

SGI’s IRIX6.5 , which uses first-touch page placement. FLASH is binary-compatible

with SGI’s Origin 2000 [38]. Each node has a 225MHz R10k processor with 224 MB of
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Table 2.1: Key Architecture Parameters for FLASH versus the SGI Origin 2000 and 3800
Paramter FLASH SGI Origin 2000 SGI Origin 3800
Year 1997 1997 2002
Processor Speed 225MHz 195MHz 400 MHz
Per-Node Main Memory 256MB 256MB 2GB
L2 Cache Size 2MB 2MB 8MB
L2 Cache Line Size 128 bytes 128 bytes 128 bytes
Local L2 Cache Miss 135 cycles 100 cycles 184 cycles
Network Topology Double Mesh Bristled Hypercube Dual Fat-Tree

addressable main memory (32 MB are reserved for protocol data and directory memory

overhead).

Table 2.1 summarizes key architecture parameters for the FLASH machines and com-

pares them to the SGI Origin 2000 and 3800 [27]. A local L2 cache read miss takes 100

processor cycles on the 195MHz SGI Origin with a 100MHz HUB memory controller and

135 processor cycles on 225MHz FLASH with a 75MHz MAGIC. Remote latencies dif-

fer slightly because our network topology differs from Origin’s hyper-cube. Point-to-point

remote latencies are at most four times longer than local latencies.

FLASH’s network topology differs from the original proposal in [35]. These differ-

ences arose because the original network was not deadlock-free. Appendix A describes the

required network topology changes in more detail.

FLASH’s network is fast enough that network congestion can be ignored as a perfor-

mance bottleneck. Each link provides a bandwidth of 800MB/s. In order to saturate the

network, a processor needs a sustained rate of 6.55 million remote cache misses per second

or one L2 remote cache miss every 152ns or 36 processor cycles. Even in the best case,

it is impossible for the R10k processor to generate this request rate because even local L2

cache misses that are serviced locally take 600ns. The R10k processor allows four out-

standing requests. One local miss could be generated every 150ns. After four outstanding

remote misses, the processor would stall decreasing the network bandwidth requirements.

Perhaps a single link multiplexing requests from multiple nodes and virtual channels would

approach the bandwidth limit for a brief period of time, but in practice this network con-

gestion only occurs because of some higher-level behavior caused by coherence protocol

traffic or a communication hot spot.
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2.4.1 FLASH-specific Performance Bottlenecks

FLASH’s programmable memory controller provides us with information from a real ma-

chine that normally is available only via simulation or analytic analysis. The use of MAGIC

for instrumentation has only a minor impact on overall memory latency [21].

The critical difference between MAGIC and a hard-wired memory controller is the use

of embedded handlers executing on the protocol processor that implement the coherence

protocols on FLASH. These handlers benefit from on-chip direct-mapped 16KB instruction

cache and a 1MB direct-mapped off-chip data cache that reduce the protocol processor’s

memory access time. The flexible processor introduces two types of additional overheads:

longer access times and caching behavior of the coherence protocol’s handlers.

The data caching behavior of handlers does not significantly impact performance be-

cause both a hard-wired and an embedded processor implementation benefit equally from

data caching. Each handler operates on a small amount data, typically the 64-bit address,

the message header, and the directory entry. The stack is small, a few kilobytes is suffi-

cient because most handlers have short call depths. The data cache does not have to be

large to be effective because if frequent cache reuse occurs, as in false-sharing for example,

other bottlenecks degrade performance. More likely, data cache reuse is infrequent because

memory accesses are randomly distributed.

However, the performance of coherence protocols on MAGIC depends greatly on the

number of instruction cache misses, which represent extra delay that is absent in a hard-

wired solution. MAGIC can capture some concurrency present in a hard-wired solution

of handlers. The 2-way VLIW processor pipelines instructions and additional hardware

performs pre- and post-processing operations of a handler simultaneously. Nevertheless,

protocol handlers must be kept short to avoid conflict misses. The direct-mapped 16KB

instruction cache is too small to implement arbitrarily long handlers.

2.5 Summary

Future machines will encounter identical scaling trends as the traditional multiprocessor.

Single-chip multiprocessors are in fact at the beginning using small clusters of symmetric

multiprocessors to build larger systems. Eventually, single-chip cc-NUMA machines will

encounter similar scaling issues. This chapter details how the cc-NUMA model developed
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to make functional programming easy. An open issue remains understanding how difficult

are cc-NUMA machines are to performance program. While the bottlenecks are under-

stood, the remainder of the dissertation uses high-level applications written for shared-

memory to evaluate which of these performance bottlenecks proves the largest stumbling

block to efficient performance at larger processor counts.



Chapter 3

Parallel Benchmarks

To this point, we have not defined what we mean by a ”high-level application”. Ultimately,

selecting a benchmark set influences the results and central conclusions. This chapter de-

scribes why we focus attention on the SpecOMP2001 [62] benchmark suite, rather than the

SPLASH-2 [62] benchmarks traditionally used in FLASH research, to represent high-level

applications in later chapters.

Most users of larger multiprocessors are not primarily computer scientists or experi-

enced software programmers. Instead, they are physicists, chemists, engineers or biologists

who develop scientific applications to model systems relevant to their primary field of in-

terest. They may have only a vague understanding that inter-node communication must be

managed—the shared-memory model hides the explicit details of inter-node communica-

tion to keep functional programming simple. Computer architects should not require that

users have earned an advanced degree in parallel architecture to write high-performance

programs.

The multiprocessor programmer lacks a capable agent to apply machine-specific opti-

mizations for them automatically. On a uniprocessor, a programmer relies heavily on the

compiler to apply appropriate processor-specific optimizations. Even programmers who

have detailed knowledge of a uniprocessor’s architecture rarely write more efficient code

in assembly language. A novice uniprocessor programmer can cede performance program-

ming to the compiler and achieve most of the potential performance of hand-tuned assem-

bly. Parallel compilers have failed to succeed in an equivalent way at larger processor

counts.

29
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However, choosing a completely untuned benchmark suite is dangerous because a mul-

tiprocessor that is completely tolerant of programmer error would be impossible with these

applications. No such machine would scale well. Thus we propose a middle ground

in which the benchmarks have been optimized for the general architecture (e.g. shared-

memory) without machine-specific optimizations. Some benchmarks will not be consid-

ered because they are either too optimized to the FLASH architecture or not optimized

enough to the shared-memory model.

Multiprocessor researchers frequently use the SPLASH-2 benchmarks to represent av-

erage applications. Section 3.1 demonstrates that while the benchmarks have interesting

remote memory behaviors, they have been tuned specifically with the FLASH machine in

mind. Because they are primarily small kernels, they are too short and simple to accurately

represent real applications.

As an alternative, Section 3.2 examines the SpecOMP2001 benchmarks, which use

the OpenMP [5] application program interface (API) to express parallelism in a machine-

independent fashion. The OpenMP API provides a standard mechanism for constructing

parallel programs from a uniprocessor code-base. The interface and support libraries pro-

vide much of the architecture-specific tuning.

Since the SpecOMP2001 benchmarks are not as familiar as SPLASH-2, this chapter

concludes with a high-level analysis of the SpecOMP2001 benchmarks using information

typically available in a large-scale multiprocessor. This analysis illustrates the difficulty

of understanding complex application behavior using only basic tools such as performance

counters. However, we detect some common and well-known application effects, such as

changes in communication-to-computation ratios or cache aggregation.

3.1 SPLASH-2 Benchmark Suite

During FLASH’s design phase, the SPLASH-2 benchmarks were invaluable for testing

and analyzing the architecture. The varied sharing patterns of the benchmarks allowed

the designers to verify the cache coherence protocol processor design and develop new

coherence protocols before the real hardware was available. The benchmarks had to be

kept short because simulating the architecture was slow.
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Table 3.1: SPLASH-2 Size and Time Characteristics
Benchmark Code Size (KB) Data Size (MB) Data Size (Nodes) 1p Time(s)

Simulated Machine
FFT 26 51 1 4
Radix 29 5 1 3
Ocean 155 124 1 15
Radix 22 16 1 3
Average 40 27 1 5

Real Hardware
FFT 26 813 4 103
Radix 29 162 1 518
Ocean 155 1934 9 644
Radix 22 2155 10 508
Average 40 861 4 363

To generate short but interesting programs, larger and more complicated parallel ap-

plication were reduced to simpler kernels to expose the memory system to intense remote

communication patterns within a few seconds. As a result, the benchmark behaviors could

easily be predicted and understood because they were small kernels executing with small

data sets. The simulator provided a clear view into all parts of the MAGIC processor,

which made analyzing bottlenecks easier. In some cases, some remote communication was

unnecessary. Over time, many critical bottlenecks were identified and removed.

Once the FLASH real hardware was built, we were no longer constrained by simulation

time and ran the benchmarks with larger data sets. Table 3.1 presents some basic charac-

teristics of the most often used benchmarks in the SPLASH-2 suite for FLASH research.

The first 5 rows illustrate parameters used when running the benchmarks on the simulated

FLASH machine, and the last five illustrate parameters used to generate performance re-

sults on the real machine. The key differences are the data set sizes and the execution times.

Most uniprocessor runs of the benchmarks complete within 10 minutes.

Using the real hardware, we eliminated some performance bottlenecks that were undis-

covered in simulation. Typical multiprocessors have opaque memory systems that are dif-

ficult to quantify and analyze. J. Gibson’s dissertation [21] demonstrated that coupling real

hardware with FLASHPoint, a tool for correlating cache misses with specific data types and
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code regions, facilitated machine-specific optimizations that dramatically improved perfor-

mance. This tool reduced the opacity of the FLASH memory system with little overhead

and recovered some information that was lost when transitioning from a simulator to a real

machine.

Figure 3.1: Speedups for the SPLASH-2 benchmarks

As expected, these benchmarks run efficiently on the real-hardware FLASH machine.

Figure 3.1 illustrates the speedup curves for a subset of the SPLASH-2 benchmarks.FFT

andLUachieve near ideal parallel efficiency at 64 processors.Radix-sort only achieves

a parallel efficiency of 75% at 64 processors, due to load-balance issues.Ocean speeds up

super-linearly due to cache aggregation. At 64 processors, Ocean speeds up by over 128.

The SPLASH-2 benchmark suite is not a good fit for further study. While all of these

benchmarks perform extremely well, the degree of optimization applied to achieve these

speedups is beyond what we expect a typical user will apply.
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3.2 SpecOMP2001 Benchmark Suite

SPEC proposed the SpecOMP2001 benchmark medium suite in July 2001 as a series of

benchmarks for analyzing and comparing performance of shared-memory machines using

the OpenMP API. V. Aslot and R. Eigenmann developed the SpecOMP2001 [8] benchmark

suite from the SpecCPU2000 benchmarks. In cases likeMGRID, they usedPOLARIS [11],

a parallelizing compiler, to extract parallelism from the uniprocessor version of the bench-

marks. They tuned the applications using an UltraSparc II with up to four processors. Not

surprisingly, V. Aslot and R. Eigenmann found that the benchmarks perform efficiently on

one to four processors on an UltraSparc II.

The OpenMP API, developed for quickly parallelizing programs, simplifies machine-

independent parallel expression. The SpecOMP2001 benchmarks are of particular interest

because they express parallelism at an abstract level. This section first gives some back-

ground on the OpenMP parallel programming interface and then discusses the SpecOMP2001

benchmark suite in more detail.

3.2.1 Parallel Programming using the OpenMP API

The OpenMP API provides compiler directives, library routines, and environment variables

to express parallelism in C, C++, and Fortran programs. The key advantage of the OpenMP

API is that an average user can quickly construct parallel programs with minimal effort.

Other approaches proposed includepthreads [10] (sometimes calledPOSIX) and the

ANL Macros , which both express parallelism using low-level function calls.

1: int i, j;
2: for(i=0;i<N;i++) {
3: for(j=0;j<N;j++) {
4: a[i,j] = f(b[i,j],c[i,j]);
5: }
6: }

Figure 3.2: Simple loop example
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Many parallel applications are similar to the simple code example presented in Fig-

ure 3.2. This simple loop operates on three 2-dimensional arraysa, b, andc . The loop

body reads each element inb andc and calls the functionf to determine the new value of

a. There are no loop dependencies so loops iterations can execute in any order.

While the overheads are larger when using OpenMP API than using a lower-level in-

terface, novice users avoid all of the complexity inherent in theANL Macros or other

lower-level APIs. In most cases, this fine-tuning is unnecessary because the overheads are

small.

1: int i, j;
2: #pragma omp parallel for private(j)
3: for(i=0;i<N;i++) {
4: for(j=0;j<N;j++) {
5: a[i,j] = f(b[i,j],c[i,j]);
6: }
7: }

Figure 3.3: Simple parallel loop using the OpenMP API

The compiler and OpenMP parallel library automatically implement the numerous de-

tails of parallelizing loops—simplifying parallel construction and reducing opportunities

for programmer error. Figure 3.3 shows the same loop using the OpenMP API. All that

was added to implement parallelism was one compiler pragma at line 2. The pragma tells

the compiler to keepj private. Each thread will use j to execute the inner loop, but its

value is independent of thread count. The loop executes correctly regardless of the proces-

sor count.

To illustrate what the OpenMP API saves the programmer from managing, Figure 3.4

shows the steps required to parallelize the loop using theANL Macros , a lower-level API,

in a style similar to the SPLASH-2 benchmarks. First, the programmer must explicitly cre-

ate all of the parallel threads,P, by calling the appropriateCREATEmacro. Then each new

thread enters theLoopStart procedure at line 9 and first must acquire its unique thread

number,MyNum(lines 11-13). This atomic read-modify-write operation requires a lock

variable initialized at line 2 and a thread lock and unlock at lines 11 and 13 respectively.

Finally at line 16 each thread starts the main loop body. The threads call a barrier at line
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1: int i;
2: LOCK_INIT(idlock);
3: for(i=0;i<P;i++) {
4: CREATE(LoopStart)
5: }
6: LoopStart();
7: WAIT_FOR_END(P-1);
8:
9: LoopStart() {

10: int MyNum, MyStart, MyEnd, j;
11: LOCK(idlock);
12: MyNum = id++;
13: UNLOCK(idlock);
14: MyStart = N*MyNum/P;
15: MyEnd = N*(MyNum+1)/P;
16: for(i=MyStart;i<MyEnd;i++) {
17: for(j=0;j<N;j++) {
18: a[i,j] = f(b[i,j],c[i,j]);
19: }
20: }
21: BARRIER(P);
22: }

Figure 3.4: Simple parallel loop using ANL Macros

21 to ensure all of the threads have finished executing the loop body (lines 17-19) before

continuing to other sections of the program.

When usingANL Macros , there are many minor details that must be precisely imple-

mented for the loop to execute correctly. If there are many loops that each stride through

the a, b, andc arrays along different axes, managing loop indices becomes a difficult

task. Finding a bug can be difficult because there are many opportunities for error and the

application behaves in unusual or undefined ways if any of the small steps are omitted.

TheANL Macros code would have to be extended even further to work properly for

a general number of processors,P. If N is not evenly divisible byP, the loop body will

only iterate over subsets of the arrays. The loop iteration calculations in line 14 and 15

do not consider remainders. All of the SPLASH-2 benchmarks must be executed with a
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power-of-2 number of threads for this reason. All of the loops are power-of-2 in size and

thus have no remainder.

The OpenMP implementation has potentially larger overheads than theANL macros

implementation. On the FLASH machine, SGI provided thelibmp source code that rep-

resents the OpenMP library function calls. For the SpecOMP2001 benchmarks, the over-

heads for the OpenMP library calls are minimal.

3.2.2 High-Level SpecOMP2001 Characteristics

This section presents some basic characteristics of the SpecOMP2001 benchmark suite

to examine out-of-the-box performance. As discussed in the previous chapter, architects

attempt to simplify the performance programming model by introducing memory system

complexity. Analyzing out-of-the-box performance yields insight into how these bench-

marks behave with only functional programming applied.

An absolute out-of-the-box execution time or parallel efficiency ratio can taint our re-

sults if some hidden effect artificially inflates or degrades performance. Specifically, the

communication patterns of a benchmark may change as it runs on larger processor counts.

Cache aggregation and communication-to-computation ratio changes are two common ef-

fects that shift our expectations of parallel efficiency. Quantifying these effects removes

ambiguity about absolute performance measurements.

Initially, the base OpenMP libraries were opaque, which complicated this type of anal-

ysis because parallel loops were not clearly identified. There was no feedback from the

unalteredlibmp library to identify hot, frequently executed parallel loops or quantify se-

rial time. Therefore, we modified thelibmp library to instrument parallel sections and

isolate serial time. To verify that our instrumentation was correct, we used prior work by

V. Aslot and R. Eigenmann [7] that isolated critical parallel sections in SpecOMP2001 on

a 1 to 4 processor UltraSPARC.

The SpecOMP2001 benchmarks are more complex than the SPLASH-2 kernels. Ta-

ble 3.2 lists key memory size and execution time parameters for the SpecOMP2001 bench-

mark suite. Most of the benchmarks are considerably longer in terms of code size than

SPLASH-2. The data sets are more comparable with the larger runs of SPLASH-2. How-

ever, the execution times are much longer. On average, uniprocessor SpecOMP2001 bench-

marks take about 8 hours to run. This means that even intermittent OS behavior occurring
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Table 3.2: SpecOMP2001 Size and Time Characteristics
Benchmark Code Size (KB) Data Size (MB) Data Size (Nodes) 1p Time(s)
ammp 153 147 1 46085
applu 13 1474 7 26469
apsi 411 1631 8 23085
art 54 233 2 33907
equake 37 403 2 12001
fma3d 1729 994 5 32391
gafort 73 2668 12 62433
galgel 997 433 2 16451
mgrid 59 435 2 36854
swim 12 1547 7 31651
wupwise 59 1443 7 38665
average 98 740 4 29919

every few minutes might impact the performance if the OS adversely perturbs thread or

data placement.

The AMMPand GALGELbenchmarks do not meet the minimum standard for paral-

lelism potential discussed at the beginning of this chapter. They only achieve 40% parallel

efficiency at 4 processors because of excessive cache-to-cache transfer misses. Without

changes to the source, these applications cannot run successfully on most cc-NUMA ar-

chitectures that operate on cache blocks. The performance problems withAMMPhave been

documented in other work with FLASH [21], and in fact SPEC dropped both applications

from the official “large” SpecOMP2001 benchmark set.

The SpecOMP2001 benchmark suite consists of applications with diverse levels of local

and remote communication. Figure 3.5 graphs the ratio of local cache misses relative to the

total cache misses. It is an important ratio since applications are often sensitive to latency.

Fetching data from remote memory takes much longer than accessing local memory on a

cc-NUMA architecture. On FLASH, uncontended remote memory latencies are two to four

times longer than accesses to local memory. Benchmarks that have a higher percentage of

local misses, likeSWIMandWUPWISE, will in general be more scalable. More aggressive

hardware could eliminate remote communication using data migration, and benchmarks

like APSI with high remote miss ratios should show benefit from these techniques.

Uniprocessor runs have unusually high remote miss rates due to lack of capacity on
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Figure 3.5: Local cache misses over total cache misses from 1 to 63 processors

the local node’s memory. The memory footprints of the SpecOMP2001 benchmarks are

larger than 224MB, the total memory size. As the benchmarks are run on larger machine

sizes,memory aggregationcreates super-linear speedups until all per-thread memory de-

mands drop below the 224MB memory size. Only 25% of L2 cache misses are local on

uniprocessor runs of the benchmark suite, but this ratio improves to 55% at 8 processors.

Benchmarks likeSWIMandWUPWISEthat have high local miss ratios at larger processor

counts have local miss ratios below 10% on the uniprocessor runs creating super-linear

speedup until 8 processors. Using larger benchmarks would only increase the impact of

memory aggregation.

