
Hardware-Software Co-Design
of Embedded Systems
WAYNE H. WOLF, SENIOR MEMBER, IEEE

Invited Paper

This paper surveys the design of embedded computer systems,
which use software running on programmable computers to im-
plement system functions. Creating an embedded computer system
which meets its performance, cost, and design time goals is a
hardware-software co-design p r o b l e w h e design of the hard-
ware and software components influence each other. This paper
emphasizes a historical approach to show the relationships be-
tween well-understood design problems and the as-yet unsolved
problems in co-design. We describe the relationship between hard-
ware and sofhvare architecture in the early stages of embedded
system design. We describe analysis techniques for hardware and
software relevant to the architectural choices required for hard-
ware-software co-design. We also describe design and synthesis
techniques for co-design and related problems.

I. INTRODUCTION
This paper surveys the state of the art in the design

of embedded computer systems products which are im-
plemented using programmable instruction-set processors.
While embedded systems range from microwave ovens
to aircraft-control systems, there are design techniques
common to these disparate applications. Furthermore, em-
bedded system design often requires techniques somewhat
different than those used for either the design of general-
purpose computers or application software running on those
machines. Embedded computing is unique because it is a
hardware-software co-design problem-the hardware and
software must be designed together to make sure that the
implementation not only functions properly but also meets
performance, cost, and reliability goals.

While a great deal of research has addressed design
methods for software and for hardware, not as much is
known about the joint design of hardware and software.
Microprocessors, and in particular high-performance 32-bit
microprocessors cheap enough to use in consumer prod-
ucts, have stimulated research in co-design for embedded
systems. So long as embedded processors were small and
executed only a few hundred bytes of code, hand-crafted

Manuscript received December 29, 1993; revised April 4, 1994.
The author is with the Department of Electrical Engineering, Princeton

IEEE Log Number 9402008.
University, Princeton, NJ 08544 USA.

techniques were sufficient to satisfy functional and perfor-
mance goals in a reasonable amount of time. However,
modem embedded systems may include megabytes of code
and run at high speeds to meet tight performance deadlines.
In such large projects, building a machine and seeing
whether it works is no longer satisfactory. To be able to
continue to make use of the ever-higher performance CPU’s
made possible by Moore’s Law (which predicts that the
number of transistors per chip doubles every year), we
must develop new design methodologies and algorithms
which allow designers to predict implementation costs,
incrementally refine a design over multiple levels of
abstraction, and create a working first implementation.

We will use the embedded system design process as a
framework for the study of co-design. The goal of this
paper is to identify technologies which are important to
co-design and to provide examples which illustrate their
role in co-design. We must, due to space limitations, ignore
certain topics, such as the design of fault-tolerant systems
and verification. Our description of the literature on covered
topics is also meant to be illustrative, not encyclopedic. In
spite of these limitations, we hope that the juxtaposition
of topics presented here will help to illustrate both what is
known about co-design and what remains to be done.

The next section surveys the uses of embedded comput-
ers and the embedded system design process. Section 111
describes performance analysis of hardware and software
elements. Section IV surveys techniques for the design of
hardware-software systems.

11. EMBEDDED SYSTEMS AND SYSTEM DESIGN

A. Characteristics of Embedded Systems

The earliest embedded systems were banking and trans-
action processing systems running on mainframes and ar-
rays of disks. The design of such a system entails hard-
ware-software co-design: given the expected number and
type of transactions to be made in a day, a hardware
configuration must be chosen that will support the expected
traffic and a software design must be created to efficiently

PROCEEDINGS OF THE IEEE. VOL. 82 , NO. 7. JULY 1994

0018-9219/94$04.00 0 1994 IEEE

961

make use of that hardware. Because early transaction pro-
cessing systems were built from very expensive equipment,
they were used for relatively few but important applica-
tions. However, the advent of microprocessors has made
the average embedded system very inexpensive, pushing
microprocessor-based embedded systems into many new
application areas. When computers were used for only
a few types of applications, design techniques could be
developed specific to those applications. Cusumano [161
documented the labor-intensive techniques used by Japan-
ese computer system manufacturers to build mainframe-
and minicomputer-based systems for industrial automation,
banking, and other capital-intensive applications. When the
hardware is expensive, it is easier to justify large personnel
budgets to design, maintain, and upgrade embedded soft-
ware. When microprocessors are used to create specialized,
low-cost products, engineering costs must be reduced to
a level commensurate with the cost of the underlying
hardware. Now that microprocessors are used in so many
different areas, we need a science of embedded system
design which can be applied to previously unforeseen
application areas.

Because microprocessors can be used in such a wide
range of products, embedded systems may need to meet
widely divergent criteria. Examples of embedded systems
include:

simple appliances, such as microwave ovens, where
the microprocessor provides a friendly interface and
advanced features;
an appliance for a computationally intensive task, such
as laser printing;
a hand-held device, such as a cellular phone, for which
power consumption and size are critical but digital
signal processing and other sophisticated tasks must
be performed;
an industrial controller in a factory, for which reliabil-
ity, maintainability, and ease of programmability are
often concems;
a safety-critical controller, such as an anti-lock brake
controller in a car or an autopilot.

Most readers would agree that each of these examples
is an embedded computing system, but a comprehensive
definition of embedded computing has not yet achieved
wide acceptance. There are clearly examples which may
or may not fit varying definitions of a system. For exam-
ple, many industrial and scientific control applications are
implemented on PC’s. Since these applications are dedi-
cated, many (though not all) would consider such systems
embedded. But is a PC used solely to run a spreadsheet
in an embedded computing system? Is a personal digital
assistant (PDA) which uses the same microprocessor and
runs the same spreadsheet software an embedded computer?
It is difficult to come up with a simple definition which
meets everyone’s intuitive notion of embedded computing.

Different applications place primary importance on dif-
ferent factors: design time, manufacturing cost, modifia-
bility, reliability, etc. What embedded systems share is

a belief by the designers that implementing some of the
system’s functions on microprocessors will make one or
more of those goals easier to achieve. One lurking prob-
lem with any kind of software design that also holds
for embedded systems is the desire, well documented by
Brooks [7], to add features at the expense of schedule
and design elegance. In addition, embedded systems have
added problems due to their design constraints. Designing
code to meet a performance deadline or squeezing code
into the given amount of ROM can be very difficult
without a well-understood design methodology to help
guide decisions. The design of embedded systems is not as
well understood as the design of integrated circuits, which
have several methodologies for different cost-performance
tradeoffs-sea-of-gates, standard cell, full-custom-and de-
sign tools for the phases of design in each methodology.
While embedded system designers can make use of ex-
isting tools for the hardware and software components
once the design has been partitioned, much remains to be
learned about how a system is partitioned into hardware
and software components. Methodologies and tools for
hardware-software co-design are critical research topics for
embedded system design.

Hardware-software co-design of embedded systems must
be performed at several different levels of abstraction, but
the highest levels of abstraction in co-design are more
abstract than the typical software coder or ASIC designer
may be used to. Critical architectural decisions are made
using abstract hardware and software elements: CPU’s and
memories in hardware, processes in software. As a result,
the initial hardware and software design problems are high-
level: the first hardware design decision is to build a
network of CPU’s, memories, and peripheral devices; the
first software design problem is to divide the necessary
functions into communicating processes. At first blush, a
hardware designer in particular may not consider CPU
selection to be true hardware design. For example, the
major hardware architectural decision may be to choose
between a 386-based or 486-based PC. However, that task
is not so different from the design choices faced by VLSI
designers. A chip designer does not design the threshold
voltage, transconductance, and other transistor parameters
to suit a particular application-rather, digital logic design
requires choosing a circuit topology and computing transis-
tor WIL’s. The typical ASIC designer will not deal with
transistors at all, but will choose logic gates from a library
and wire them together to implement the desired function.
Whether the components to be selected and interconnected
are logic gates or CPU’s, the designer faces the same
problem: characterizing the components; understanding
the operation of networks of components; and choosing a
network topology based on the requirements.

Embedded system design can be divided into four major
tasks:

partitioning the function to be implemented into
smaller, interacting pieces;
allocating those partitions to microprocessors or other
hardware units, where the function may be imple-

968 PROCEEDINGS OF THE IEEE, VOL. 82. NO. 7, JULY 1994

mented directly in hardware or in software running
on a microprocessor;
scheduling the times at which functions are executed,
which is important when several functional partitions
share one hardware unit;
mapping a generic functional description into an im-
plementation on a particular set of components, either
as software suitable for a given microprocessor or logic
which can be implemented from the given hardware
libraries.

(This taxonomy is similar to that given by McFarland et al.
for high-level synthesis [73] with the exception of adding
partitioning as a first-class design problem.) The design
goals in each task depend on the application: performance,
manufacturing cost, testability, etc. The solutions to these
problems clearly interact: the available choices for sched-
uling are controlled by how the design was partitioned, and
so on. To make matters worse, not only can each of these
steps be applied to the software and hardware components
separately, but also to the division into hardware and soft-
ware components itself, and the design decisions made for
the hardware and software components separately interact
with the co-design problem. We will frame our discussion
of co-design techniques by reference to the partitioning,
allocation, scheduling, and mapping steps. Mapping is
the least understood part of co-design: while it is often
possible to estimate the overall amount of computation
required to complete a task, it is much more difficult
to determine whether a particular hardware structure and
software organization will perform the task on time.

Several disciplines help form the basis of embedded
system design. Software engineering and VLSI computer-
aided design (CAD) provide implementation techniques
for the software and hardware components of the system,
and those techniques may be useful during co-design as
well. Because many embedded systems are implemented
as networks of communicating microprocessors, distributed
system design is an important foundation for co-design.
Real-time system design is another critical foundation since
many embedded systems include performance constraints
as part of their requirements. Real-time systems are usually
divided into hard real-time, for which failure to complete
a computation by a given deadline causes catastrophic
system failure, and soft real-time, where performance is
important but missing a deadline does not cause the system
to fail. A clear example of a hard real-time system is an
autopilot, where failure to compute a control command
from a given control input in a certain interval causes
the airplane to go out of control. A laser printer is an
example of a machine with soft performance constraints
while the user bought the system based in part on its pages-
per-minute rating, the rate at which the printer actually
typesets pages can vary without causing the machine or
the customer physical harm. The control of the print en-
gine within the laser printer is, however, a hard real-time
task-data must be delivered to the print drum at specified
times and rates or the printed image will be destroyed.
Many embedded systems have at least a few hard real-

time constraints, derived from deadlines imposed by the
operation of peripherals.

B . Embedded Processors and Software Architectures
Any central processing unit (CPU) may be used in an

embedded computer system. A CPU whose design is op-
timized for embedded applications is called an embedded
processor. Embedded processors may be compatible with
workstation CPU’s or may have been designed primarily
for embedded applications. Many embedded processors do
not include memory management units; the structure of the
application software makes a memory management unit less
useful and the chip area occupied by that logic can be
put to better uses. An embedded processor optimized for
digital signal processing is called a digital signal processor
(DSP).

An embedded controller or microcontroller devotes
on-chip area to peripherals commonly used in embedded
systems. Embedded controllers add peripheral devices such
as timers, analog-to-digital converters, or universal syn-
chronous/asynchronous receiver transmitters (USART’s) to
the core CPU. Timers are used to count events, to measure
extemal time, and to measure the length of time slices
for process scheduling. A serial port like a USART may
be used to control some simple devices, may be used for
debugging, or may be used to communicate with other
microcontrollers. Most 4- and 8-bit microcontrollers include
on-board random-access memory (RAM) and some sort of
read-only memory (ROM), but 16- and 32-bit embedded
controllers may not include on-chip ROM. The amount of
memory available on a microcontroller is usually small:
256 bytes of RAM and 1024 bytes of ROM is a common
configuration for an 8-bit machine. Some applications have
been forced to move to 16-bit embedded controllers not
because of data size, but rather because the application code
could not fit into an 8-bit controller’s address space.

Some microprocessor manufacturers provide embedded
controller design and manufacturing: a customer may de-
sign a chip using a microprocessor core, standard pe-
ripherals, and standard cell logic; the controller is then
manufactured in quantity for the customer. Customers in
this market niche must have a large enough demand for
the custom controller to justify the design and added
manufacturing costs. An alternative approach to the design
of customer-specific microcontrollers has been proposed
by a number of people, though we do not know that
such a chip has yet been manufactured: a microcontroller
with an on-board RAM-based field-programmable gate
array (FPGA) would allow the customer to add custom
peripherals by downloading a personality to the FPGA.

An application-specific processor (ASIP) is a CPU
optimized for a particular application. A DSP is an example
of an ASIP, though ASIP is generally used to refer to
processors targeted to application niches much narrower
than the audio-rate signal processing market. Paulin pointed
out that some telecommunications applications require parts
in hundreds of thousands to millions, making the gain in
performance and reduction in cost provided by an ASIP

WOLF HARDWARESOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 969

serial bus

I

I-- I

analog

Fig. 1.
signal processing and user interface.

An embedded system with distributed computing for

worth the added design effort [74]. Most ASIP’s available
today were designed by CPU manufacturers for niche
markets: the laser printer market has attracted several pro-
cessors, such as the AMD 29000; the Motorola MC68302
is optimized for execution of telecommunication protocol
code, such as ISDN. A CPU manufacturer may optimize
a design in several ways: the memory bus is often tuned
for laser printer applications; peripherals may be added to
support special tasks; or, as in the case of FFT-related
instructions for DSP’s, application-specific instructions may
be added. There is growing interest in design tools for
ASIP’s which can select an instruction set appropriate to
the application.

Many embedded systems are implemented as distributed
systems, with code running in multiple processes on
several processors, with interprocessor communication
(IPC) links between the CPU’s. For example: most marine
and general aviation navigation devices communicate via
RS-232 serial lines; modem automobiles contain many
microprocessors physically distributed throughout the car
which communicate with each other to coordinate their
work; cellular telephones today generally include at least
one general-purpose microcontroller and an embedded
DSP, and some telephones are built from a half-dozen
embedded processors. Figure 1 illustrates a hypothetical
distributed system which is used to implement a machine
which must perform both signal processing and user
interaction. A DSP is used to implement the signal
processing functions, while an 8-bit microcontroller handles
the user interface. Each microprocessor has on-board
peripheral interfaces, an analog-to-digital converter on the
DSP, and a parallel port on the microcontroller, which are
used in this application. Since each microprocessor has
on-board memory and only low-speed communication is
required between the signal processing and interface tasks,
a serial interface is used to connect the two CPU’s.

A distributed system may be the best implementation of
an embedded computer for any of several reasons:

Time-critical tasks may be placed on different CPU’s
to ensure that all their hard deadlines are met. In the

.
above example, sampling the keyboard might interfere
with the DSP process if both were on the same CPU.
Using several small CPU’s may be cheaper than using
one large CPU. In many cases, several 8-bit controllers
can be purchased for the price of one 32-bit pro-
cessor. Even after board real-estate costs are added
in, distributing a task over several small CPU’s may
be cheaper than combining all the tasks onto one
processor.
Many embedded computing systems require a large
number of devices. Using several microcontrollers
with on-board devices may be the cheapest way to
implement all the device interfaces.
If the system includes a subsystem purchased from a
supplier, that subsystem may include its own CPU.
The subsystem’s CPU will impose a communications
interface, but it is usually not possible to move other
system tasks onto the subsystem’s processor.

Rosebrugh and Kwang described the design of a pen-based
computer which was implemented as a distributed system
[8 13. Their device had to mix time-sensitive input/output
operations, such as tracing the pen on the screen, with
computer-bound tasks such as updating its intemal data-
base. Their design used four microprocessors: a Motorola
MC6833 1, a 68000-family processor, as the core processor;
a Motorola MC68HC05C4, an 8-bit microcontroller, for
power management; a Hitachi 63484 for graphics; and
an Intel 80C5 1, another 8-bit microcontroller, for the pen
digitizer. The processors were connected heterogeneously:
both the MC68331 and 63484 were connected to main
memory, but the 63484 graphics processor was the only
device connected to the display memory; the 80C51 was
connected to the digitizer and to the 68HC05, while the
68HC05 talked to the MC68331.

A variety of interconnect schemes are used in distributed
embedded systems. The processor bus may be used for
simple systems-all processors not only share common
memory, they also contend for the bus to access mem-
ory and devices. CO-processors like floating-point units
often have their own dedicated link to the CPU. Many
embedded controllers use serial links, either RS-232 or
special-purpose links, between their CPU’s. The 12C bus
[89] is a serial communications system popular in 8-bit
distributed controllers: it requires two wires, provides mul-
tiple bus masters, and can run at up to 400 kb/s. SAE-J1850
is an emerging standard for automotive communication
networks. The Echelon Neuron architecture also uses a
medium-performance serial link between the processors.
Bandwidth limitations on the commonly used interproces-
sor communication systems make process allocation very
important to ensure that deadlines are met in the face of
IPC delays.

Embedded software can usually be thought of as a system
of communicating processes, though the underlying code
may not have clearly defined processes. A process is an
instance of a sequential machine, which we will use to
refer to either a hardware or a software implementation.
Task is a synonym for process; we will use the two

970 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 7, JULY 1994

terms interchangeably, usually choosing the word used by
the author whose work we describe. The term thread or
lightweight process is used by some authors; a thread is
usually used to describe a process which shares its memory
space with other threads, rather than assuming that each
process has its own address space.

As will be described in more detail in Section 111-D,
software processes can be implemented in several different
ways: using preemptive scheduling, as in time-sharing
systems; through nonpreemptive scheduling, in which a
process voluntarily passes control to the next process: as
a cyclostatic machine, which periodically executes a fixed
sequence of operations; and as an interrupt-driven system.
The software architecture appropriate for a task depends in
part on the match between the CPU chosen, particularly the
speed at which the CPU can switch between processes, and
the performance requirements of the application.

C . The Engine Metaphor
If an embedded system is thought of as a jumble of

microprocessors and code, it can be difficult to discern
the structure which leads to a successful architecture. The
engine metaphor helps us understand the roles hardware
and software play in the implementation of an embedded
computer system. While the designs of the hardware and
software components clearly interact with each other, es-
tablishing the roles that hardware and software play in
the system is critical to developing a methodology which
manages the design process and categorizes the design
interactions to guide the designer toward a satisfactory
solution.

Our model of an embedded computer systems is a hard-
ware engine which runs application software, as shown
in Fig. 2. The engine includes the one or more CPU’s
and memory as well as peripherals. The engine provides
the raw computing power for the system both instruction
execution and peripheral operations. Most of the features
of the system, however, are not directly implemented in
the hardware but are instead designed into the application
software. Viewing the hardware as the engine which pro-
vides the power for the application software’s features helps
us decide whether to solve a particular design problem by
attacking the software or hardware.

Hardware engine design for embedded systems is remi-
niscent of engine selection for vehicles such as automobiles
or airplanes. The engine is selected very early in the design
of a motor vehicle [98]. While the mission requirements
(gross weight, maximum speed) determine a horsepower
range for the engine, the particular engine to be used is
selected from a small set of available engines which meet
the requirements. Once the engine has been selected, its par-
ticular characteristics-exact horsepower, torque, weight,
shape, cooling requirements, etc.-+onstrain the design of
the vehicle. Similarly, the CPU for a hardware engine
must be selected from among the available processors.
The characteristics of that processor-execution speed of
various instructions, bus throughput, etc.-help determine
the design of the software which runs on the engine.

software functions

m

Constraints

Fig. 2. A hardware engine.

The design of the software architecture-the division of
the function into communicating processes-is closely re-
lated to engine design. Two systems with identical functions
but different process structures may run at very different
speeds, require vastly different amounts of memory, etc. For
example, in one case, dividing one process into two may
increase the amount of concurrency exposed in the system
and reduce the execution time required; in another case,
dividing a task into too many processes may introduce too
many context switches and reduce performance. You cannot
choose a hardware engine without also choosing a software
architecture, since the software’s process structure help
determine size and speed. Similarly, a vehicle’s body and
aerodynamics are closely related to the choice of engine:
a narrow airplane cannot accommodate a wide engine;
the classic Bugatti limousines have long, elegant shapes
in large part to accommodate the straight 16 cylinder en-
gines undemeath their hoods. Embedded computer system
design is hardware-software co-design precisely because
system architecture design must simultaneously consider
the hardware engine and the software process structure.

Performance constraints, both general throughput require-
ments (such as average page printing rate for a laser printer)
and hard real-time deadlines, determine the minimum-size
hardware engine needed for the application. The designer’s
job is to choose an engine which is large enough to
meet the application’s performance demands, which is no
more costly than necessary (why pay for more horsepower
than you need?), and also satisfies the other nonfunctional
requirements like physical size, power consumption, etc.
Performance constraints for an embedded system play the
role of mission requirements in vehicle design. In the
absence of performance constraints, any hardware engine
will do. It is performance constraints, particularly hard real-
time deadlines, which determine the basic requirements of
the hardware engine.

However, unlike in vehicle design, we do not at present
have simple rules-of-thumb to relate embedded computer
mission requirements, analogous to maximum gross weight
in vehicle design, to a simple measure of processor perfor-
mance like an internal combustion engine’s horsepower.

WOLF: HARDWARE-SOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 97 1

Benchmarks such as the SPEC benchmark set provide
some means to measure processing power, but it is often
difficult to extrapolate from benchmark performance to the
execution time for the application at hand. If we had such
performance prediction rules, they would almost certainly
be domain-specific, just as the back-of-the-envelope calcu-
lations for automobile and aircraft design are very different.

It is likely that today’s large number of choices in
CPU’s for embedded applications is a historical anomaly.
In the future, it is likely that one or two CPU’s will
be available for each performance/feature regime, much
as vehicle designers today have a limited selection of
engines available to them. Today, VLSI technology is
advancing and embedded computing markets are growing,
so semiconductor manufacturers are still incented to invest
the large sums required to design new CPU’s-it is still
possible to gain production volume by growing with the
market. When VLSI technology and its semiconductor
markets mature, manufacturers will probably find CPU
design to be too expensive to be justified simply to take
market share away from another manufacturer. The diffi-
culty of developing efficient compilers and their associated
development environments for new processors adds an-
other barrier to entry for new CPU’s. There will always
be opportunities for customized CPU’s, either offered by
manufacturers for particular market segments or designed
for a particular application by a customer. As with intemal
combustion engines, however, simple design changes can
be made cheaply but some kinds of engine redesigns
require large investments in engineering. In that steady-state
condition, distributed system design will probably become
even more important, as system designers try to compose
an engine which meets their requirements from a collection
of interconnected CPU’s.

The most general way to estimate the required size of
an embedded hardware engine by performing an initial
synthesis of both the hardware and software subsystems. By
choosing one or more processor types and dividing up the
software tasks among n such processors, we can determine
whether the given architecture can meet its deadlines and
indicate where an application-specific co-processor will be
required. As we will see later in this paper, many techniques
have been developed for mapping a functional specification
onto a given hardware engine with constraints, but less is
known about the design of the hardware engine itself. Even
less is known about the joint optimization of the application
software and the hardware engine.

D. Design Flow
The design process of an embedded system must vary

considerably with the application: the design of a pager is
very different from the design of an autopilot. However,
we can identify common steps. Furthermore, a study of
a typical design flow shows that the hardware and soft-
ware components of an embedded system have common
abstractions, a fact which we can use to our advantage in
hardware-software co-design.

specification

I para//e/
system architecture comPu~tion

behavior communicating processes
processes

1
1

1
1
I strmtum

register-transfer structura/ modules
description

&Wed high-level
b g b j language

logic

object code physical

\ integration /
1

system testing

Fig. 3. A top-down design process for an embedded system.

Figure 3 shows a typical sequence of steps in a top-
down design of an embedded system; of course, most
actual design processes will mix top-down and bottom-up
design. For comparison, Smailagic and Siewiorek describe a
concurrent design methodology used to design VuMan 2, a
portable smart display device [90]. Design of the hardware
and software components must proceed fairly separately
at some point, just as two hardware components must
be designed separately once the system has been broken
down into a system of components. However, as the figure
shows, the hardware and software tracks refine the design
through similar levels of abstraction. Processes are used
to represent both the hardware and software elements of
the initial partition: a system of hardware components in a
block diagram is equivalent to a system of communicating
processes; and the interprocess communication links in
a software specification correspond to signals in a block
diagram. The fact that both hardware and software are
specified as processes gives us hope that we can use
a common modeling technique to simultaneously design
both the hardware engine and the application code to
meet performance constraints. It is because hardware and
software have related abstractions that co-design can make
architectural choices which balance the design problems of
each.

Design starts with the creation of a specification (also
known as requirements or requirements specification). A
system specification includes not only functional require-
ments-the operations to be performed by the system but
also nonfunctional requirements, including speed, power,
and manufacturing cost. The importance of the specification
should not be underestimated-most systems have at least
some predefined requirements or goals, such as a target
page-per-minute production and maximum sale price for
a laser printer. Books by Davis [21] and Dorfman and
Thayer [23] give more information on system specification
techniques and standards.

912 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 7, JULY 1994

During the writing of the specification and the design of
the initial system architecture, phases which often overlap,
the system architects must determine that the design goals
are in fact feasible. Feasibility checks are simpler in the
design of application-specific IC’s (ASIC’s) because the
chip to be designed fits into a predefined system and
performs a small enough function that it can be specified
with confidence. In contrast, embedded computer systems
usually employ microprocessors precisely to add a vari-
ety of sophisticated features which, in tum, complicate
the specification of the system and validity tests. And
because embedded software is often used to decrease de-
sign turnaround time, some decisions on the hardware
engine must be made from guesses as to the ultimate
function to be implemented. An extreme example [3] is
offered by several avionics manufacturers: even before the
Federal Aviation administration had defined the technical
standards for new GPS-based navigation services, these
manufacturers guaranteed to purchasers of current-model
radios a cap on their cost to upgrade the radios to the
new standards. In many other cases, manufacturers design
a single hardware engine which is used both for several
products at a time and several generations of products;
since the exact features of successive generations cannot
be precisely predicted due to competitive pressure, it may
be necessary to design the hardware engine architecture
using only guesses as to the resources required by future
features. Embedded system design methodologies must be
able to support incomplete specifications, design of a single
engine to satisfy multiple product specifications, or changes
to the specs during design.

Requirements specification inherently deals with descrip-
tions which are too informal to be defined mathemati-
cally-most customers describe their requirements in Eng-
lish that is often incomplete and inconsistent. A great deal
of work has been done on system and software specification
in general, and some of that work has concentrated on
the design of real-time systems. Hatley-Pirbahi analysis
[36] is a well-known technique for the design of real-time
systems. A system is described in terms of two models:
a system requirements model and a system architecture
model. These two models are jointly refined in a spiral
development cycle: once initial requirements have been
given, an initial architecture is proposed; analysis of the
architecture suggests refinements to the architecture, which
in tum suggest changes to the architecture; and so on until
the requirements are well-understood and an implementable
architecture has been identified. A requirements model
consists of a data flow diagram, a control flow diagram,
response time specifications, and a requirements dictio-
nary. (A dictionary in software specification is similar to a
common dictionary-it lists definitional information, such
as type, references, and so on, for elements of the spec-
ification.) The architecture model includes an architecture
flow diagram which allocates functional elements of the
requirements model to physical units in the architecture,
an architecture interconnect diagram (a block diagram),
and a dictionary. Hatley-Pirbahi analysis is intended to be

used first to define the complete system, then to refine the
software and hardware sections of the system.

Shlaer-Mellor analysis 1881 is an object-oriented ap-
proach to real-time system specification, where an object
is a data structure plus a set of member functions which
operate on that data structure. In object-oriented designs,
functions are performed not by executing monolithic func-
tions on large data structures, but rather by member func-
tions updating their objects and calling member functions of
other objects. Shlaer-Mellor analysis views objects as state
machines: the values in the object’s data structure define
its state while its member functions can update the object’s
state and produce outputs based on that state. The behavior
of an object can be described as an ASM-like state transition
graph. Analysis helps the designer identify which objects
make up the system, the behavior of each object, and how
objects communicate to implement system behavior.

It is critical that specification not bias implementation. If
the specification method is too operational, it will contain
an implicit or explicit architectural model. The architec-
tural model which is best suited to specification may not
be the most efficient implementation. D’Anniballe and
Koopman [20] studied techniques bias-free specification
of distributed systems. They developed a specification
methodology which mixed object-oriented analysis with a
set-theoretic formal specification of the behavior of the
objects. This technique allowed them to better separate
the specification of function from the allocation of those
operations to architectural components.

After the architectural decisions have been made, hard-
ware and software design can proceed somewhat separately;
if proper co-design has selected a good architecture, then
components designed to the architectural specifications can
be put together to build a satisfactory system. Hardware
design proceeds through several steps: a description of
behavior, which may include communicating machines
and in which operations are only partially scheduled in
time; a register-transfer design, which gives combinational
logic functions between registers but not the details of
logic design; the logic design itself; the physical design
of an integrated circuit, placement and routing in a field-
programmable logic device, etc. Software design starts with
a set of communicating processes since most embedded
systems have temporal behavior which is best expressed
as a concurrent system; the decomposition of function into
modules is an intermediate step in software design, which
proceeds to coding in some combination of assembly and
high-level languages. The software and hardware compo-
nents must be integrated and then tested to be sure that the
system meets its specifications.

The separation of design tasks into concurrent design
of hardware and software components highlights the im-
portance of early selection of a hardware engine and
an accompanying software architecture. The architectural
choices made early in the design process guide the detailed
implementation choices for the hardware and software com-
ponents. As in any complex design, the architect must make
key choices early, looking ahead to possible implementation

WOLF HARDWARE-SOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 973

problems, but without completing a full implementation.
When an aircraft designer selects an engine for a new
airplane, he or she does not need to design the arrange-
ment of rivets on the airplane’s tail to determine the
horsepower requirements of the new engine; such detailed
implementation decisions would only be an abstraction.
The detailed design of the airframe must, however, be
completed in a way that does not violate the assumptions
about gross weight, drag, and other factors that were used
to determine the engine requirements. In an embedded
computing system, the implementation of the software
processes and the hardware components must be consistent
with the assumptions made about computing loads.

Once the hardware and software components have been
implemented, they must be separately tested, integrated,
and tested again. Unfortunately, the hardware and software
design communities use the word testing very differently:
hardware designers use it to mean manufacturing testing,
or tests which ensure that each manufactured copy of a
component was correctly manufactured; software designers
use it to mean system validation, or ensuring that the design
meets the specification. (We prefer to reserve the word
verification for mathematical techniques which give proofs
of the correctness of certain system properties, leaving
validation for informal techniques which give reasonable
assurance but fall short of proofs.) Both forms of testing
are necessary: the hardware and software elements must
be executed together to ensure that the system satisfies its
specification; and each copy must be tested for defects as
it comes off the manufacturing line. Manufacturing test of
embedded systems does not introduce major new problems,
since the hardware can be tested independently of the soft-
ware and the integrity of ROM code can be easily checked.
Design validation of the integrated hardware-software sys-
tem does, however introduce some problems.

The first problem to be considered is that software de-
velopment must rely as little as possible on the completion
schedule of the hardware design. Design methodologies in
which the software designers must wait for the hardware so
that developers can execute their code result in unaccept-
ably long development times. More important, such a serial
design methodology ensures that the hardware engine will
have design flaws which introduce software performance
problems. Hardware designers (or synthesis tools) must be
able to make use of the results of a more detailed software
design to refine the design of the engine and conversely,
the software implementation can be affected by the details
of the hardware engine. It may be possible to develop
the code on a completely different platform, such as a
personal computer or workstation. In other cases, it may be
necessary to use the target processor but to use a standard
development system in place of the final hardware engine.

Once the first versions of the engine and application code
are available, integration tests can begin. Integration testing
must check for both functional bugs and performance
bottlenecks. As mentioned in Section 111-B, the events in
an embedded computer system are not always easy to
observe. It may not be possible to gather large enough

traces to determine detailed system behavior; on cached
machines, behavior may not be extemally visible. Many
modem microprocessors provide hooks for tracing during
execution, which are useful in functional debugging but
may not be feasible for systems which must be run at
full speed. Sampling is often used to generate approximate
performance measures: the address bus can be sampled
periodically to generate histograms of address execution
rates; the kemel’s scheduler can be used to generate a
trace of active processes to determine how frequently each
process was executed; counters in the hardware engine can
be programmed as event counters to measure certain perfor-
mance statistics by adding a small amount of measurement
code to the system.

111. PERFORMANCE ANALYSIS
Soft and hard performance goals are essential parts of

the specifications of most embedded systems. Performance
analysis is also critical to cost minimization-the usual
approach to designing a time-critical system in the absence
of accurate performance analysis is to overdesign the hard-
ware engine, producing a system that is more expensive
than may be necessary. As a result, performance analysis
is critical at all stages of design. This section describes
two categories of performance analysis methods: those used
during requirements analysis and architecture design; and
those used to measure the performance of software. We
will not consider here how to determine the cycle time of
hardware components, which is a relatively well-understood
problem whose outlines can be found elsewhere [lOO].

Malik and Wolfe [64] argue that embedded system per-
formance analysis requires solving two problems: modeling
the underlying hardware engine and analyzing the behavior
of the code running on that engine. Furthermore, per-
formance estimation tools are required at each level of
abstraction through which the design proceeds. This section
considers performance analysis of large systems in Section
111-A, modeling of CPU performance in Section 111-B,
performance of a single task in Section 111-C, performance
of multiple tasks running on a shared processor in Section
111-D, and co-simulation in Section 111-E.

A. System Performance Analysis
The goal of system performance analysis is to trans-

late performance specifications, which are typically given
on user-level functions, into constraints on the design of
the hardware engine and the application software. System
performance analysis includes several tasks: determining
the implications of performance specifications; estimating
the hardware costs of meeting performance constraints;
identifying key development bottlenecks; and estimating
development time. System performance analysis is not
necessary for most ASIC’s due to the simple form of the
performance constraints. It is, however, a necessary step
in the design of a modem CPU-the sizes of queues and
buffers, the number of hardware resources available, and the
interconnections between those resources all determine the

914 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 7, JULY 1994

,

W I ,
i ISAbus 2 1

data transfer

Fig. 4. Data transfers and tone detection options in Tigerswitch.

performance of the CPU. Similarly, memory, interconnect,
and function units (in the form of CPU's or special-purpose
processors) all influence the overall performance of an
embedded system.

An example helps to show the role of system performance
analysis in the design of an embedded computer system.
Tigerswitch is a PC-based telephone switching system
designed at Princeton University. As shown in Fig. 4, the
PC system bus (known as the ISA bus) serves as the
switching fabric. Line cards connect telephone lines to
the switch; an analogdigital converter connects to the
telephone microphone, while a digital-analog converter
connects to the speaker. During a call between two phone
lines, the PC first reads the current microphone sample
from one line, then writes it to the other line; it then
reverses the procedure to provide a full-duplex connection.
Each call must be sampled at 8 kHz, the sampling rate for
telephone-quality audio.

Several factors influence the number of phone lines which
can be supported by the switch. The ISA bus bandwidth
certainly limits the number of calls which can be switched.
However, bus bandwidth divided by sampling rate is only
an upper bound on phone line capacity, since some bus
operations are required for execution of the program which
controls the switch. Furthermore, the CPU itself is used both
to implement the switching fabric and for other switching
functions: an 8-kHz timer interrupts to switch data between
all active lines by executing VO instructions on the CPU; a
foreground process keeps track of call state; other processes
determine how to route calls and bill time as well as other
functions.

The function which caused the most concern in the design
of Tigerswitch was tone detection. Dialing tones (known
as DTMF, for dual-tone multifrequency) must be detected
at the start of the call: each digit on the phone keypad
is signaled by a pair of tones, where each row and each
column on the keypad has its own distinct tone frequency.
DTMF detection can be performed by a filter bank or by
Fourier analysis. Because the two tones must be sustained
for at least 0.1 s to make a valid signal, tone detection
requires a great deal of computation.

As shown in Fig. 4, we had three possible locations for
DTMF detection in the architecture: on each line card, using

analog DTMF detectors; on the main CPU, as a background
process, using digital signal processing algorithms; and on
an auxiliary processor, using the same DSP algorithms,
on a card plugged into the ISA bus. In most switching
systems, DTMF detection is performed digitally by one
of a few tone detection units, since DTMF detection is
required for only a small fraction of the call. In this scheme,
when a phone is taken off the hook, the switch searches
for a free tone-detection unit and does not issue a dial
tone until one is available. We decided not to implement
a tone-detection unit on a separate card, because we could
not design the additional hardware and meet our desired
completion date (the end of the semester). A test program
was created to measure the amount of time required to
run the DTMF detection algorithm on the main CPU.
Experiments showed that DTMF detection took sufficiently
long on a 386 processor that the switching fabric process did
not have enough time left over to switch any calls at the 8-
kHz rate. A Pentium@ processor was fast enough to execute
the DTMF algorithm and still switch calls. However, we
decided that we could add DTMF detection to our line
card much more cheaply than the cost of a faster host
processor, so we added analog DTMF detection to the line
card. A similar project which had different requirements
and manufacturing volumes would probably opt for one
of the other two possible solutions (the line card set is the
single most expensive element of a large switching system).
Design choices must be evaluated in light of the system
requirements.

Tigerswitch illustrates the typical architecture design
process in an embedded system:

first, a candidate architecture must be proposed and
potential performance bottlenecks in that architecture
must be identified;
second, modifications to the architecture must be pro-
posed and the performance of each analyzed;
finally, one configuration must be chosen based on
the results of performance analysis and other require-
ments, such as manufacturing cost, design time, and
reliability.

Performance analysis of an initial architecture, before a
complete implementation of any part of the system is avail-
able, is critical because performance bottlenecks may not
be obvious from the system specification. Performance ap-
proximations derived from simplified models of the system,
providing that the approximations are sufficiently accurate,
help us avoid completing an unsatisfactory implementation
which must be thrown away.

Morfit's description of one embedded system design
illustrates the role of performance analysis and optimization
[67]. After the design and implementation of a cellu-
lar telephone system, the design team used a software
monitoring system, which recorded the active process at
each scheduler interrupt, to measure which processes were
dominating CPU utilization. Measurement showed that un-
expected processes were taking up most of the CPU and

@Pentium is a trademark of Intel

WOLF HARDWARLSOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 915

that repartitioning operations between processes could sub-
stantially reduce CPU requirements. In one case, bundling
display writes into a single processor reduced that process’s
utilization from 20%-50% to less than 10%. In another
case, modifying a process to write multiple-byte rather than
1-byte records reduced the number of function calls to a
critical routine in the range 20: 1 to 300: 1, depending on the
data. While some performance data cannot be fully created
without a complete implementation, a more detailed model
with accurate analysis would allow such problems to be
caught in time to change the design of both the software
and the hardware engine.

Queueing system models are useful for analyzing systems
where inputs arrive sporadically or the processing time for
a request may vary. In a queueing model, customers arrive
at the queue at some rate; the customer at the head of the
queue is immediately taken by the processing node, but
the amount of time spent by the customer in processing
must be specified. Typically, both the customer arrival
rate and processing time are modeled as Poisson random
variables. Useful characteristics a queue include the average
residence time, which is the amount of time a customer
resides in the queue plus processing time, and the average
queue length, which is given by Little’s Law [54].

Queues are assembled into networks to model systems:
the output of one processing center feeds into another queue
to enter the next phase of processing. Computer system
models have traditionally used for data-processing style
applications: stochastic models are appropriate not only
for CPU’s which must handle requests which may take
varying amounts of time to process, but also disks whose
access time depends on the disk state at the time of the
request. Queueing network models are usually solved by
simulation; SES/Workbench@ is one well-known queueing
network analysis system. Kobayashi [54], Lazowska et al.
[56], and Smith [91] survey computer system modeling
using queueing networks.

B . CPU Pegormance and Modeling
Advanced architectures usually include components, like

caches, which provide high peak performance at the cost of
greater variance in execution times. Hard real-time systems
must meet their deadlines under worst case conditions.
Some techniques exist for narrowing the variance of ex-
ecution times.

Most CPU’s are offered in several different models and
the choice of model can substantially affect the cost of
the CPU. Integrated circuits may be packaged in ceramic
or plastic; ceramic packages are much more expensive to
make than injection-molded plastic packages, but ceramic
packages provide more pins and can run at faster rates. For
example, a 1991 Intel catalog lists the price of a 20-MHz
i960KB in a plastic quad flat pack (PQFP) as 17% less
than the same chip in a ceramic pin-grid array (PGA); the

@SES/Workbench is a trademark of Scientific and Engineering Soft-
ware, Inc.

25-MHz version of this processor is available only in the
PGA package.

In some cases, the processor can be packaged in plastic
only by reducing the number of pins. In such cases, a
modified bus is designed for the processor with a smaller
number of data pins. For example, the Intel i386DX has a
32-bit data bus, while the i386SX has a 16-bit data bus. The
smaller bus width is invisible to the software running on
the CPU because the bus subsystem breaks a write into
operations which can fit on the bus, and assembles the
results of a read to produce a datum of the proper size.
The smaller bus width also makes the memory system less
expensive, since it requires fewer separate chips. The ability
to use a plastic package at all, or to use a cheaper plastic
package with fewer pins, can make a CPU substantially
cheaper: the 1991 Intel catalog prices a 16-MHz i960SB, a
variation of the KB with a 16-bit bus, as 40% less expensive
than the 20-MHz chip in a ceramic package. While a 16-bit
bus on a 32-bit processor requires two bus transactions to
fetch a 32-bit datum, the effect of reduced bus width on
program performance cannot be simply calculated. Code
executing from the intemal cache or data in registers runs
at the same rate on the narrow- and wide-bus systems; if
the program fetches smaller data values, such as bytes, the
narrow bus will be as efficient. A study of the program’s
dynamics is required to determine the true performance
penalty of a narrow bus.

Instruction execution time is normally given in tabular
form. For a nonpipelined processor, one entry per instruc-
tion is sufficient for simple instructions. More complex
instructions may have execution times which depend on
data values, just as program execution times depend on
the trace taken through the program. Integer multiplication,
floating-point, and especially transcendental functions are
likely to have data-dependent execution times. A transcen-
dental operation can take tens of thousands of clock cycles
to execute.

Execution behavior in a pipelined machine depends not
just on one instruction, but on a set of instructions. For
example, a processor may use a prefetch unit to fetch
instructions in order after the present program counter
location and store those instructions in a queue. When a
branch is taken, the pending instruction queue is no longer
valid, so the CPU must wait for the branch target to be
fetched, which causes a longer interval between successive
instruction completion times. Other pipelining mechanisms
also cause the execution time of one instruction to depend
on which other instructions are pending: for example, the
Intel i960KB manual gives the execution time for register
operations depending on whether the processor can bypass
a register access [45]-a bypass hit occurs if the source
of one of the instruction’s operands was the result of the
previous instruction, saving one clock cycle. Schmit [83]
describes techniques for optimizing Pentium code to take
advantage of multiple instruction issue.

It is often not possible to obtain from the micropro-
cessor supplier a CPU simulator which accurately models
performance. Simulation models which mimic only bus

976 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 7, JULY 1994

behavior, known as bus-level models, are more common.
Such a model accurately reflects the number of cycles
required to perform a bus transaction, such as a read or
write, but does not model the action of instructions. On the
other hand, some manufacturers do not publish instruction
performance data, even in tabular form. In such cases,
the only recourse for accurate performance measurement
is to measure execution times on a hardware system.
Measurement may be difficult on cache-based systems,
since not all CPU operations will be reflected on the bus.
An in-circuit emulator is a version of a CPU with the
same pinout as the standard CPU but which keeps traces
of instructions, allows breakpoints to be set, etc. While
an emulator is useful, emulation suffers the same fate as
simulation in that worst case performance is hard to elicit,
and the emulator may not be able to execute the instruction
stream at the full rate of the standard CPU. An emulator
is often more useful for functional debugging than for
performance analysis.

Caches affect CPU performance even more than pipelin-
ing within the execution unit. Many texts, such as Patterson
and Hennessy [38], describe cache organization and op-
eration. Since the static RAM (SRAM) used in cache is
ten times or more faster than the dynamic RAM (DRAM)
typically used in main memory, the penalty for a cache
miss is very large. Interrupt-driven systems are very poorly
matched to the assumptions which typically justify caches.
Rather than have a loop or another relatively small section
of code which is executed repeatedly, an interrupt-driven
system switches at irregular intervals between routines
residing in very different parts of memory. In a typical
processor, an interrupt routine invalidates most or all of the
cache; not only does this slow down the initial execution
of that routine, but it introduces contention for the cache
between interrupt routines which slows down the entire
system.

The stochastic nature of cache-based systems presents
a problem to the design of systems with hard real-time
deadlines. While an operation may run fast if it happens
to reside in the cache, it will run much slower if the
routine is not in the cache. It is often difficult or impossible
to predict from macroscopic program structure whether a
particular piece of code can be guaranteed to be in the
cache. As a result, real-time system designers often assume
that a memory fetch will always miss the cache. While this
assumption does ensure that the process will always meet
its deadline, it is very pessimistic caches are one of the most
effective means to the improvement of CPU performance.

Larger caches provided by increasing SRAM density
make it easier to reserve sections of the cache for crit-
ical code. Two schemes-ne hardware and one soft-
ware-have been proposed to ensure that selected routines
reside in the cache. Kirk proposed the SMART (Strategic
Memory Allocation for Real-Time) cache organization [5 13,
[52], which partitions the cache into a shared partition
plus several partitions allocated for critical tasks, as shown
in Fig. 5. Each time-critical routine may receive one or
more segments of the cache. A processor flag determines

address -+

partition ID -+

sharedflag -+

cache
mapping

1 partition 3 1
Fig. 5. Address mapping in Kirk’s hardware cache partitioning
scheme.

whether the currently running process is mapped into the
shared partition or into one of the private partitions. An
ID register identifies which private partitions are owned
by this process. Hardware ensures that a segment can be
accessed only by the task to which it was allocated. Kirk
and Strosnider [52] developed an algorithm to analyze
instruction traces to choose sections of code which should
be allocated their own cache segments.

Wolfe [lo l l proposed a partitioning scheme which re-
quires no additional hardware. His scheme chooses ad-
dresses for code and data during linking such that critical
routines are the only addresses in the program which map
into certain sections of the cache. Since no other routine can
knock that code out of the cache, the routine is guaranteed
to be cache resident. Figure 6 shows an example for
which the cache has an 8-byte line: the first two lines
are allocated contiguously to one process, the third line to
another process, and the fourth line to yet another process.
This scheme maps addresses into the cache into very small
chunks, equal to the size of the cache line-frequently 16
bytes or smaller. As a result, a process’s address space is
broken into many small chunks, and it may not be possible
to allocate a process’s code to contiguous addresses; it
also requires widely separated addresses. Wolfe presented
another scheme which allows contiguous addressing: by
extracting the tag from the middle of the address, not
the top, larger blocks of contiguous memory are mapped
into the cache. While this scheme requires that the cache
hardware be redesigned to use different address bits, it does
not add either area or delay to the cache implementation.

Interrupt latency-the time required for the CPU to
execute the first instruction of an interrupt handler after
an interrupt is raised--can significantly affect performance
in two ways. First, interrupt-driven or scheduling-based
systems must add interrupt latency into their calculations
of total processing time. Second, interrupt latency puts a
lower bound on the time in which the system can respond
to an interrupted request. Tasks which require very fast
response to an event may not be implementable as interrupt
routines-busy-wait 1/0 or addition of a special hardware
unit to handle the task are alternative implementations
which decrease response time at the expense of added
hardware cost (either in the form of required additional

WOLF HARDWARESOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 977

301f
I process3 I

3018

2018
tag line index

I I I

201 0 00

1 OOf 08

1008

201 0 00

1 OOf 08

1008
I I / I I

1000 p 3 0 1 118

main memory cache

Fig. 6.
scheme.

Address mapping in Wolfe’s software cache partitioning

CPU capacity to make up for the lost time incurred by
busy wait polling or for the special-purpose hardware).

When a CPU services an interrupt, it must typically
reference interrupt vector tables, change the CPU state,
and other assorted tasks. Responding to an interrupt usually
takes much longer than simple instructions and the penalty
generally grows with CPU size. For example, the Motorola
MC68HC 16 16-bit microcontroller requires 16 clock cycles
to respond to an interrupt [68]; the Motorola MC68020
requires a minimum of 26 cycles [69]; the Intel i960KB
requires a minimum of 85 cycles [45]. While these times are
not completely comparable, since these processors perform
somewhat different actions on interrupts (the i960KB, for
instance, saves the current register set), but they do show
that the penalty is significant and increases with archi-
tectural complexity. The time required to respond to an
interrupt may depend on the state of the processor: for
example, multiple-cycle instructions may not be interrupt-
ible. Interrupt latency is not the only cost of handling an
interrupt: interrupt latency is overhead incurred in addition
to the execution time of the interrupt handler; furthermore,
the change in instruction flow induced by the interrupt
changes the state of the cache.

C . Software Performance Estimation
To estimate the performance of a concurrent system,

we must be able to estimate the performance of a sin-
gle process. Software performance estimation estimates
bounds on the running time of a single-threaded code
fragment when run on a specified processor. While CPU
modeling concentrates on a stream of instructions small
enough to fit in the processor pipeline and cache, software
performance estimation analyzes larger sections of code.
Software performance estimation can be broken down into
two steps: identifying legal paths through the code; and
determining the execution time of each path. Identifying
all legal paths through a program with unbounded memory
is equivalent to solving a halting problem, making exact

path identification undecidable, but good identification of
false paths through the program tightens the bounds on
execution time.

We would like to develop a hierarchy of performance
estimation models, including at least high-level language
and assembly language descriptions of the program. Lower
level models, such as assembly language, will obviously
give more accurate information on the effects of register
allocation, instruction interactions, and caching than will a
high-level language model. However, we often synthesize
a program from some specification by creating a high-level
language description which is then passed to a compiler. We
may not want to include compilation time in the interval
required to generate an initial performance estimate; fur-
thermore, we may want to compare the merits of potential
target CPU’s without purchasing the compilers for all
those architectures. Therefore, in addition to path analysis,
software performance estimation must also consider how
to calculate the execution times of the primitive operations
in the software description at whatever level of abstraction
is available.

The earliest techniques for software performance analysis
were manual analysis methods developed for data process-
ing systems. Smith [91] gives a good overview of the
analysis of program representations she calls execution
graphs, which are flow charts which use fork and join
operators to specify concurrent activity. Execution graph
analysis is intended primarily for modifications to existing
systems because it depends on performance measurement
of code. The execution time of the graph is computed by
reducing subgraphs. However, the accuracy of the execution
time clearly depends on the accuracy of the performance
estimates for the primitive operations, the estimates of
the numbers of times loops are executed, etc. Smith de-
scribes techniques for obtaining accurate execution time
and workload information from existing systems. However,
performance estimates based on measurements must always
be used with caution because the system tests may not
have exercised worst case behavior. Automatic software
performance estimation offers the promise of performance
figures which are both conservative, i.e., guaranteed to be
bounds on actual worst case performance, and more precise
than can be generated by hand.

Ein-Dor and Feldmesser [24] performed an early ex-
periment in performance prediction. Their goal was to
predict the relative performance of a computer system from
basic characteristics of that system. They executed a set of
benchmark programs on 209 computer systems and created
a regression model of computer performance as a function
of six variables: cache memory size, minimum number of
VO channels, maximum number of U0 channels, machine
cycle time, minimum main memory, and maximum main
memory. Their model could predict performance relatively
accurate over a range of medium-performance machines.

Shaw developed techniques for reasoning about the ex-
ecution time of both single and communicating processes
[86], [87]. Shaw assumed that bounds [tmin, t,,] could be
found for the execution times of program statements. He

978 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 7, JULY 1994

defined the execution times of code in terms of schema
which describe the execution times of combinations of
statements. He used Hoare-style assertions to describe
timing properties of the program: given a statement S in the
program, if a predicate P is true before S is executed, then
Q is true after S is executed, which is written in the form
{P} S {Q}. To reason about the real-time behavior of the
program, P and Q can be functions of the real time: if a
statement S’s execution must be completed in the interval
[t d l , m i n , t d l , m a] and rt represents the value of real time,
then the deadline can be expressed in the form

{rt I % , m a - tmax(S)}S{rt < h , m w } r

when tdl,min = -CO.

Shaw used these techniques to, as one example, reason
about programs which recognized single and double mouse-
clicks, behavior which relies intimately on real time.

Puschner and Koza [79] used simple bounds declarations
to capture user execution information which could not be
directly derived from the program and more accurately
estimate maximum execution time. Their declarations took
the form of annotations in the program source code: scope
identifiers delimited a sequence of statements in the pro-
gram; a marker statement specified the maximum number
of times the program would pass through that marker
between entering and leaving the scope which enclosed
it; a loop sequence declaration gave an upper bound on
the total number of times a sequence of loops would be
executed (useful when the loop bounds of sequential loops
are correlated but not independently fixed). They found that
these declarations were sufficient to greatly improve the
accuracy of execution time bounds in the examples they
studied.

Park and Shaw created a timing tool which combined
performance models for C language statements with path
analysis algorithms [71], 1721. Park developed his per-
formance model for one CPU-compiler pair; namely, a
68010-based Sun-3 and Gnu C-1.34. Park’s model relies
on instructions being executed deterministically: instruction
execution times do not depend on nearby instructions and
neither instructions nor data are cached. He found that the
most accurate means for estimating program times was to
consider all the code in a basic block at once: he extended
the C compiler to mark boundaries of basic blocks; for
each basic block in the C program, he identified the
assembly language generated by that block and looked up
the execution times of each instruction in a table. He applied
corrections to take into account two types of system-level
interference in program execution: clock interrupts and
memory refresh. Park compared measured execution times
to computed estimates to show that, in most cases, these
techniques produced tight bounds and that most uncertainty
could be removed by more accurate prediction of execution
paths.

While a program’s control flow graph gives the set of all
possible execution paths through the program, there may be
paths which are never executed: the data values supplied to
the program may be restricted so as to, for example, limit

the number of times through a loop; relationships between
variable values in the code may also make some paths
infeasible. Park’s model for execution paths was regular
expressions extended with intersection and negation opera-
tors. To gather user execution information, he developed an
information description language: important statements in
the program were given names, restrictions such as nopath
(A, B) and loop A K times could be placed on feasible
paths. This information can be used to ignore illegal paths
during timing analysis. Experiments showed that adding
path analysis information tightened execution bounds.

Ye et al. [1021 developed a fast timing analysis technique
for use in hardware-software partitioning. They needed
to accurately estimate the system performance even when
the software partition executed on a high-performance
CPU whose execution times depend on data dependencies,
instruction order, etc. They extracted a basic block of the
software and executed it once; the measured execution time
automatically takes into account processor-specific timing.
They then used that time as one timing label in a control
flowgraph along with annotations for execution times of
the hardware units, the control flowgraph can be analyzed
to predict the total execution time of the hardware-software
system.

D. Pe$ormance of Tasks on Shared CPU’s
It is not sufficient to analyze the performance of each

process in isolation. When several processors are allocated
to a system CPU, system performance depends on how the
processes are scheduled on the CPU. The scheduling of
processes on a CPU determines the CPU’s utilization, a
key measure of architectural efficiency. An underutilized
CPU adds unnecessary cost to the system since it could be
replaced with a smaller CPU. However, it can be shown
that in many cases a CPU cannot both be fully utilized and
meet all the deadlines on its processes.

The processes executing on a CPU may be scheduled
either statically (in an order determined when the program
was designed) or dynamically (during system execution). A
cyclostatic scheduler is an example of a statically scheduled
system: a cyclostatic scheduler is called periodically by a
timer and executes a set of tasks in a fixed order. A dynam-
ically scheduled set of processes may be scheduled either
preemptively or nonpreemptively. In a nonpreemptively
scheduled system, each process explicitly gives up control
to the next process. System calls are spread periodically
through the code which allow the next process to run,
usually determined by a list of active processes maintained
by the kernel. Microsoft Windows is an example of a
nonpreemptively scheduled system. Nonpreemptive code
must be carefully implemented to ensure that each task
gives up control of the CPU in a bounded amount of time
on any execution path-failure to relinquish control causes
the system to fail to respond to other inputs. A preemptively
scheduled system uses a timer to periodically retum control
of the CPU to a scheduling process in the kemel. The
process with the highest priority is chosen to run in the
next time slot.

WOLF: HARDWARESOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 979

D2 D1

0 2 D1

Fig. 7. Process priorities and deadlines.

Each scheduling scheme has advantages and disadvan-
tages. A nonpreemptive scheduler allows the designer to
verify properties such as deadlock; because we do not know
the exact order of execution of processes in a preemptively
scheduled system, they cannot guarantee liveness. Chiodo
et al. [12] use an FSM-based description to verify the
properties of hardware-software systems before choosing a
hardware-software partitioning for implementation. How-
ever, a nonpreemptively scheduled system requires a more
powerful CPU to ensure that it meets all its deadlines than
does a preemptive scheduler preemptive scheduling is more
CPU-efficient because a task with a closer deadline can be
assigned a higher priority and preempt a lower priority task.

Figure 7 shows a simple example of how process sched-
uling determines deadline satisfaction. The processes P1
and P2 have deadlines 0 1 and 0 2 , respectively. In the
upper schedule, P1 has been scheduled first, for example
because it was activated first by an outside event. Pl’s
deadline is well after P2’s, but P1 prevents P2 from
executing and makes P2 miss its deadline. If process
priorities are assigned to ensure that the process with the
shortest deadline receives the highest priority, allowing it to
start executing as soon as it is activated, then both processes
are able to complete before their deadlines.

The fundamental result in scheduling of hard real-time
tasks was discovered by Liu and Layland, who introduced
the rate-monotonic scheduling algorithm [62] for schedul-
ing periodic task sets. In their model, a system consists of a
set of tasks, each of which has a deterministic computation
time and a period. While those times are fixed, the phasing
of the tasks relative to each other is not fixed. They showed
that such a task set can be scheduled to meet all deadlines,
irrespective of the phasing of task initiations in the period.
Interestingly, only fixed priorities are required: priorities
are assigned inversely to task period, with the shortest
period task receiving the highest priority. They also showed
a worst case bound for CPU utilization of 69.3%. Thus
excess CPU capacity must be available to ensure that the
CPU can respond to the worst possible combination of task
phasings. However, for preemptive scheduling, the CPU
capacity is determined by the task specifications, while
in nonpreemptively scheduled systems, the CPU capacity
required is determined by the structure of the code.

This work has been extended in a number of ways to
handle more general hard real-time systems. The priority
ceiling protocol was developed by Sha, Rajkumar, and
Lehoczky [85] for systems in which low-priority tasks can
obtain critical resources. When a process requires a resource

980

which must be shared by P/V (semaphore) synchronization,
a lower priority process can use the resource’s lock to
block execution of a higher priority process which needs
the resource, a situation known as priority inversion.
Strosnider I961 introduced deferrable servers for aperiodic
tasks, in which a collection of aperiodic tasks is modeled as
a regularly scheduled process which periodically checks the
status of the aperiodic requests. Leinbaugh [60] developed
an algorithm to bound worst case performance for systems
of processes which talked to devices and executed critical
sections.

E . CO-Simulation
Simulation will be an important co-design tool for the

foreseeable future because of the complex nature of the
embedded computing systems. Because embedded system
components are so complex, it may be difficult to de-
velop comprehensive analytic models for their performance.
Simulation also helps the designer verify that the system
satisfies its requirements. Co-simulation mixes components
which have different simulation models. CO-simulation
usually refers to some sort of mixed hardware-software
simulation-for example, one part of the system may
be modeled as instructions executing on a CPU while
another part may be modeled as logic gates. CO-simulation
is difficult because the system’s components operate at
different levels of abstraction-analog components operate
over voltages, PLD’s operate over binary values, and micro-
processors operate over instructions-and run at different
rates one instruction in a microprocessor may take several
cycles to execute, during which time analog components
may have moved to a drastically state.

Multimode simulators allow a system to be described
as a mixture of components at different levels of abstrac-
tion. As shown in Fig. 8, two different techniques have
been developed for multimode co-simulation. A simulation
backplane provides a top-level simulation model through
which different types of simulators can interact, so long as
their external behavior meets the modeling requirements of
the backplane. A heterogeneous simulator does not require
all simulation events to be reduced to the same level of
abstraction. Ptolemy [9] is a well-known framework for
the construction of co-simulators. A simulation universe in
Ptolemy consists of several domains, where each domain
has a single simulation model. Ptolemy does not enforce
a single simulation model: domains may be combined
arbitrarily and developers may create new domains. Several
different domains have been implemented for Ptolemy:
synchronous data flow, dynamic data flow, discrete event,
and a digital hardware modeling environment. Each domain
has its own scheduler. Wormholes allow data to pass be-
tween domains. A wormhole between two domains includes
an event horizon which translates events as they move
from one domain to another. As an event moves between
domains, it is first translated into a universal event type and
then to the domain of the destination. Because wormholes
hide the details of operations in other domains, a domain’s
scheduler does not have to know the semantics of the other

PROCEEDINGS OF THE IEEE, VOL. 82, NO. I, JULY 1994

n

simulation hackplane w
hetervgeneous simulation

Fig. 8. Two techniques for multimode simulation.

domains to execute its simulation. Ptolemy also supports
interfaces to code synthesis for DSP’s. Kalavade and Lee
describe the use of Ptolemy-based co-simulators to develop
a hardware-software system [49].

Hierarchical simulators allow a design to be modeled and
simulated at several different levels of abstraction, but with
the same level of abstraction for all components in each
model. ADAS (Architecture Design and Assessment Sys-
tem) [92] was an early co-design tool which was targeted
to signal processing applications. ADAS could simulate
a system at three levels of abstraction: at an algorithm
level, modeled by data flow; at an architectural level,
modeled by scheduled processes; and at an implementation
level, described as a register-transfer system. The designer
could simulate the system at each level of abstraction and
compare the system performance at two different levels of
abstraction to guide the refinement of the design from one
level of abstraction to the next.

Roth et al. [82] created a custom simulator for a pair
of graphics accelerator ASIC’s they designed. The design
project needed a simulator which was both fast enough for
software development and accurate enough to be used in
debugging the hardware models. They developed a custom
simulator in C which could simulate either of the two
chips and provided a programming interface equivalent to
the chips themselves. They extracted the simulated chips’
internal states during simulation and compared that state
trace to a state trace generated by a Verilog-based register-
transfer or gate-level simulation of the chips. Differences
in the state traces indicated potential bugs. Because the
ASIC’s had multiple function units and worked on an
asynchronous memory, accurately comparing the two state
traces required considerable effort.

Iv. HARDWARE ENGINE AND SOFlWARE PROCESS DESIGN
In this section, we will survey methods for the design

of an embedded system’s hardware and software. We
do not yet fully understand how to jointly design the
hardware and software for embedded applications. Most
work has concentrated on the design of either the hardware
or software, using a very simplified model for the other.
Recent work on hardware-software partitioning takes a
more balanced view of the two elements, but existing
algorithms still rely on restricted architectures for both
the hardware and software components. Methodologies and
algorithms for truly general hardware-software co-design
of embedded systems are a primary goal of research in this

WOLF HARDWARE-SOITWARE CO-DESIGN OF EMBEDDED SYSTEMS

w
process data flow graph

n

processor graph

Fig. 9. Graph models for hardware and software design.

area. As a result, we will describe both previous work in co-
design proper and also related work in distributed system
design, which takes the hardware engine as a given and
designs a software architecture.

Joint design of the hardware and software requires repre-
sentations for both the processes and the distributed engine,
as shown in Fig. 9. An example of a software model is a
data flowgraph to represent the software processes, which
identifies sources and sinks of data between the processes.
It may also be important to represent control flow between
the processes, in which case the general form is called a
process graph. The processor graph, which represents the
hardware engine, has CPU’s as nodes and communication
links as edges. Some research considers processor graphs
where all CPU’s are identical, while other work allows each
node to have different characteristics.

Figure 10 illustrates how a process graph is mapped onto
a processor graph. The figure can only easily depict the
allocation of processes to CPU’s, but the complete design
process also entails scheduling those processes on their
assigned CPU’s, partitioning the process set to provide
an efficient scheduling and allocation, and mapping the
processes onto particular types of CPU’s. In a traditional
design flow, the processes and the processor network would
be designed relatively separately. However, to obtain the
highest performance, lowest cost solution, we must simul-
taneously design both the processes and processor system.

We first consider altemative models for processes and
their embodiment in programming languages. Section IV-B
describes techniques developed for the design of hard-
ware engines; Section IV-C describes recent work in hard-
ware-software partitioning, which is the joint design of
hardware engine and software architectures from a hard-

98 1

, .; /, link

Fig. 10. Mapping application processes onto a hardware engine.

ware architecture template. The remaining subsections de-
scribe techniques developed by the distributed systems
community for the scheduling, partitioning, and allocation
of processes given the hardware architecture of a distributed
system.

A . Process Models and Program Specification
Since the system’s function will be described as a system

of communicating processes, the choice of a process model
is fundamental. Given a process model poorly suited to
the problem, the system description may become unwieldy
or the system may not be describable at all. A number of
different process formalisms have been developed over the
years, each with its own advantages and disadvantages.

The coarsest distinction between process models is their
level of parallelism. A Petri net model [76] is a highly
parallel model of computation. The synchronous dataflow
model [59], a data flow model in which the number of
samples consumed by a node at activation is specified a
priori, is another highly parallel model of computation. A
communicating sequential processes model describes each
process as executing sequentially, but allows the processes
to execute at different rates.

There are many communicating sequential process mod-
els, which can be further classified according to the types
of interprocess communication they support. Buchenrieder
er al. [8] use the PRAM model, which is commonly used to
model shared-memory parallel algorithms, to describe the
communicating processes in a machine. The Solar modeling
language [70] is an example of a communicating pro-
cesses model for co-design. Hoare’s CSP [39] is one style
of communicating sequential process model which uses
unbuffered communication. In nonblocking or buffered
communication, a queue holds data which have not been
consumed by the receiver, allowing the sender to continue
executing. A finite-state machine-style model uses implicit
communication-because an FSM can change its outputs
at any time, communication is not separated from the rest
of the machine’s computation. Event-driven state machine
models, including the BFSM [97] and the CFSM [12], have

been proposed for use in co-design because they allow the
systems to be described as a partial ordering.

Software is much more than code, particularly when
that software implements a system of concurrent processes.
Representations for programs are important intermediate
forms for system design. Software design models ensure
that the software is correctly implemented. Because most
design languages for concurrent processes also define inter-
process communication primitives, they provide documen-
tation on how the processes talk to each other and hooks
for the analysis of interprocess communication.

A number of concurrent programming languages have
been developed-these languages allow computations to be
expressed as systems of communicating processes but do
not provide methods to specify deadlines or guarantee that
they be met. A concurrent programming language provides
primitives for interprocess communication. (Interprocess
communication primitives may also be provided by the
operating system.) The way in which the language models
communication has a profound impact on the way the
initial architecture is implemented in the language. Several
different communication techniques are possible. A signal
sent by one process forces another process to start executing
at a specified location which should handle the signal; a
signal is a software version of an interrupt and is used in the
Unix’ system. A mailbox is a variant of buffered commu-
nication usually reserved for schemes in which the names
of mailboxes are known globally and any process may both
send messages to and take messages from a mailbox. The
language and operating system may also support blocking
communication or finite-size queues, which can provide
nonblocking communication given some assumptions about
the maximum number of pending messages.

The term real-time programming language has been used
in various ways, but generally means that the language
allows deadlines to be specified and provides mechanisms
to ensure that the deadlines are met. Such a language
must have some sort of representation of a process in
the language. A real-time programming language may also
restrict itself to statements whose execution times can
be bounded; other real-time languages are extensions of
general-purpose languages, which usually contain state-
ments with potentially unbounded execution times, such as
while loops controlled by unrestricted input values.

The statechart [34] is an extended-state machine model
for reactive systems. A statechart is a state transition graph
in which a transition’s source or sink may be a set of
states, not just a single state; another way to view this
specification style is that a state which represents several
different behaviors may be decomposed into states which
implement pieces of that behavior. As shown in Fig. 11,
OR and AND decompositions can be used to refine a state’s
specification by decomposition. In the OR decomposition in
the figure, the transition specifies that the system should
go to state s when input i l is received if the system’s
present state is either a or b; the source of this transition

munix is a trademark of Unix System Laboratories.

982 PROCEEDINGS OF THE IEEE, VOL. 82. NO. 7, JULY 1954

or state

L l

0
and state

Fig. 11. Composite states in a statechart.

is the state or l , which represents the union of a and b. An
AND decomposition represents concurrent activities-in the
figure, the i l transition out of state t sets one part of the
system state to c and another part to d, so that the total
state is the product c x d. OR and AND decompositions allow
exponentially fewer states and transitions than are required
to describe the equivalent behavior in a state transition
graph with a single level hierarchy of states. STATEMATE
is a well-known tool for manipulating statecharts [35]. The
tool integrates representations for block diagram structural
descriptions and data flow diagrams with statecharts. It can
simulate a specification and generate high-level language
code to implement a specification.

A recent collection of papers in the PROCEEDINGS OF

THE IEEE [5] described several reactive programming
languages, where a reactive language interacts constantly
with its environment, rather than viewing input and output
as streams. For a detailed description of those languages,
the reader is referred to those articles. One example of this
approach, the Esterel language [6] promotes a specification
style different from that used in statecharts an Esterel
program is a network of communicating machines, rather
than a single machine with a hierarchically decomposed
set of states, as is a statechart. Processes communicate
by emitting actions and waiting for actions to appear,
with communication scheduled by the programmer. Esterel
assumes that reactions to events are atomic and happen
instantaneously. