
Hardware Implementation of Math Module based on 

CORDIC Algorithm using FPGA  
 

 

 

 

Muhammad Nasir Ibrahim 
Faculty of Electrical Engineering, 

Universiti Teknologi Malaysia, 

81310 Skudai, Johor, Malaysia. 

 

Mariani Idroas 
 Faculty of Petroleum and Renewable Energy Engineering 

Universiti Teknologi Malaysia,  

81310 Skudai, Johor, Malaysia. 

 

Zuraimi Yahya 
Faculty of Electrical Engineering, 

Universiti Teknologi Malaysia, 

81310 Skudai, Johor, Malaysia 

 

Chen Kean Tack 
Faculty of Electrical Engineering, 

Universiti Teknologi Malaysia, 

81310 Skudai, Johor, Malaysia 

 

Siti Noormaya Bilmas 
Faculty of Electrical Engineering, 

Universiti Teknologi Malaysia, 

81310 Skudai, Johor, Malaysia 

 

 

 

Abstract— This paper discusses the implementation of math 

hardware module based on CORDIC algorithm to solve 

trigonometry, hyperbolic and exponential function on FPGA. 

CORDIC is one of the hardware efficient and iteration based 

algorithms that is used to implement various transcendental 

functions such as trigonometry, hyperbolic, exponential and so 

forth. In addition, by using this algorithm, the hardware 

requirement and cost are less as only shift registers, adders and 

ROM are required. Thus, the design is implemented on FPGA 

since it provides a versatile and inexpensive way for 

implementation. The design is then further interfaced with 4x4 

matrix keypad and 16x2 character LCD to build a simple math 

hardware module for real time application. The coding of 

algorithm was written in Verilog HDL and the verification is 

done firstly by using simulation results of the ModelSim and then 

using the implementation on Altera DE1 board with the design 

interfaced with keypad and LCD to display the results. 

Keywords— FPGA, CORDIC, 4x4 matrix keypad, 16x2 

character LCD, Verilog HDL. 

I.  Introduction  
With the state-of-the-art of the computer technology, the 

calculation operations of the processor must be always done in 

fast and precise way to avoid system crash or error. Therefore, 

it is important to implement a math module to solve 

transcendental functions of high precision with suitable 

hardware cost as well as to achieve high performance for the 

processor. Thus, the coordinate rotational digital computer 

(CORDIC) algorithm is used to achieve this target.   

The Coordinate Rotational DIgital Computer (CORDIC)  

 

 

 

algorithm was first proposed by Jack E. Volder [2] in 1959 

and then modified by J.S Walter [3] in 1971 to be a unified or 

more generalized algorithm. Thus, this algorithm is an 

iterative algorithm for the calculation of rotation of a two 

dimensional vector in linear, circular and hyperbolic 

coordinate systems. It is specially developed for real time 

digital computers where the computations mainly related to 

transcendental function such as trigonometry, hyperbolic 

[4][5], exponential [4] and logarithm. It provides advantages 

of low cost, less hardware requirements and simple for 

hardware implementation. Thus, the applications of this 

algorithm include digital signal and image processing 

especially for image rotation system [1]. Basically, this 

algorithm uses simple shift, add, subtract and look-up 

operations to perform computation in hardware. 

In this paper, the design process of a simple CORDIC 

math hardware module and its interface with 4x4 matrix 

keypad and 16x2 character LCD was presented.  

II. Methodology 
To implement this module, CORDIC algorithm as well as 

its architecture must be fully understood. After that, the 

implementation was started by developing the design using 

Verilog code to model the CORDIC architecture. At this stage, 

the simulation was made using ModelSim to check the 

functionality of the modelled design. Then, the interface 

circuit was introduced into the design to display the correct 

results on LCD for further validation.  

 



A. CORDIC Algorithm and Architechture 

CORDIC algorithm uses simple shift, add, subtract and 
look-up operations to perform computation in hardware. 
Therefore, to design it, WE need some shift registers, adders, 
subtractors and ROMs. Generally, this algorithm is derived 
from the rotational transform equations as shown in equation 
(1) and (2). 

                                   (1) 

            (2) 

Thus, the simplified equations as shown below: 

  (3) 

  (4) 

By assuming that  where i is the number of 

iteration, then the multiplication in the equation (3) and (4) 

replaced with simple shift operation. Therefore, the iteration 

equation becomes as shown in equation (5) and (6). 