The memory aggregation effect is specific to the FLASH multiprocessor and would

not be a large effect on more modern systems. Most modern cc-NUMA machines have

more available local memory. For most similarly sized benchmarks the memory aggrega-

tion effect would not exist, although larger applications could experience this effect. More

importantly, the remote miss rate must drop as processor speed increases to maintain com-

parable efficiency. As an example, an SGI Origin 3800 system with 2 GB of memory for

each processor has enough memory for all benchmarks exceptGAFORT.
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To compensate for inflated parallel efficiency measurements that occur in moving from

one processor to a small number of processors due to memory aggregation, the remainder

of the dissertation presents parallel efficiency relative to the 8-processor results. Above 8

processors, first-touch placement succeeds for most data segments. Hence, a 64-processor

run would achieve an ideal parallel efficiency of one if it speeds up by a factor of 8 over the

8-processor run.

While some scalability is lost due more remote communication present in larger sys-

tems, most of the benchmarks maintain constant levels of remote communication. The

cache miss ratio indicates some broad characteristics about the benchmark suite. The

SWIM, WUPWISE, ARTandFMA3Dbenchmarks have high locality that remains constant

from 8 to 63 processors.APPLUandAPSI show the opposite trend with low local cache

miss ratios of 25% and 3% respectively.GAFORTsits in the middle at 50%.MGRIDand

EQUAKEclearly experience a decrease in cache miss locality as processor counts scale

above 8 processors.MGRID’s ratio is a bit more erratic with frequent drops and increases

in locality but the general trend is clearly down. This change in memory locality comes

from an increase in communication-to-computation ratio as processor counts increase.

Figure 3.6: Total L2 cache misses for the SpecOMP2001 benchmarks from 1 to 63 processors
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Most benchmarks maintain flat communication-to-computation ratios as processor counts

scale higher. Figure 3.6 illustrates the total L2 cache miss counts from 1 to 63 processors

for each benchmark. All counts are normalized to the number of cache misses on a unipro-

cessor. Most of the SpecOMP2001 benchmarks do not show significant changes in the total

cache misses.

APPLU, an exception, experiencescache aggregationso its performance will inflate. As

system sizes grow, the total available cache size increases. Eventually, large unshared data

segments fit into the available caches, dramatically reducing the average memory latency.

Therefore, this benchmark should naturally showsuper-linearspeedup because of cache

aggregation. If not, the benchmark fails to use all of its parallel resources efficiently.

Conversely, the total number of cache misses increase linearly with machine size in

EQUAKE. The additional communication present at higher processor counts limits the max-

imum parallel efficiency. Without changing the parallel algorithm, we would be satisfied

with EQUAKE’s performance if it executes with 50% parallel efficiency.

Architects typically simplify communication-to-computation ratio analysis error by

scaling the problem size up to ensure that 100% parallel efficiency is the ideal target for

all benchmarks. Two pitfalls, irregular communication patterns and memory aggregation,

must be avoided to accurately compensate for increasing communication. The first pitfall

is minor: the communication changes do not follow smooth linear functions—especially

in MGRIDwhere the remote misses generally increase but rise or fall from one data point

to the next. The physical per-node memory sizes are so small on FLASH that memory

aggregation becomes more of an issue as the problem size increases.

Parallel efficiency analysis requires additional steps forAPPLU, EQUAKE, andMGRID

benchmarks in order to correctly understand parallel efficiencies. Later chapters of this

dissertation include larger input sets to support claims about the parallel efficiency or lack

thereof in these three benchmarks. Unless explicitly stated, the benchmarks results do not

show the effect of scaling the problem size.

The SpecOMP2001 benchmarks generate a diverse range of request rates to the memory

system. Benchmarks likeSWIMwith higher cache miss locality places higher demands on

the memory system to service memory system requests quickly. Local cache miss latencies

are shorter than remote cache miss latencies; applications with natural locality generate

requests at a faster rate since the processor is stalled less often. Figure 3.7 shows the rate
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Figure 3.7: L2 cache misses per R10k processor cycles

of L2 cache misses per R10k processor cycle. The three applications with the highest local

cache miss ratios,SWIM, WUPWISE, ART, andMRID, place the highest demand, measured

by the cache misses per processor cycle, on the memory system.APSI , with only 3% local

misses on average, places the lowest demands on the memory system.

3.3 Summary: SpecOMP2001 Out-of-the-Box Performance

Most of the SpecOMP2001 benchmarks meet the criteria established in the beginning of

this chapter. There are some optimizations for shared memory, but no additional machine-

specific optimizations like in the SPLASH-2 benchmark suite. Figure 3.8 presents the

speedups of the benchmarks. Unfortunately, the out-of-the-box performance of the bench-

marks at larger machine sizes is poor. This benchmark suite on average only scales with a

15% parallel efficiency from 8 to 63 processors.

The remaining chapters explore why these benchmarks scale poorly and detail which

parts of the architecture contribute most to this performance loss. Chapter 4 discusses

several operating system decisions that adversely affect performance. Once the operating
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Figure 3.8: Out-of-the-Box speedups of the SpecOMP2001 benchmarks

system issues are addressed, the parallel efficiency improves to 63%. One might expect that

the remaining performance is lost in the memory system. However, Chapter 5 challenges

this assumption and demonstrates that the memory system itself is a small part of the total

remaining performance loss. Chapter 6 presents some basic machine-specific software

optimizations required to achieve near ideal parallel efficiency of 83%.



Chapter 4

Operating System Performance and

Bottlenecks

Virtualization of the processor, memory system and other shared resources serve as a cen-

tral pillar of the interface provided by the operating system. This interface allows program-

mers to write a single application without explicitly managing system-level details such as

page placement, processor scheduling, or overall system throughput because the operating

system arbitrates access to shared resources. As a result, uniprocessor applications are ex-

tremely portable. Similarly, programmers prefer a similar interface to system resources on

a cc-NUMA multiprocessor. However, multiprocessor scheduling overheads arise when we

move to a parallel execution model on a cc-NUMA multiprocessor. This chapter measures

these overheads and observes that these operating system overheads are in fact quite high

on larger sized machines. While the remedies to these bottlenecks are simple, they expose

a critical flaw in the scaling of the operating system interface to larger machine sizes.

By definition, cc-NUMA machines distribute memory around the system. When a pro-

cess allocates memory, the OS needs to decide in which node’s memory to place the new

data. On a uniprocessor, this decision is simple because there is only one memory. On a

distributed system the decision is harder only if a processor’s local memory is full.

First-touch page placement works well in most cases where the programmer has writ-

ten a parallel application with memory locality in mind. When a processor touches an

allocated, unplaced region of memory, the OS places the data on that processor’s local

memory. If the local memory is full, the OS places the data in another node topologically

43
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close to the original processor.IRIX6.5 provides additional system calls for implement-

ing round-robin or fixed page placement policies. This chapter omits further discussion of

data placement issues because most techniques are well understood. However, later chap-

ters discuss data placement techniques in more detail since it is an important component in

memory system and application tuning.

Significantly more difficult to develop on a multiprocessor OS are policies that achieve

locality-sensitive scheduling and efficient system throughput. A uniprocessor has only one

processor to schedule so a simple round-robin queue coupled with a priority scheme works

well. When a process uses up its time quantum, the OS de-schedules the process and places

it at the end of the queue. Thus the user perceives an illusion of many processes running

simultaneously. On a multiprocessor, many processes can run simultaneously on different

processors, so the OS’s job of managing processes becomes a larger challenge.

Programs, processes, and threads are terms that are occasionally used interchangeably.

This chapter formalizes the meaning of these terms to simplify further discussion. A pro-

grammer writes a parallel program. Theprocessrefers to the parent process initially created

by the OS when a user executes a program binary and all of the child threads created by the

parent process. Athreadare child threads created by parent process that participate in the

parallel execution of the program. The OS schedules threads and the programmer creates

processes by executing program binaries. A process can use all the processors available,

P , by creatingP threads, whereas a thread only executes on one processor.

4.1 Multiprocessor Scheduling Policies

The operating system balances the need for maximum throughput of all threads against the

individual processor and data requirements of a single thread. Threads share both space,

meaning neighborhoods of processors, and time. The operating system’sjob scheduler

make two decisions: when to schedule threads in time and where to place scheduled threads

in space. Uniprocessor systems only require time-sharing policies because there is only one

physical processor executing scheduled threads.
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4.1.1 Time-Sharing Techniques

Time-sharingpolicies implemented in the job scheduler allow multiple threads to share

processors through multiplexing control of the processor over time. Using time-sharing

is an especially important technique when there are more threads available than there are

processors, as in a uniprocessor. Related threads are likely to communicate or synchro-

nize with each other, so scheduling related threads together provides benefits in overall

execution time and system throughput.

Thebatch schedulingpolicy schedules parallel processes on a global parallel job queue.

Operating systems provide batch scheduling using software like Network Queuing System

(NQS [32]) that process jobs in a first-come, first-serve, first-fit order. The batch queue

starts the first process on the queue that can execute given the current number of idle pro-

cessors. If a process requests more processors than are available, the batch queue delays the

process until currently running parallel processes complete. Processes wait as long as there

are insufficient resources to execute the process. Wait time in the batch queue is potentially

long. However, once a process finally executes on the multiprocessors, it has exclusive and

dedicated access to system resources.

The defaultrun-queue schedulingpolicy aggressively schedules threads on idle pro-

cessors. If any processor is idle, the scheduler checks the local run queue on the idle

processor. If that run queue is empty, the scheduler checks the global run queue for any

pending threads. If the global queue is empty, the scheduler grabs threads off of another

processor’s local run queue. If a thread is descheduled, it is placed on the run queue of the

processor it was executing on previously. This policy minimizes the wait time of all threads

on queues. However, thread migration occurs under heavy system loads.

Thegang scheduling[48] policy benefits a process by scheduling related threads con-

currently. The scheduler treats a gang-scheduled process as a thread. All threads in a

process are scheduled and descheduled together as a block. The process will only execute

if the job scheduler can schedule all of a process’s threads at the same time. Similarly, the

job scheduler deschedules all parallel threads associated with a process if any individual

thread deschedules. In this way, if two processes attempt to use the entire machine, they

share resources much like two threads running on a uniprocessor. Each process uses the

multiprocessor for a fixed quantum and then yields the multiprocessor to the competing

process.
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There are several known disadvantages with gang scheduling. Contention for central-

ized scheduling control can increase the cost of context switches. A thread may need to re-

populate its cache. Finally, multiple gang-scheduled processes can cause process fragmen-

tation [48]. Despite the disadvantages of gang scheduling, Burger et al. [12] concluded that

gang scheduling was required for effective multi-user performance on distributed shared-

memory machines.

The process must request the gang scheduling policy. Thelibmp library enables gang

scheduling by default to ensure that OpenMP programs executing concurrently share re-

sources fairly. The overhead is the context switching time associated with this scheduling

mechanism. Rescheduling time can be significant since enough processors must be avail-

able to schedule all threads together sinceIRIX6.5 ’s scheduler weighs gang-scheduled

threads and regular threads equally. SGI’slibmp library dynamically throttles the thread

count to run with as many available processors as possible. The throttling mechanism varies

thread counts depending on the machine’s load adding variation to parallel efficiency, so

we disable it.

4.1.2 Space Scheduling Techniques

Space-schedulingpolicies distribute multiple threads among different processors of the

machine to balance load. For example, two 4-processor jobs run concurrently on mutually

exclusive sets of processors of an 8-processor machine without interfering with one another.

Space-sharing techniques are useful when there are at least as many processors as threads.

IRIX6.5 ’s job scheduler distributes threads among local and global run queues. The

OS moves unplaced threads to the global run queues. The scheduler must keep scheduling

decisions short. The more time the scheduler takes to decide where to place threads, the

less time the compute processor executes user programs.

The scheduler by default places threads using acache-affinitypolicy. By default, the job

scheduler places a thread on the run queue of the processor that last executed the thread.

Thus a thread executes on the node that holds its cached data. Thread migration occurs

when another idle processor grabs the thread from a local processor’s run queue before the

processor re-schedules the thread. This policy works well for compute-intensive applica-

tions that have small data footprints and a high degree of cache reuse [60].
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The cache-affinity policy was started because moving data between caches is expensive.

Each cache line must first be removed from the source cache using interventions and inval-

idations, which disrupt the processor’s execution flow. The data must also be sent through

the network to the destination cache. Using a cache-affinity policy reduces the need for

cache migration and ensures that a thread avoids repopulating its cache.

If process migration occurs, eventually the data will move to the new processor’s cache.

However, if a data-intensive application experiences a high frequency of L2 cache misses to

local memory, thread migration causes a more permanent increase in L2 cache miss times

because cache misses now must transmit across the remote network. Under cache-affinity,

once a thread has migrated to a new processor, the operating system will place the thread

on the new processor’s run queue, not the original processor’s run queue, until another

migration event occurs.

A memory-affinitypolicy places a thread on the processor where its memory has been

placed by the operating system. When a thread is descheduled, the job scheduler places

the thread on the run queue of the processor that holds the thread’s memory. Migrations

to other processors are allowed. Unlike the cache-affinity policy, the process migration

is temporary except under heavy load. Once the migrated thread is de-scheduled, the job

scheduler places the thread back on the processor that holds the thread’s data.

Normally, the scheduler ignores information about a processor’s memory demands. If

a thread has moved among many processors or if the parent process placed most of the

memory, the proper placement is ambiguous.IRIX6.5 simplifies this system by ignoring

memory-affinity unless the process explicitly sets up amld, or memory locality domain,

for each thread. A memory locality domain gives a simple hint to the scheduler about

which subset of processors hold a thread’s memory, called themldset. If an mldset has

been created, the schedule uses the hint instead of the default cache-affinity policy. SGI’s

libmp library sets up an mld for each thread based on the initial processor that executes

the thread. The mldset is only a hint. Another processor outside of the mldset might execute

a waiting thread if its local run queue and the global queue are both empty.

A memory-affinity policy can also be enforced in software bythread pinning. The

pinned thread forces the job scheduler to always place the thread on a specific processor.

Migration never occurs. Nodes topologically close to one another in the network naturally

experience shorter remote memory latencies. Therefore, pinning a process’s threads in a
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common tile or partition effectively captures some of this remote memory access locality.

4.2 Unloaded Overheads of Scheduling Policies

This section presents the measured overheads of multiprocessor scheduling policies on an

unloaded machine. This analysis assumes that the batch scheduling policy’s execution time

is equivalent to a system with pinned threads and gang scheduling disabled.

4.2.1 Methodology

To eliminate serial time from our analysis, we place cycle counters in thelibmp library

before each parallel section, measure the overall execution time including synchronization,

and then subtract the time spent in parallel sections. This change represents a simplified

version of the application because there may be times when more than one but less than

a full complement of processors are executing. However, the SpecOMP2001 applications

are parallelized to take advantage of all available processors, so the error is small.

Experiments in this section consider the absolute execution differences between these

policies. The 8 processor runs differ depending on the applied time-sharing or space-

sharing policy. The uniprocessor execution times are identical. Therefore, in this section

parallel efficiency is measured from the same uniprocessor run for each application.

Disabling gang scheduling is trivial. SGI provides an environment variable for switch-

ing gang scheduling on and off. However, gang scheduling is on by default. So the out-of-

the-box numbers presented in the previous section include gang-scheduling overheads.

Implementing the appropriate space-sharing technique requires more effort. Initially,

the libmp library only created an mldset for each thread if the library detected that it was

running on an SGI Origin machine. Unless debugging options are active, the user remains

unaware that the library uses a cache-affinity policy. SGI provided Stanford with the source

to thelibmp library, so we modified the library to create mldsets on the FLASH machine

to implement memory affinity scheduling. However, this remedy is atypical. Normally, the

programmer uses compiled libraries, and remains oblivious to the underlying implementa-

tion.

Pinning threads requires modifying the SpecOMP2001 applications to explicitly call a

special procedure, calledpin threads , to tell the operating system to explicitly place
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1: max_cpu = max_flash_nodes();
2: #pragma omp parallel for private (my_cpu)
3: for(thread=0; thread<num_threads; thread++) {
4: pin_cpu = max_cpu - thread - 1;
4: sysmp(MP_MUSTRUN, pin_cpu);
5: my_cpu = sysmp(MP_MUSTRUN);
6: if (my_cpu!=pin_cpu)) {
7: error;
8: }
9: }

Figure 4.1: Pinning threads code example

threads on a specific processor. Figure 4.1 presents a simple technique for pinning threads

using the OpenMP API. This example places threads in a top down fashion. The master

thread executes on the top processor.

Top-down thread pinning proved necessary because FLASH’s boot processor, processor

0, performs slower than other processors. Idle and operating system requests naturally hot-

spot at processor 0’s memory controller. In addition, many OS data structures and kernel-

specific pages reside on node 0, so there is less available local memory. Threads placed on

node 0 experience greater contention for local memory and higher probability of first-touch

placement failure.

When using the memory-affinity policy, theIRIX6.5 scheduler likely will place a

thread on the boot processor when executing a 63-processor program. This overhead can

decrease performance by 10%-20% for reasons related to—but not caused by—the oper-

ating system’s scheduling decisions. The scheduler could easily be modified to avoid pro-

cessor 0 when scheduling new threads, but that might introduce unintended side effects—

including causing unnecessary thread migration.
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Figure 4.2: Gang scheduling overheads at 63 processors. Higher ratios represent larger overheads
over batch scheduling

4.2.2 Results

We observe that scheduling decisions made by the operating system are a major factor in

losing parallel efficiency. Figure 4.2 shows the impact of gang scheduling using two sep-

arate space-sharing policies on the SpecOMP2001 benchmarks. Each benchmark’s gang-

scheduled execution time is divided by the batch-scheduled execution time. The higher the

ratio, the worse the gang-scheduling overhead relative to batch scheduling.

From a high-level perspective, gang scheduling introduces overhead as each benchmark

is involuntarily interrupted frequently. Context switches—most involuntary—remain con-

stant near 8 per thread per second. When gang scheduling is turned off, the rate of context
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switches drops to 0.14 context switches per thread per second. In the latter case, most

context switches are voluntary yields of the processor.

More surprising, the gang-scheduling overhead varies more when using a cache-affinity

policy than explicitly pinning threads. Gang scheduling slows the benchmarks by 54%

under the cache-affinity policy and by only 15% under a thread pinning policy.

Under the cache-affinity policy, threads migrate away from their data since physical

memory location is not the primary factor in scheduling. This migration causes both a

temporary performance loss as data must be brought into the cache again and a more per-

manent effect of forcing some formerly local data to become remote. The more optimized

an application is for NUMA, the more migration decreases performance. Pinning threads

increases parallel efficiency by 247% when threads are pinned to a specific CPU.

This migration process occurs in all time-sharing policies. However, the impact is

greater under gang scheduling because of the higher frequency of context switches which

increase the probably that the OS will schedule other unrelated processes.

Pinning threads to a specific CPU removes the negative thread migration effect. The

only overheads that remain are the frequent context switch time and the individual thread’s

wait time for the competing thread to yield its processor. The gang-scheduling overheads

all fall within 11% to 27%—essentially a constant overhead.

The execution time ofSWIMand EQUAKEimproveunder the gang scheduling and

cache-affinity policies, which should not occur given the high frequency of involuntary

context switches. There are two potential causes for the anomalous benchmarks. Nega-

tive thread migration could occur in a pathological way that exposes these batch-scheduled

applications to higher remote memory latency and migration overheads. Alternatively, fre-

quently interrupting the application could reduce memory system contention and improve

the wait time of memory system requests enough to negate the gang-scheduling overhead.

Figure 4.3 isolates the impact of space-sharing techniques on the benchmarks with

gang-scheduling disabled. Thread pinning performs the best of all three policies. This

result makes sense because explicitly pinning threads removes any possibility of negative

thread migration. A memory affinity policy captures most of the benefit of pinning threads

because thread migration becomes unlikely.

The default cache-affinity policy implemented by thelibmp library severely degrades

performance. Thelibmp library only implements a memory-affinity scheduling policy
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Figure 4.3: Parallel efficiencies for space scheduling policies at 63 processors

on SGI Origin machines. This oversight was quickly corrected once discovered, but the

process illustrates the importance of writing machine-independent libraries and parallel

code.

Applications that precisely control thread placement benefit from shorter remote mem-

ory latencies if they are more likely to share data with a few remote sharers, as in the

SWIM, WUPWISE, MGRID, FMA3DandAPPLUbenchmarks. If remote requests are dis-

tributed more evenly around the network, applications still benefit from avoiding node 0.

The memory affinity policy runs schedule a thread on node 0, which slows the entire pro-

gram.APSI , EQUAKEandARTshare similar execution times regardless of space-sharing

policy.

APSI ’s remote L2 cache misses are distributed evenly around the network, so thread

migration only costs the cache transmission time. There is no memory locality for migra-

tion to destroy. The memory accesses behave more like a symmetric memory system where

all of the cache misses have identical latencies.

The EQUAKEbenchmark shows an unusual behavior: using the memory affinity pol-

icy performsbetter than the thread pinning policy. When the application explicitly pins



4.3. SCHEDULING OVERHEADS IN A MULTI-USER ENVIRONMENT 53

threads sequentially, each thread has faster access to its nearest neighbors. Foreshadowing

effects presented in later chapters, this benchmark experiences more memory system con-

tention when threads are placed near their neighbors as in the thread-pinning policy. Under

the memory affinity policy, the OS schedules threads to random processors. Uncontended

communication takes longer because neighboring threads no longer close in the intercon-

nection network. However, the additional queuing delay in the memory system drops be-

cause memory accesses no longer contend with one another. This contention arises in the

original placement because threads frequently communicate with neighbor threads.

Most ofART’s L2 cache misses are local when threads are pinned, but all of the remote

misses fall on one processor.ART’s average remote miss penalty to the hot-spotted node

dominates the execution time. While migrating an individual thread reduces the overall

memory locality, the contention to the hot-spotted node still dominates the overall cache

miss penalty. Contention for the high spots is high enough that the small hot spot on node

0 becomes negligible.

More aggressive multiprocessor scheduling policies are more appropriate in a multi-

user context. This section only focuses on overheads in a single-user environment. Gang

scheduling incurs overheads because the OS takes longer to make global scheduling deci-

sions and frequently schedules and de-schedules threads. The OS seeks to maximize the

system throughput, not necessarily the throughput of a single application at the expense of

all others. Therefore, OS developers are willing to trade some per-thread performance to

ensure that all threads use the hardware to maximize system throughput.

4.3 Scheduling Overheads in a Multi-user Environment

Possible interactions of multiple processes and threads vary depending on the number of

users, the memory behavior of processes that users run, and the machine size a process

requests. Quantifying all the permutations of these variables is difficult.

Instead, this section presents an experiment to verify that multiprocessor scheduling

policies work well in a simplified multi-user environment. The key insight is to understand

how overheads measured on an unloaded multiprocessor translate to a multi-user environ-

ment where process contention is more likely.
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4.3.1 Methodology

In this section’s test, two parallel processes using equivalent input sets and 63 processors

begin execution simultaneously and compete for system resources.

The batch-scheduled execution time is double the execution time of one process. The

second process waits until the first completes before beginning execution. Batch queue

scheduling is not perfect. Prior work [30] presents practical and decades-long perspective

on fair and efficient batch queue policies. Fragmentation and processor starvation bottle-

necks arise when many jobs of diverse sizes wait in the batch queue. Multiprocessor users

should be aware of these types of bottlenecks. However, they are outside the scope of this

dissertation.

For remaining multiprocessor scheduling policies, the benchmark performance should

be close to double if the overheads are small. Policies that fall significantly above double

fail because both users would experience a faster execution time if one user yielded the

machine and waited for the other user’s application to finish.

To simplify the test further, we focus only on theSWIMandAPSI benchmarks, which

show opposite types of locality characteristics. Almost all of the L2 cache misses access

local memory inSWIM. This benchmark showed the largest advantage from thread pinning

in the previous section. TheAPSI benchmark’s L2 cache miss demonstrate almost no

memory locality. This benchmark incurs almost no performance loss by leaving threads

unpinned.

4.3.2 Results

Figure 4.4 illustrates the execution time of the two benchmarks across various time-sharing

and space-sharing policies at 63 processors. The X-axis illustrates the three time-sharing

policies, batch scheduling, gang scheduling, and run queue scheduling. Each bar represents

a space-sharing policy. All execution times are normalized to the batch-scheduled thread-

pinned execution time for each benchmark.

Memory-affinity and the thread-pinned benchmarks are considered to be equivalent in

the unloaded tests. In theSWIMbenchmark, the two techniques diverge when using gang

or run-queue scheduling. When executing a 63-processor application, 1 processor remains

idle. The scheduler on the idle processor searches other queues to find another thread to
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Figure 4.4: OS multiprocessor scheduling policies at 63 processors

execute and finds threads for the other process. Since the current processor is occupied

executing the first process, the idle processor migrates the thread from the original node.

This introduces negative thread migration and decreases performance by 5 to 7 times.

TheAPSI benchmark proves less sensitive to job scheduling because most of the cache

misses are remote anyway. Beyond transferring cached data, thread migration is inex-

pensive. Later chapters explore software optimizations that improve the locality of this

benchmark considerably. As software optimizations that improve locality are applied, this

benchmark will experience a higher penalty from multiprocessor scheduling policies.

This test exposes an inherent gang-scheduling pitfall. When the first process begins

execution, it spawns 63 threads and leaves one processor idle. The pitfall arises when the

scheduler places the descheduled process on the idle node. Initially, the second process

begins execution on the idle processor and spawns 62 additional threads on the global run

queue. Surprisingly, Figure 4.4’s data indicates that the scheduler’s best decision is to

ignore the idle node.

Under the gang-scheduling policy, the scheduler must deschedule all of first process’s

threads before scheduling the second process’s threads on the machine. The second process
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begins running on the previously idle processor until it creates parallel threads and groups

all the threads into a gang. Once the second process creates the gang, all threads wait until

the first process is interrupted. The parent thread reruns on the initially idle node and the

scheduler places the threads on the global run queue onto individual processors—leaving

one node idle. The first process tries to place all of its threads. The parent thread succeeds

and migrates the idle processor. The first child fails because the remaining processors are

busy.

Nevertheless, gang scheduling does improve performance over a run-queue type of

system inSWIM. However, the run-queue scheduling overheads are unacceptably high.

Gang scheduling simply makes worst-case delays slightly better.

The best solution is to precisely manage resources by giving parallel processes dedi-

cated processors through partitioning or tiling. Properly pinning threads to specific pro-

cessors avoids negative thread migration completely where possible. If batch queuing is

unavailable, other time-sharing policies perform best when they are applied on a per-thread

basis. Globally managing all of a parallel’s process’s threads does not scale.

Figure 4.5: SpecOMP2001 speedup with pinning enabled and gang scheduling disabled
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Figure 4.5 illustrates the SpecOMP2001 benchmark speedup curves with pinning en-

abled and gang scheduling disabled from 1 to 63 processors.SWIMandWUPWISEachieve

near linear speedup from 16 to 63 processors. The remainder of the benchmarks with the

exception ofEQUAKEachieves parallel efficiencies in the range of 40%–65%. The average

parallel efficiency is 85% at 16 processors, but drops to 63% at 63 processors.

4.4 Summary

Complex time-sharing techniques do not scale well to larger systems. Space-sharing tech-

niques destroy natural locality—especially in a multi-user environment. Tight coupling

between thread scheduling and data placement is required for high performance. Operating

system decisions have an unusually high impact on performance at larger processor counts.

Users of large-scale multiprocessors are better served by using a batch-queue scheduling

policy coupled with a tiling or physical partitioning scheme.
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Chapter 5

Performance Trade-offs in Memory

System Design

Hardware architects focus on solving performance bottlenecks by increasing the sophisti-

cation of the memory system to reduce communication costs. These techniques include

traditional methods such as caching and prefetching. In addition, architects focus on im-

proving the cache coherency protocol to reduce the overhead of the cache coherence model.

However, sophistication is not free. This chapter assesses the trade-offs between hardware

techniques designed to solve performance bottlenecks and the complexity required to im-

plement these techniques. Even ignoring the hardware costs, greater hardware complexity

fails to simplify the programming model of cc-NUMA multiprocessors.

We begin by discussing the key design characteristics of coherence protocols in Sec-

tion 5.1 to provide some performance metrics. To help understand how cache coherence

protocols can be varied, Section 5.2 breaks protocols in to architecture, organization, and

implementation layers. Section 5.3 presents the performance results of running coherence

protocols implemented on FLASH with the SpecOMP2001 benchmarks and Section 5.4

looks at the performance of using a remote memory cache to extend these protocols. Be-

cause it is not practical to explore all current (or future) coherence protocols, Section 5.5

presents a limit study to show the best-case benefit an aggressive coherence protocols might

provide. We find that the performance impact of the coherence protocol does not vary as

widely.

59
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5.1 Latency and Occupancy

What is the best method for analyzing memory system performance? Consider two sim-

ple properties of the memory system that the coherence protocol influences:latencyand

occupancy. Latency is straightforward: it is the time to send and receive data absent con-

tention. Certain special case memory requests (e.g. multi-hop cache misses) have longer

delay times than a simple request and response from the home.

Related to latency is occupancy, which is present in every system, not exclusively

cache coherent multiprocessors. A general definition of occupancy is the time consumed at

single-threaded control points needed to handle memory requests. When multiple requests

arrive at the same time at a single-threaded control point, they contend for the same re-

source causing queuing delay. Examples of single-threaded control points include (but are

not limited to) memory banks, the memory controller, the network, and the processor to

memory controller bus. Time spent servicing requests in the memory controller and mem-

ory unit typically dominates occupancy—network occupancy is insignificant on modern

shared-memory multiprocessors.

Most memory designs focus on reducing latency in the memory system. This is done by

create more complex protocols, which have addition mechanisms for caching or optimiza-

tions to reduce the number of operations for specific coherency operations. More complex

protocols often lead to longer occupancies, which create the potential for more contention

and longer queuing delays.

Designers often explore the balance between how much latency is saved and what the

memory overhead would be, but many ignore the occupancy costs because modeling con-

tention accurately is difficult.

Simple-COMA [52] is an example of a technique that reduces remote communication

by using data migration to move data closer to the CPU that is using it. Token-Based

Cache Coherence [42], an example of a protocol that minimizes the overhead of cache-

to-cache transfer misses. Proposals for these protocols have generally not examined the

memory controller occupancy costs and focus instead on network bandwidth overheads.

The flexibility in the FLASH machine allows one to implement multiple protocols and

provides a valuable testing environment which includes latency and occupancy effects.
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5.2 Coherence Protocols Design

The coherence protocol defines the handlers, cache line state, and messages required to

provide coherent memory to the processors. There are three levels of design decisions

that lead to the final coherence protocol. TheArchitectural Layerdefines the coherence

model, directory states and state transitions. TheOrganizational Layerdefines the sharing

set representation, time precision, and degree of remote caching. The finalImplementation

Layerfixes machine-specific details such as total cache and memory size, cache-line size,

memory to processor transactions and I/O operations.

The FLASH multiprocessor provides a mechanism for varying the organizational and

architectural layers while keeping implementation details constant. Some studies like [2,

15] compare generations of similiar architectures and organizations and evalute the impact

of implementation details. This analysis is outside of the scope of this dissertation.

5.2.1 The Architectural Layer: A High Level Coherence Protocol Tax-

onomy

Figure 5.1 illustrates a coherence protocol taxonomy. This dissertation uses FLASH to an-

alyze classes of coherence protocols marked in gray. Each layer in the taxonomy represents

a key design decision. Higher layers have a larger impact on the final coherence protocol’s

latency and occupancy characteristics.

An architect’s most important decision is the broad memory system architecture and

programming interface provided to the user. The message passing memory system has

lower occupancy compared to cc-NUMA or SMPs because there are no coherence opera-

tions to handle. Message passing machines focus solely on optimizing sends and receive

and leave the programmer to explicitly program messages and handle race conditions. The

cc-NUMA architecture has longer occupancies to provide coherence memory, but provides

a richer programming model to the user. A symmetric memory system has the longest

occupancy requirements of all because all messages are broadcast across the shared bus.

The consistency model provided to the user is a sub-layer of the memory system layer.

Choosing a consistency model has a broad impact on the final coherence protocol and deter-

mines how rigidly multiple writes must be handled. For instance, in sequential consistency

all writes must be removed from all other processors’ caches before the requester can use
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Figure 5.1: Architectural Layer taxonomy

the data exclusively. In a more relaxed consistency model, the requester could start using

the data immediately once all of the invalidations have left the home. Software and hard-

ware are often designed simultaneously. As a consequence, this decision is made early in

the design process. For instance, OS developers would not look kindly on a memory sys-

tem architect who relaxed the consistency model once the operating system software was

complete.

The Protocol Classlayer in the taxonomy represents the decision about where in the

memory system to place cache-line state. Most coherence protocols place cache-line state

in a directory entryin a reserved portion of main memory or a separate protocol memory

closer to the memory controller. Protocols like SCI [29] store directory state in the cache

with the cache tags.

In the Protocol Order layer, architects decide how to handle multiple simultaneous

write requests. Most systems implement an invalidation-based protocol that invalidates
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read copies from a processor’s cache. Multiple writers must send interventions to the pro-

cessor to remove dirty copies before continuing. An alternative is an update-based protocol

that sends updated copies between multiple writers.

The degree of write caching is a sub-layer of the Protocol Order. The architect decides

how much of memory to devote a portion of main memory to cache evicted remote data

locally. This remote access cache (RAC) effectively provides a tertiary cache. Because a

RAC only increases the total available cache on the system, it is considered aprotocol ex-

tension—an orthogonal change to the layers of taxonomy. Adding a RAC does not modify

the messages that are exchanged during protocol-state transitions.

Cache-only memory access, or COMA, appears to be a special case of a RAC because

it treats all of main memory as cache. However, COMA changes the protocol handlers

since there is no default node to store protocol state. Therefore, COMA is not a protocol

extension because the messages do change during protocol-state transitions.

After deciding the Protocol Order, the read and write handling policies are well de-

fined. At theProtocol Familylayer, the architect chooses the precise transitions between

read-only and write-allowed cache lines. FLASH uses modified (dirty), shared, and invalid

(MSI) states for expressing transitions between read-only and exclusive, write-allowed

data. Alternatives include modified, shared, exclusive, invalid (MESI) and modified, owned,

exclusive, shared, invalid (MOESI).

From the standpoint of latency and occupancy, MSI has the highest latency-to-occupancy

ratio. MSI variants like MESI and MOESI tinker with the basic state machine to optimize

point-to-point latencies in cases where additional coherence operations are avoidable. For

example, MESI separates the shared state into exclusive and shared states so that processors

that have the only clean copy can quickly upgrade to the modified state.

5.2.2 The Organizational Layer: Lower Level Coherence Protocol Tax-

onomy

The protocols implemented on the FLASH machine to date are all in the MSI coherence

protocol family. The lower layers of the taxonomy describe how the organizational layer

decisions define the sharing list. Any of these protocols could be extended to include a

RAC.
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Figure 5.2: The MSI coherence protocol family

The next layer in the taxonomy,Protocol Genus, decides how precisely the home main-

tains outstanding read copy information, or thesharing set. The sharing set represents the

list of sharers of a cache-line that must be sent an invalidation message before the home can

grant exclusive rights to a requester. The sharing representation may be imprecise in two

different ways. First, it may specify a superset of the actual sharers to save overhead. This

may cause extra invalidations but can never cause erroneous behavior. Second, the sharing

representation maybe imprecise in time, that is, it may specify sharers that no longer be-

long to the sharing set. Again, correctness requires that the imprecision result in too many

sharers and never too few. We call the first form of precisionrepresentation precisionand

the second formtime precision.

The key trade-offs in this layer are between memory overhead, measured in extra direc-

tory entry bits required to represent the sharing set, the memory latency of write operations,

additional network bandwidth to communicate sharing information, and the occupancy

overhead of using and maintaining the sharing sets.

The representation precision describes how accurately the directory entry’s sharing set

reflects the actual set of read-only copies held in remote caches. In asuperset representa-

tion, a protocol may hold a superset of the sharers to reduce the bits in the directory required
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to hold the sharing set. When a requester needs exclusive rights, the home sends unneces-

sary invalidations to processors that have not requested a copy of the cache-line. Aprecise

representationmeans that all sharers in the sharing set reflect requesters that have had the

cache-line since the last invalidation operation. In the third case,limited representation,

the directory entry can only hold a fixed number of the current sharers of a cache-line. If

a requester arrives when the directory entry is full, the home invalidates one of the current

sharers to service the new requester.

The second level, called time precision, describes how accurately the sharing set rep-

resents sharers in time. For example, this type of protocol precision specifies what the

protocol must do if the cache evicts a read-only copy of a cache-line. In atime imprecise

protocol, a remote node need not inform the home that it has evicted the read-only copy.

During a write operation, the home sends unnecessary invalidations to any node that has

already evicted their read-only copy. In atime preciseprotocol, a remote node always

sends areplacement hintsto the home when the L2 cache evicts a cache-line. These mes-

sages, sometimes calledeviction notices, decrease the latency of write operations because

unnecessary invalidations are seldom sent. However, all read-only cache evictions cause

replacement hints.

Even protocols that use replacement hints cannot be strictly time precise. Occasionally,

the home sends an invalidation message to a remote node for a cache line that has already

been evicted from the remote node’s cache. The time imprecision occurs if the replacement

hint has not arrived at the home before the initial invalidation leaves the home.

After making decisions on sharing set precision, architects decide how to organize the

sharing set in the directory entry to determine the final protocol. A limited representation

requires precise timing information to keep the sharing set as small as possible. A precise

representation of the sharing set may require replacement hints, if the memory overhead

depends on the number of sharers in the sharing set. A protocol that uses a superset repre-

sentation cannot effectively use timing information to remove sharers because the sharing

representation represents multiple nodes at once.

For example, the simplest representation of the sharing set is to use abroadcastprotocol

that invalidates a cache-line in every cache, regardless of whether it is a sharer or not. In

a FLASH-like architecture, this solution would consume enough network bandwidth to

significantly affect scaling beyond even a few processors. Once any processor shares the
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cache-line, the protocol assumes all processors share the cache-line and the home must

send an invalidation message to all caches during a write operation. If a node sends a

replacement hint to the home, the sharing set does not maintain enough fidelity to reduce

invalidations because the directory entry must still assume the cache-line is shared globally.

Bit-vector Protocol

The simplest practical representation for the sharing set is to use a bit-vector where every

bit in the vector corresponds to a node in the system [13]. Handlers have short occupancies

since the control is straightforward requiring simple control logic. This protocol has a

precise representation, but introduces costly memory overhead, which scales quadratically

with the processor count. Bitvector could be either time precise or imprecise because it is

uses a precise representation.

One common technique to lower the memory overhead is to relax the representation

precision. Acoarse-vectorprotocol overloads one bit in the vector to represent multiple

nodes topologically close to one another [25]. While reducing the overhead, this protocol

introduces longer write latencies to service extra invalidations. The number of processors

that one bit represents the degree of coarseness. We name the coarse vector protocol using

the conventionCV = n where n represents the degree of coarseness. Therefore, bitvector

is aCV = 1 protocol and broadcast is aCV = P protocol. Because coarse vector uses a

superset representation, this protocol does not maintain timing precision.

Dynamic Pointer Allocation Protocol

An alternative approach that keeps a precise representation is to use a linked-list to store

the sharing sets. The link pointers are dynamically allocated from a fixed-size link-store,

therefore this protocol is known as dynamic pointer allocation [55]. Each sharer in the

sharing set is alink elementin the linked-list. The advantage of dynamic pointer over

bit-vector is that the average number of sharers times the number of shared cache lines

determines the memory overhead—not the rare worst case where all cache lines are shared

everywhere. If a new sharer needs to be added when thecommon link-storeis full, the

handler invalidates a random list to free up link elements. This process is calledpointer

reclamation.
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Dynamic pointer allocation protocol implementations only work well if they are time

precise. Replacement hints keep the sharing list size small and reduce the need for pointer

reclamation, which is expensive. When adding a sharer, there is no check to see if a sharer

is already on the list to keepGEToperations low-occupancy. The replacement hint handler

spends the occupancy cost of traversing the linked-list to remove the evicted sharer, which

execute after cache misses are satisfied. The dynamic pointer allocation protocol sends

fewer invalidation messages compared to coarse-vector, because the sharing list is precise

in representation and time.

However, replacement hints cost more occupancy as the potential size of the linked-list

grows with processor counts. To solve this problem, the replacement hint only traverse

the first few elements of the list (our implementation uses 16) to see if the element is on

the list. This technique is calledlimit search. Point-to-point latency is not affected by

replacement hints since they occur after the cache miss is satisfied. However, they do

occupy the memory controller and can potentially contribute to contention.

A simpler form of the dynamic pointer protocol keeps only a limited number of sharers

for one cache-line at a time. This technique is calledlimited pointer. The key disadvantage

is that this protocol uses limited representation. If a cache line is frequently shared by more

nodes than available in the limited pointer, extra misses occur due to the frequent unnec-

essary invalidations as sharers are evicted from the limited pointer. Frequently accessed

globally shared data, as an example, would frequently incur unnecessary cache misses. To

reduce these extra cache misses, limit pointer must be kept time precise.

Hybrid Protocol

We implemented the hybrid protocol after realizing that the occupancy cost of replacement

hints limits large-scale multiprocessor performance (presented in simulation [26]). Our

goal was to create a protocol that precisely represents the sharing set, like bit-vector, with

the advantage of bounded memory overhead, like dynamic pointer, without requiring time

precision for performance. We call this protocol ahybrid because it uses mechanisms from

both. The hybrid protocol is a two-level protocol, which uses multiple definitions of the

sharing list depending on the number and position of remote sharers. This protocol could

maintain time precision if necessary because the sharing set maintains a precise represen-

tation.



68 CHAPTER 5. PERFORMANCE TRADE-OFFS IN MEMORY SYSTEM DESIGN

Figure 5.3: Sharing list state machine of sharing state list

Figure 5.3 presents the state machine for the sharing list. The initial state for all cache-

lines is UNSHARED. When any cache-line is written, any current sharer is invalidated.

Then, the directory entry is set back to this default state. The bit formats for each addi-

tional directory-header state are illustrated in Figure 5.4.

The first sharer moves the state machine into theONESHARERstate. There are many

degenerate coherence cases in which no invalidations are required and writes can be imme-

diately satisfied. Every protocol checks for these degenerate cases by testing if the sharing

set is empty (no sharers) or only shared by the requester (one sharer). Implementing a sep-

arate state for one sharer simplifies these checks. Once a second remote sharer is added,

the protocol then decides on a new representation for the sharing set.

If the sharer is in the neighborhood local to the home, the sharing set transitions to
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Figure 5.4: Bit definitions of sharing state list

the LOCALBITVECTORstate. The neighborhood is a subjective term. FLASH is par-

titioned into metacubes of 16 nodes. Latencies to remote metacubes are almost double

latencies to the local metacube. So neighborhood is defined as metacube, and nodes on

the same metacube are represented by this local bit-vector. Bits are also reserved to rep-

resent the total number of sharers. As long as any new sharer added in this state is on the

local metacube, the directory header stays in the local bit-vector state. If the new sharer

is on a remote metacube, the directory header needs to switch states since it no longer has

enough bits to represent the sharing set. If there are fewer than 6 sharers, the directory

moves to theLIMIT PTR state. If there are more than 5 sharers, the state changes to

FULL BITVECTOR.

If the new sharer is on a remote metacube, the sharing set transitions to theLIMIT PTR

state, which keeps up to 5 sharers. The hybrid protocol does not suffer from the traditional

problems present in protocols with limited sharing lists because the protocol transitions

into theFULL BITVECTORstate if the sharers exceed directory header capacity.
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TheFULL BITVECTORstate retains some key features of dynamic pointer. Like the

pointer-link store, this protocol has a bit-vector store. Whenever a directory header moves

into the full bit-vector state, the handler allocates a long bit-vector with enough bits to

enumerate all of the processors in the system. If the common bit-vector store is full, the

handler picks one long bit-vector at random and reclaims it by sending invalidations to free

an entry.

Once the total sharers count crosses a threshold, the directory header state changes to

ALL SHARED. This transition occurs at 60 processors or 15/16th of the entire machine

size, but can easily be changed by raising or lowering the transition threshold. Reclamation

happens less frequently because more long bit-vectors are available. The costs of this state

are at most four extra invalidations if the cache-line is not globally shared. The total sharers

are stored in the original directory header along with some book keeping variables, (e.g.

“Next Sharer”) used when all-shared lines are invalidated.

Occasionally, a sharer requests exclusive access to globally shared data. If globally

shared data is written frequently, only a few sharers will likely get a read-copy at a time.

Even so, frequently upgrading global-shared data is a pathological case that would require

an application rewrite to remove this case. To handle this correctly, however, the directory

header transfers back to theFULL BITVECTORstate and does not send an invalidation

message to the requester.

The hybrid protocol uses aSharing Set State (bits 44 through 47) to determine

the sharing list format. Therefore, any time the coherence protocol needs to do some book-

keeping on the sharing set, it looks into a state table to do a special operation depending on

the sharing list state.

5.2.3 Protocol Variants

Some changes to coherence protocols take the base state-machine and modify it in some

minor way without changing the protocol’s precision. These protocol variants seek to re-

duce the overhead of remote communication latency in general or the latency or occupancy

observed in special cases unique to the cache-coherence model. A protocol variant retains

the higher-level architecture and organizational characteristics of a protocol but changes

how protocol transitions are handled.
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Standard Variant

First, we need to describe how MSI protocols behave when transitioning to the modified

state from the shared state under sequential consistency. Normally, a requester sends an

UPGRADEor GETXrequest to the home. The home’s protocol processor then iterates

through all of the sharers in the sharing set, sending an invalidation message to each. When

remote sharers receive invalidation messages, they immediately send a reply back to the

home before sending an invalidation to the processor. The home collects all of the inval-

idation acknowledgments before sending a reply back to the requester. Once the original

requester receives the reply from the home, it can begin using the data exclusively.

Write latencies under sequential consistency are longer than more relaxed models. For

example, the home could send a reply back to the requester before invalidating the sharing

set. This technique violates sequential consistency because read-only copies of a cache-line

coexist in time with an exclusive copy. Each memory controller does the same amount of

work, only in a different order for more relaxed models. Therefore, the occupancy of the

invalidation operation remains the same independent of the consistency model.

Coarse-Vector with Local Bit

This technique seeks to improve the representation precision, as in hybrid, while maintain-

ing the low-occupancy handlers present in the coarse-vector protocol. InCV = 2/LB,

the coarse-vector protocol holds a special local bit to indicate that only the local processor

holds a read copy of the cache-line. This optimization introduces slightly longer occupan-

cies in handlers that check if a cache-line is unshared because both the local bit and the

coarse vector must be checked.

Clustered Invalidation Protocol Variant

One question is whether spreading occupancy around the system would help balance oc-

cupancy and reduce the overall cost of queuing delay. In clustered invalidations, labeled

Hybrid/IC, handler occupancies are shifted from the home to fairly balance occupancy

costs among remote sharers.

One cause of communication hot spots is bursts of invalidations sent and collected

by the home when a cache-line is shared among many nodes. The home sends all of
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Figure 5.5: Normal versus clustered invalidations

the invalidations and collects all of the invalidation acknowledges. Therefore, the home

experiences a larger occupancy cost than the requester or the individual sharers.

The clustered invalidationsvariation, illustrated in Figure 5.5, shifts occupancy away

from the home. When many invalidations are required, the home sends invalidation cluster

messages,MSGCLUSTERINVAL , to nodes topologically close to one another. Nodes

that receive aMSGCLUSTERINVAL send invalidations to nearest neighbor nodes and

then send a clustered invalidation acknowledge,MSGCLUSTERINVAL ACK, back to the

home. The extension sets special bits in the message header to filter out nodes in the cluster

that do not require invalidations.

These cluster messages reduce the number of messages that the home has to send and

receive and balances the occupancy among all sharing nodes. The latency of large in-

validations absent contention is slightly longer because there is now a tree structure to

invalidation messages. In theory, this extension reduces hot spots, thus lowering the overall

queuing delay.
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Figure 5.6: Base versus requester invalidations acknowledgments

InvalAck-to-Requester Variant

The second technique, calledInvalAck-to-Requester, moves occupancy away from the

home by collecting invalidation acknowledgments at the requester. This technique, labeled

Hybrid/IR lowers the occupancy cost and the queuing delay at the home during invalida-

tions. There is also a latency advantage to collecting invalidation acknowledgments at the

requester because the home immediately sends the data back after sending invalidations.

Once the data arrives from the home, the requester immediately uses the data exclusively

without waiting for all of the invalidation acknowledgments to arrive. Obviously, this tech-

nique is meaningless if the home and the requester nodes are identical.

A typical GETXtransaction is illustrated in Figure 5.6 for both cases. Normally, the

requester sends aGETXrequest to the home. The home then sends invalidations out to all

of the sharers. Once all of the invalidations acknowledgments return, the home sends the
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data back to the requester using aPUTXmessage. If the cache-line is globally shared, the

invalidation time can be considerable. However, all of the invalidations could be serviced

in parallel if the home broadcasts out all of the invalidations at the same time. In practice,

this is difficult to do since outgoing messages contend for access to the network.

Collecting invalidations at the requester allows the home to send the data immediately

after sending out all of the invalidation messages. Identical to the base case, the home

receives aGETXrequest from the requester and sends the invalidations. However, the home

sends aPUTXonce all of the invalidations are sent. In addition, the home tells the requester

how many invalidation acknowledgments to collect. The requesting MAGIC receives the

data and sends it to the main processor core and records the cache-line in an invalidation

collection table. To avoid race conditions when multiple requesters attempt to write the

cache-line at the same time, the home keeps the cache-line pending. The requester sends a

MSGINVAL ACKCOLLECTDONEmessage back to the home once all of the invalidation

acknowledgments arrive. The home resets the cache-line pending bit when this message

arrives.

This extension requires additional memory to hold the invalidation collection table. In

our experience, a table size of 16 is sufficient. If multiple requesters frequently request

exclusive access for the same cache-line, the latency for each write will be longer because

the cache-line will be held pending for a longer period of time.

This variant slightly relaxes the consistency model because the requester may start writ-

ing the cache line while some read copies still exist in other processors’ caches. Violations

of sequential consistency occur when the invalidation acknowledgments loses the race with

thePUTXby enough time for the processor to resume execution and modify the data. Inval-

idation acknowledgments have a slight advantage because the home sends the invalidations

first before sending thePUTXto the requester. In practice, the number of sharers is usually

small because the home keeps a precise representation. In this common case, most of the

invalidations win the race to the requester before the reply arrives from the home. This

consistency model is strict enough to bootIRIX and execute our benchmarks correctly.

However, if the home sends thePUTXfirst before sending the invalidation,IRIX fails

to boot properly. The invalidations need the head start to commonly win the race to the

requester.
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Table 5.1: Coherence Protocol Complexity and Size
Protocol All Handlers Critical Handlers I$ Statistics (63p)

Size (KB) Ratio Size (KB) Ratio Miss Rate (%) Occup (%)
CV=2 130.17 1.00 8.68 1.00 0.0050 0.2236
CV=2/LB 130.38 1.00 8.92 1.02 0.0222 0.6241
DynPtr 140.66 1.08 19.83 2.28 0.1546 3.6126
Hybrid 149.91 1.15 18.65 2.14 0.0724 1.5676
Hybrid/IC 150.49 1.16 19.63 2.26 0.1515 4.0131
Hybrid/IR 156.18 1.20 23.18 2.67 0.1599 4.1581
Hybrid/RAC 157.58 1.21 23.13 2.66 0.6231 13.2131

5.2.4 Coherence Protocol Complexity

FLASH implements coherence protocols as firmware programs loaded into the MAGIC

embedded processor during the machine boot. Extra protocol complexity translates into

longer handler occupancy, measured by additional instructions in the protocol program.

The coherence protocols must be carefully optimized to avoid the FLASH-specific bot-

tleneck created by the small size of the MAGIC’s instruction cache. Only the subset of

protocol handlers related to the most common memory operations influence the overall

program. The sizes of the most critical handlers must remain close to 16KB to minimize

the impact of protocol instruction cache misses.

Table 5.1 summarizes the program sizes of each of the coherence protocols and protocol

extensions used in the remainder of the chapter. Column 2 presents the overall size of

the coherence protocol program. The third column normalizes the sizes to the simplest

CV = 2 protocol. Columns 4 and 5 present the total and normalized size of the critical set

of handlers for each protocol. Columns 6 and 7 detail MAGIC’s instruction cache miss rate

and the percentage increase in overall occupancy. Each instruction cache miss increases

latency by 87 processor cycles if the misses occur during the latency path of the handlers.

This table also presents the additional complexity required to implement the protocol

variants and the RAC extension.CV = 2/LB only increases the size of the protocol pro-

gram by 2%. TheHybrid/IC extension increases the size of critical handlers by 5.6%.

The Hybrid/IR extension increases the size of the critical handlers by 25%, which is

considerably larger than the other extensions. This increase results from extra handlers
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required to implement remote invalidation acknowledgment handlers, which are not nec-

essary in the base hybrid protocol, and additional complexity to maintain an invalidation

acknowledgment table on each requester.

While the hybrid’s and dynamic pointer’s critical handlers are more than twice the com-

plexity of the coarse vector handlers, the additional complexity does not generate abnor-

mally large instruction cache misses on MAGIC. Added instructions in individual handlers

do influence the latency and occupancy characteristics of the protocol, which we consider

separately in Section 5.3.

In comparison, the RAC protocol extension begins to suffer from poor instruction cache

behavior. While the critical size of the handlers is consistent with the other protocols and

extensions, the occupancy increases by 13% due to these extra instruction cache misses.

This extra occupancy is not related to expected increases in occupancy to check the RAC

tags. MAGIC does not provide statistics on which instructions in the firmware cause cache

misses. As a result, we cannot extrapolate how this FLASH-specific occupancy translates

into longer cache access times.

Section 5.4 explores the trade-off between latency and occupancy in the RAC in more

detail. On an idle machine, the benefits of remote caching outweigh the extra latency

incurred by extra instruction cache misses at least on an idle machine. So we expect that

while RAC has longer occupancies relative to other protocols and protocol variants, the

remote latencies when using a RAC should drop despite poorer instruction cache behavior.

5.3 Quantifying Realistic Coherence Protocol Behavior

This section presents our experiences with coherence protocols on the FLASH machine

and explores the practical limitations of removing performance bottlenecks in hardware.

Coherence protocols balance performance of applications against the challenges in imple-

menting the protocols in hardware.

We would expect that performance differences between the protocols would track changes

in the point-to-point latency of cache misses because each protocol handles memory re-

quests in a similar fashion. To explore our hypothesis, this section first presents a point-

to-point latency analysis of the three base protocols. Using the SpecOMP2001 bench-

marks, we find that relative performance differences of the applications donot track the
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relative differences in point-to-point latency at larger processor counts. Occupancy intro-

duces queuing delay causing significant slow-downs in the more complex protocols.

Could a protocol effectively manage occupancy using the protocol variants that migrate

occupancy away from potential hot spots? To answer this question, the section considers

the performance of the protocol variants discussed in the previous section at higher proces-

sor counts. What we see is that the protocol variants in most cases only hurt performance

because the complexity introduces significant contention and subsequent queuing delay

that dominates the hot spot.

5.3.1 Point-to-Point Latency Analysis

A natural starting point when analyzing different coherence protocols is to measure point-

to-point latency. While each of the base protocols is similar, one does observe minor latency

differences. This sub-section quantifies those differences using thesnbench tool [50]

developed for analyzing memory latencies on SGI’s Origin 2000.

We use the micro-benchmark results presented in this section to understand contention

in the high-level SpecOMP2001 benchmarks. If contention is small, as it is on small-

scale machines, then the benchmarks’ relative performances should track measured relative

differences in point-to-point latency.

Read Latencies

Local miss latencies absent contention are identical for each node in the system. The

latency of remote read misses and local read misses requiring remote action depend on the

physical distribution of the copies of the cache line and particular coherence protocol. We

calculate best-case and worst-case read latencies for remotely placed data. The best case

is remote data on the same 4-node cluster. Worst-case latencies occur when messages are

routed through the upper meta-cube mesh to a node on a different meta-cube.

Table 5.2 summarizes the read latency data provided bysnbench . The local read times

are identical. Similarly, there is little variation in remote read times. Adding a sharer to the

sharing set costs occupancy, not latency, in this test since thePUTis sent before the handler

adds the sharer to the sharing set. There is considerably more variance in reading remote

dirty data. The hybrid protocol is slower than coarse-vector by 18.4% in the minimum
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Table 5.2: Protocol Read Latencies in Clock Cycles and Normalized to CV=2
Protocol Local Ratio Remote Ratio Three-Hop Ratio

Read Read Read
CV=2 135 1 303-483 2.24-3.58 588-720 4.13-5.33
DynPtr 135 1 303-489 2.24-3.62 645-720 4.78-5.33
Hybrid 135 1 306-483 2.27-3.58 696-909 5.15-6.73

latency case, and 26% in the worst case. The extra delay is due to longer handlers that must

determine the directory entry state at the home before forwarding theGETrequest to the

remote dirty node.

If three-hop read misses are rare, the three protocols should share identical read point-

to-point latencies. If three-hop read misses are frequent, in the absence of contention, we

expect hybrid to perform worse relative to dynamic pointer or coarse-vector, which should

be similar to each other.

Write Latencies

Thesnbench tool includes a test to measure upgrade bandwidth rates. However, this test

by default does not correspond directly to upgrade latency because the R10k allows up

to 4 outstanding memory transactions at a time. We reconfigure the R10k to only allow

one outstanding transaction at a time. Therefore, the upgrade latency is the time required

to upgrade 128B of data, the cache line size of R10k’s L2 caches. The remote sharer

count varies from 1 to 60 nodes.Snbench uses a monitoring thread to calculate upgrade

bandwidth, and above 60 processors the monitoring thread frequently is scheduled on a

sharing node, inflating the observed latency. The test runssnbench multiple times with

random sharer distributions to yield an average upgrade latency.

The upgrade bandwidth test ignores two write cases: remote misses that cause remote

invalidations and remote misses that cause three-hop, cache-to-cache transfer write misses.

In the former case, the extra hop is much smaller than the invalidation time. The latter case

is dominated by the processor intervention time—identical across each protocol.

Figure 5.7 graphs the average upgrade latency versus the remote sharer count for the

three coherence protocols from 1 to 60 remote sharers. Most writes in SpecOMP2001

benchmarks invalidate 1 to 16 remote copies, therefore Figure 5.8 illustrates this range
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Figure 5.7: Average upgrade latency versus total sharers

in more detail. The upgrade latencies are high enough relative to the extra time to fetch

data from memory for aGETXrequest that writes and upgrades can be considered to share

identical latencies with little error.

For the dynamic pointer and hybrid protocols, the remote sharers track with the total

invalidations sent during the test. In the coarse-vector protocol, the total invalidations sent

vary depending on the remote sharer distribution. For example, if only odd requesters share

a cache line, extra invalidations are sent to the unshared even node.

Dynamic pointer has the shortest average upgrade latency at small remote sharer counts

(1 to 7). Sending invalidations takes longer than the other protocols at higher processor

counts since each pointer in the linked-list must be read before invalidating the next sharer.

Longer lists are also less likely to be cached by MAGIC. Above 16 processors traversing

the list can take longer if there are duplicate entries due to the limit search algorithm used

during replacement hint handlers. Global invalidations take almost twice as long as the

coarse-vector and hybrid protocols.

The hybrid protocol has longer latencies at smaller remote sharer counts due to the

2nd-level directory state lookup required before sending invalidations. At higher remote
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Figure 5.8: Average upgrade latency from 1 to 16 sharers

sharer counts, hybrid’s simple bit-vector representation takes less time to invalidate since

it does not have to traverse a linked-list as in dynamic pointer and benefits from a precise

representation of the sharing set.

The micro-benchmark write latency tests indicate that there are significant differences

in large-scale invalidation times. To understand relative differences in the protocols that

arise because of invalidation latency differences, we augment the coherence protocol to

record the distribution of invalidations per write. When a write-miss occurs, each coher-

ence protocol records the total invalidations sent. Multiplying the total writes and upgrades

by the memory latency for a given average sharers per write yields the aggregate invalida-

tion time. Of course, using the aggregate invalidation time to explain absolute differences

between protocols proves is difficult because multiple outstanding requests hide some write

latencies.

The total occupancy, measured by summing the occupancy of every node, is a more

appropriate metric than per-node average or maximum occupancy of one node. Occupancy

penalizes performance by increasing contention around hot spots. Hot spots cause other

nodes to stall, decreasing the average occupancy observed for the machine, even though
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the total occupancy increases [26]. Even using maximum occupancy is misleading because

the hot spots may migrate or disappear as a benchmark’s phase changes. The total occupied

cycles measures directly the impact of protocol occupancy on performance.

A protocol extension that successfully improves performance by providing shorter point-

to-point latency at the expense of occupancy should show a rise in total occupancy cycles,

but should show a drop in the total execution time. We measure total occupancy in the sys-

tem by summing occupied cycles across every node in the system. Results presented later

in this chapter show that the opposite trend is true: there is a strong correlation between

high total occupancy cycles and lower performance.

5.3.2 SpecOMP2001 Protocol Results

Figure 5.9: Aggregate invalidation time at 63 processors

Figure 5.9 demonstrates that there are large variations in invalidation time across the

benchmarks. Coarse-vector on average spends 31 times longer than dynamic pointer send-

ing invalidations! The problem with coarse-vector is that most local upgrade requests must



82 CHAPTER 5. PERFORMANCE TRADE-OFFS IN MEMORY SYSTEM DESIGN

also send an invalidation to their nearest neighbor due to bit coarseness. Across all bench-

marks, dynamic pointer consistently spends less time doing invalidations. This is expected:

the replacement hints in dynamic pointer maintain more precise sharing information.

Figure 5.10: Speedup relative to the CV=2 protocol at 8 processors

Given this invalidation data and the relative similarity of the read latencies, we ex-

pect dynamic pointer to outperform hybrid, which in turn will outperform coarse-vector.

At 8 processors, the predictions based on uncontended latency track overall performance.

Figure 5.10 shows the percent speedup of the parallel sections of the SpecOMP2001 bench-

marks over the coarse-vector protocol. Dynamic pointer outperforms coarse-vector by 17%

and hybrid by 6%.

In WUPWISE, MGRID, ART, EQUAKE, andAPPLU, the dynamic pointer runs complete

faster than the hybrid pointer runs at 8 processors because the dynamic pointer protocol

maintains a time-precise sharing set. The coarse-vector protocol is 66.7% faster than the

hybrid protocol in theGAFORTbenchmark where there are fewer invalidation messages per

write. In ART, coarse-vector is faster than hybrid and dynamic pointer. In this benchmark,

the performance bottleneck is unrelated to the precision of the sharing set. A hot spot

exists at the master node causing occupancy to impact performance by creating contention.
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The remaining applications behave as expected given the point-to-point latency differences

measured with the micro-benchmark tests.

However, the protocols perform quite differently at 63 processors. While dynamic

pointer consistently sends fewer invalidations during write operations, the queuing de-

lay caused by long occupancies in replacement hint handlers removes any performance

advantage (an effect not seen at 8 processors). This result demonstrates that at larger

machine sizes, minimizing occupancy costs may prove more important than maintaining

time-precise sharing sets and shows the limitation of using small machine sizes to validate

coherence protocol proposals.

Figure 5.11: Parallel efficiency at 63 processors

Figure 5.11 presents the SpecOMP2001 benchmark data for parallel efficiency. There

are significant differences among benchmarks between coarse-vector, dynamic pointer,

and hybrid protocols. Figure 5.12 illustrates the relative percent change in performance

over coarse-vector. Dynamic pointer, which has the best invalidation performance, has

the worst overall performance. Hybrid and coarse-vector protocols have more comparable

performance—on average only differing by about 2%. The two protocols behaviors, how-

ever, benefit from different effects. In coarse-vector, the lower occupancy demands of the
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Figure 5.12: Speedup relative to the CV=2 protocol at 63 processors

handlers reduce contention, but the extra invalidations increase the latency and occupancy

of write operations because the sharing set is not precise in representation. Hybrid sends

fewer invalidations by keeping a precise representation. The precision keeps latency and

occupancy of write operations smaller, but longer handler occupancies are needed to keep

the two-level directory state and manage transitions between sharing set states, which offset

some of the precision advantages. Overall, the design trade-offs made in the coarse-vector

and hybrid protocols capture similar performance improvements over dynamic pointer.

Individual benchmarks have wider variations. For instance, inSWIMthe hybrid protocol

speeds up by 40% over coarse-vector. ForAPSI , APPLU, andFMA3D, hybrid is slower

than coarse-vector.GAFORTis one case where dynamic pointer’s parallel efficiency is

on par with hybrid and outperforms coarse-vector by 13%. Remember, at 8 processors,

dynamic pointer is 2.22 times faster than hybrid. The shorter time for sending invalidations

in dynamic pointer combined with precise sharing information is a significant advantage

at 8 processors. However, at 63 processors, the dramatic performance benefit of dynamic

pointer at 8p is lost due to queuing delay. As machine size continue to scale beyond 64

processors, hybrid will likely outperform dynamic pointer for this application.
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Figure 5.13: Speedup relative to CV=2 at 63 processors

5.3.3 Protocol Extensions

This section considers three specific protocol extensions and their impact on parallel ef-

ficiency. Figure 5.13 presents the relative effect of these protocol enhancements over the

base coarse-vector protocol. The hybrid bar represents the original hybrid protocol.

For most benchmarks, theCV = 2/LB outperforms the baseCV = 2 by 10%, because

most of unnecessary invalidations due to representation imprecision are removed. Local

upgrades do not need to send an invalidation message to the nearest neighbor unless it is

a real sharer. This optimization also reduces the queuing delay by lowering the arrival

rate of messages.APSI does show a small performance loss of 1.4% due to the local bit

optimization, because only 2% of misses are local.SWIM, MGRID, andGAFORTshow the

largest benefit from this optimization.
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In CV = 2/LB, the total system occupancy drops because the total drop in occu-

pancy caused by sending fewer invalidations is greater than the marginal increase in occu-

pancy introduces by longer handler occupancies. However, the two extensionsHybrid/IC

andHybrid/IR fail to demonstrate any significant performance advantages.Hybrid/IR

hurts performance in every benchmark exceptWUPWISE–where the technique only equals

CV = 2.

In SWIM, the performance loss in theHybrid/IC extension is even greater than the

Hybrid/IR extension. Clustered invalidations only reduce contention when writes that

have more than 16 sharers. This rare case has a large impact onSWIMbecause the ar-

rival rate is higher than the other benchmarks, increasing its sensitivity to longer handler

occupancies.

These results are significant because they demonstrate that occupancy introduces con-

tention independent of where the occupancy is located. Naturally we expect hot spotting

to occur at the home because maintaining a directory at one node in the system does in-

troduce a centralized control point. However, attempting to reduce contention by shifting

the occupancy burden to other nodes—which themselves must handle requesters for their

local memory—only shifts where contention occurs. Longer handler occupancies increase

the likelihood of contention.

5.3.4 The Occupancy Limit

To conclusively demonstrate that memory controller occupancy has a fundamental impact

on overall performance, we examine the total occupied cycles across all six coherence

protocols and extensions discussed to this point.

Table 5.3 summarizes the parallel efficiencies for all five coherence protocols across

the SpecOMP2001 benchmarks. At 63 processors, there is a 42% difference in perfor-

mance between the best and the worst protocols. This is surprising considering the minor

functional differences between protocols. Boldface values in the table indicate the highest

parallel efficiency protocol for each benchmark.

The total occupied cycles normalized to the basic coarse-vector protocol are presented

in Table 5.4. The highest parallel efficiency protocol, coarse-vector with local bit, is also

the lowest occupancy protocol, followed by hybrid, and hybrid with cluster invalidations.
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Table 5.3: SpecOMP2001 Parallel Efficiency

Benchmark CV=2 CV=2/LB hybrid hybrid/IR hybrid/CI dynptr best/worst
SWIM 0.65 0.96 0.90 0.88 0.87 0.60 1.60
WUPWISE 0.75 0.84 0.79 0.77 0.77 0.54 1.55
MGRID 0.46 0.55 0.53 0.51 0.53 0.38 1.44
APSI 0.71 0.70 0.66 0.59 0.68 0.39 1.82
ART 0.48 0.49 0.42 0.37 0.39 0.14 3.50
EQUAKE 0.21 0.22 0.20 0.19 0.20 0.17 1.29
FMA3D 0.65 0.71 0.71 0.66 0.72 0.64 1.10
GAFORT 1.37 1.64 1.54 1.41 1.54 1.37 1.20
APPLU 0.80 0.83 0.63 0.59 0.64 0.52 1.59
Average 0.61 0.68 0.62 0.58 0.62 0.43 1.58

Table 5.4: SpecOMP2001 Total Occupied Cycles Normalized to CV=2
Benchmark CV=2 CV=2/LB hybrid hybrid/IR hybrid/CI dynptr R(PE)
SWIM 1 0.44 0.66 0.67 0.60 0.78 0.83
WUPWISE 1 0.71 0.97 0.97 0.93 1.44 0.98
MGRID 1 0.71 0.90 1.02 0.85 1.17 0.87
APSI 1 0.98 1.13 1.99 1.12 1.89 0.81
ART 1 0.95 1.04 1.20 1.05 2.59 0.96
EQUAKE 1 0.71 1.00 1.21 0.98 1.95 0.95
FMA3D 1 0.61 0.72 0.86 0.71 0.95 0.92
GAFORT 1 0.77 0.82 1.29 0.78 1.18 0.82
APPLU 1 0.88 1.03 1.57 1.02 1.67 0.81
Average 1 0.74 0.91 1.14 0.88 1.42 0.97

The hybrid with invalidations sent to the requester has 14% higher occupancy than coarse-

vector and has the second worst overall parallel efficiency. Finally, the dynamic pointer

protocol achieves the lowest parallel efficiency and the highest total occupancy. Boldface

values in this table indicate the protocol with the fewest occupied cycles. The last column

of Table 5.4 quantifies the correlation of overall occupancy with the execution times in

Table 5.3. Two terms correlate if their correlation coefficient, R, is near 1. For our protocol

study, the correlation of the protocol averages of 0.97 demonstrates the strong correlation

between total occupancy and overall parallel efficiency.
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Breaking down these two tables by benchmark, the relationship between total occu-

pancy and performance holds. However, two notable exceptions areSWIMandEQUAKE.

SWIMachieves the best parallel efficiency with the lowest occupancy protocol, coarse-

vector with local bit. However, the worst protocol is not the highest occupancy protocol,

base coarse-vector, but dynamic pointer. Occupancy is critical for the total aggregate queu-

ing delay present, but total occupancy is only a coarse measure. The high arrival rate of

requests inSWIMand the sporadic arrival of cache miss requests—and replacement hints

for each cache miss—contribute to the lower performance of dynamic pointer even with

smaller occupancy than base coarse-vector.

EQUAKEhas a small variation in parallel efficiency and a large variation in total occu-

pancy. The low parallel efficiency suggests that there is little parallelism available in the

benchmark. As such, large swings in total occupancy do not translate into large swings in

parallel efficiency.

The remaining benchmarks track with the lowest occupancy protocol providing the

highest parallel efficiency. Similarly, the highest occupancy protocol corresponds to the

lowest parallel efficiency protocol. The extra occupancy does not arise from long execu-

tion times because each benchmark experiences roughly the same number of cache misses

independent of protocol.

Correlation between high occupancy and low performance, even for protocols designed

to minimize uncontended latency or shift occupancy to reduce the impact of hot-spots, indi-

cates that protocols that keep total occupancy low by keeping handlers short and removing

extra messages result in the best performance. The performance impact of queuing delay

due to high occupancy is significant at 63 processors.Hybrid/IR did not achieve better

performance because the cost of extra occupancy negates the advantage of shorter remote

point-to-point write latency and less contention at the home.

Figure 5.14 presents the geometric average execution time in seconds by occupied cy-

cles at 63 processors.CV = 2/LB, the lowest occupancy protocol, demonstrates the

highest performance because there are few extra invalidations and the occupancy of each

handler is small. For the other protocols, there a limited zone where adding some occu-

pancy generates little contention. TheHybrid/IR protocol has about 57% more occupancy

cycles than theCV = 2/LB protocol at a cost of a 15% execution slowdown. Dynamic

pointer, however, has crossed a knee at 63 processors where the cost of a little occupancy
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Figure 5.14: Execution time versus occupancy at 63 processors

becomes very expensive. This knee is called theoccupancy limitbecause it represents

the maximum level of occupancy for a given machine size that will still yield acceptable

performance.

The occupancy limit is tied to the total number of single-threaded control points in the

system. As processor count increases, the total potential locations for contention increases.

More importantly, the total requesters for single-threaded control points increase. So the

occupancy limit measured as a percentage of total execution time shrinks as processor

counts increase.

What may be less clear is that occupancy limit holds true even with a faster memory

controller and network. To demonstrate this, we drop the clock rate of the R10k proces-

sor to 75MHz to match the clock rate of MAGIC. Alternatively, one can view the system

as one where instead of the memory controller being 3 times slower than the processor

(as in the base system), it is now running at the same speed. This has the effect of de-

creasing the arrival rate of requests at MAGIC and lowering the occupancy of handlers

relative to the R10k cycle time. Total occupancy does decrease: Coarse-vector by 23%,

dynamic pointer allocation by 50%, and hybrid by 19%.CV = 2/LB occupancy remains
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the same. This makes sense—protocols that experience higher contention show a bigger

drop in total occupancy. The relationship between the different protocols’ execution times,

however, remains the same. Dynamic pointer remains the worst protocol, and coarse-vector

with local-bit remains the best. Contention effects are still important with faster memory

controllers.

5.4 The Remote Access Cache Protocol Extension

In this section, we consider the addition of a 32MB remote access cache (RAC). It is an im-

portant addition to consider because caching remote data decreases point-to-point latency

at the cost of occupancy. A RAC is also an orthogonal addition. Any of the coherence

protocols considered in this paper could be extended to include a RAC. Forms of a RAC

have been incorporated into systems like the Sequent STiNG [40] multiprocessor. Further-

more, a RAC affects only the trade-off between message arrival rates, remote latency, and

occupancy but not the sharing set precision.

5.4.1 Latency Characteristics of a RAC

Like normal caches, a RAC reduces the observed latency by caching remote data locally.

Memory requests to frequently accessed, exclusively used remote cache-lines benefit the

most from this addition. The requester stores evicted cache lines locally and can access the

data quickly if it uses the cache line again before the RAC evicts the cache line or the home

intervenes. Directory headers that would represent the reserved portion of memory hold

the RAC tags instead.

Adding any cache increases latency on misses. For RAC, the tag checks take time,

regardless of a hit or miss in the RAC. MAGIC reserves a portion of main memory to store

the RAC tags. Remote request handlers must read the tag state before sending data back to

the local processor on a RAC hit or forwarding the request to the home on a RAC miss.

The uncontended latency overhead is approximately 200ns (45 processor cycles) or a

33% increase over the local memory access time of 600ns (135 processor cycles). There-

fore, a RAC hit costs 800ns. A RAC miss also experiences a 200ns delay because of the

tag check. The tag check overhead is reasonable compared with other studies that report

remote access cache overheads of 21% to 36% of the local memory access time in their
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Figure 5.15: Remote L2 cache miss latencies versus RAC hit rates

designs [24, 45]. As a percentage, our RAC implementation has similar occupancy and

latency characteristics to a hard-wired remote access cache.

On the hybrid protocol, a remote read miss may cost anywhere from approximately

1400ns to 2200ns depending on where the requester and home are located in the network.

For the hybrid/RAC, the average L2 cache miss latency depends on the average RAC hit

rate. Figure 5.15 illustrates the measured L2 cache miss latencies for remote requests as

a function of the RAC hit rate. We present the best and worst case RAC hit latencies.

The intersections of these lines with the hybrid protocol maximum and minimum remote

L2 cache miss latencies indicate thebreak-evenpoints. Somewhere between a 15% and

22.8% RAC hit rate, the average L2 cache latencies of the hybrid and the hybrid/RAC

protocols match. We select the more pessimistic break-even point of 22.8% to place as

much emphasis on performance loss due to uncontended latency as possible.

Prior work with RAC on a simulated 8-processor FLASH system [57] suggested high

RAC hit rates in the range of 40% to 85% for a 16MB cache on the SPLASH-2 bench-

marks. We use their RAC protocol code as a base for our 32MB hardware implementation.

Figure 5.16 illustrates the per-thread minimum, average, and per-thread maximum RAC
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Figure 5.16: SpecOMP2001 RAC hit rates

hit rates for SpecOMP2001 benchmarks at 63 processors. Many benchmarks on average

are higher than the 22.8% break-even threshold. The per-thread average hit rates forART

andGAFORTare well below the threshold. In addition, whileSWIMandWUPWISEhave

minimum hit rates of 42% and 35% respectively, only a small fraction (5%) of their misses

are remote. As a result, the performance effect, positive or negative, should be small. How-

ever, the hit rates for most benchmarks are well above the break-even point. Therefore, we

expect those benchmarks to benefit from a RAC at 63 processors.

Given the measured RAC hit rates, we expect that extending the hybrid protocol to in-

clude a RAC would perform at least as well as the base hybrid protocol at 63 processors.

Also, we expect that theEQUAKEbenchmark would show significant benefit from a RAC.

Unfortunately, the next section illustrates that occupancy significantly degrades the perfor-

mance of the RAC, even for benchmarks that have naturally high remote access locality.

5.4.2 Occupancy Costs of a RAC

The total cost of the RAC protocol is greater than the uncontended latency of the tag check.

MAGIC must store the tag state back to memory if it is modified and the home might send
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more interventions to the local MAGIC to fetch and remove the data from the RAC. These

extra interventions do not interrupt the processor’s pipeline because the processor does not

hold the data in its cache. However, the extra intervention handlers occupy MAGIC and

cause contention with unrelated processor requests that access memory.

The RAC significantly reduces the memory bandwidth requirements of the memory

system. As expected, the total network message counts drop from the hybrid to the hy-

brid/RAC protocol. As processor counts scale higher, the network bandwidth requirements

decrease. The total messages sent on average across the network decreases by 24% at 8

processors and 33% at 63 processors. For theEQUAKEbenchmark, the remote message

counts drop by 47% and 70% at 8 and 63 processors respectively.

Figure 5.17: Key parameter ratios of hybrid over hybrid/RAC=32MB protocols

Figure 5.17 shows changes in execution time, occupancy, and RAC hit rates from 8

to 63 processors. The “Average Time” line illustrates the ratio of the average execution

time of the hybrid protocol over the hybrid/RAC protocol execution time. We exclude

ARTandGAFORTfrom the average because their hit rates are not high enough to benefit

from the RAC. The “EQUAKETime” shows the ratio of the hybrid protocol execution time

of the EQUAKEbenchmark over the hybrid/RAC protocol execution time. Similarly, the



94 CHAPTER 5. PERFORMANCE TRADE-OFFS IN MEMORY SYSTEM DESIGN

Figure 5.18: RAC hit rate versus processor count

occupancy lines illustrate the ratios of the total occupied cycles of the two protocols for

the average benchmarks andEQUAKE. Figure 5.18 demonstrates that the poor performance

does not result from poor remote access locality.

The RAC’s performance is consistently poor—it degrades performance by 30% on av-

erage at 63 processors. While theEQUAKEbenchmark does shown some performance im-

provement from 16 to 56 processors, it only breaks even at 63 processors. The performance

of the RAC protocol mirrors changes in the total occupancy. The slopes of the average time

and occupancy ratios are similar above 32 processors. The RAC protocol costs 66% more

occupancy than the hybrid protocol at 63 processors.

These results expose a pitfall when choosing a benchmark suite to evaluate remote

latency reduction techniques. Many architects choose a representative set of benchmarks

like SPLASH-2 with a high percentage of remote cache misses to highlight the point-

to-point latency reductions present in their proposals. However, high occupancy remote

handlers can contend with the more common case of a high percentage of local cache

misses. The SpecOMP2001 benchmark suite contains several benchmarks with a high

frequency of local misses—indicative of optimized applications with natural locality.
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Only 5% of ART’s L2 cache misses access remote memory. However, the point-to-

point latency penalty of a RAC miss does not account for all of the performance lost in

this benchmark. Adding a RAC increases the execution time by 71% because the longer

occupancies exacerbate a hot spot already present in the application.

This occupancy effect at larger processor counts is counter-intuitive given the wide

adoption of the remote access cache in many modern designs. Clearly, the RAC protocol

causes a reduction in both uncontended point-to-point latency and network bandwidth—

especially for benchmarks likeEQUAKEwith high RAC hit rates. RAC is one example

where a focus solely on latency and network bandwidth tells the wrong story. Extra occu-

pancy of the handlers causes enough contention to effectively eliminate the RAC advan-

tages at higher processor counts. Occupancy costs of a RAC would be smaller, although not

absent, in a hard-wired approach. Nevertheless, these results indicate that the performance

advantages of similar techniques that have been evaluated solely on the basis of latency

reduction are potentially over-stated.

5.5 Quantifying Ideal Coherence Protocol Behavior

To understand the value of protocol optimizations further, we explore an analysis that as-

sumes that all protocol overheads can be removed—leaving the true cost of communication

due to access to shared-memory. The goal of this section is to determine the best-case per-

formance gain an aggressive memory system design can provide. That is what is possible

if the architecture community could solve all the negative latency effects present in these

benchmarks and effectively manage the occupancy limit?

The Zero-Overhead Protocol

The first ideal memory system this section considers is one where there is no additional

latency due to special coherence cases and no contention in the memory system. We call

this azero-overheadprotocol. Such a system would have all of the benefits of a shared-

memory model with latencies more typical of message passing architectures. Writes in this

protocol are immediately served by a reply from the home before sending invalidations.

The memory system would be designed so that occupancy would never introduce queuing
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delay. This model assumes that legitimate contention for shared data could be removed

from the program.

This model assumes “zero overhead” means with respect to the memory access laten-

cies measured on FLASH. However, flexibility comes at a cost of both longer occupancies

and latencies. For this ideal model, we ignore occupancy overheads. FLASH’s uncon-

tended local read latency requires 35 additional processor cycles compared to an SGI Ori-

gin 2000. The extra cycles represent a measure of the cost of flexibility. Some of the extra

time arises from additional delay for MAGIC to schedule a handler, determine the directory

entry address and read the directory state—all operations take longer than a hard-wired so-

lution. In practice, the 35 cycles are small relative to the remote communication time of

300 to 900 cycles.

The All-Local Protocol

The second memory system has no remote communication and all misses were serviced

with the same latency as a local miss. A symmetric memory system would have this prop-

erty. However, scaling problems encountered in large-scale symmetric systems force the

use of a distributed shared-memory architecture. A cc-NUMA machine could approximate

this if the processor had perfect knowledge of future communication patterns and could

aggressively prefetch data into its cache. TheAll Local protocol assumes that any cache

miss has the same latency as a local miss. For reference, we use the base local memory

access time of 135 processor cycles. As processor clock rates have improved, this latency

is now an aggressive target, but the specific values are not critical.

5.5.1 Methodology

The Zero-Overhead and All-Local protocols are ideal and do not correspond to any “real”

protocol. This sub-section describes in more detail how to measure performance of these

protocols. We use theCV = 2/LB protocol as a base since it has the lowest occupancy

of all the real protocols considered in Section 5.3. This analysis assumes no latency hiding

in the base speedups—all removed latencies improve performance. Thus, the limit study

presents the memory system improvements in the most attractive light possible.
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TL2Miss = Tm + Tw + Tp2p + Tc (5.1)

Equation 5.1 partitions the total L2 miss stall time into measurable parameters.Tm is

the minimum cache miss stall time for any cache miss received by MAGIC or 135 cycles.

Tw measures the time that incoming requests are stalled while MAGIC runs another han-

dler. Tp2p is the total point-to-point communication time to send and receive data from

remote nodes.Tc is additional delay due to invalidation, interventions, and other coherence

traffic including the remote communication required for local misses to invalidate remotely

cached data. We include remote MAGIC processing time and queuing delay inTc.

There are three common types of cache misses on cc-NUMA machines:local misses,

local requiring remote action (LRA)misses, andremotemisses. The key difference be-

tween a local miss and a LRA miss is the extra latency required to fetch data from a remote

node’s cache. An example of a LRA miss is an exclusive access request to a shared cache

line requiring invalidations to remote caches. A fourth class of misses is aremote requiring

only local action (RLA)miss; these misses are present in protocols that cache or migrate re-

mote data (such as RAC). The base protocol does not include this case, but this limit study

documents the maximum performance advantage that such a protocol would provide.

Speedupbase =
8 ∗ (Exec(8))

(Exec(P ))
(5.2)

Speedupzero overhead =
8 ∗ (Exec(8)− Tc(8))

(Exec(P )− Tc(P ))
(5.3)

Speedupall local =
8 ∗ (MaxCacheMiss(8) ∗ (Tm(8) + Tw(8))

(MaxCacheMiss(P ) ∗ (Tm(P ) + Tw(P ))
(5.4)

To model the performance attainable by a perfect coherence protocol, the limit study

quantifies an application’s speedup asTp2p andTc approach zero. The zero-overhead pro-

tocol subtractsTc from the base speedup (Equation 5.3). To model the uniform communi-

cation protocol that has perfect knowledge of communication patterns of the application,

we removeTp2p andTc from the base execution time (Equation 5.4). We expect that as

contention and communication are removed, the parallel efficiency of each benchmark will

improve dramatically.
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5.5.2 Quantifying Latency Terms

Every L2 cache miss creates a request requiring a response from MAGIC. In the case of

a local read request, MAGIC runs a localGETrequest handler, which accesses memory

and returns the appropriate data. This time is 135 processor cycles absent contention for

MAGIC’s handler processor and memory. Both local and remote requests share this over-

head since they travel the same communication path to MAGIC and respond in identical

ways once the data is fetched from the home’s memory and loaded into a data buffer. We

calculateTm by multiplying the maximum cache miss count across all threads by 135 cy-

cles. Note that whileTm is real—multiple memory access could overlap and reduce the

impact ofTm on overall performance.

Figure 5.19: Local wait time,Lw versus MAGIC occupancy

Processor and network requests contend for the same MAGIC processor core. Incom-

ing requests wait in a buffer for MAGIC to complete the currently executing handler.

Figure 5.19 shows the average wait time per cache miss (Lw) as MAGIC utilization is

increased. Because we have chosen a low-occupancy protocol, the SpecOMP2001 bench-

marks’ average MAGIC utilization is 15%—small enough thatTw is negligible. Significant

hot spotting, however, can greatly increaseTw on a per-processor basis.
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Each remote handler originating from the processor records the destination node of the

request. To determine the point-to-point communication stall time,Tp2p, we multiply the

distribution of remote misses by the unloaded remote point-to-point communication time

for a particular source-destination pair. The maximumTp2p for each thread indicates the

total time saved by removing all point-to-point communication.

Measuring the contention and coherence overhead is usually difficult since the mem-

ory system on most cc-NUMA machines is opaque. A message buffer in the requester’s

MAGIC tracks the remote action latency. When a new remote request or local request re-

quiring remote action arrives, MAGIC sends the remote request to the network and stores

the cycle count in the message buffer. When the reply returns back to the requesting node,

MAGIC forwards it to the processor and then rereads the cycle counter to calculate re-

mote action latency. Thelibmp library enables this mechanism only during parallel sec-

tions of the benchmarks. The mechanism yields the total remote communication stall time,

Tp2p + Tc, including extra coherence traffic for each thread.

5.5.3 Performance of the Ideal Protocols

Figure 5.20 presents the speedup of the ZeroOverhead and AllLocal limit protocols over

the normalizedCV = 2/LB protocol performance at 63 processors. Some benchmarks

like ART andAPPLUshow dramatic speedups with an ideal protocol. Benchmarks that

already have natural locality likeSWIMandWUPWISEshow no significant advantage as

we might expect. Overall, the benchmarks improve achieve a speedup of 2X if one were

able to removeall of the remote communication and contention.

The trend as processor counts increase from 8 to 63 processors demonstrates that the

absolute performance advantages of these ideal protocols remain relatively constant. Fig-

ure 5.21 plots the average speedup for the ZeroOverhead and AllLocal protocol from

8 to 63 processors. The ZeroOverhead protocol remains flat at a speedup of 30%. The

All Local protocol is erratic because the model makes many simplifying assumptions and

some benchmarks vary widely on speedup. However, on average the protocol achieves

absolute performance improvements from 70% at 8 processors to 100% at 63 processors.

This makes sense since some applications have increasing communication at larger pro-

cessor counts. More communication introduces more opportunities for improvement by

reducing remote latency.
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Figure 5.20: Ideal speedups versus benchmark

However, the ideal protocols are theoretical, and in practice the occupancy limit will

reduce the performance gain shown in these graphs at larger processor counts. Reducing

remote latency increases the memory system’s sensitivity to occupancy because the arrival

rate of requests for local memory would increase dramatically.

5.5.4 Scaling Impact of the Ideal Protocols

One key question is how these ideal protocols affect scaling at larger cc-NUMA machine

sizes. This subsection discusses the speedup of the SpecOMP2001 benchmarks using our

ideal protocol models.

Figure 5.22 shows the results of our coherence protocol experiment. On average, re-

moving coherence traffic increases the SpecOMP2001 speedup at 63 processors (relative

to 8p) from 63% to 73%. The figure clearly demonstrates thatEQUAKE’s andFMA3D’s

speedup does not drop due to the memory system. Their speedups remain flat when coher-

ence and communication traffic is removed.
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Figure 5.21: Ideal Speedup versus Processor Count

The most surprising result from Figure 5.22 is that removing coherence and commu-

nication delaydecreasesthe average speedup to 42.84 becauseAPPLU’s andGAFORT’s

speedup drop. This is not a fault of the model but demonstrates super-linear speedup effects

present in these applications, like cache and memory aggregation, that disproportionately

impact performance at smaller processor counts. At higher-processor countsTc(P ) and

Tp2p(P ) are smaller thanTc(8) ∗ 8/P andTp2p(8) ∗ 8/P respectively.

In particular,GAFORTexperiences more hot spotting at 8 processors than at 63 proces-

sors, causing a drop in speedup when contention is removed.GAFORT’s hottest loop is a

shuffle of a large parent array between generations of a genetic algorithm calculation. The

algorithm takes an element in the array and swaps it with another element ahead of it—

locking both elements to ensure correctness. This causes a hot spot at the end of the array

since more nodes are likely to swap with it. With more nodes, there is less contention for

a particular MAGIC since each processor holds a smaller portion of the array. Removing

coherence and contention traffic eliminates this super-linear hot-spotting effect causing a

drop inSzero overhead.

Figure 5.23 demonstrates how the latency increases from 8 to 63 processors.GAFORT
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Figure 5.22: Ideal speedup at 63 processors

is the only benchmark where average latency drops from 8p to 63p and thus removing

point-to-point communication eliminates this super-linear effect as well. By eliminating

the impact of coherence and communication traffic, we expose the real source of dropping

speedup—lock acquisition for elements toward the end of array.

APPLU’s Sall local drops for different reasons. There are fewer remote misses at 63

processors than at 8 processors due to cache aggregation. Several temporary arrays are

misplaced causing unnecessary remote misses. Cache aggregation removes the frequency

of remote misses at 63p. Removing communication traffic improves the parallel efficiency

if the misplaced variables were originally placed correctly. In fact, when we fix the appli-

cation in software so that the temporary variables are placed locally, the new speedup drops

from near linear, meaning 63, to 33.39.

The speedup ofMGRID increases by a factor of 1.94 when the ideal protocols re-

move remote coherence and communication latency. This benchmark experiences a rise

in communication-to-computation ratio as processor counts scale. This effect increases

the communication latency at higher processor counts as well as the coherence traffic to

invalidate data shared along boundaries of array slices. When the ideal protocols remove
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Figure 5.23: Latency Ratio - 63 processors over 8 processors

this communication and coherence latency, large-scale performance disproportionately in-

creases because there is more communication to remove.

Despite making the most optimistic assumptions, memory system enhancements only

improve speedup by 10% to 16% at 63 processors. While minimizing coherence and

communication traffic can significantly increase the speedup of some benchmarks, other

benchmarks show no gain since algorithm-scaling issues are exposed.Tw is a negligible

term since the runs use the low-occupancyCV = 2/LB protocol. However, contention of

higher-occupancy protocols like dynamic pointer would increaseTw and other contention

latencies and tend to eliminate relatively minor performance advantage.

5.5.5 The Impact of Latency Hiding

The analysis described thus far does not account for the impact of latency hiding. A pro-

cessor may issue several requests at a time, the total cost of which may be partially hidden

by latency tolerating mechanisms, including overlap in request handling. The impact of

removing remote communication would be less if some latency tolerance that exists in the
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application exploits this overlap. On the other hand, latency hiding could improve as seri-

alizing communication is removed, allowing more requests to be serviced in parallel. This

section discusses the impact of latency hiding in more detail.

The ideal protocols are optimistic since they assume that improving latency translates

1:1 to a drop in execution time. Uniprocessor architects are acutely aware of the increasing

memory gap and frequently employ techniques such as software pipelining, out-of-order

instruction processing, and load/store buffering to reduce the impact of memory access

latency. Multiple memory requests are often serviced in parallel since remote latency is

typically much longer than what can be hid with one outstanding transaction. All of these

latency hiding effects cannot accurately be measured on FLASH. However, the R10k pro-

cessor can vary the number of outstanding L2 cache misses that the memory will service

before stalling the processor from 1 to 4.

Figure 5.24: Latency hiding from 1 to 4 outstanding transactions

Figure 5.24 illustrates the percentage speed up by increasing the outstanding transac-

tion tables per processor from 1 to 4 at 63 processors using theCV = 2/LB protocol.

Benchmarks speedup by 10% with 4 outstanding transactions, which indicates that the par-

allel efficiency and execution time improvements are narrower than this model measures.
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Shrinking the size of the total outstanding transactions tables, orOTTs, has the effect of

reducing load on the memory system and potentially lowering contention. However, the

highest occupancy protocol, dynamic pointer, shows a speedup of 33% going from 1 to 4

outstanding transactions (not shown in Figure 5.24). By increasing the number of outstand-

ing transactions, we increase the arrival rate of requests to the memory system. Therefore,

high-occupancy protocols will naturally experience more contention. However, additional

outstanding transactions allow overlaps in the queuing delays experienced by each, which

improves the overall observed memory latency by the processor. This mitigation is limited

by ILP and the memory system’s capacity to the handle request bandwidth.

For example, the ratio ofCV = 2/LB’s parallel efficiency to dynamic pointer’s parallel

efficiency improves from 1.89 at 1 OTT to 1.58 at 4 OTTs suggesting that the gap between

low-occupancy and high-occupancy protocols may shrink as ILP increases. More likely,

general-purpose applications lack sufficient ILP to benefit from additional OTTs. Complex

protocols like dynamic pointer would only outperform simpler protocols if an application

had an unusually high degree of data parallelism and no memory locality.

Some consider commercial applications to behave in precisely this way. For example,

coherence protocol research at the University of Wisconsin [41, 42] examines commercial

applications on symmetric multiprocessors. They note that memory performance is of-

ten dominated by three-hop cache-to-cache transfer misses. It is unclear whether the poor

performance in their commercial applications arises from application-centric, architecture-

specific, or machine-dependent communication. Unless the communication remains fun-

damental to the application’s correct behavior, no exploitable spatial or temporal locality

exists, and yet the application has ample data parallelism, our observation that simpler

protocols will outperform more complicated ones will hold true.

Consider the overall execution time of the base, ZeroOverhead, and AllShared proto-

col from 1 to 4 OTTs illustrated in Figure 5.25. In this figure each protocol executed with 1

OTT is divided by its equivalent with 4 OTTs. While there are some variations on average

as processor counts scale, the speedup is relatively constant from 8 to 63 processors. This

figure shows that latency hiding is likely to affect speedup only by a scalar factor for a

single protocol.

Compare Figure 5.26 with its 4-OTT equivalent (Figure 5.21). These figures illustrate

the speedup over the base protocol of the ZeroOverhead and AllLocal protocols. The
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Figure 5.25: Execution time versus processor count with 1-OTT

original 4-OTT figure illustrates that the potential advantage of an AllShared protocol is

1.7x to 2x depending on scale. However, with only 1 outstanding transaction the speedup

is 1.4x to 1.6x. Additional latency hiding improves the overall speedup of the applications

by approximately 20%

One might think that as the maximum number of OTTs increase, that the potential ad-

vantages would scale up beyond 20%. For example, perhaps with 8 OTTs the AllShared

protocol would improve the absolute performance by 2x to 2.4x. This is not the correct

conclusion. It is the fault of the ideal model—which assumes a 1:1 correlation between

latency reduction and performance. This assumption breaks down as the size of the OTTs

increase because latency tolerance in memory system also increases and applications en-

counter ILP limitations. Shorter latency protocols show less benefit from latency hiding

techniques.

An application will not see all of the benefits of a more aggressive memory system if

it is not latency sensitive. Increasing the maximum OTT size makes an application less

sensitive to latency, if there is sufficient ILP. Therefore, the base 4-OTT numbers used in

the beginning of this section present a more optimistic picture of what a memory system
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Figure 5.26: Ideal speedup versus processor count with 1-OTT

can do to remove memory latency. Dynamic pointer’s occupancy costs have less impact

because there are more opportunities for performance gains. Unfortunately, even this opti-

mistic picture indicates the limits of what the memory system alone can do to improve poor

performance.

5.6 Summary

This chapter examines the effects of contention, driven by protocol design, on the perfor-

mance of multiprocessors intended to scale to larger processor counts. Although queu-

ing delay due to contention at the memory controller is typically insignificant at smaller

machine sizes with most memory controller implementations, such contention can be im-

portant with larger processor counts. This contention is significantly affected by memory

controller occupancy, which in turn is dependent both on the node organization and on the

coherence protocol.

Although simple protocols scale more effectively to large-scale machine sizes, they

are less effective at solving structural problems in parallel programs such as hot-spotting,
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false sharing, or excessive global communication, which some sophisticated protocols try

to address. These results imply that prefetching and prediction will need to be extremely

accurate to be effective. If either technique increases traffic beyond a minimum level, it is

likely to lead to increased contention and little, or negative, performance improvement. In

this study, the advantages of simplicity—lower occupancy and less contention—outweigh

the gains from a more sophisticated protocol, at least for larger processor counts. This con-

clusion adds to the evidence that coherence protocols alone cannot solve parallel efficiency

problems automatically.

Designing for low-occupancy protocols leads to simpler protocol state machines that

limit messages and minimize occupancy. In an echo of the RISC arguments made 20 years

ago about instruction set design, evidence from running real applications on FLASH points

to the fact that simpler protocols scale best. Unfortunately, simple protocols are not likely

to provide the same ease-of-programming advantages present on smaller-scale systems.

Furthermore, enhancing the memory system will likely provide only a scalar absolute

performance advantage of at best 2x. These results do indicate that there are some bench-

marks that show dramatic performance advantages from enhancing the memory system.

These advantages are averaged out by other benchmarks that either show no change or a

decrease in parallel efficiency with more aggressive memory system design. However, it

is unlikely such advantages will realistically be captured on larger systems without hitting

the occupancy limit, which drops as processor count grows and latency drops. A key ques-

tion remains unanswered: how difficult is it to solve these communication bottlenecks in

software? Are the problems difficult enough to solve that they require a hardware-only

solution? These questions will be addressed in the following chapter.



Chapter 6

Software Bottlenecks and Optimizations

Given the pressure to keep the complexity of the memory system simple, this chapter

gauges the difficulty of solving performance bottlenecks by tuning the application in soft-

ware. The optimizations presented in this chapter reflect additional programming com-

plexity required to achieve high performance. In some cases, the optimizations are quite

machine-specific. Once understand, most are trivial to apply. On FLASH, discovering

these bottlenecks was an easier process than on more traditional multiprocessors because

of the ability to instrument memory system accesses. This chapter classifies bottlenecks

into three categories: insufficient parallelism, excessive implicit communication, and syn-

chronization and load-imbalance issues.

6.1 Increasing Communication-to-Computation Ratio

Increasing communication-to-computation ratio—set by the application and its choice of

algorithm—is a key indicator of decreasing parallelism available at larger-scale. We mea-

sure this ratio by counting local and remote L2 cache misses seen by MAGIC during the

parallel section of the code and track how this count scales from a uniprocessor to 63 pro-

cessors.

Counting local and remote cache misses summed over all threads, only provides a

coarse measure of communication changes. This count includes unnecessary communi-

cation due to false sharing, but it is useful for identifying potential benchmarks where

necessary communication changes are affecting parallel efficiency. Figure 6.1 presents the

109
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ratio of L2 cache misses on 63 processors over 8 processor runs of the benchmark. A ratio

above 1 indicates that there is more communication at larger-processor runs.

Figure 6.1: L2 cache misses relative to 8 processors at 63 proessors

The communication patterns inMGRID, SWIM, andWUPWISEare similar. Each thread

iterates over a slice of a multi-dimensional array. Sharing occurs along the edges of the

slices when threads read data placed on another processor. However, only inMGRIDis the

communication increase significant enough to lower the parallel efficiency considerably.

The problem size is small enough that increasing remote misses by a factor of 6 signifi-

cantly decreases parallel efficiency. Increasing the problem size by a factor of 8 increases

the parallel efficiency from 50% to 95%.

APPLUhas 50% fewer L2 cache misses at 63 processors than at 8 processors due to

cache aggregation. For the remaining seven applications, their communication-to-computation

ratios do not significantly change at larger processor counts. WhileAPPLUachieves ideal

parallel efficiency, it should performbetterthan ideal due to higher cache hit rates.

EQUAKEclearly experiences an increase in communication at 63 processors. This

benchmark lacks sufficient parallelism to perform well. This benchmark’s critical pro-

cedure calculates a sparse-matrix vector product. Figure 6.2 illustrates pseudo-code for
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loop 1:
for (j = 0; j < P; j++) {

#pragma omp parallel for private(i)
for (i = 0; i < N; i++) {

x[j][i] = 0;
}

}
loop 2:

main_sparse_matrix_vector_product();
loop 3:
#pragma omp parallel for private(j)

for (i = 0; i < N; i++) {
for (j = 0; j < P; j++) {

if (x[j][i])
y[i] += z[j];

}
}

}

Figure 6.2: Pseudo-code forEQUAKE’s sparse-matrix vector product procedure

the sparse-matrix main loop. The array holds markers to indicate non-zero portions of

the sparse-matrix. Loop 1 simply clearsx . Loop 3 performs a type of reduction ony by

collecting partial sums ofy .

The number of loop iterations in loops 1 and 3 depends on the total number of threads,

P . Therefore, the number of L2 cache misses for loops 1 and 3 increase linearly with

total processor count causing the dramatic increase in communication-to-computation ratio

observed in Figure 6.1.

If N is small, the performance of these loops would be insignificant. In this benchmark,

N is one dimension of the sparse-matrix. Loop 2 does most of the algorithm work, but loops

1 and 3 eventually dominate performance. Loop 2’s parallel efficiency is 41% from 8 to

63 processors. The parallel efficiencies for loops 1 and 3 are below 1% at 63 processors

but the execution times for each loop are roughly equivalent. Other multiprocessors also

experience poor parallel efficiency with this benchmark. On the SGI Origin 3800,EQUAKE

only achieves a 30% parallel efficiency from 8 to 64 processors [1].
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loop 1:
/* -deleted- */

loop 2:
main_sparse_matrix_vector_product();

loop 3:
#pragma omp parallel for private(j)

for (j = 0; j < P; j++) {
for (i = 0; i < N; i++) {

if (x[j][i])
y[i] += z[j];

}
x[j][i] = 0;

}
}

Figure 6.3: Optimized pseudo-code for optimized spares-matrix vector product procedure

For the SpecOMP2001-Large version of the benchmark, SPEC optimizes the bench-

mark to remove one of the loops. Figure 6.3 presents pseudo-code for the optimized

benchmark. Functionally, the benchmark performs the same algorithm. However, they

merge loop 1 into loop 3 and reorder the loops to take better advantage of cache locality.

This simple change decreases absolute execution time by 66%. The scaling impact of this

change is minimal. The speedup does improve from 21% to 27% on FLASH with the

“large” binary using the same input set. However, the problem size is not large enough to

provide decent parallel efficiency.

6.2 Unnecessary Implicit Communication

Of particular concern for cc-NUMA architectures is the degree to which unnecessary im-

plicit communication decreases parallel efficiency. Extra communication is absent in other

architectures that only allow explicit communication, but occurs on shared-memory ma-

chines due to cache-line false-sharing, page-level false-sharing, improper blocking, or poor

data placement (as described in Chapter 2).
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#define INTS_PER_CACHELINE 4

data_t x[INTS_PER_CACHELINE*P];
data_t y[INTS_PER_CACHELINE*P];
data_t z[INTS_PER_CACHELINE*P];

Figure 6.4: Pseudo-code forART’s variable declarations

Cache-line false sharing causes extra three-hop, cache-to-cache transfer misses that

serialize threads and sharply increase cache miss latencies due to cache-line interventions.

Three-hop misses can be avoided by restructuring the parallel section, by organizing data

differently, or by reordering loops to take advantage of spatial locality.

Extra communication occurs when unrelated cache lines fall on the same page, causing

hot-spotting at the page’s home node even though there is no actual sharing for individual

cache lines. Natural locality is lost since the OS organizes and places memory on a per-

page basis. Cache-to-cache transfer misses do not occur in this type of false sharing since

typically each cache line is used by only one node in the system. Page-level false sharing

occurs inARTandAPSI .

6.2.1 ART: Cache- and Page-Level False Sharing

ART is an image recognition benchmark. Each thread checks a small test image against a

subset of a larger image to determine if they are identical. Each thread holds both images

in its local memory. This benchmark makes a critical mistake when declaring per-thread

statistics variables. Figure 6.4 presents pseudo-code for the declaration of these per-thread

variables. Programmers use padding so that each thread has its own cache line to record

matching information, but the benchmark hard-codes the number of integers per cache line

to 4! The benchmark, therefore, incurs false sharing among threads on architectures with

more than 4 integers per cache lines—in our case 8 processors share the same 128B cache

line.

Furthermore, the cache lines all fall on the same page causing a large hot-spot on the

memory controller on the home node. If the padded cache lines are distributed so that

they also fall locally, occupancy on the home node’s MAGIC falls from 97% to 62%. This
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typedef struct {
data_t x,y,z;

} ThreadPrivate_t;
ThreadPrivate_t *t;

main() {
#pragma omp parallel
{

i = omp_get_thread_num();
t[i] = memalign(PAGE_SIZE,sizeof(ThreadPrivate_t));
bzero(T[i],sizeof(ThreadPrivate_t));

}
}

Figure 6.5: Optimized pseudo-code forART’s variable declarations

optimization, illustrated in Figure 6.5, groups per-thread variables together and places them

on the CPU that executes the thread. Using this technique, parallel efficiency of the parallel

section increases from 45% to 90%.

This benchmark exposes a critical hazard: smart programmers—fully aware of an ap-

plication’s communication patterns—can make simple mistakes that severely impact the

scalability and portability of their code or fail to make their optimizations fully machine-

independent.

6.2.2 APPLU: Poor Data Management

While theAPPLUbenchmark scales well to 63 processors, we expected super-linear speedup

because of cache aggregation observed in Chapter 3. The cache aggregation arises from

poor data management at smaller processor counts. Eventually, larger caches minimize

the impact of this mistake.APPLUperforms a sequence of Gaussian eliminations to per-

form a multi-dimensionalLU factorization. While the structure and code are different, the

algorithm shares many characteristics with the SPLASH-2LU benchmark.

Our work with SPLASH-2 [22] found that theLU algorithm must be properly blocked

to reduce contention and balance load. TheAPPLUbenchmark practically implements the
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data_t a[x,y], b[x,y];

/* initialization: */
#pragma omp parallel for
for(i=0;i<N;i++) {

for(j=0;j<N;j++) {
a[x,y] = 0;
b[x,y] = 0;

}
}
/* use */
#pragma omp parallel for
for(block=0;block<B;block++) {

i1,i2 = fx(blocks);
j1,j2 = fy(blocks);
for(i=i1;i<i2;i++) {

for(j=j1;j<j2;j++) {
func1(i,j); /* use of a buried in func1 */
func2(i,j); /* use of b buried in func2 */

}
}

}

Figure 6.6: Pseudo-code forAPPLU’s scratch variable initialization and use

same high-level optimization.

The cache-aggregation arises from scratch variables used in the blocking procedure.

Figure 6.6 illustrates a pseudo-code example of the key problem inAPPLU. Variablesa

andb are initialized in a simple manner that breaks the parallel loop by thex dimension.

The firstN/x by y elements of the array will be placed on thread 0’s node. However, the

use of the variables—buried deep in subroutines called byfunc1 and func2 —follow

the blocked nature of the algorithm. Therefore, remote communication occurs because the

initialization of the variables does not follow the use. At larger processor counts, the per-

thread portion ofa andb become small enough to cache, creating the super-linear effect.
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As data set sizes increase, the sizes ofa andb grow, limiting the caching of these vari-

ables and increasing the machine size required to remove the bottleneck through caching.

The proper solution involves placing the variables consistently with their use. The ini-

tialization of the variables should follow the blocked nature of the algorithm. High-level

procedures decide loop order and low-level and leaf subroutines use the scratch variables.

Understanding the proper data initialization sequence is difficult given that the initialization

and use are separated in the code.

Similar data layout optimizations could be applied to further speedup theEQUAKE

benchmark. The program initializes scratch variables in order, but the input data instructs

the program to adjust the loop order to balance load during the sparse-matrix vector cal-

culation. The program can make better management decisions if the scratch variables are

placed after loading the input set.

6.2.3 APSI: Poor Data and Cache Management and False-Sharing

Many effects like cache-line false-sharing, page-level false-sharing, and improper block-

ing, can interact in unusual ways.APSI experiences all three effects but from 8 to 63

processors has a reasonable parallel efficiency of 73%. Pages have not been placed with

any consideration as to how they are used in the program. Only 3% of the total misses are

local. The benchmark scales well because the uniprocessor and 8 processor runs also have

high number of remote misses. In the SpecOMP2001-Large version of the application,

some data placement issues have been fixed, but bottlenecks in the benchmark remain.

Multi-dimensional arrays are not placed in memory consistently with their use. Most of

the misses occur in three dimensional arrays ordered inZ,Y,X fashion, but loops stride

through the arrays most often inY,X,Z order. Blocking is not used to reduce the impact of

misalignment so the benchmark experiences a large number of TLB misses (22.3 billion).

Programs that experience a high number of TLB misses scale well as each TLB can be ser-

viced independently [21]. However, the higher parallel efficiency belies the fact that there

are serious blocking problems with the application. The SpecOMP2001-Large version of

the benchmark places data more intelligently and identifies some reduction opportunities,

but algorithm blocking problems remain.

Figure 6.7 shows the speedup curves for three versions ofAPSI . In the “opt1” version

of the benchmark, we fix APSI so that data is placed consistently with data usage and loops
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Figure 6.7: Speedup curves for base and optimized APSI benchmarks

are reordered to take advantage of cache locality and to reduce cache-to-cache transfer

misses. We apply blocking to loops that experience large TLB misses, dropping the total

number of TLB misses by 99% to 0.3 billion. The local cache miss percentage increases

from 3% to 73%. Execution time improves by 21% at 63 processors. While the overall per-

formance has improved considerably, the speedup curves remain nearly identical between

the two versions above 48 processors.

Unidentified reduction variables account for the remaining parallel efficiency loss in

“opt1”. The “opt2” version removes the false sharing caused by the reduction variables.

This optimization has also been applied to the SpecOMP2001-Large version of the bench-

mark where the reduction variables have been properly marked.

Developing the “opt1” version of the benchmark took approximately a week as it re-

quired a benchmark-wide change in the layout of memory. Removing the false sharing due

to unidentified reduction variables, however, took only 15 minutes. This example shows

that larger caches available at large-scale may mitigate the cost of remote point-to-point

communication, but reductions and false sharing do not improve with scale.
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6.3 Load Imbalance and Synchronization

The OpenMP standard provides pragmas for explicitly placing locks and barriers into ap-

plication code. In addition, there are many instances where barriers are implied by the

OpenMP pragmas. Thelibmp library places a barrier at the end of every parallel section

to reduce confusion and programmer error due to race conditions between parallel sections.

Locking occurs around OpenMP critical sections that can only be run by one thread at a

time. Local synchronization is often required between threads that access shared data. We

add timers in thelibmp code to track when a thread first attempts to acquire a lock and

finally succeeds. The thread that experiences the worst case lock acquisition time yields the

total locking overhead. We measure load imbalance by calculating the difference between

the first entry of a thread into a barrier, implied or explicit, and the last thread that arrives

at the barrier. The load imbalance time includes global synchronization overhead required

to implement the barrier.

Overall, small loops that cause frequent synchronization impact performance little.

Varying barrier implementations from LL/SC to atomic operators on the memory controller

(such as fetch-and-op) does not significantly change performance. Rather, load imbalance

occurs due to structural problems in the algorithm.

6.3.1 GAFORT: Lock Contention

As mentioned in Section 5.5.4,GAFORT’s main bottleneck is lock contention during a

shuffle operation in a genetic algorithm calculation. We now address what the software can

do to improve the parallel efficiency.

Genetic algorithms are heuristics for finding local minimums of large problems. They

are not precise exhaustive searches of a problem space. The shuffle operation used in

GAFORTis a Fisher-Yates shuffle [33], where one element swaps with another element

ahead of it. Load imbalance occurs when multiple threads attempt to lock the same element

in the array. With many processors, each thread only has a small local portion, so most of

its swaps will be remote.

We optimizeGAFORTby relaxing the pseudo-randomness of the Fisher-Yates shuffle

to reduce lock contention and remote communication. With a probabilityp, each thread

performs the basic Fisher-Yates shuffle. With a probability1 − p, each thread performs
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the Fisher-Yates shuffle only on its local elements. This has two advantages: scaling down

remote communication asp drops and reducing the probability that different nodes contend

for the same element.

Figure 6.8: GAFORT time versus probabilityp

Figure 6.8 presents the execution data for our modified Fisher-Yates algorithm. We plot

the x-axis in decreasing probability, since 100% represents the base performance. Initially,

the load imbalance does not improve significantly untilp drops below 90%. Atp = 25%

the benchmark still matches the expected output, but the parallel efficiency improves to

120%.

This optimization is ad-hoc, but it addresses two insights about the benchmark. First,

the algorithm is a heuristic and thus the precise result does not depend on a perfect random

shuffle. Second, load imbalance due to lock contention is the major bottleneck slowing

the algorithm down. We make the choice to trade-off randomness for performance. A

compiler would have a difficult, if not impossible, time doing this optimization unless the

shuffle operation is abstracted out and replaced by the programmer with a library call.

“Random enough” is an abstract and vague notion, and compilers are required to precisely

and faithfully represent the code.
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6.4 Summary

The penalty for programmer error or lack of optimization is high for large-scale multi-

processors. The benchmarks at 16 processors, a typical simulation-based machine size,

achieve 85% parallel efficiency, so a programmer who uses small-scale runs to test and

verify their code would miss many of these effects.

Figure 6.9: SpecOMP2001 execution time for untuned and optimized benchmarks with base and
ideal protocols

Most of the optimizations applied to the SpecOMP2001 benchmark suite are basic.

False sharing is a well-known problem but in several cases, simple mistakes that cause

excessive false sharing have not been noticed, swamping parallel efficiency at large-scale.

Loop reordering and blocking are common techniques for optimizing parallel algorithms.
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Figure 6.10: SpecOMP2001 speedups for untuned and optimized benchmarks with base and ideal
protocols. Speedups for the ideal protocols are projected using Equations 5.3 and 5.4

In fact, tools like MemSpy [43] and FLASHPoint [21] already exist that identify appropri-

ate program regions to block. It is harder, however, to apply these techniques on larger and

more realistic benchmarks than on smaller applications and algorithm kernels.

Figure 6.9 graphs the absolute performance of the base SpecOMP2001 results with the

derived coherence-free and communication-free performance numbers and the absolute

performance of the optimized benchmarks. Repairing simple programmer errors recovered

75% of the performance gained by synthetically removing coherence traffic. While the

ideal protocols do improve the absolute performance of the optimized applications, this

improvement does not significantly affect the scalability of the applications.

Figure 6.10 shows the change in parallel efficiency with our software fixes relative

to other hardware protocols and the operating system improvements. The software opti-

mizations achieve a higher parallel efficiency than what is possible by hardware coherence
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alone. Surprisingly, after applying the software optimizations, the ideal coherence proto-

cols do not significantly improve the scalability of the applications.

It is, of course, unclear that an intelligent coherence protocol could eliminate coherence

or communication traffic from a benchmark. Even if it did, the typically higher occupan-

cies required to do so lessen the latency advantage at large-scale by introducing significant

contention. The key obstacle to performance, therefore, is programmer’s ability to identify,

understand, and fix bottlenecks in software. Performance programming remains difficult.

The programmer must still optimize their code for performance. This observation points

to the need for the programmer and software tools to instrument and understand mem-

ory system behavior quickly—difficult to do in most cases because memory systems are

opaque—to reduce the time required to apply optimizations in software.



Chapter 7

Conclusions

The FLASH project began nearly 10 years ago as an effort, among many, to study the

impact of coherence protocols on the overall design of large-scale multiprocessors. The

original designers also chose to design the system to compare the advantages of a shared-

memory architecture’s implicit communication model with a message passing architec-

ture’s explicit communication model. This dissertation in some respects draws that work

to a close by addressing the questions raised by the initial FLASH group at the beginning

of the project using the final real hardware version of the machine they proposed.

7.1 Conclusion

A big question was what types of coherence protocols would scale to larger machine sizes?

Similar to the RISC revolution nearly 20 years ago, our results show that a simpler memory

system is preferable to a more complex one. While “smart” coherence protocols do reduce

the point-to-point latencies absent contention, the occupancy costs create significant queu-

ing delay that reduces or eliminates the performance advantage of proposed changes at

larger machine sizes. This is a negative result because much of the research in the shared

memory community has focused on designing a more complicated coherence protocol.

Furthermore, these protocols fail to remove problems introduced by unnecessary implicit

communication or reduce the incremental tuning required by the programmer to generate

high-performance, efficient parallel programs.
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This work points to an emergingprogramming gapthat limits the programmer from

effectively using growing parallel resources. Hardware technology has improved dramati-

cally since the first early multiprocessors like the Illiac IV. Today, we can construct multi-

processors with thousands of nodes at comparatively low cost. The emergence of low-cost

Linux-based clusters, high-speed interconnection networks and multiprocessors on a chip

point to the increased availability and lower cost of these larger scale multiprocessors.

However, despite 40 years of research, it is still difficult to program high performance ap-

plications in a straightforward and machine-independent fashion. This difficulty persists

in part because making programming mistakes is easy and the penalty for these mistakes

scales with processor count.

Unless this programming gap is addressed by future researchers, larger multiprocessors

will remain a niche market—useful only for a lucrative but small set of special-purpose ap-

plications. This observation should concern architects. The end of Moore’s Law for unipro-

cessors has long been predicted. When the end arrives, architects will attempt to leverage

parallel programming more aggressively to continue improving performance. The emer-

gence of small-scale multiprocessor cores suggests that improvements to the uniprocessor

provide diminishing returns already. However, unless this programming gap is addressed,

parallel processing will only improve performance by a small amount for general-purpose

computing!

Architects are keenly aware of the programming gap. Distributed shared-memory with

cache coherence emerged as an approach to provide an interface to the programmer that

focuses on critical communication. It is a “revolutionary” change over the traditional mes-

sage passing approach where all communication must be made explicitly. Unfortunately,

this dissertation presents a scaling flaw in the shared-memory model motivation: eventually

even small communication hot spots become critical. With larger scale multiprocessors, the

memory system matters less than the choice of parallel algorithm. Shared memory will not

save the programmer from explicitly managing communication—especially at large-scale.

The most important contribution of the FLASH project is not its ability to mimic other

memory systems—beyond simplicity the memory controller design or coherence proto-

col do not affect performance greatly—but the visibility it provides to the programmer to

illuminate memory system behavior. This clarity allowed designers and programmers to

quickly identify bottlenecks and fix them. Incremental tuning will always be necessary.
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Rather than reducing how often one has to incrementally tune, architects should focus

instead on reducing the time required to implement an optimization. This dissertation

demonstrates that beyond simplicity, the memory system does not significantly improve

performance or reduce the need for software tuning.

Machines of the future should therefore use resources in a conservative manner. Be-

cause larger processor counts are likely to use more resources less effectively, the pro-

grammer will find more benefit by using a smaller set of the total processors for new or

untested code. After identifying standard parallel algorithms, the programmer will cede a

large portion of his program to standard tools and libraries that make more effective use

of parallel resources. Architects can reduce the tuning process by providing visibility to

software tools so that the programmer can quickly identify key bottlenecks and implement

appropriate machine-specific optimizations.

7.2 Future Work

Today, researchers continue to pursue new multiprocessor architectures. While our work

provides a comprehensive analysis of the entire shared-memory multiprocessor system, we

should not underestimate the ingenuity of future work that might address these problems

in new ways. However, our work exposes some key pitfalls when analyzing and designing

these large-scale machines. Future architects should reflect on these pitfalls encountered

throughout this dissertation. More specific observations and lessons:

• Applications written well for shared memory should perform well on a shared mem-

ory multiprocessor. While applications with poor memory behavior present a more

attractive target for aggressive memory systems, we must guarantee that any new

technique does not penalize applications with natural memory locality. Therefore,

evaluations of new memory system techiniques should include at least one applica-

tion that is written well for their architecture model.

• Some applications will perform poorly even when executed with an aggressive mem-

ory system. Therefore, software technology that identifies and classifies performance

bottlenecks are essential for tuning these applications. Hardware visibility designed

Mark Horowitz
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to assist these tools will cost some occupancy but will eventually provide a larger

performance improvement than a pure hardware solution.

• Separating local and remote control paths reduces unnecessary contention. Local

processors should always have priority access to local memory and never contend

with remote requests that access unshared data.

Programmers of successful large general-purpose multiprocessors will experience the

same benefits of the uniprocessor programming model: machine-independent performance,

a simple correctness programming model, transparent view of where key bottlenecks lie

and an effective tool chain for optimizing applications. The exciting challenge for future

multiprocessor researchers is providing these benefits while keeping the memory system

simple.

Mark Horowitz
Pencil



Appendix A

Interconnection Network Revisited

The original FLASH interconnection network topology [35] called for a hyper-cube mesh

pattern similar to the Origin 2000. The original designers chose this topology because the

components, mainly the CrayLink cables and the SGI SPIDER [19] routers, were iden-

tical in both machines. FLASH research focuses primarily on the design of the memory

controller. Therefore, leveraging a commercially available network eliminated the need to

design and test a high-speed network locally.

Figure A.1: 16-Processor SGI Origin and original FLASH interconnection network topology

Figure A.1 illustrates the topology of the SGI Origin 2000. Boxes labeledA through

O represent processors. Boxes numbered0 through3 denote SGI SPIDER routers. Four

processing nodes connect to each router across two CrayLink cables because each node
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contains two physical processors. Each SPIDER router has 6 ports. The 16-processor

Origin only requires 4 ports per router. More information describing the topology of larger

SGI Origin 2000 systems can be found in [38].

The original 8-processor FLASH interconnection topology looks identical to the 16-

processor SGI Origin 2000 system because a FLASH node contains only one processor.

However, unlike the Origin, the original FLASH interconnection network topology dead-

locks. This fact surprised the FLASH designers because larger Origin systems remain

deadlock-free. An obvious question arises: how is the Origin able to maintain a deadlock-

free network with the same interconnection network topology as the original FLASH ma-

chine?

The key assumption that hid deadlock in the FLASH network from the designers was

that the use of virtual channels eliminated the need to manage physical network deadlock.

Messages are sent between MAGICs on each node through the interconnection network.

The interconnection network topology must be physically deadlock-free because the SPI-

DER routers do not allow messages to switch virtual channels when transmitting through

the interconnection network.

Developing a deadlock-free coherence protocol requires the use of at least two inde-

pendent networks [39]. The SPIDER router time-multiplexes four virtual channels [16] for

each link to give the appearance of four independent networks for each processor without

requiring the router to physically implement each network. MAGIC maintains separate

hardware for each virtual network because it buffers incoming and outgoing requests for

each virtual channel. Therefore, messages that arrive at any MAGIC terminate deadlock

cycles. For example, MAGIC sends request and reply messages across separate virtual

networks, so a node cannot deadlock with itself by sending requests to a remote node.

In the basic Origin topology a cycle occurs if processorA requests data from node

K, processorF requests data from nodeP, processorK requests data from nodeA and

processorP requests data from nodeF. If the messages are all routed through the network

in a clockwise manner, a cycle occurs when all links0 to 1, 1 to 2, 2 to 3, and3 to 0 block

incoming requests. If the messages all route through the network in a counter-clockwise

fashion, the cycle occurs in the opposite direction.

The original FLASH and the Origin topology can be made deadlock-free by redirecting

routes to break cycles. Table A.1 shows deadlock and deadlock-free route tables on the
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Table A.1: Routing Tables for 8-processor FLASH machine
Source Destination Hop 1 Hop 2 Hop 3

Deadlock Route Table
A,B E,F 0 1 2
C,D G,H 1 2 3
E,F A,B 2 3 0
G,H C,D 3 0 1

Deadlock-Free Route Table
A,B E,F 0 1 2
C,D G,H 1 2 3
E,F A,B 2 3 0
G,H C,D 3 2 1

original FLASH topology. In the deadlocked routing table, all routes travel clockwise

around the routers. The fix requires re-routing messages from nodesGandH to nodesC

andD in the counter-clockwise direction, increasing the bandwidth requirements of the link

between routers0 and1. ProcessorsE, F, GandHrequire the physical link between routers

2 and3 to communicate with each other, but this link requires less bandwidth overall.

We assume that the Origin designers were aware of this network deadlock problem

and made adjustments to the SPIDER routing tables to remove deadlock cycles. A 32

processor FLASH machine boots with the original topology once the equivalent routing

table adjustments are made.

As processor counts increase, additional cycles emerge between new additional nodes

requiring similar route adjustments. On Origin, under-loaded links can be used to break

additional cycles, which balances each link’s bandwidth requirements evenly. An Ori-

gin machine with more than 64 processor (32 nodes and 16 routers) organizes nodes into

metacubesof 32 processors each in a bristled hyper-cube topology. Inter-metacube com-

munication uses extra metacube routers to break additional cycles. Larger Origin machines

require this topology switch because there are not enough routers to extend the basic hyper-

cube topology to arbitrary sizes without introducing deadlock.

The FLASH machine lacks these inter-metacube routers due to project budget con-

straints that limited the amount of routers. Without these additional routers, building a

FLASH machine with the Origin bristled hyper-cube topology is not possible without in-

troducing network deadlock. However, we can build a 64-processor FLASH machine by
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Figure A.2: 8-Processor FLASH interconnection network topology

switching to a double-mesh routing topology, illustrated in Figure A.2.

Four FLASH nodes connect to the same SPIDER router to form a cluster. This router

is called thecluster router. The remaining 2 ports on the cluster router link the nodes with

mesh routers. Routers0 and 2 form clusters and routers1 and 3 provide inter-cluster

communication.

The new FLASH topology breaks cycles by maintaining separate request and reply

routes. The deadlock-free topology appears to have an identical loop present in the original

topology. However, internally the cluster routers do not route messages between mesh

routers. Figure A.3 illustrates that internal cluster router connections do not physically

link the mesh routers1 and3. Therefore, messages that arrive from mesh router1 remain

independent of messages that leave through mesh router3 and vice versa.

Figure A.4 illustrates a 16-processor FLASH metacube. Boxes labeled “N” represent

a node comprised of the R10k processor, MAGIC and main memory. Boxes marked “C”

represent cluster routers that connect 4 processors together. The “M” boxes denote mesh

routers that connect clusters with other clusters on local or remote metacubes.

Figure A.5 illustrates how inter-metacube ports link together to form the 64-processor

FLASH machine. The figure illustrates that bisection bandwidth between metacubes 0 and

1 is twice the bisection bandwidth between metacubes 0 and 2 or 0 and 3.

The FLASH topology shares some remote latency characteristics with newer clustered
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Figure A.3: Internal connections in FLASH cluster router

SMP systems, which have fast access to small-subset of nodes on the local SMP and longer

latencies to remote SMPs. Local miss requests are always faster than remote requests.

Remote requests that fall locally within the same cluster are approximately 2 times the

local cache miss latency of 600ns. Remote requests on the local metacube are close to 3

times the local cache miss latency, and remote metacube requests cost almost 4 times the

local cache miss latency. Therefore, remote requests latencies can improve remote request

latencies by a factor of 2 if some remote requests are placed on a local cluster.
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Figure A.4: 16-Processor FLASH metacube

Figure A.5: 64-Processor FLASH interconnection topology



Bibliography

[1] SpecOMP reported results page. Website.http://www.spec.org/hpg/omp/

results/ompl2001.html .

[2] G. Abandah and E. Davidson. Effects of Architectural and Technological Advances

on the HP/Convex Exemplar’s Memory and Communication Performance. InPro-

ceedings of the 25th International Symposium on Computer Architecture, pages 318–

329, June-July 1998.

[3] A. Agarwal, R. Bianchini, D. Chaiken, et al. The MIT Alewife Machine: Architec-

ture and Performance. InIn Proceedings of the 22nd International Symposium on

Computer Architecture, pages 2–13, 1995.

[4] S. Amarasinghe, J. Anderson, M. Lam, and C.W. Tseng. An Overview of the SUIF

Compiler for Scalable Parallel Machines. InProceedings of the Seventh SIAM Con-

ference on parallel Processing for Scientific Computing, February 1995.

[5] OpenMP Architecture Review Board. OpenMP: A Proposed Industry Standard API

for Shared Memory Programming. Website, October 1997.http://www.openmp.

org .

[6] ASC Q: Advanced Simulation and Computing Program. Website, 2004.http://

www.lanl.gov/asci/ .

[7] V. Aslot and R. Eigenmann. Performance Characteristics of the Spec OMP2001

Benchmarks. InProceedings of the European Workshop on OpenMP (EWOMP2001),

2001.

133



134 BIBLIOGRAPHY

[8] V. Aslot et al. Specomp: A New Benchmark Suite for Measuring Parallel Computer

Performance. InProceedings of Workshop on OpenMP Applications and Tools, Lec-

ture Notes in Computer Science, pages 1–10, July 2001.

[9] G.H. Barnes, R.M.Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes. The

Illiac IV Computer. In IEEE Transactions on Computers, volumeC-17(8), pages

746–757, August 1968.

[10] A. Birrell. An Introduction to Programming with Threads.Digital SRC Research

Report, (35), January 1989.

[11] W. Blume et al. Polaris: The Next Generation in Parallelizing Compilers. InProceed-

ings of the Seventh Worskshop on Languages and Compilers for Parallel Computing,

pages 10.1–10.18, August 1994.

[12] Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, and David A. Wood. Paging

tradeoffs in distributed-shared-memory multiprocessors.The Journal of Supercom-

puting, 10(1):87–104, November 1994.

[13] L. Censier and P. Feautrier. A New Solution to Coherence Problems in Multicache

Systems. InIEEE Transactions on Computers C-27, pages 1112–1118, December

1978.

[14] Chris Harris Cse. Wildfire: A scalable path for SMPs. InHPCA, pages 172–181,

1999.

[15] Z. Cvetanovic. Performance analysis of the alpha 21364-based hp gs1280 multipro-

cessor. InProceedings of the 30th International Symposium on Computer Architec-

ture, pages 218–229, June 2003.

[16] W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multiprocessor In-

terconnection Networks. InIEEE Transactions on Computers, volume36(5), pages

547–553, May 1987.

[17] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G. W. Stewart. Linpack users’ guide. In

SIAM, 1979.



BIBLIOGRAPHY 135

[18] The Earth Simulator Center: Japan Marine Science and Technology Center. Website,

2004.http://www.es.jamstec.go.jp/ .

[19] M. Galles et al. Spider: A High-speed Network Interconnect. InIEEE Micro, volume

17(1), pages 34–39, January-February 1997.

[20] K. Gharachorloo.Memory Consistency Models for Shared-Memory Multiprocessors.

PhD thesis, Stanford University, 1995.

[21] J. Gibson.Memory Profiling on Shared-Memory Multiprocessors. PhD thesis, Stan-

ford University, 2002.

[22] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the Simulation Loop. In

Proceedings of the 9th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 49–58, November 2000.

[23] A. Gottlieb et al. The NYU Ultracomputer – Designing a MIMD, Shared-Memory

Parallel Machine. InProceedings of the 9th International Symposium on Computer

Architecture, pages 27–42, April 1982.

[24] R. Grindley et al. The NUMAchine Multiprocessor. InInternational Conference on

Parallel Processing, pages 487–496, 2000.

[25] A. Gupta, W.D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements

for Scalable Directory-Based Cache Coherence Schemes. InProceedings of the In-

ternational Conference on Parallel Programming, pages 312–321, August 1990.

[26] M. Heinrich. The Performance and Scalability of Distributed Shared Memory Cache

Coherence Protocols. PhD thesis, Stanford University, 1998.

[27] M. Heinrich et al. The Performance Impact of Flexibility in the Stanford FLASH

Multiprocessor. InProceedings of the Sixth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 274–285,

October 1994.

[28] J. Hennessy, M. Heinrich, and A. Gupta. Cache-Coherent Distributed Shared Mem-

ory: Perspectives on Its Development and Future Challenges.Proceedings of the

IEEE, Special Issue on Distributed Shared Memory, 87(3):418–429, 1999.



136 BIBLIOGRAPHY

[29] D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed-Directory Scheme:

Scalable Coherent Interface. InIEEE Computer, volume23(6), pages 74–77, 1990.

[30] J. P. Jones and B. Nitzberg. Scheduling for Parallel Supercomputing: A Historical

Perspective of Achievable Utilization. In Dror G. Feitelson and Larry Rudolph, edi-

tors,Job Scheduling Strategies for Parallel Processing, pages 1–16. Springer-Verlag,

1999.

[31] S. Kapil. Gemini: A Power-efficient Chip Multi-Threaded (CMT) UltraSPARC Pro-

cessor. InHot Chips 15, August 2003.

[32] B. Kingsbury. The network queuing system, 1985. Sterling Software, Palo Alto.

[33] D. E. Knuth. InThe Art of Computer Programming, Volume 2, Third Edition, page

145, 1997.

[34] P. Kongetiraer. A 32-way Multithreaded SPARC processor. InHot Chips 16, August

2004.

[35] J. Kuskin. The FLASH Multiprocessor: Designing a Flexible and Scalable System.

PhD thesis, Stanford University, 1997.

[36] J. Kuskin et al. The Stanford FLASH Multiprocessor. InProceedings of the 21st

International Symposium on Computer Architecture, pages 302–313, April 1994.

[37] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Mul-

tiprocess Programs. InIEEE Transactions on Computers, volumeC-28(9), pages

241–248, September 1979.

[38] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In

Proceedings of the 24th International Symposium on Computer Architecture, pages

241–251, June 1997.

[39] D. Lenoski, J. Laudon, K. Gharachorloo, et al. The Stanford DASH Multiprocessor.

In IEEE Computer, volume25(3), pages 63–79, March 1992.



BIBLIOGRAPHY 137

[40] T. Lowett and R. Clapp. STiNG: A CCNUMA Compute System for the Commer-

ical Marketplace. InProceedings of the 23nd Annual International Symposium on

Computer Architecture, pages 308–317, 1996.

[41] M. Martin, M. Hill, D. Sorin, and D. Wood. Using Destination-Set Prediction to

Improve the Latency/Bandwidth Tradeoff in Shared-Memory Multiprocessors. In

Proceedings of the 30th International Symposium on Computer Architecture, pages

182–193, June 2003.

[42] M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Performance and

Correctness. InProceedings of the 30th International Symposium on Computer Ar-

chitecture, pages 182–193, June 2003.

[43] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing Memory System

Bottlenecks in Programs. InProceedings of the 1992 ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling of Computer Systems, pages 1–12,

June 1992.

[44] E. Miya. Multiprocessor/Distributed Processing Bibliography. Website, April

2004. http://liinwww.ira.uka.de/bibliography/Parallel/Eugene/

index.html .

[45] A.-T. Nguyen and J. Torrellas. Design Trade-Offs in High-Throughput Coherence

Controllers. InProceedings of the 12th International Conference on Parallel Archi-

tectures and Compilation Techniques, 2003.

[46] K. Olukotun et al. The Case for a Single-Chip Multiprocessor. October 1996.

[47] K. Otsuka and T. Watanabe. The Whole Earth Simulator: The World’s Fastest Super-

computer. InHot Chips 15, August 2003.

[48] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. InProceedings

of the 3rd International Conference on Distributed Computing Systems, pages 22–30,

October 1982.



138 BIBLIOGRAPHY

[49] M. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual par-

allelization. InIn the Proceedings of ACM SIGPLAN 2003 Symposium on Principles

and Practice of Parallel Programming, June 2003.

[50] U. Prestor. Snbench found online at. Website.http://www.cs.utah.edu/

∼uros/snbench .

[51] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon: User-Level Shared

Memory. InProceedings of the 21th Annual International Symposium on Computer

Architecture, pages 325–337, April 1994.

[52] A. Saulsbury, T. Wilkinson, J. B. Carter, and A. Landin. An Argument for Simple

COMA. In Proceedings of the 1st IEEE Symposium on High-Performance Computer

Architecture, pages 276–285, January 1995.

[53] J.T. Schwartz. Ultracomputers. InACM Transactions on Programming Languages

and Systems, volume 2, pages 484–521, October 1980.

[54] S. Scott. Synchronization and Communication in the Cray T3-E Multiprocessor. In

Proceedings of the 7th International Conference on Architectural Support for Pro-

gramming Languages and Operating System, pages 26–36, 1996.

[55] R. Simoni. Cache Coherence Directories For Scalable Multiprocessors. PhD thesis,

Stanford University, 1992.

[56] D. Sorin et al. Analytic Evaluation of Shared-Memory Systems with ILP Processors.

In Proceedings of the 25th International Symposium on Computer Architecture, pages

380–391, June-July 1998.

[57] V. Soundararajan et al. Flexible Use of Memory for Replication/Migration in Cache-

Coherent DSM Multiprocessors. InProceedings of the 25th International Symposium

on Computer Architecture, pages 342–355, June-July 1998.

[58] Linux @ Livermore: Thunder. Website, 2004.http://www.llnl.gov/linux/

thunder .

[59] Top 500 Supercomputer Sites. Website, 2004.http://www.top500.org/ .



BIBLIOGRAPHY 139

[60] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the performance of cache-affinity

scheduling in shared-memory multiprocessors.Journal of Parallel and Distributed

Computing, 24(2):139–151, 1995.

[61] R. Wilson and other. SUIF: An Infrastructure for Research on Parallelizing and Op-

timizing Compilters. InACM SIGPLAN Notices, volume29(12), pages 31–37, De-

cember 1994.

[62] S. Woo et al. The SPLASH-2 Programs: Characterization and Methodological Con-

siderations. InProceedings of the 22nd International Symposium on Computer Ar-

chitecture, pages 24–36, June 1995.




