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This paper surveys the design of embedded computer systems, 
which use software running on programmable computers to im- 
plement system functions. Creating an embedded computer system 
which meets its performance, cost, and design time goals is a 
hardware-software co-design p r o b l e w h e  design of the hard- 
ware and software components influence each other. This paper 
emphasizes a historical approach to show the relationships be- 
tween well-understood design problems and the as-yet unsolved 
problems in co-design. We describe the relationship between hard- 
ware and sofhvare architecture in the early stages of embedded 
system design. We describe analysis techniques for hardware and 
software relevant to the architectural choices required for hard- 
ware-software co-design. We also describe design and synthesis 
techniques for co-design and related problems. 

I. INTRODUCTION 
This paper surveys the state of the art in the design 

of embedded computer systems products which are im- 
plemented using programmable instruction-set processors. 
While embedded systems range from microwave ovens 
to aircraft-control systems, there are design techniques 
common to these disparate applications. Furthermore, em- 
bedded system design often requires techniques somewhat 
different than those used for either the design of general- 
purpose computers or application software running on those 
machines. Embedded computing is unique because it is a 
hardware-software co-design problem-the hardware and 
software must be designed together to make sure that the 
implementation not only functions properly but also meets 
performance, cost, and reliability goals. 

While a great deal of research has addressed design 
methods for software and for hardware, not as much is 
known about the joint design of hardware and software. 
Microprocessors, and in particular high-performance 32-bit 
microprocessors cheap enough to use in consumer prod- 
ucts, have stimulated research in co-design for embedded 
systems. So long as embedded processors were small and 
executed only a few hundred bytes of code, hand-crafted 
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techniques were sufficient to satisfy functional and perfor- 
mance goals in a reasonable amount of time. However, 
modem embedded systems may include megabytes of code 
and run at high speeds to meet tight performance deadlines. 
In such large projects, building a machine and seeing 
whether it works is no longer satisfactory. To be able to 
continue to make use of the ever-higher performance CPU’s 
made possible by Moore’s Law (which predicts that the 
number of transistors per chip doubles every year), we 
must develop new design methodologies and algorithms 
which allow designers to predict implementation costs, 
incrementally refine a design over multiple levels of 
abstraction, and create a working first implementation. 

We will use the embedded system design process as a 
framework for the study of co-design. The goal of this 
paper is to identify technologies which are important to 
co-design and to provide examples which illustrate their 
role in co-design. We must, due to space limitations, ignore 
certain topics, such as the design of fault-tolerant systems 
and verification. Our description of the literature on covered 
topics is also meant to be illustrative, not encyclopedic. In 
spite of these limitations, we hope that the juxtaposition 
of topics presented here will help to illustrate both what is 
known about co-design and what remains to be done. 

The next section surveys the uses of embedded comput- 
ers and the embedded system design process. Section 111 
describes performance analysis of hardware and software 
elements. Section IV surveys techniques for the design of 
hardware-software systems. 

11. EMBEDDED SYSTEMS AND SYSTEM DESIGN 

A. Characteristics of Embedded Systems 

The earliest embedded systems were banking and trans- 
action processing systems running on mainframes and ar- 
rays of disks. The design of such a system entails hard- 
ware-software co-design: given the expected number and 
type of transactions to be made in a day, a hardware 
configuration must be chosen that will support the expected 
traffic and a software design must be created to efficiently 
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make use of that hardware. Because early transaction pro- 
cessing systems were built from very expensive equipment, 
they were used for relatively few but important applica- 
tions. However, the advent of microprocessors has made 
the average embedded system very inexpensive, pushing 
microprocessor-based embedded systems into many new 
application areas. When computers were used for only 
a few types of applications, design techniques could be 
developed specific to those applications. Cusumano [ 161 
documented the labor-intensive techniques used by Japan- 
ese computer system manufacturers to build mainframe- 
and minicomputer-based systems for industrial automation, 
banking, and other capital-intensive applications. When the 
hardware is expensive, it is easier to justify large personnel 
budgets to design, maintain, and upgrade embedded soft- 
ware. When microprocessors are used to create specialized, 
low-cost products, engineering costs must be reduced to 
a level commensurate with the cost of the underlying 
hardware. Now that microprocessors are used in so many 
different areas, we need a science of embedded system 
design which can be applied to previously unforeseen 
application areas. 

Because microprocessors can be used in such a wide 
range of products, embedded systems may need to meet 
widely divergent criteria. Examples of embedded systems 
include: 

simple appliances, such as microwave ovens, where 
the microprocessor provides a friendly interface and 
advanced features; 
an appliance for a computationally intensive task, such 
as laser printing; 
a hand-held device, such as a cellular phone, for which 
power consumption and size are critical but digital 
signal processing and other sophisticated tasks must 
be performed; 
an industrial controller in a factory, for which reliabil- 
ity, maintainability, and ease of programmability are 
often concems; 
a safety-critical controller, such as an anti-lock brake 
controller in a car or an autopilot. 

Most readers would agree that each of these examples 
is an embedded computing system, but a comprehensive 
definition of embedded computing has not yet achieved 
wide acceptance. There are clearly examples which may 
or may not fit varying definitions of a system. For exam- 
ple, many industrial and scientific control applications are 
implemented on PC’s. Since these applications are dedi- 
cated, many (though not all) would consider such systems 
embedded. But is a PC used solely to run a spreadsheet 
in an embedded computing system? Is a personal digital 
assistant (PDA) which uses the same microprocessor and 
runs the same spreadsheet software an embedded computer? 
It is difficult to come up with a simple definition which 
meets everyone’s intuitive notion of embedded computing. 

Different applications place primary importance on dif- 
ferent factors: design time, manufacturing cost, modifia- 
bility, reliability, etc. What embedded systems share is 

a belief by the designers that implementing some of the 
system’s functions on microprocessors will make one or 
more of those goals easier to achieve. One lurking prob- 
lem with any kind of software design that also holds 
for embedded systems is the desire, well documented by 
Brooks [7], to add features at the expense of schedule 
and design elegance. In addition, embedded systems have 
added problems due to their design constraints. Designing 
code to meet a performance deadline or squeezing code 
into the given amount of ROM can be very difficult 
without a well-understood design methodology to help 
guide decisions. The design of embedded systems is not as 
well understood as the design of integrated circuits, which 
have several methodologies for different cost-performance 
tradeoffs-sea-of-gates, standard cell, full-custom-and de- 
sign tools for the phases of design in each methodology. 
While embedded system designers can make use of ex- 
isting tools for the hardware and software components 
once the design has been partitioned, much remains to be 
learned about how a system is partitioned into hardware 
and software components. Methodologies and tools for 
hardware-software co-design are critical research topics for 
embedded system design. 

Hardware-software co-design of embedded systems must 
be performed at several different levels of abstraction, but 
the highest levels of abstraction in co-design are more 
abstract than the typical software coder or ASIC designer 
may be used to. Critical architectural decisions are made 
using abstract hardware and software elements: CPU’s and 
memories in hardware, processes in software. As a result, 
the initial hardware and software design problems are high- 
level: the first hardware design decision is to build a 
network of CPU’s, memories, and peripheral devices; the 
first software design problem is to divide the necessary 
functions into communicating processes. At first blush, a 
hardware designer in particular may not consider CPU 
selection to be true hardware design. For example, the 
major hardware architectural decision may be to choose 
between a 386-based or 486-based PC. However, that task 
is not so different from the design choices faced by VLSI 
designers. A chip designer does not design the threshold 
voltage, transconductance, and other transistor parameters 
to suit a particular application-rather, digital logic design 
requires choosing a circuit topology and computing transis- 
tor WIL’s. The typical ASIC designer will not deal with 
transistors at all, but will choose logic gates from a library 
and wire them together to implement the desired function. 
Whether the components to be selected and interconnected 
are logic gates or CPU’s, the designer faces the same 
problem: characterizing the components; understanding 
the operation of networks of components; and choosing a 
network topology based on the requirements. 

Embedded system design can be divided into four major 
tasks: 

partitioning the function to be implemented into 
smaller, interacting pieces; 
allocating those partitions to microprocessors or other 
hardware units, where the function may be imple- 
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mented directly in hardware or in software running 
on a microprocessor; 
scheduling the times at which functions are executed, 
which is important when several functional partitions 
share one hardware unit; 
mapping a generic functional description into an im- 
plementation on a particular set of components, either 
as software suitable for a given microprocessor or logic 
which can be implemented from the given hardware 
libraries. 

(This taxonomy is similar to that given by McFarland et al. 
for high-level synthesis [73] with the exception of adding 
partitioning as a first-class design problem.) The design 
goals in each task depend on the application: performance, 
manufacturing cost, testability, etc. The solutions to these 
problems clearly interact: the available choices for sched- 
uling are controlled by how the design was partitioned, and 
so on. To make matters worse, not only can each of these 
steps be applied to the software and hardware components 
separately, but also to the division into hardware and soft- 
ware components itself, and the design decisions made for 
the hardware and software components separately interact 
with the co-design problem. We will frame our discussion 
of co-design techniques by reference to the partitioning, 
allocation, scheduling, and mapping steps. Mapping is 
the least understood part of co-design: while it is often 
possible to estimate the overall amount of computation 
required to complete a task, it is much more difficult 
to determine whether a particular hardware structure and 
software organization will perform the task on time. 

Several disciplines help form the basis of embedded 
system design. Software engineering and VLSI computer- 
aided design (CAD) provide implementation techniques 
for the software and hardware components of the system, 
and those techniques may be useful during co-design as 
well. Because many embedded systems are implemented 
as networks of communicating microprocessors, distributed 
system design is an important foundation for co-design. 
Real-time system design is another critical foundation since 
many embedded systems include performance constraints 
as part of their requirements. Real-time systems are usually 
divided into hard real-time, for which failure to complete 
a computation by a given deadline causes catastrophic 
system failure, and soft real-time, where performance is 
important but missing a deadline does not cause the system 
to fail. A clear example of a hard real-time system is an 
autopilot, where failure to compute a control command 
from a given control input in a certain interval causes 
the airplane to go out of control. A laser printer is an 
example of a machine with soft performance constraints 
while the user bought the system based in part on its pages- 
per-minute rating, the rate at which the printer actually 
typesets pages can vary without causing the machine or 
the customer physical harm. The control of the print en- 
gine within the laser printer is, however, a hard real-time 
task-data must be delivered to the print drum at specified 
times and rates or the printed image will be destroyed. 
Many embedded systems have at least a few hard real- 

time constraints, derived from deadlines imposed by the 
operation of peripherals. 

B .  Embedded Processors and Software Architectures 
Any central processing unit (CPU) may be used in an 

embedded computer system. A CPU whose design is op- 
timized for embedded applications is called an embedded 
processor. Embedded processors may be compatible with 
workstation CPU’s or may have been designed primarily 
for embedded applications. Many embedded processors do 
not include memory management units; the structure of the 
application software makes a memory management unit less 
useful and the chip area occupied by that logic can be 
put to better uses. An embedded processor optimized for 
digital signal processing is called a digital signal processor 
(DSP). 

An embedded controller or microcontroller devotes 
on-chip area to peripherals commonly used in embedded 
systems. Embedded controllers add peripheral devices such 
as timers, analog-to-digital converters, or universal syn- 
chronous/asynchronous receiver transmitters (USART’s) to 
the core CPU. Timers are used to count events, to measure 
extemal time, and to measure the length of time slices 
for process scheduling. A serial port like a USART may 
be used to control some simple devices, may be used for 
debugging, or may be used to communicate with other 
microcontrollers. Most 4- and 8-bit microcontrollers include 
on-board random-access memory (RAM) and some sort of 
read-only memory (ROM), but 16- and 32-bit embedded 
controllers may not include on-chip ROM. The amount of 
memory available on a microcontroller is usually small: 
256 bytes of RAM and 1024 bytes of ROM is a common 
configuration for an 8-bit machine. Some applications have 
been forced to move to 16-bit embedded controllers not 
because of data size, but rather because the application code 
could not fit into an 8-bit controller’s address space. 

Some microprocessor manufacturers provide embedded 
controller design and manufacturing: a customer may de- 
sign a chip using a microprocessor core, standard pe- 
ripherals, and standard cell logic; the controller is then 
manufactured in quantity for the customer. Customers in 
this market niche must have a large enough demand for 
the custom controller to justify the design and added 
manufacturing costs. An alternative approach to the design 
of customer-specific microcontrollers has been proposed 
by a number of people, though we do not know that 
such a chip has yet been manufactured: a microcontroller 
with an on-board RAM-based field-programmable gate 
array (FPGA) would allow the customer to add custom 
peripherals by downloading a personality to the FPGA. 

An application-specific processor (ASIP) is a CPU 
optimized for a particular application. A DSP is an example 
of an ASIP, though ASIP is generally used to refer to 
processors targeted to application niches much narrower 
than the audio-rate signal processing market. Paulin pointed 
out that some telecommunications applications require parts 
in hundreds of thousands to millions, making the gain in 
performance and reduction in cost provided by an ASIP 
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signal processing and user interface. 

An embedded system with distributed computing for 

worth the added design effort [74]. Most ASIP’s available 
today were designed by CPU manufacturers for niche 
markets: the laser printer market has attracted several pro- 
cessors, such as the AMD 29000; the Motorola MC68302 
is optimized for execution of telecommunication protocol 
code, such as ISDN. A CPU manufacturer may optimize 
a design in several ways: the memory bus is often tuned 
for laser printer applications; peripherals may be added to 
support special tasks; or, as in the case of FFT-related 
instructions for DSP’s, application-specific instructions may 
be added. There is growing interest in design tools for 
ASIP’s which can select an instruction set appropriate to 
the application. 

Many embedded systems are implemented as distributed 
systems, with code running in multiple processes on 
several processors, with interprocessor communication 
(IPC) links between the CPU’s. For example: most marine 
and general aviation navigation devices communicate via 
RS-232 serial lines; modem automobiles contain many 
microprocessors physically distributed throughout the car 
which communicate with each other to coordinate their 
work; cellular telephones today generally include at least 
one general-purpose microcontroller and an embedded 
DSP, and some telephones are built from a half-dozen 
embedded processors. Figure 1 illustrates a hypothetical 
distributed system which is used to implement a machine 
which must perform both signal processing and user 
interaction. A DSP is used to implement the signal 
processing functions, while an 8-bit microcontroller handles 
the user interface. Each microprocessor has on-board 
peripheral interfaces, an analog-to-digital converter on the 
DSP, and a parallel port on the microcontroller, which are 
used in this application. Since each microprocessor has 
on-board memory and only low-speed communication is 
required between the signal processing and interface tasks, 
a serial interface is used to connect the two CPU’s. 

A distributed system may be the best implementation of 
an embedded computer for any of several reasons: 

Time-critical tasks may be placed on different CPU’s 
to ensure that all their hard deadlines are met. In the 

. 
above example, sampling the keyboard might interfere 
with the DSP process if both were on the same CPU. 
Using several small CPU’s may be cheaper than using 
one large CPU. In many cases, several 8-bit controllers 
can be purchased for the price of one 32-bit pro- 
cessor. Even after board real-estate costs are added 
in, distributing a task over several small CPU’s may 
be cheaper than combining all the tasks onto one 
processor. 
Many embedded computing systems require a large 
number of devices. Using several microcontrollers 
with on-board devices may be the cheapest way to 
implement all the device interfaces. 
If the system includes a subsystem purchased from a 
supplier, that subsystem may include its own CPU. 
The subsystem’s CPU will impose a communications 
interface, but it is usually not possible to move other 
system tasks onto the subsystem’s processor. 

Rosebrugh and Kwang described the design of a pen-based 
computer which was implemented as a distributed system 
[8 13. Their device had to mix time-sensitive input/output 
operations, such as tracing the pen on the screen, with 
computer-bound tasks such as updating its intemal data- 
base. Their design used four microprocessors: a Motorola 
MC6833 1, a 68000-family processor, as the core processor; 
a Motorola MC68HC05C4, an 8-bit microcontroller, for 
power management; a Hitachi 63484 for graphics; and 
an Intel 80C5 1, another 8-bit microcontroller, for the pen 
digitizer. The processors were connected heterogeneously: 
both the MC68331 and 63484 were connected to main 
memory, but the 63484 graphics processor was the only 
device connected to the display memory; the 80C51 was 
connected to the digitizer and to the 68HC05, while the 
68HC05 talked to the MC68331. 

A variety of interconnect schemes are used in distributed 
embedded systems. The processor bus may be used for 
simple systems-all processors not only share common 
memory, they also contend for the bus to access mem- 
ory and devices. CO-processors like floating-point units 
often have their own dedicated link to the CPU. Many 
embedded controllers use serial links, either RS-232 or 
special-purpose links, between their CPU’s. The 12C bus 
[89] is a serial communications system popular in 8-bit 
distributed controllers: it requires two wires, provides mul- 
tiple bus masters, and can run at up to 400 kb/s. SAE-J1850 
is an emerging standard for automotive communication 
networks. The Echelon Neuron architecture also uses a 
medium-performance serial link between the processors. 
Bandwidth limitations on the commonly used interproces- 
sor communication systems make process allocation very 
important to ensure that deadlines are met in the face of 
IPC delays. 

Embedded software can usually be thought of as a system 
of communicating processes, though the underlying code 
may not have clearly defined processes. A process is an 
instance of a sequential machine, which we will use to 
refer to either a hardware or a software implementation. 
Task is a synonym for process; we will use the two 
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terms interchangeably, usually choosing the word used by 
the author whose work we describe. The term thread or 
lightweight process is used by some authors; a thread is 
usually used to describe a process which shares its memory 
space with other threads, rather than assuming that each 
process has its own address space. 

As will be described in more detail in Section 111-D, 
software processes can be implemented in several different 
ways: using preemptive scheduling, as in time-sharing 
systems; through nonpreemptive scheduling, in which a 
process voluntarily passes control to the next process: as 
a cyclostatic machine, which periodically executes a fixed 
sequence of operations; and as an interrupt-driven system. 
The software architecture appropriate for a task depends in 
part on the match between the CPU chosen, particularly the 
speed at which the CPU can switch between processes, and 
the performance requirements of the application. 

C .  The Engine Metaphor 
If an embedded system is thought of as a jumble of 

microprocessors and code, it can be difficult to discern 
the structure which leads to a successful architecture. The 
engine metaphor helps us understand the roles hardware 
and software play in the implementation of an embedded 
computer system. While the designs of the hardware and 
software components clearly interact with each other, es- 
tablishing the roles that hardware and software play in 
the system is critical to developing a methodology which 
manages the design process and categorizes the design 
interactions to guide the designer toward a satisfactory 
solution. 

Our model of an embedded computer systems is a hard- 
ware engine which runs application software, as shown 
in Fig. 2. The engine includes the one or more CPU’s 
and memory as well as peripherals. The engine provides 
the raw computing power for the system both instruction 
execution and peripheral operations. Most of the features 
of the system, however, are not directly implemented in 
the hardware but are instead designed into the application 
software. Viewing the hardware as the engine which pro- 
vides the power for the application software’s features helps 
us decide whether to solve a particular design problem by 
attacking the software or hardware. 

Hardware engine design for embedded systems is remi- 
niscent of engine selection for vehicles such as automobiles 
or airplanes. The engine is selected very early in the design 
of a motor vehicle [98]. While the mission requirements 
(gross weight, maximum speed) determine a horsepower 
range for the engine, the particular engine to be used is 
selected from a small set of available engines which meet 
the requirements. Once the engine has been selected, its par- 
ticular characteristics-exact horsepower, torque, weight, 
shape, cooling requirements, etc.-+onstrain the design of 
the vehicle. Similarly, the CPU for a hardware engine 
must be selected from among the available processors. 
The characteristics of that processor-execution speed of 
various instructions, bus throughput, etc.-help determine 
the design of the software which runs on the engine. 

software functions 

m 

Constraints 

Fig. 2. A hardware engine. 

The design of the software architecture-the division of 
the function into communicating processes-is closely re- 
lated to engine design. Two systems with identical functions 
but different process structures may run at very different 
speeds, require vastly different amounts of memory, etc. For 
example, in one case, dividing one process into two may 
increase the amount of concurrency exposed in the system 
and reduce the execution time required; in another case, 
dividing a task into too many processes may introduce too 
many context switches and reduce performance. You cannot 
choose a hardware engine without also choosing a software 
architecture, since the software’s process structure help 
determine size and speed. Similarly, a vehicle’s body and 
aerodynamics are closely related to the choice of engine: 
a narrow airplane cannot accommodate a wide engine; 
the classic Bugatti limousines have long, elegant shapes 
in large part to accommodate the straight 16 cylinder en- 
gines undemeath their hoods. Embedded computer system 
design is hardware-software co-design precisely because 
system architecture design must simultaneously consider 
the hardware engine and the software process structure. 

Performance constraints, both general throughput require- 
ments (such as average page printing rate for a laser printer) 
and hard real-time deadlines, determine the minimum-size 
hardware engine needed for the application. The designer’s 
job is to choose an engine which is large enough to 
meet the application’s performance demands, which is no 
more costly than necessary (why pay for more horsepower 
than you need?), and also satisfies the other nonfunctional 
requirements like physical size, power consumption, etc. 
Performance constraints for an embedded system play the 
role of mission requirements in vehicle design. In the 
absence of performance constraints, any hardware engine 
will do. It is performance constraints, particularly hard real- 
time deadlines, which determine the basic requirements of 
the hardware engine. 

However, unlike in vehicle design, we do not at present 
have simple rules-of-thumb to relate embedded computer 
mission requirements, analogous to maximum gross weight 
in vehicle design, to a simple measure of processor perfor- 
mance like an internal combustion engine’s horsepower. 
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Benchmarks such as the SPEC benchmark set provide 
some means to measure processing power, but it is often 
difficult to extrapolate from benchmark performance to the 
execution time for the application at hand. If we had such 
performance prediction rules, they would almost certainly 
be domain-specific, just as the back-of-the-envelope calcu- 
lations for automobile and aircraft design are very different. 

It is likely that today’s large number of choices in 
CPU’s for embedded applications is a historical anomaly. 
In the future, it is likely that one or two CPU’s will 
be available for each performance/feature regime, much 
as vehicle designers today have a limited selection of 
engines available to them. Today, VLSI technology is 
advancing and embedded computing markets are growing, 
so semiconductor manufacturers are still incented to invest 
the large sums required to design new CPU’s-it is still 
possible to gain production volume by growing with the 
market. When VLSI technology and its semiconductor 
markets mature, manufacturers will probably find CPU 
design to be too expensive to be justified simply to take 
market share away from another manufacturer. The diffi- 
culty of developing efficient compilers and their associated 
development environments for new processors adds an- 
other barrier to entry for new CPU’s. There will always 
be opportunities for customized CPU’s, either offered by 
manufacturers for particular market segments or designed 
for a particular application by a customer. As with intemal 
combustion engines, however, simple design changes can 
be made cheaply but some kinds of engine redesigns 
require large investments in engineering. In that steady-state 
condition, distributed system design will probably become 
even more important, as system designers try to compose 
an engine which meets their requirements from a collection 
of interconnected CPU’s. 

The most general way to estimate the required size of 
an embedded hardware engine by performing an initial 
synthesis of both the hardware and software subsystems. By 
choosing one or more processor types and dividing up the 
software tasks among n such processors, we can determine 
whether the given architecture can meet its deadlines and 
indicate where an application-specific co-processor will be 
required. As we will see later in this paper, many techniques 
have been developed for mapping a functional specification 
onto a given hardware engine with constraints, but less is 
known about the design of the hardware engine itself. Even 
less is known about the joint optimization of the application 
software and the hardware engine. 

D. Design Flow 
The design process of an embedded system must vary 

considerably with the application: the design of a pager is 
very different from the design of an autopilot. However, 
we can identify common steps. Furthermore, a study of 
a typical design flow shows that the hardware and soft- 
ware components of an embedded system have common 
abstractions, a fact which we can use to our advantage in 
hardware-software co-design. 

specification 

I para//e/ 
system architecture comPu~tion 

behavior communicating processes 
processes 

1 
1 

1 
1 
I strmtum 

register-transfer structura/ modules 
description 

&Wed high-level 
b g b j  language 

logic 

object code physical 

\ integration / 
1 

system testing 

Fig. 3. A top-down design process for an embedded system. 

Figure 3 shows a typical sequence of steps in a top- 
down design of an embedded system; of course, most 
actual design processes will mix top-down and bottom-up 
design. For comparison, Smailagic and Siewiorek describe a 
concurrent design methodology used to design VuMan 2, a 
portable smart display device [90]. Design of the hardware 
and software components must proceed fairly separately 
at some point, just as two hardware components must 
be designed separately once the system has been broken 
down into a system of components. However, as the figure 
shows, the hardware and software tracks refine the design 
through similar levels of abstraction. Processes are used 
to represent both the hardware and software elements of 
the initial partition: a system of hardware components in a 
block diagram is equivalent to a system of communicating 
processes; and the interprocess communication links in 
a software specification correspond to signals in a block 
diagram. The fact that both hardware and software are 
specified as processes gives us hope that we can use 
a common modeling technique to simultaneously design 
both the hardware engine and the application code to 
meet performance constraints. It is because hardware and 
software have related abstractions that co-design can make 
architectural choices which balance the design problems of 
each. 

Design starts with the creation of a specification (also 
known as requirements or requirements specification). A 
system specification includes not only functional require- 
ments-the operations to be performed by the system but 
also nonfunctional requirements, including speed, power, 
and manufacturing cost. The importance of the specification 
should not be underestimated-most systems have at least 
some predefined requirements or goals, such as a target 
page-per-minute production and maximum sale price for 
a laser printer. Books by Davis [21] and Dorfman and 
Thayer [23] give more information on system specification 
techniques and standards. 
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During the writing of the specification and the design of 
the initial system architecture, phases which often overlap, 
the system architects must determine that the design goals 
are in fact feasible. Feasibility checks are simpler in the 
design of application-specific IC’s (ASIC’s) because the 
chip to be designed fits into a predefined system and 
performs a small enough function that it can be specified 
with confidence. In contrast, embedded computer systems 
usually employ microprocessors precisely to add a vari- 
ety of sophisticated features which, in tum, complicate 
the specification of the system and validity tests. And 
because embedded software is often used to decrease de- 
sign turnaround time, some decisions on the hardware 
engine must be made from guesses as to the ultimate 
function to be implemented. An extreme example [3] is 
offered by several avionics manufacturers: even before the 
Federal Aviation administration had defined the technical 
standards for new GPS-based navigation services, these 
manufacturers guaranteed to purchasers of current-model 
radios a cap on their cost to upgrade the radios to the 
new standards. In many other cases, manufacturers design 
a single hardware engine which is used both for several 
products at a time and several generations of products; 
since the exact features of successive generations cannot 
be precisely predicted due to competitive pressure, it may 
be necessary to design the hardware engine architecture 
using only guesses as to the resources required by future 
features. Embedded system design methodologies must be 
able to support incomplete specifications, design of a single 
engine to satisfy multiple product specifications, or changes 
to the specs during design. 

Requirements specification inherently deals with descrip- 
tions which are too informal to be defined mathemati- 
cally-most customers describe their requirements in Eng- 
lish that is often incomplete and inconsistent. A great deal 
of work has been done on system and software specification 
in general, and some of that work has concentrated on 
the design of real-time systems. Hatley-Pirbahi analysis 
[36] is a well-known technique for the design of real-time 
systems. A system is described in terms of two models: 
a system requirements model and a system architecture 
model. These two models are jointly refined in a spiral 
development cycle: once initial requirements have been 
given, an initial architecture is proposed; analysis of the 
architecture suggests refinements to the architecture, which 
in tum suggest changes to the architecture; and so on until 
the requirements are well-understood and an implementable 
architecture has been identified. A requirements model 
consists of a data flow diagram, a control flow diagram, 
response time specifications, and a requirements dictio- 
nary. (A dictionary in software specification is similar to a 
common dictionary-it lists definitional information, such 
as type, references, and so on, for elements of the spec- 
ification.) The architecture model includes an architecture 
flow diagram which allocates functional elements of the 
requirements model to physical units in the architecture, 
an architecture interconnect diagram (a block diagram), 
and a dictionary. Hatley-Pirbahi analysis is intended to be 

used first to define the complete system, then to refine the 
software and hardware sections of the system. 

Shlaer-Mellor analysis 1881 is an object-oriented ap- 
proach to real-time system specification, where an object 
is a data structure plus a set of member functions which 
operate on that data structure. In object-oriented designs, 
functions are performed not by executing monolithic func- 
tions on large data structures, but rather by member func- 
tions updating their objects and calling member functions of 
other objects. Shlaer-Mellor analysis views objects as state 
machines: the values in the object’s data structure define 
its state while its member functions can update the object’s 
state and produce outputs based on that state. The behavior 
of an object can be described as an ASM-like state transition 
graph. Analysis helps the designer identify which objects 
make up the system, the behavior of each object, and how 
objects communicate to implement system behavior. 

It is critical that specification not bias implementation. If 
the specification method is too operational, it will contain 
an implicit or explicit architectural model. The architec- 
tural model which is best suited to specification may not 
be the most efficient implementation. D’Anniballe and 
Koopman [20] studied techniques bias-free specification 
of distributed systems. They developed a specification 
methodology which mixed object-oriented analysis with a 
set-theoretic formal specification of the behavior of the 
objects. This technique allowed them to better separate 
the specification of function from the allocation of those 
operations to architectural components. 

After the architectural decisions have been made, hard- 
ware and software design can proceed somewhat separately; 
if proper co-design has selected a good architecture, then 
components designed to the architectural specifications can 
be put together to build a satisfactory system. Hardware 
design proceeds through several steps: a description of 
behavior, which may include communicating machines 
and in which operations are only partially scheduled in 
time; a register-transfer design, which gives combinational 
logic functions between registers but not the details of 
logic design; the logic design itself; the physical design 
of an integrated circuit, placement and routing in a field- 
programmable logic device, etc. Software design starts with 
a set of communicating processes since most embedded 
systems have temporal behavior which is best expressed 
as a concurrent system; the decomposition of function into 
modules is an intermediate step in software design, which 
proceeds to coding in some combination of assembly and 
high-level languages. The software and hardware compo- 
nents must be integrated and then tested to be sure that the 
system meets its specifications. 

The separation of design tasks into concurrent design 
of hardware and software components highlights the im- 
portance of early selection of a hardware engine and 
an accompanying software architecture. The architectural 
choices made early in the design process guide the detailed 
implementation choices for the hardware and software com- 
ponents. As in any complex design, the architect must make 
key choices early, looking ahead to possible implementation 
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problems, but without completing a full implementation. 
When an aircraft designer selects an engine for a new 
airplane, he or she does not need to design the arrange- 
ment of rivets on the airplane’s tail to determine the 
horsepower requirements of the new engine; such detailed 
implementation decisions would only be an abstraction. 
The detailed design of the airframe must, however, be 
completed in a way that does not violate the assumptions 
about gross weight, drag, and other factors that were used 
to determine the engine requirements. In an embedded 
computing system, the implementation of the software 
processes and the hardware components must be consistent 
with the assumptions made about computing loads. 

Once the hardware and software components have been 
implemented, they must be separately tested, integrated, 
and tested again. Unfortunately, the hardware and software 
design communities use the word testing very differently: 
hardware designers use it to mean manufacturing testing, 
or tests which ensure that each manufactured copy of a 
component was correctly manufactured; software designers 
use it to mean system validation, or ensuring that the design 
meets the specification. (We prefer to reserve the word 
verification for mathematical techniques which give proofs 
of the correctness of certain system properties, leaving 
validation for informal techniques which give reasonable 
assurance but fall short of proofs.) Both forms of testing 
are necessary: the hardware and software elements must 
be executed together to ensure that the system satisfies its 
specification; and each copy must be tested for defects as 
it comes off the manufacturing line. Manufacturing test of 
embedded systems does not introduce major new problems, 
since the hardware can be tested independently of the soft- 
ware and the integrity of ROM code can be easily checked. 
Design validation of the integrated hardware-software sys- 
tem does, however introduce some problems. 

The first problem to be considered is that software de- 
velopment must rely as little as possible on the completion 
schedule of the hardware design. Design methodologies in 
which the software designers must wait for the hardware so 
that developers can execute their code result in unaccept- 
ably long development times. More important, such a serial 
design methodology ensures that the hardware engine will 
have design flaws which introduce software performance 
problems. Hardware designers (or synthesis tools) must be 
able to make use of the results of a more detailed software 
design to refine the design of the engine and conversely, 
the software implementation can be affected by the details 
of the hardware engine. It may be possible to develop 
the code on a completely different platform, such as a 
personal computer or workstation. In other cases, it may be 
necessary to use the target processor but to use a standard 
development system in place of the final hardware engine. 

Once the first versions of the engine and application code 
are available, integration tests can begin. Integration testing 
must check for both functional bugs and performance 
bottlenecks. As mentioned in Section 111-B, the events in 
an embedded computer system are not always easy to 
observe. It may not be possible to gather large enough 

traces to determine detailed system behavior; on cached 
machines, behavior may not be extemally visible. Many 
modem microprocessors provide hooks for tracing during 
execution, which are useful in functional debugging but 
may not be feasible for systems which must be run at 
full speed. Sampling is often used to generate approximate 
performance measures: the address bus can be sampled 
periodically to generate histograms of address execution 
rates; the kemel’s scheduler can be used to generate a 
trace of active processes to determine how frequently each 
process was executed; counters in the hardware engine can 
be programmed as event counters to measure certain perfor- 
mance statistics by adding a small amount of measurement 
code to the system. 

111. PERFORMANCE ANALYSIS 
Soft and hard performance goals are essential parts of 

the specifications of most embedded systems. Performance 
analysis is also critical to cost minimization-the usual 
approach to designing a time-critical system in the absence 
of accurate performance analysis is to overdesign the hard- 
ware engine, producing a system that is more expensive 
than may be necessary. As a result, performance analysis 
is critical at all stages of design. This section describes 
two categories of performance analysis methods: those used 
during requirements analysis and architecture design; and 
those used to measure the performance of software. We 
will not consider here how to determine the cycle time of 
hardware components, which is a relatively well-understood 
problem whose outlines can be found elsewhere [lOO]. 

Malik and Wolfe [64] argue that embedded system per- 
formance analysis requires solving two problems: modeling 
the underlying hardware engine and analyzing the behavior 
of the code running on that engine. Furthermore, per- 
formance estimation tools are required at each level of 
abstraction through which the design proceeds. This section 
considers performance analysis of large systems in Section 
111-A, modeling of CPU performance in Section 111-B, 
performance of a single task in Section 111-C, performance 
of multiple tasks running on a shared processor in Section 
111-D, and co-simulation in Section 111-E. 

A.  System Performance Analysis 
The goal of system performance analysis is to trans- 

late performance specifications, which are typically given 
on user-level functions, into constraints on the design of 
the hardware engine and the application software. System 
performance analysis includes several tasks: determining 
the implications of performance specifications; estimating 
the hardware costs of meeting performance constraints; 
identifying key development bottlenecks; and estimating 
development time. System performance analysis is not 
necessary for most ASIC’s due to the simple form of the 
performance constraints. It is, however, a necessary step 
in the design of a modem CPU-the sizes of queues and 
buffers, the number of hardware resources available, and the 
interconnections between those resources all determine the 

914 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 7, JULY 1994 



, . . . . . . . . 

W I ....... , 
i ISAbus 2 1 

data transfer 

Fig. 4. Data transfers and tone detection options in Tigerswitch. 

performance of the CPU. Similarly, memory, interconnect, 
and function units (in the form of CPU's or special-purpose 
processors) all influence the overall performance of an 
embedded system. 

An example helps to show the role of system performance 
analysis in the design of an embedded computer system. 
Tigerswitch is a PC-based telephone switching system 
designed at Princeton University. As shown in Fig. 4, the 
PC system bus (known as the ISA bus) serves as the 
switching fabric. Line cards connect telephone lines to 
the switch; an analogdigital converter connects to the 
telephone microphone, while a digital-analog converter 
connects to the speaker. During a call between two phone 
lines, the PC first reads the current microphone sample 
from one line, then writes it to the other line; it then 
reverses the procedure to provide a full-duplex connection. 
Each call must be sampled at 8 kHz, the sampling rate for 
telephone-quality audio. 

Several factors influence the number of phone lines which 
can be supported by the switch. The ISA bus bandwidth 
certainly limits the number of calls which can be switched. 
However, bus bandwidth divided by sampling rate is only 
an upper bound on phone line capacity, since some bus 
operations are required for execution of the program which 
controls the switch. Furthermore, the CPU itself is used both 
to implement the switching fabric and for other switching 
functions: an 8-kHz timer interrupts to switch data between 
all active lines by executing VO instructions on the CPU; a 
foreground process keeps track of call state; other processes 
determine how to route calls and bill time as well as other 
functions. 

The function which caused the most concern in the design 
of Tigerswitch was tone detection. Dialing tones (known 
as DTMF, for dual-tone multifrequency) must be detected 
at the start of the call: each digit on the phone keypad 
is signaled by a pair of tones, where each row and each 
column on the keypad has its own distinct tone frequency. 
DTMF detection can be performed by a filter bank or by 
Fourier analysis. Because the two tones must be sustained 
for at least 0.1 s to make a valid signal, tone detection 
requires a great deal of computation. 

As shown in Fig. 4, we had three possible locations for 
DTMF detection in the architecture: on each line card, using 

analog DTMF detectors; on the main CPU, as a background 
process, using digital signal processing algorithms; and on 
an auxiliary processor, using the same DSP algorithms, 
on a card plugged into the ISA bus. In most switching 
systems, DTMF detection is performed digitally by one 
of a few tone detection units, since DTMF detection is 
required for only a small fraction of the call. In this scheme, 
when a phone is taken off the hook, the switch searches 
for a free tone-detection unit and does not issue a dial 
tone until one is available. We decided not to implement 
a tone-detection unit on a separate card, because we could 
not design the additional hardware and meet our desired 
completion date (the end of the semester). A test program 
was created to measure the amount of time required to 
run the DTMF detection algorithm on the main CPU. 
Experiments showed that DTMF detection took sufficiently 
long on a 386 processor that the switching fabric process did 
not have enough time left over to switch any calls at the 8- 
kHz rate. A Pentium@ processor was fast enough to execute 
the DTMF algorithm and still switch calls. However, we 
decided that we could add DTMF detection to our line 
card much more cheaply than the cost of a faster host 
processor, so we added analog DTMF detection to the line 
card. A similar project which had different requirements 
and manufacturing volumes would probably opt for one 
of the other two possible solutions (the line card set is the 
single most expensive element of a large switching system). 
Design choices must be evaluated in light of the system 
requirements. 

Tigerswitch illustrates the typical architecture design 
process in an embedded system: 

first, a candidate architecture must be proposed and 
potential performance bottlenecks in that architecture 
must be identified; 
second, modifications to the architecture must be pro- 
posed and the performance of each analyzed; 
finally, one configuration must be chosen based on 
the results of performance analysis and other require- 
ments, such as manufacturing cost, design time, and 
reliability. 

Performance analysis of an initial architecture, before a 
complete implementation of any part of the system is avail- 
able, is critical because performance bottlenecks may not 
be obvious from the system specification. Performance ap- 
proximations derived from simplified models of the system, 
providing that the approximations are sufficiently accurate, 
help us avoid completing an unsatisfactory implementation 
which must be thrown away. 

Morfit's description of one embedded system design 
illustrates the role of performance analysis and optimization 
[67]. After the design and implementation of a cellu- 
lar telephone system, the design team used a software 
monitoring system, which recorded the active process at 
each scheduler interrupt, to measure which processes were 
dominating CPU utilization. Measurement showed that un- 
expected processes were taking up most of the CPU and 

@Pentium is a trademark of Intel 
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that repartitioning operations between processes could sub- 
stantially reduce CPU requirements. In one case, bundling 
display writes into a single processor reduced that process’s 
utilization from 20%-50% to less than 10%. In another 
case, modifying a process to write multiple-byte rather than 
1-byte records reduced the number of function calls to a 
critical routine in the range 20: 1 to 300: 1, depending on the 
data. While some performance data cannot be fully created 
without a complete implementation, a more detailed model 
with accurate analysis would allow such problems to be 
caught in time to change the design of both the software 
and the hardware engine. 

Queueing system models are useful for analyzing systems 
where inputs arrive sporadically or the processing time for 
a request may vary. In a queueing model, customers arrive 
at the queue at some rate; the customer at the head of the 
queue is immediately taken by the processing node, but 
the amount of time spent by the customer in processing 
must be specified. Typically, both the customer arrival 
rate and processing time are modeled as Poisson random 
variables. Useful characteristics a queue include the average 
residence time, which is the amount of time a customer 
resides in the queue plus processing time, and the average 
queue length, which is given by Little’s Law [54]. 

Queues are assembled into networks to model systems: 
the output of one processing center feeds into another queue 
to enter the next phase of processing. Computer system 
models have traditionally used for data-processing style 
applications: stochastic models are appropriate not only 
for CPU’s which must handle requests which may take 
varying amounts of time to process, but also disks whose 
access time depends on the disk state at the time of the 
request. Queueing network models are usually solved by 
simulation; SES/Workbench@ is one well-known queueing 
network analysis system. Kobayashi [54], Lazowska et al. 
[56], and Smith [91] survey computer system modeling 
using queueing networks. 

B .  CPU Pegormance and Modeling 
Advanced architectures usually include components, like 

caches, which provide high peak performance at the cost of 
greater variance in execution times. Hard real-time systems 
must meet their deadlines under worst case conditions. 
Some techniques exist for narrowing the variance of ex- 
ecution times. 

Most CPU’s are offered in several different models and 
the choice of model can substantially affect the cost of 
the CPU. Integrated circuits may be packaged in ceramic 
or plastic; ceramic packages are much more expensive to 
make than injection-molded plastic packages, but ceramic 
packages provide more pins and can run at faster rates. For 
example, a 1991 Intel catalog lists the price of a 20-MHz 
i960KB in a plastic quad flat pack (PQFP) as 17% less 
than the same chip in a ceramic pin-grid array (PGA); the 

@SES/Workbench is a trademark of Scientific and Engineering Soft- 
ware, Inc. 

25-MHz version of this processor is available only in the 
PGA package. 

In some cases, the processor can be packaged in plastic 
only by reducing the number of pins. In such cases, a 
modified bus is designed for the processor with a smaller 
number of data pins. For example, the Intel i386DX has a 
32-bit data bus, while the i386SX has a 16-bit data bus. The 
smaller bus width is invisible to the software running on 
the CPU because the bus subsystem breaks a write into 
operations which can fit on the bus, and assembles the 
results of a read to produce a datum of the proper size. 
The smaller bus width also makes the memory system less 
expensive, since it requires fewer separate chips. The ability 
to use a plastic package at all, or to use a cheaper plastic 
package with fewer pins, can make a CPU substantially 
cheaper: the 1991 Intel catalog prices a 16-MHz i960SB, a 
variation of the KB with a 16-bit bus, as 40% less expensive 
than the 20-MHz chip in a ceramic package. While a 16-bit 
bus on a 32-bit processor requires two bus transactions to 
fetch a 32-bit datum, the effect of reduced bus width on 
program performance cannot be simply calculated. Code 
executing from the intemal cache or data in registers runs 
at the same rate on the narrow- and wide-bus systems; if 
the program fetches smaller data values, such as bytes, the 
narrow bus will be as efficient. A study of the program’s 
dynamics is required to determine the true performance 
penalty of a narrow bus. 

Instruction execution time is normally given in tabular 
form. For a nonpipelined processor, one entry per instruc- 
tion is sufficient for simple instructions. More complex 
instructions may have execution times which depend on 
data values, just as program execution times depend on 
the trace taken through the program. Integer multiplication, 
floating-point, and especially transcendental functions are 
likely to have data-dependent execution times. A transcen- 
dental operation can take tens of thousands of clock cycles 
to execute. 

Execution behavior in a pipelined machine depends not 
just on one instruction, but on a set of instructions. For 
example, a processor may use a prefetch unit to fetch 
instructions in order after the present program counter 
location and store those instructions in a queue. When a 
branch is taken, the pending instruction queue is no longer 
valid, so the CPU must wait for the branch target to be 
fetched, which causes a longer interval between successive 
instruction completion times. Other pipelining mechanisms 
also cause the execution time of one instruction to depend 
on which other instructions are pending: for example, the 
Intel i960KB manual gives the execution time for register 
operations depending on whether the processor can bypass 
a register access [45]-a bypass hit occurs if the source 
of one of the instruction’s operands was the result of the 
previous instruction, saving one clock cycle. Schmit [83] 
describes techniques for optimizing Pentium code to take 
advantage of multiple instruction issue. 

It is often not possible to obtain from the micropro- 
cessor supplier a CPU simulator which accurately models 
performance. Simulation models which mimic only bus 
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behavior, known as bus-level models, are more common. 
Such a model accurately reflects the number of cycles 
required to perform a bus transaction, such as a read or 
write, but does not model the action of instructions. On the 
other hand, some manufacturers do not publish instruction 
performance data, even in tabular form. In such cases, 
the only recourse for accurate performance measurement 
is to measure execution times on a hardware system. 
Measurement may be difficult on cache-based systems, 
since not all CPU operations will be reflected on the bus. 
An in-circuit emulator is a version of a CPU with the 
same pinout as the standard CPU but which keeps traces 
of instructions, allows breakpoints to be set, etc. While 
an emulator is useful, emulation suffers the same fate as 
simulation in that worst case performance is hard to elicit, 
and the emulator may not be able to execute the instruction 
stream at the full rate of the standard CPU. An emulator 
is often more useful for functional debugging than for 
performance analysis. 

Caches affect CPU performance even more than pipelin- 
ing within the execution unit. Many texts, such as Patterson 
and Hennessy [38], describe cache organization and op- 
eration. Since the static RAM (SRAM) used in cache is 
ten times or more faster than the dynamic RAM (DRAM) 
typically used in main memory, the penalty for a cache 
miss is very large. Interrupt-driven systems are very poorly 
matched to the assumptions which typically justify caches. 
Rather than have a loop or another relatively small section 
of code which is executed repeatedly, an interrupt-driven 
system switches at irregular intervals between routines 
residing in very different parts of memory. In a typical 
processor, an interrupt routine invalidates most or all of the 
cache; not only does this slow down the initial execution 
of that routine, but it introduces contention for the cache 
between interrupt routines which slows down the entire 
system. 

The stochastic nature of cache-based systems presents 
a problem to the design of systems with hard real-time 
deadlines. While an operation may run fast if it happens 
to reside in the cache, it will run much slower if the 
routine is not in the cache. It is often difficult or impossible 
to predict from macroscopic program structure whether a 
particular piece of code can be guaranteed to be in the 
cache. As a result, real-time system designers often assume 
that a memory fetch will always miss the cache. While this 
assumption does ensure that the process will always meet 
its deadline, it is very pessimistic caches are one of the most 
effective means to the improvement of CPU performance. 

Larger caches provided by increasing SRAM density 
make it easier to reserve sections of the cache for crit- 
ical code. Two schemes-ne hardware and one soft- 
ware-have been proposed to ensure that selected routines 
reside in the cache. Kirk proposed the SMART (Strategic 
Memory Allocation for Real-Time) cache organization [5 13, 
[52],  which partitions the cache into a shared partition 
plus several partitions allocated for critical tasks, as shown 
in Fig. 5. Each time-critical routine may receive one or 
more segments of the cache. A processor flag determines 

address -+ 

partition ID -+ 

sharedflag -+ 

cache 
mapping 

1 partition 3 1 
Fig. 5. Address mapping in Kirk’s hardware cache partitioning 
scheme. 

whether the currently running process is mapped into the 
shared partition or into one of the private partitions. An 
ID register identifies which private partitions are owned 
by this process. Hardware ensures that a segment can be 
accessed only by the task to which it was allocated. Kirk 
and Strosnider [52] developed an algorithm to analyze 
instruction traces to choose sections of code which should 
be allocated their own cache segments. 

Wolfe [ lo l l  proposed a partitioning scheme which re- 
quires no additional hardware. His scheme chooses ad- 
dresses for code and data during linking such that critical 
routines are the only addresses in the program which map 
into certain sections of the cache. Since no other routine can 
knock that code out of the cache, the routine is guaranteed 
to be cache resident. Figure 6 shows an example for 
which the cache has an 8-byte line: the first two lines 
are allocated contiguously to one process, the third line to 
another process, and the fourth line to yet another process. 
This scheme maps addresses into the cache into very small 
chunks, equal to the size of the cache line-frequently 16 
bytes or smaller. As a result, a process’s address space is 
broken into many small chunks, and it may not be possible 
to allocate a process’s code to contiguous addresses; it 
also requires widely separated addresses. Wolfe presented 
another scheme which allows contiguous addressing: by 
extracting the tag from the middle of the address, not 
the top, larger blocks of contiguous memory are mapped 
into the cache. While this scheme requires that the cache 
hardware be redesigned to use different address bits, it does 
not add either area or delay to the cache implementation. 

Interrupt latency-the time required for the CPU to 
execute the first instruction of an interrupt handler after 
an interrupt is raised--can significantly affect performance 
in two ways. First, interrupt-driven or scheduling-based 
systems must add interrupt latency into their calculations 
of total processing time. Second, interrupt latency puts a 
lower bound on the time in which the system can respond 
to an interrupted request. Tasks which require very fast 
response to an event may not be implementable as interrupt 
routines-busy-wait 1/0 or addition of a special hardware 
unit to handle the task are alternative implementations 
which decrease response time at the expense of added 
hardware cost (either in the form of required additional 
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CPU capacity to make up for the lost time incurred by 
busy wait polling or for the special-purpose hardware). 

When a CPU services an interrupt, it must typically 
reference interrupt vector tables, change the CPU state, 
and other assorted tasks. Responding to an interrupt usually 
takes much longer than simple instructions and the penalty 
generally grows with CPU size. For example, the Motorola 
MC68HC 16 16-bit microcontroller requires 16 clock cycles 
to respond to an interrupt [68]; the Motorola MC68020 
requires a minimum of 26 cycles [69]; the Intel i960KB 
requires a minimum of 85 cycles [45]. While these times are 
not completely comparable, since these processors perform 
somewhat different actions on interrupts (the i960KB, for 
instance, saves the current register set), but they do show 
that the penalty is significant and increases with archi- 
tectural complexity. The time required to respond to an 
interrupt may depend on the state of the processor: for 
example, multiple-cycle instructions may not be interrupt- 
ible. Interrupt latency is not the only cost of handling an 
interrupt: interrupt latency is overhead incurred in addition 
to the execution time of the interrupt handler; furthermore, 
the change in instruction flow induced by the interrupt 
changes the state of the cache. 

C .  Software Performance Estimation 
To estimate the performance of a concurrent system, 

we must be able to estimate the performance of a sin- 
gle process. Software performance estimation estimates 
bounds on the running time of a single-threaded code 
fragment when run on a specified processor. While CPU 
modeling concentrates on a stream of instructions small 
enough to fit in the processor pipeline and cache, software 
performance estimation analyzes larger sections of code. 
Software performance estimation can be broken down into 
two steps: identifying legal paths through the code; and 
determining the execution time of each path. Identifying 
all legal paths through a program with unbounded memory 
is equivalent to solving a halting problem, making exact 

path identification undecidable, but good identification of 
false paths through the program tightens the bounds on 
execution time. 

We would like to develop a hierarchy of performance 
estimation models, including at least high-level language 
and assembly language descriptions of the program. Lower 
level models, such as assembly language, will obviously 
give more accurate information on the effects of register 
allocation, instruction interactions, and caching than will a 
high-level language model. However, we often synthesize 
a program from some specification by creating a high-level 
language description which is then passed to a compiler. We 
may not want to include compilation time in the interval 
required to generate an initial performance estimate; fur- 
thermore, we may want to compare the merits of potential 
target CPU’s without purchasing the compilers for all 
those architectures. Therefore, in addition to path analysis, 
software performance estimation must also consider how 
to calculate the execution times of the primitive operations 
in the software description at whatever level of abstraction 
is available. 

The earliest techniques for software performance analysis 
were manual analysis methods developed for data process- 
ing systems. Smith [91] gives a good overview of the 
analysis of program representations she calls execution 
graphs, which are flow charts which use fork and join 
operators to specify concurrent activity. Execution graph 
analysis is intended primarily for modifications to existing 
systems because it depends on performance measurement 
of code. The execution time of the graph is computed by 
reducing subgraphs. However, the accuracy of the execution 
time clearly depends on the accuracy of the performance 
estimates for the primitive operations, the estimates of 
the numbers of times loops are executed, etc. Smith de- 
scribes techniques for obtaining accurate execution time 
and workload information from existing systems. However, 
performance estimates based on measurements must always 
be used with caution because the system tests may not 
have exercised worst case behavior. Automatic software 
performance estimation offers the promise of performance 
figures which are both conservative, i.e., guaranteed to be 
bounds on actual worst case performance, and more precise 
than can be generated by hand. 

Ein-Dor and Feldmesser [24] performed an early ex- 
periment in performance prediction. Their goal was to 
predict the relative performance of a computer system from 
basic characteristics of that system. They executed a set of 
benchmark programs on 209 computer systems and created 
a regression model of computer performance as a function 
of six variables: cache memory size, minimum number of 
VO channels, maximum number of U0 channels, machine 
cycle time, minimum main memory, and maximum main 
memory. Their model could predict performance relatively 
accurate over a range of medium-performance machines. 

Shaw developed techniques for reasoning about the ex- 
ecution time of both single and communicating processes 
[86], [87]. Shaw assumed that bounds [tmin, t,,] could be 
found for the execution times of program statements. He 

978 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 7, JULY 1994 



defined the execution times of code in terms of schema 
which describe the execution times of combinations of 
statements. He used Hoare-style assertions to describe 
timing properties of the program: given a statement S in the 
program, if a predicate P is true before S is executed, then 
Q is true after S is executed, which is written in the form 
{P} S {Q}. To reason about the real-time behavior of the 
program, P and Q can be functions of the real time: if a 
statement S’s execution must be completed in the interval 
[ t d l , m i n , t d l , m a ]  and rt represents the value of real time, 
then the deadline can be expressed in the form 

{rt  I % , m a  - tmax(S)}S{rt < h , m w } r  

when tdl,min = -CO. 

Shaw used these techniques to, as one example, reason 
about programs which recognized single and double mouse- 
clicks, behavior which relies intimately on real time. 

Puschner and Koza [79] used simple bounds declarations 
to capture user execution information which could not be 
directly derived from the program and more accurately 
estimate maximum execution time. Their declarations took 
the form of annotations in the program source code: scope 
identifiers delimited a sequence of statements in the pro- 
gram; a marker statement specified the maximum number 
of times the program would pass through that marker 
between entering and leaving the scope which enclosed 
it; a loop sequence declaration gave an upper bound on 
the total number of times a sequence of loops would be 
executed (useful when the loop bounds of sequential loops 
are correlated but not independently fixed). They found that 
these declarations were sufficient to greatly improve the 
accuracy of execution time bounds in the examples they 
studied. 

Park and Shaw created a timing tool which combined 
performance models for C language statements with path 
analysis algorithms [71], 1721. Park developed his per- 
formance model for one CPU-compiler pair; namely, a 
68010-based Sun-3 and Gnu C-1.34. Park’s model relies 
on instructions being executed deterministically: instruction 
execution times do not depend on nearby instructions and 
neither instructions nor data are cached. He found that the 
most accurate means for estimating program times was to 
consider all the code in a basic block at once: he extended 
the C compiler to mark boundaries of basic blocks; for 
each basic block in the C program, he identified the 
assembly language generated by that block and looked up 
the execution times of each instruction in a table. He applied 
corrections to take into account two types of system-level 
interference in program execution: clock interrupts and 
memory refresh. Park compared measured execution times 
to computed estimates to show that, in most cases, these 
techniques produced tight bounds and that most uncertainty 
could be removed by more accurate prediction of execution 
paths. 

While a program’s control flow graph gives the set of all 
possible execution paths through the program, there may be 
paths which are never executed: the data values supplied to 
the program may be restricted so as to, for example, limit 

the number of times through a loop; relationships between 
variable values in the code may also make some paths 
infeasible. Park’s model for execution paths was regular 
expressions extended with intersection and negation opera- 
tors. To gather user execution information, he developed an 
information description language: important statements in 
the program were given names, restrictions such as nopath 
(A, B) and loop A K times could be placed on feasible 
paths. This information can be used to ignore illegal paths 
during timing analysis. Experiments showed that adding 
path analysis information tightened execution bounds. 

Ye et al. [ 1021 developed a fast timing analysis technique 
for use in hardware-software partitioning. They needed 
to accurately estimate the system performance even when 
the software partition executed on a high-performance 
CPU whose execution times depend on data dependencies, 
instruction order, etc. They extracted a basic block of the 
software and executed it once; the measured execution time 
automatically takes into account processor-specific timing. 
They then used that time as one timing label in a control 
flowgraph along with annotations for execution times of 
the hardware units, the control flowgraph can be analyzed 
to predict the total execution time of the hardware-software 
system. 

D. Pe$ormance of Tasks on Shared CPU’s 
It is not sufficient to analyze the performance of each 

process in isolation. When several processors are allocated 
to a system CPU, system performance depends on how the 
processes are scheduled on the CPU. The scheduling of 
processes on a CPU determines the CPU’s utilization, a 
key measure of architectural efficiency. An underutilized 
CPU adds unnecessary cost to the system since it could be 
replaced with a smaller CPU. However, it can be shown 
that in many cases a CPU cannot both be fully utilized and 
meet all the deadlines on its processes. 

The processes executing on a CPU may be scheduled 
either statically (in an order determined when the program 
was designed) or dynamically (during system execution). A 
cyclostatic scheduler is an example of a statically scheduled 
system: a cyclostatic scheduler is called periodically by a 
timer and executes a set of tasks in a fixed order. A dynam- 
ically scheduled set of processes may be scheduled either 
preemptively or nonpreemptively. In a nonpreemptively 
scheduled system, each process explicitly gives up control 
to the next process. System calls are spread periodically 
through the code which allow the next process to run, 
usually determined by a list of active processes maintained 
by the kernel. Microsoft Windows is an example of a 
nonpreemptively scheduled system. Nonpreemptive code 
must be carefully implemented to ensure that each task 
gives up control of the CPU in a bounded amount of time 
on any execution path-failure to relinquish control causes 
the system to fail to respond to other inputs. A preemptively 
scheduled system uses a timer to periodically retum control 
of the CPU to a scheduling process in the kemel. The 
process with the highest priority is chosen to run in the 
next time slot. 
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Fig. 7. Process priorities and deadlines. 

Each scheduling scheme has advantages and disadvan- 
tages. A nonpreemptive scheduler allows the designer to 
verify properties such as deadlock; because we do not know 
the exact order of execution of processes in a preemptively 
scheduled system, they cannot guarantee liveness. Chiodo 
et al. [12] use an FSM-based description to verify the 
properties of hardware-software systems before choosing a 
hardware-software partitioning for implementation. How- 
ever, a nonpreemptively scheduled system requires a more 
powerful CPU to ensure that it meets all its deadlines than 
does a preemptive scheduler preemptive scheduling is more 
CPU-efficient because a task with a closer deadline can be 
assigned a higher priority and preempt a lower priority task. 

Figure 7 shows a simple example of how process sched- 
uling determines deadline satisfaction. The processes P1 
and P2 have deadlines 0 1  and 0 2 ,  respectively. In the 
upper schedule, P1 has been scheduled first, for example 
because it was activated first by an outside event. Pl’s 
deadline is well after P2’s, but P1 prevents P2 from 
executing and makes P2 miss its deadline. If process 
priorities are assigned to ensure that the process with the 
shortest deadline receives the highest priority, allowing it to 
start executing as soon as it is activated, then both processes 
are able to complete before their deadlines. 

The fundamental result in scheduling of hard real-time 
tasks was discovered by Liu and Layland, who introduced 
the rate-monotonic scheduling algorithm [62] for schedul- 
ing periodic task sets. In their model, a system consists of a 
set of tasks, each of which has a deterministic computation 
time and a period. While those times are fixed, the phasing 
of the tasks relative to each other is not fixed. They showed 
that such a task set can be scheduled to meet all deadlines, 
irrespective of the phasing of task initiations in the period. 
Interestingly, only fixed priorities are required: priorities 
are assigned inversely to task period, with the shortest 
period task receiving the highest priority. They also showed 
a worst case bound for CPU utilization of 69.3%. Thus 
excess CPU capacity must be available to ensure that the 
CPU can respond to the worst possible combination of task 
phasings. However, for preemptive scheduling, the CPU 
capacity is determined by the task specifications, while 
in nonpreemptively scheduled systems, the CPU capacity 
required is determined by the structure of the code. 

This work has been extended in a number of ways to 
handle more general hard real-time systems. The priority 
ceiling protocol was developed by Sha, Rajkumar, and 
Lehoczky [85] for systems in which low-priority tasks can 
obtain critical resources. When a process requires a resource 
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which must be shared by P/V (semaphore) synchronization, 
a lower priority process can use the resource’s lock to 
block execution of a higher priority process which needs 
the resource, a situation known as priority inversion. 
Strosnider I961 introduced deferrable servers for aperiodic 
tasks, in which a collection of aperiodic tasks is modeled as 
a regularly scheduled process which periodically checks the 
status of the aperiodic requests. Leinbaugh [60] developed 
an algorithm to bound worst case performance for systems 
of processes which talked to devices and executed critical 
sections. 

E .  CO-Simulation 
Simulation will be an important co-design tool for the 

foreseeable future because of the complex nature of the 
embedded computing systems. Because embedded system 
components are so complex, it may be difficult to de- 
velop comprehensive analytic models for their performance. 
Simulation also helps the designer verify that the system 
satisfies its requirements. Co-simulation mixes components 
which have different simulation models. CO-simulation 
usually refers to some sort of mixed hardware-software 
simulation-for example, one part of the system may 
be modeled as instructions executing on a CPU while 
another part may be modeled as logic gates. CO-simulation 
is difficult because the system’s components operate at 
different levels of abstraction-analog components operate 
over voltages, PLD’s operate over binary values, and micro- 
processors operate over instructions-and run at different 
rates one instruction in a microprocessor may take several 
cycles to execute, during which time analog components 
may have moved to a drastically state. 

Multimode simulators allow a system to be described 
as a mixture of components at different levels of abstrac- 
tion. As shown in Fig. 8, two different techniques have 
been developed for multimode co-simulation. A simulation 
backplane provides a top-level simulation model through 
which different types of simulators can interact, so long as 
their external behavior meets the modeling requirements of 
the backplane. A heterogeneous simulator does not require 
all simulation events to be reduced to the same level of 
abstraction. Ptolemy [9] is a well-known framework for 
the construction of co-simulators. A simulation universe in 
Ptolemy consists of several domains, where each domain 
has a single simulation model. Ptolemy does not enforce 
a single simulation model: domains may be combined 
arbitrarily and developers may create new domains. Several 
different domains have been implemented for Ptolemy: 
synchronous data flow, dynamic data flow, discrete event, 
and a digital hardware modeling environment. Each domain 
has its own scheduler. Wormholes allow data to pass be- 
tween domains. A wormhole between two domains includes 
an event horizon which translates events as they move 
from one domain to another. As an event moves between 
domains, it is first translated into a universal event type and 
then to the domain of the destination. Because wormholes 
hide the details of operations in other domains, a domain’s 
scheduler does not have to know the semantics of the other 
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Fig. 8. Two techniques for multimode simulation. 

domains to execute its simulation. Ptolemy also supports 
interfaces to code synthesis for DSP’s. Kalavade and Lee 
describe the use of Ptolemy-based co-simulators to develop 
a hardware-software system [49]. 

Hierarchical simulators allow a design to be modeled and 
simulated at several different levels of abstraction, but with 
the same level of abstraction for all components in each 
model. ADAS (Architecture Design and Assessment Sys- 
tem) [92] was an early co-design tool which was targeted 
to signal processing applications. ADAS could simulate 
a system at three levels of abstraction: at an algorithm 
level, modeled by data flow; at an architectural level, 
modeled by scheduled processes; and at an implementation 
level, described as a register-transfer system. The designer 
could simulate the system at each level of abstraction and 
compare the system performance at two different levels of 
abstraction to guide the refinement of the design from one 
level of abstraction to the next. 

Roth et al. [82] created a custom simulator for a pair 
of graphics accelerator ASIC’s they designed. The design 
project needed a simulator which was both fast enough for 
software development and accurate enough to be used in 
debugging the hardware models. They developed a custom 
simulator in C which could simulate either of the two 
chips and provided a programming interface equivalent to 
the chips themselves. They extracted the simulated chips’ 
internal states during simulation and compared that state 
trace to a state trace generated by a Verilog-based register- 
transfer or gate-level simulation of the chips. Differences 
in the state traces indicated potential bugs. Because the 
ASIC’s had multiple function units and worked on an 
asynchronous memory, accurately comparing the two state 
traces required considerable effort. 

Iv. HARDWARE ENGINE AND SOFlWARE PROCESS DESIGN 
In this section, we will survey methods for the design 

of an embedded system’s hardware and software. We 
do not yet fully understand how to jointly design the 
hardware and software for embedded applications. Most 
work has concentrated on the design of either the hardware 
or software, using a very simplified model for the other. 
Recent work on hardware-software partitioning takes a 
more balanced view of the two elements, but existing 
algorithms still rely on restricted architectures for both 
the hardware and software components. Methodologies and 
algorithms for truly general hardware-software co-design 
of embedded systems are a primary goal of research in this 
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Fig. 9. Graph models for hardware and software design. 

area. As a result, we will describe both previous work in co- 
design proper and also related work in distributed system 
design, which takes the hardware engine as a given and 
designs a software architecture. 

Joint design of the hardware and software requires repre- 
sentations for both the processes and the distributed engine, 
as shown in Fig. 9. An example of a software model is a 
data flowgraph to represent the software processes, which 
identifies sources and sinks of data between the processes. 
It may also be important to represent control flow between 
the processes, in which case the general form is called a 
process graph. The processor graph, which represents the 
hardware engine, has CPU’s as nodes and communication 
links as edges. Some research considers processor graphs 
where all CPU’s are identical, while other work allows each 
node to have different characteristics. 

Figure 10 illustrates how a process graph is mapped onto 
a processor graph. The figure can only easily depict the 
allocation of processes to CPU’s, but the complete design 
process also entails scheduling those processes on their 
assigned CPU’s, partitioning the process set to provide 
an efficient scheduling and allocation, and mapping the 
processes onto particular types of CPU’s. In a traditional 
design flow, the processes and the processor network would 
be designed relatively separately. However, to obtain the 
highest performance, lowest cost solution, we must simul- 
taneously design both the processes and processor system. 

We first consider altemative models for processes and 
their embodiment in programming languages. Section IV-B 
describes techniques developed for the design of hard- 
ware engines; Section IV-C describes recent work in hard- 
ware-software partitioning, which is the joint design of 
hardware engine and software architectures from a hard- 
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Fig. 10. Mapping application processes onto a hardware engine. 

ware architecture template. The remaining subsections de- 
scribe techniques developed by the distributed systems 
community for the scheduling, partitioning, and allocation 
of processes given the hardware architecture of a distributed 
system. 

A .  Process Models and Program Specification 
Since the system’s function will be described as a system 

of communicating processes, the choice of a process model 
is fundamental. Given a process model poorly suited to 
the problem, the system description may become unwieldy 
or the system may not be describable at all. A number of 
different process formalisms have been developed over the 
years, each with its own advantages and disadvantages. 

The coarsest distinction between process models is their 
level of parallelism. A Petri net model [76] is a highly 
parallel model of computation. The synchronous dataflow 
model [59], a data flow model in which the number of 
samples consumed by a node at activation is specified a 
priori, is another highly parallel model of computation. A 
communicating sequential processes model describes each 
process as executing sequentially, but allows the processes 
to execute at different rates. 

There are many communicating sequential process mod- 
els, which can be further classified according to the types 
of interprocess communication they support. Buchenrieder 
er al. [8] use the PRAM model, which is commonly used to 
model shared-memory parallel algorithms, to describe the 
communicating processes in a machine. The Solar modeling 
language [70] is an example of a communicating pro- 
cesses model for co-design. Hoare’s CSP [39] is one style 
of communicating sequential process model which uses 
unbuffered communication. In nonblocking or buffered 
communication, a queue holds data which have not been 
consumed by the receiver, allowing the sender to continue 
executing. A finite-state machine-style model uses implicit 
communication-because an FSM can change its outputs 
at any time, communication is not separated from the rest 
of the machine’s computation. Event-driven state machine 
models, including the BFSM [97] and the CFSM [12], have 

been proposed for use in co-design because they allow the 
systems to be described as a partial ordering. 

Software is much more than code, particularly when 
that software implements a system of concurrent processes. 
Representations for programs are important intermediate 
forms for system design. Software design models ensure 
that the software is correctly implemented. Because most 
design languages for concurrent processes also define inter- 
process communication primitives, they provide documen- 
tation on how the processes talk to each other and hooks 
for the analysis of interprocess communication. 

A number of concurrent programming languages have 
been developed-these languages allow computations to be 
expressed as systems of communicating processes but do 
not provide methods to specify deadlines or guarantee that 
they be met. A concurrent programming language provides 
primitives for interprocess communication. (Interprocess 
communication primitives may also be provided by the 
operating system.) The way in which the language models 
communication has a profound impact on the way the 
initial architecture is implemented in the language. Several 
different communication techniques are possible. A signal 
sent by one process forces another process to start executing 
at a specified location which should handle the signal; a 
signal is a software version of an interrupt and is used in the 
Unix’ system. A mailbox is a variant of buffered commu- 
nication usually reserved for schemes in which the names 
of mailboxes are known globally and any process may both 
send messages to and take messages from a mailbox. The 
language and operating system may also support blocking 
communication or finite-size queues, which can provide 
nonblocking communication given some assumptions about 
the maximum number of pending messages. 

The term real-time programming language has been used 
in various ways, but generally means that the language 
allows deadlines to be specified and provides mechanisms 
to ensure that the deadlines are met. Such a language 
must have some sort of representation of a process in 
the language. A real-time programming language may also 
restrict itself to statements whose execution times can 
be bounded; other real-time languages are extensions of 
general-purpose languages, which usually contain state- 
ments with potentially unbounded execution times, such as 
while loops controlled by unrestricted input values. 

The statechart [34] is an extended-state machine model 
for reactive systems. A statechart is a state transition graph 
in which a transition’s source or sink may be a set of 
states, not just a single state; another way to view this 
specification style is that a state which represents several 
different behaviors may be decomposed into states which 
implement pieces of that behavior. As shown in Fig. 11, 
OR and AND decompositions can be used to refine a state’s 
specification by decomposition. In the OR decomposition in 
the figure, the transition specifies that the system should 
go to state s when input i l  is received if the system’s 
present state is either a or b; the source of this transition 

munix is a trademark of Unix System Laboratories. 
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Fig. 11. Composite states in a statechart. 

is the state or l ,  which represents the union of a and b. An 
AND decomposition represents concurrent activities-in the 
figure, the i l  transition out of state t sets one part of the 
system state to c and another part to d, so that the total 
state is the product c x d. OR and AND decompositions allow 
exponentially fewer states and transitions than are required 
to describe the equivalent behavior in a state transition 
graph with a single level hierarchy of states. STATEMATE 
is a well-known tool for manipulating statecharts [35]. The 
tool integrates representations for block diagram structural 
descriptions and data flow diagrams with statecharts. It can 
simulate a specification and generate high-level language 
code to implement a specification. 

A recent collection of papers in the PROCEEDINGS OF 

THE IEEE [5] described several reactive programming 
languages, where a reactive language interacts constantly 
with its environment, rather than viewing input and output 
as streams. For a detailed description of those languages, 
the reader is referred to those articles. One example of this 
approach, the Esterel language [6]  promotes a specification 
style different from that used in statecharts an Esterel 
program is a network of communicating machines, rather 
than a single machine with a hierarchically decomposed 
set of states, as is a statechart. Processes communicate 
by emitting actions and waiting for actions to appear, 
with communication scheduled by the programmer. Esterel 
assumes that reactions to events are atomic and happen 
instantaneously. Because actions are atomic, the component 
machines communicate synchronously, which means that 
many analyses of communication behavior are much sim- 
pler than with asynchronous systems. An Esterel program 
can be compiled into code by generating a product machine; 
since in the product machine, communication between 
components is implemented as products of states of the 
component machines, the communication action does not 
generate any code, thus satisfying the atomicity hypothesis. 

B .  Hardware Engine Design 
ADAS, described in Section 111-E, supported early func- 

tional verification and evaluation of system performance at 
the first three stages of design, which the authors identified 
as algorithm definition, system architecture design, and 
detailed system design. In our terminology, the products 
of ADAS were an architecture for the hardware engine 
and an allocation of software processes onto processors. 

While ADAS did not provide synthesis algorithms to au- 
tomatically generate the engine architecture and software 
partitioning, it did provide representations for the various 
stages of design and assessment tools to help the designer 
determine the best translation from one stage to the next. 

ADAS used three representations of the design, one for 
each stage of design. The highest level of abstraction was 
a data flowgraph, which they called a software graph: 
nodes represented processes and edges represented data 
transfer. The algorithm to be implemented was specified as 
a software graph; data flow is a sufficient representation for 
signal processing algorithms with little control-dependent 
behavior. The mapping of processes to hardware compo- 
nents was represented by a projected processing graph, 
which was constructed from the software graph by adding 
synchronization arcs which forced sequential execution of 
processes. Finally, the architecture of the hardware engine 
was represented by a hardware resources graph, which was 
a form of register-transfer machine. 

To design an application, the designer first specified 
a software graph, refined it to a projected processing 
graph, then added multiplexers and registers to create a 
hardware resources graph. The software graph could be 
executed to check that the desired function was properly 
specified. Performance analysis began with the projected 
processing graph-Petri net analysis was used to determine 
whether the sequentiality introduced by the sequentiality 
constraints allowed the function to be executed at the 
required rate. ADAS had algorithms which could determine 
the utilization of a node and the latency of a computation. 
ADAS apparently did not include tools to verify that 
the hardware resources graph correctly implemented the 
projected processing graph. 

MICON [32] generates a board-level design of a micro- 
processor system from a loose description of the board’s re- 
quirements. The system’s specification includes information 
such as: type of CPU required; types and amounts of mem- 
ory required; I/O ports required; and the types of extemal 
connectors. MICON selected a complete set of components 
and interconnected them to produce a complete board 
design. Several different components may implement a 
particular requirement: for example, different combinations 
of memory chips may be used to implement the required 
memory. Components may also have to be interpolated into 
the design to provide an interface between two required 
components. MICON uses AI techniques both to learn how 
to design boards from expert designers and to complete the 
design of a board from requirements. 

Parkash and Parker [78] used integer programming to 
design a multiprocessing architecture for an embedded 
hardware engine. Given a partitioning of an application 
into tasks, their algorithm designs a heterogeneous engine 
to run the application, allocates tasks to processors in 
the engine, and schedules those tasks. Their model for 
a system of tasks is a data flowgraph for which a task 
may start computation before all its data have arrived. 
They model the architecture of the engine to be designed 
as a set of processors with direct communication links. 
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Each processor has local memory, communication occurs 
via messages over the links, and one application runs on 
a processor at a time. Their mathematical programming 
model includes both integer-valued timing variables and 
binary decision variables: timing variables represent data 
availability times, output av ,ability times, task execution 
times, and data transfer times; decision variables represent 
allocation of tasks to processors and the direction of data 
transfer. The model includes ten types of constraints which 
determine: how tasks are mapped onto processors, whether 
data transfer is local or remote, input and output availability, 
task execution start and end times, data transfer start and 
end times, and that each processor and communication link 
is not used for more than one operation at a time. Their 
model may be solved to satisfy a performance goal or to 
minimize total engine cost. They rewrite several of their 
constraints in linear form to create a mixed integer linear 
program, then solve the program using standard techniques. 

Srivastava et al. used templates to design real-time sub- 
systems for a workstation-based embedded architecture 
[93], [94]. Figure 12 shows a simple architectural template 
with two levels of hierarchy: subsystems are connected 
by a bus; each subsystem consists of a CPU and several 
ASIC’s all connected by their own bus. They defined a 
four-level hierarchy for their architecture template: the top 
level is a workstation which communicates with the layer- 
2 processor; custom boards form the third level of the 
hierarchy, with the CPU and peripherals in the subsystem 
forming the fourth level. They map a behavior described 
as a system of process onto the architecture template. 
After allocation, they generate the hardware and software 
components separately, using the bus as a framework for 
hardware design and a real-time kernel as the framework 
for the software components. They developed a large suite 
of reusable, parameterized subsystem generators to im- 
plement functions ranging from memory subsystems to 
bus interfaces, to fiber-optics communications. Software 
components are generated as processes which operate under 
the control of a real-time executive. In addition, each 
hardware module has a wrapper software module to provide 
a software interface. To illustrate the use of their system, 
they designed a robot control system built from a Sun 
workstation as the level-1 processor, a MC68020 as the 
level-2 processor, and two subsystems each built from 
a TMS320C30 processor and a DSP32C slave; software 
processes were distributed among the subsystem CPU’s to 
make sure that the real-time controller’s deadlines were 
satisfied. The subsystem CPU’s also ran service processes 
for run-time 1/0 and data routing. 

Gabriel [SX], a precursor of Ptolemy, is a design en- 
vironment for DSP which supports both simulation and 
direct execution of functions on processors. The function 
under design is specified as a block diagram. Gabriel’s 
simulation scheduler can simulate the block diagram under 
synchronous data flow semantics. The same schedule can 
be used to guide the generation of code for the target DSP; 
an individual operations has assembly language templates 
to implement the operation on the target machine. 

system bus 
L 7 

I 1 

-&- 
Fig. 12. A simple hierarchical architecture template. 

C .  System and Hardware-Software Partitioning 
A system’s function must be partitioned when it is 

implemented on either multiple physical units (chips) or 
onto heterogeneous units (CPU’s and ASIC’s). System 
partitioning requires some performance information to be 
able to compute the system’s critical performance path, 
but partitioning should use a simple timing model which 
can be quickly evaluated while analyzing large partitioning 
problems. Lagnese and Thomas [55] developed APARTY, a 
system partitioning tool which partitions a control data flow 
graph to minimize chip area and interconnect requirements. 
APARTY uses a multistage clustering algorithm which 
operates in several stages. Each stage has its own clustering 
objective, which it uses to cluster nodes in the design. At 
the end of the stage, clusters of a given size are selected as 
elements for the next stage of clustering. Ismail et al. [U] 
developed an interactive system-level partitioning tool. The 
design is specified as a set of communicating processes: 
the user can specify a sequence of transformations-move, 
merge, split, cut, and map-to redesign the process net- 
work. 

Hardware-software partitioning algorithms try to meet 
performance goals by implementing some operations in 
special-purpose hardware. The hardware unit generally 
takes the form of a co-processor, communicating with the 
CPU over its bus. In some cases, a fairly large set of 
routines may be implemented totally in hardware to avoid 
instruction interpretation overhead, but hardware-software 
partitioning algorithms are targeted to systems in which 
only a few operations need specialized hardware. However, 
the computation performed in the co-processor must be long 
enough to compensate for the time required to transfer 
data back and forth to the CPU. If the co-processor’s 
computation is too short, the CPU may be able to perform 
the operation faster by keeping values in its registers 
and avoiding bus protocol overhead. Hardware-software 
partitioning algorithms are closely related to the process 
scheduling model used for the software side of the 
implementation. 

Hardware-software partitioning algorithms generally tar- 
get their hardware design to high-level synthesis algorithms. 
High-level synthesis generates a register-transfer implemen- 
tation from a behavior description, which may be either 
a pure data flowgraph or a mixed control-data flowgraph. 
Synthesis algorithms schedule operations in time and per- 
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form several allocations: operations to hardware function 
units, values to registers, and data transfers to interconnect. 
Readers interested in high-level synthesis algorithms can 
consult books by De Micheli [22], Gajski et al. [29], and 
Michel et al. [66]. 

Most partitioning algorithms divide the behavior spec- 
ification into a set of software processes running on one 
CPU and one co-processor. Two styles of algorithms have 
been proposed: ones which start with all operations in 
hardware and move some to software; and ones which start 
with everything in software and move some operations to 
hardware. 

Gupta and De Micheli [33] developed an algorithm which 
migrates operations from the hardware partition to the 
software partition. Their algorithm accepts a behavior in the 
form of a control-data flowgraph and a set of rate constraints 
on the constituent operations. It divides the behavior into a 
set of threads bounded by operations with nondeterministic 
delays either I/O or loops with data-dependent bounds. The 
execution time of each thread depends on whether it will 
be implemented in hardware or software. Initially, threads 
which start with a data-dependent loop are initially assigned 
to the software partition and all other threads are assigned 
to the software partition. Threads are then moved between 
partitions such that rate constraints are satisfied and CPU 
and bus utilization constraints are met. 

Emst et al. [26] developed a partitioning algorithm which 
identifies critical operations in an instruction stream and 
moves those operations to hardware. They measure the 
performance of compiled code to identify execution paths 
which do not meet their performance requirements. They 
iteratively refine the partition due to the difficulty of es- 
timating the results of both instruction execution times 
and high-level synthesis. At each step, they identify an 
operation to move to hardware and estimate the speedup 
gained by moving that operation to hardware. They use 
an operator table to estimate the hardware speed of the 
basic operation. Rescheduling an operation may not always 
result in instruction execution speedup if the next operation 
depends on other values or pipeline interlocks restrict 
the execution time of an instruction, the value may sit 
idle waiting for the instruction stream to catch up. The 
partitioning algorithm creates a local schedule of operations 
to check availabilities. Communication time overhead in the 
basic block is estimated using data flow analysis, counting 
a constant number of clock cycles per variable. 

It may also be desirable to map some functions onto 
existing specialized hardware. ASIC’s may be divided into 
two categories: a catalog ASIC, such as a cache controller, 
is designed for a particular function but is described in 
a catalog; a custom ASIC is one of the components 
being designed for the current system. If the designer is 
willing to partition parts of the system specification which 
can be implemented by catalog ASIC’s, the allocation of 
those functions to catalog ASIC components is relatively 
straightforward. If the function must be assembled from 
several ASIC’s, the synthesis task is more difficult. Haworth 
et al. [37] describe part selection algorithms. 

A related but distinct problem is the design of the 
hardware and software portions of a device interface: given 
a microcontroller and a set of devices, generate the interface 
logic and associated driver routines. The main partitioning 
has been done in this case, but synthesis must determine 
where additional hardware is required and be able to 
generate efficient code to control that interface logic. Chou 
et al. [13] describe one synthesis algorithm for interface 
design. They use a program as the behavior specification 
and have models for the devices, the microcontroller, and 
additional interface components. Their synthesis algorithm 
recursively allocates operations to microcontroller ports 
and takes advantage of special-purpose microcontroller or 
interface logic functions to improve the implementation. 

D.  Distributed System Scheduling 
The scheduling of the processes on the hardware engine 

clearly influences system cost. The schedule must be chosen 
to meet hard deadlines and soft performance constraints. If a 
feasible schedule cannot be found, the designer has several 
choices: use a faster, more expensive hardware engine; 
repartition the software; reallocate processes to CPU’s in 
the engine; or some combination of the above. Process 
scheduling over the distributed engine is the measure of 
feasibility of our hardware engine and software architecture. 

Femandez and Bussel [27] gave bounds on two problems: 
the number of processors required to execute the process 
data flowgraph in a given amount of time; and the time 
required to complete a computation on a fixed number 
of processors. Adam et al. [ l ]  experimentally compared 
several scheduling heuristics on both benchmark programs 
and randomly generated examples: HFELT (highest levels 
first with estimated times); HLFNET (highest levels first 
with no estimated times); random; SCFET (smallest co- 
level first with estimated times); and SCFNET (smallest 
co-level first with no estimated times). All these schemes 
except random are variations of list scheduling: in their 
terminology, the level of a process is measured in the 
data flowgraph from the graph’s sinks while the co-level 
is measured from the sources. Their experiments showed 
that HFELT gave the best results and performed close to 
optimally. Kasahara and Narita [50] proposed extensions 
on HFELT. Lee et al. [57], [43] proposed two algorithms 
for scheduling taking interprocessor communication delays 
into account. El-Rewini and Lewis proposed other im- 
provements to the HFELT strategy, taking into account 
interprocessor communication and contention. 

Leinbaugh and Yamani [61] developed algorithms to 
bound the amount of time required to execute a set of 
processes on a distributed system. Ramamritham et al. 
[80] developed a heuristic scheduling algorithm for real- 
time multiprocessors. Their algorithm greedily chooses 
a schedule which ensures that all processes meet their 
deadlines and minimizes a heuristic cost function; their 
experiments showed that minimizing the sum of minimum 
deadline-first and minimum-earliest-start-time-first gave the 
best results. 
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for (k0; icN i++) 

send(w.a); 
for (i=O; icM; i++) 

send(w,b); 

procl (La); 

procZ(i,b); 

P l  

s = receive(w); 

-- 
lor ( id:  icN i++) 

send(w,a); 

for (id; icM; i++) 
procZ(i.b); 

r = receive(w); 
s = receive(x); 

P3 

single p r w w  dmmpositian 

Fig. 13. How process partitioning affects distributed system per- 
formance. 

E. Process Partitioning 
Process partitioning affects the implementation cost of 

a software architecture-poor partitioning may delay a 
computation on one node, causing another processor to 
be idle while it waits for the result. Figure 13 gives 
one example of the problem: when process p l  computes 
two values in series, p3 must wait for both values to 
be computed, which may leave the CPU assigned to p3 
idle. If pl’s computation is split into two parts which are 
assigned to different processors, p3’s processor will be idle 
for less time. Stalls which reduce CPU utilization may 
also be introduced by waits for U0 devices, particularly 
devices like disks which take significant amounts of time 
to complete a transaction. 

Huang [41] studied process partitioning for distributed 
systems which have acyclic data flowgraphs. His algorithm 
merges data-flow nodes according to a simple set of rules: 
a pair of nodes which both precede and succeed each other 
are put in the same process; if a module Mi precedes all 
other modules in a process 9, has all preceding, adjacent 
models in process Pk, or has each noninclusive preceding 
adjacent module precede the module included in the task 
with highest precedence, then Mi is included in Pk. This 
work only considers interprocess communicating delay, not 
I/O overhead. 

F .  Distributed Process Allocation 
Process allocation affects system performance in two 

ways: by changing the cost of interprocess communica- 
tion and by changing how tasks sharing a CPU can be 
scheduled. Figure 14 shows a simple example of allocation 
for communication. The given process graph shows that 
PI ,  P2, and P3 all communicate very closely, while P 4  
has little communication with the other processes. If, for 
example, P1 and P4 are put on one processor and P 2  
and P3 on another, the three tightly coupled processes 
will have to communicate over the link between CPU1 
and CPU2. That link must have enough bandwidth to 
support the communication. If P1, P2, and P3 are put on 
the same CPU, they can communicate via shared memory, 
which is both faster and cheaper than the communication 
link. Process allocation can also affect the scheduling of 
processes on the CPU’s, much as scheduling and allocation 
influence each other in high-level synthesis. 

986 

\%dl process graph 

processor graph it--m 
P1, P2, P3 P4 

or 
P1, P4 P2, P3 

Fig. 14. Process allocation for communication efficiency. 

Stone [95] developed the first algorithm for allocation of 
processes to processors on distributed systems. He modeled 
multiprocessor scheduling as a network flow problem. His 
formulation can be efficiently solved for two processors, 
but the formulation becomes more complex and its solution 
more difficult when there are more processors. Dasarathy 
and Feridun [19] developed extensions for real-time con- 
straints. 

Work on distributed system allocation quickly moved to 
the examination of heuristics which were effective for larger 
networks. Chu et al. [15] developed heuristics for taking 
interprocess communication times into account during the 
allocation process. Chu and Tan [14] developed heuristics 
to include precedence relations between processes into the 
optimization task. They did not use the data flowgraph 
directly, but instead used process size as an approxima- 
tion for important precedence relationships-their heuristic 
assumed that smaller and larger processes are often paired: 
the smaller process pre-computes data and smooths the load 
for the larger process when both are placed on the same 
CPU. Shen and Tsai [84] used a graph-matching heuristic to 
allocate processes; their algorithm minimized interprocessor 
communication and balanced system load. 

Researchers have also studied more computation- 
intensive algorithms for allocation. Ma et al. [63] 
developed a branch-and-bound algorithm for process 
partitioning which minimized the sum of processing 
and interprocess communication costs. They measured 
interprocess communication costs by counting the number 
of data objects sent from one process to another. Peng 
and Shin [75] developed a branch-and-bound partitioning 
algorithm whose objective function was minimization of the 
maximum normalized task response time. Their algorithm 
takes into account data dependencies between processes 
during execution. 

Gopinath and Gupta [31] applied a combination of 
static and dynamic techniques to improve processor 
utilization. They statically analyze process code and 
assign two predictability/unpredictability and monotonic- 
ity/nonmonotonicity values to each process. They estimate 
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the mean and standard deviation of the execution time of 
each process and use that data to move less predictable code 
earlier in the schedule. They then use software monitors to 
keep track of actual execution time of processes and adjust 
the schedule on-line. 

V. SUMMARY 
Embedded computer system design requires intimate 

knowledge of the interactions between the hardware and 
software components, even if no custom chips are de- 
signed for the system. In the mainframe world, system 
analysts constructed large systems for specialized tasks 
having relatively few choices for hardware (i.e., IBM). 
Microprocessors and ASIC’s together provide a much larger 
range of choices for hardware engines than were available 
to early system analysts. 

At present, we have a much deeper understanding of the 
hardware and software design disciplines separately than we 
do about co-design. While it is possible to design embedded 
systems as separate hardware and software systems, failure 
to consider tradeoffs between choice of hardware engine 
and design of application software can lead to designs that 
are too expensive, too slow, and never perform as intended. 

A key element of our understanding of co-design is the 
study of system modeling in all its forms. We need a deeper 
understanding of the properties of CPU’s, interconnect 
structures, and software modules. While we have many 
abstract models of the components of embedded systems, 
we do not have detailed, accurate models which reflect the 
idiosyncrasies of those components. It is the peculiarities of 
components which makes system design challenging and 
interesting: certain properties may cause a certain design 
to fail to meet a requirement, while other properties may 
provide an unexpectedly efficient means to meet a goal. 
Because embedded systems are always designed to cost and 
performance requirements, a comprehensive understanding 
of modeling which includes both high-level and detailed 
properties of components is essential to making the most 
of the components available to us. 

Embedded systems also give us the opportunity for 
higher level software synthesis than are provided by 
general-purpose programming languages. Embedded ap- 
plications give hard constraints, giving clear optimization 
goals-while difficult optimization goals require sophisti- 
cated optimization algorithms, it is impossible to optimize a 
system in the absence of goals. Embedded system designers 
are more willing than generic programmers to wait for 
synthesis tools to finish the compilation of embedded 
system software if those synthesis algorithms truly provide 
added value. 

While embedded system designers can get the job done 
today, they may not always complete new designs as 
quickly or converge on designs as cost-effective as they 
could if more sophisticated design tools were available. 
And as powerful microprocessors become even cheaper and 
come into wider use, the need for tools will increase. A 
more comprehensive understanding of hardware-software 

co-design is essential to making use of the computational 
power provided to us by VLSI. 
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