  (5) 

  (6) 

,  

After that, if the scaling factor,  is removed, the resulted 

equation will only consist of simple shift and add operation 

only. Thus, the value of  approaches 0.607252935 as the 

number of iteration approaches infinity. Therefore, the finalize 

iteration equation for CORDIC algorithm is shown in equation 

(7), (8) and (9). 

   (7) 

   (8) 

  (9) 

 

Since the equation above can only solve for trigonometric 

function, J.S Walter [3] modified the original CORDIC 

equation into a unified CORDIC algorithm. It generalized 

several transcendental functions into a single algorithm. Thus, 

this algorithm defines a set of iteration equations to solve for 

trigonometry, hyperbolic and exponential functions by using 

the same hardware resources. The modified iteration equations 

are shown in the equation (10), (11) and (12). 

  (10) 

   (11) 

   (12) 

where m is the decision factor for the coordinate system as 
shown in the following table. 

TABLE I.  COORDINATE SYSTEM OF UNIFIED CORDIC AND ITS 

CORRESPONDING E(I) FUNCTION [3] 

m Coordinate system Value of e(i) 

1 Circular 
 

0 Linear 
 

-1 Hyperbolic 
 

TABLE II.  UNIFIED CORDIC IN ROTATIONAL MODE [3] 

m Rotational Mode 

= sign( ),  rotate towards 0 

1 For cos and sin, set X0 = 1/K, Y0 = 0 

where K = 1.646760258121.. 

,  

 =  

0 For multiplication, set Y0 = 0 

,  

-1 For cosh and sinh, set X0 = 1/K’, Y0 = 0 

where K’ = 0.8281339907.. 

,  

 =  

=  

Then, by introducing initial values for X and Y and 

providing the input to Z, the CORDIC operation is started and 

compute the values of X, Y and Z for the next iteration based 

on the equations (10), (11) and (12) and continue until specific 

number of iteration reaches. 

 Therefore, the basic architecture of the CORDIC algorithm 
is shown in Figure 1. 

 



 

Fig. 1. The basic architecture of CORDIC algorithm for one iteration 

B. CORDIC Architecture Modelling by Verilog HDL 

By using Quartus II software with Verilog HDL coding 

style, the CORDIC architecture as shown in Figure 1 can be 

modelled and implemented. In this paper, we implemented 

CORDIC algorithm to solve trigonometry, hyperbolic and 

exponential. Thus, the basic steps to code the CORDIC for 

trigonometry and hyperbolic functions are shown below: 

(1) Set the value of shifted X (X_shr) to a value after shifting 

X right by i places.  

(2) Set the value of shifted Y (Y_shr) to a value after shifting 

Y right by i places.  

(3) Set the value of delta Z (Z_shr) from the values in LUT 

and set the value of m according to the equations as 

shown in Table 1 (m = 1 for trigonometry and m = -1 for 

hyperbolic). 

(4) Determine the rotation direction and the values of X, Y 

and Z for next iteration. Two cases to determine: 

(i) If Z >= 0, rotate the angle in anti-clockwise direction 

for the next iteration. Thus, set X to value of X – 

m*dY, set Y to value of Y + dX and set Z to value of 

Z – dZ in order to update the values for X, Y and Z. 

(ii) If Z < 0, rotate the angle in clockwise direction for 

the next iteration. Thus, set X to value of X + m*dY, 

set Y to value of Y – dX, set Z to value of Z + dZ in 

order to update the values for X, Y, and Z. 

 

Then, to evaluate the value of exponential function [4], we 

use an adder to connect the output of X and Y from hyperbolic 

mode (m = -1) after n iteration to perform addition between 

these values since e
x
 = cosh x + sinh x. The block diagram is 

shown in Figure 2. 

 

 
Fig. 2. Block diagram of the exponential function determination 

 

To improve mathematical throughput or increase the 

execution rate, calculations for fractional values can be 

performed by using unsigned fixed-point representations or 

two’s complement signed fixed-point representations [8]. 

Thus, it requires the programmer to create a virtual decimal 

place for a given length of data. For this purposes, Q format 

can be used to realize it. The convention is as shown in the 

following: 

 

Q [m].[n]                                     (13) 

 

where  

 

m = number of integer bits (including the sign bit for signed 

number) 

n = number of fractional bits 

m+n = Total bits of the representation 

        = number of integer bits + number of fractional bits 

 

 However, to have higher precision for the output, the 

IEEE-754 single precision 32-bits floating point format was 

used to represent the floating point number which converted 

from Q-format. According to IEEE-754 standard, the data for 

this format has 1 bit of sign bit (S), 8 bits of biased exponent 

(E) and 23 bits of mantissa (M) as shown in Figure 3. 

 
Fig. 3. IEEE-754 Single Precision Formats [7] 

Thus, this format represented a floating point number based on 

following equations: 

 
 

where 

 
 

S = Sign bit (1 or 0) 

E = Biased exponent (0 to 255) 

Bias = 127 

 

C. Interface Circuit Designs 

 After the CORDIC algorithm is modelled, we introduced 

an external interface circuit which consist of 4x4 keypad and 

16x2 character LCD to the design for real time application. 

Thus, we have soldered a simple circuit for these interface on 

a donut board and then connected to the GPIO ports of Altera 

DE1 board for interfacing. After that, to interface keypad and 

LCD with the Altera FPGA board, we need to design the 

controllers using Verilog HDL to control the interface 

operations of these peripherals. 

 



1)  4x4 Matrix Keypad Interface 

To interface the keypad with DE1 board, the rows and 

columns pins are connected to the GPIO pins of the DE1 

board and make the proper pin assignment. Then, a keypad 

scanner was needed to scan which button is pressed. Thus, we 

need to scan it column by column and row by row every 

certain short period. The row pins should be connected to 

input port and then the column pins are connected to the 

output port. At the same time, the row pins need to pull up or 

pull down with resister to avoid floating case happen. Thus, 

the basic block diagram for 4x4 matrix keypad is shown in 

Figure 4. In addition, a de-bouncer was also required to filter 

out the glitches associated with switch transitions. Thus, we 

used a timer to generate a one-clock-cycle enable tick every 

10ms and then introducing finite state machine (FSM) to keep 

track of whether the input is stabilized. 

 

Fig. 4. Block diagram of Matrix Keypad 

2)  LCD Interface 

To interface character LCD module with DE1 board, the 

LCD pins are connected to GPIO pins in the DE1 board and 

then make proper pin assignment. Then, the specific command 

data in 1 byte as shown in Table 3 was sent to the LCD to 

perform certain operations in command mode (RS = 0) such as 

clear display, set entry mode, set display address. Meanwhile, 

to write specific characters or symbols on the LCD, the 

operation is made in write mode (RS = 1). Then, the ASCll 

code for several characters and symbols were sent to the LCD 

one by one at each address of LCD. 

TABLE III.  COMMON COMMAND DATA 

Command data  

(in binary) 

Descriptions 

00111000 Function Set for 8 bits data transfer and 2 line 

display 

00001111 Display On, without cursor   

00000001 Clear Screen 

00000110 Entry mode set, increment cursor automatically 
after each character was displayed 

00000010 Return the cursor to home address 

 

3)  Overall Design Architecture 

Finally, we combined all the designs and make it as a 

system to generate the output results on LCD interface based 

on the selection of the user. Thus, the overall design 

architecture is shown in Figure 5. 

 
 

Fig. 5. Overall design architecture 

III. Result and analysis 
 

A. Simulation Result 

The output waveform for CORDIC module is shown in 

Figure 6. 

 
Fig. 6. Simulation result of CORDIC module 

 

Figure 6 shows the output waveform generated by 

CORDIC module and its values were tabulated in Table 4. It 

performs the CORDIC iteration calculations and gives the 

results of cos, sin, cosh, sinh and exp. The input data are 

represented in Q-format and the output data are represented in 

IEEE-754 single precision floating point format. Meanwhile, 

this design requires about 18 clock cycles or latency for 

computation as shown in Figure 6 due to iteration calculations 

in the CORDIC algorithm.  

TABLE IV.  THE RESULTS WITH ITS FORMAT TYPE AND DECIMAL VALUES 

Signal 

Name 

Output (in hex 

form) 

Format Decimal 

values 

angle EAAAAAAB Q0.32 unsigned 330 degree 

hyper_in 20000000 Q2.30 unsigned 0.5 

cos 3F5DB600 IEEE-754 32-bits 0.86605835 

sin BF000200 IEEE-754 32-bits -0.5000305 

cosh BF909F00 IEEE-754 

32-bits 

1.1298523 

sinh 3F05A800 IEEE-754 32-bits 0.5220947 

exp 3FD37300 IEEE-754 32-bits 1.651947 

 

 Therefore, if compare the results with the actual answers 

calculated by scientific calculator, the results of my design 

show the precision of approximately 2-4 decimal places and 

above. Thus, it shows that the results are correct but it might 



need further improvement in precision especially for 

hyperbolic part. 

 

B. LCD Results from Interface Circuit 

Based on the CORDIC module, we further interface with 

an I/O interface circuit to display the result so that we can 

check the results more easily without tracing from the 

simulation waveform. Thus, Figure 7 shows the completed I/O 

interface circuit that has been done on the donut board. 

 

 

 

 

 

Fig. 7. I/O interface circuit on donut board with working LCD display 

By using this module, we display the results in 

hexadecimal form that converted from the binary value of 32-

bits single precision IEEE-754 floating point format. Thus, by 

introducing some inputs from the CORDIC module as 

discussed in previous section where angle = 330
o
 and hyper_in 

= 0.5, the outputs on LCD displays for cos, sin, cosh, sinh and 

exp were recorded as shown in Table 5. 

TABLE V.  RESULTS COLLECTED FROM LCD DISPLAY OUTPUTS 

Output Functions Outputs on LCD displays (in hex form) 

cos 0x3F5DB600 

sin 0xBF000200 

cosh 0x3F909F00 

sinh 0x3F05A800 

exp 0x3FD37300 

Based on the results on Table 5, since the values that 

displayed on the LCD were totally the same with the 

simulation values, it means that the interface circuit is working 

and the results were verified. 

IV. Conclusions 
Based on the results obtained from the LCD display of the 

interface circuit, it shows the same results as obtained from the 

simulated results but the number was converted to 

hexadecimal form due to insufficient spaces on LCD to 

display the 32 bits binary number in single line. Thus, the 

numbers that are displayed on LCD were shorter and easier to 

read. So, we can use this circuit to test the functionality of the 

design without referring to the simulation waveform. 

 

In a nutshell, we successfully design a math hardware 

modules based on CORDIC algorithm to solve trigonometric, 

hyperbolic and exponential with an acceptable precision and 

implement on Altera DE1 board with the simple working I/O 

interface circuit.  

 

References 
[1] D. Yi-Jun, B. Zhuo, ―CORDIC algorithm based on FPGA,‖ Journal of 

Shanghai University, vol. 15, no. 4, pp 304-409, Aug 2011. 

[2] J. E. Volder, ―The CORDIC trigonometric computing technique,‖ IRE 
Trans. Electronic Computers, vol. EC-8, no. 3, pp. 330-334, Sept. 1959. 

[3] J. S. Walther, ―A unified algorithm for elementary functions,‖ in AFIPS 
Spring Joint Computer Conference, vol. 38, pp 379-85, 1971. 

[4] Boudabous, A., Ghozzi, F., Kharrat, M.W., Masmoudi, N., 

―Implementation of hyperbolic functions using CORDIC algorithm,‖ 
The 16th International Conference on, pp.738, 741, 6-8 Dec. 2004. 

[5] Shrugal V., Nisha S., Richa U., ―Hardware Implementation Of 
Hyperbolic Tan Using Cordic On FPGA,‖ International Journal of 

Engineering Research and Application, vol. 3, no. 2, pp. 696-699, March 

– April 2013. 

[6] Tanya V., David E., Sven K., Martin S., ―Floating-point Mathematical 

Co-Processor for a Single-Chip On-board Computer,‖ Surrey Space 

Centre, School of Electronics and Physical Sciences, University of 
Surrey, Guildford, UK. 

[7] Meenu T., Karan G., Sharmelee T., ―Performance analysis of Floating 
point adder using Sequential Processing on Reconfigurable hardware,‖ 

International Journal of Engineering Research and Application, vol. 2, 

no. 3, pp. 1226-1229, May-Jun 2012. 

[8] Chun T. E., Peter Y.K., George A, ―Dual Fixed-Point: An Efficient 

Alternative to Floating-Point Computation,‖ International Conference 
and Field Programmable Logic, pp. 200-208, 2004. 

 

 

 


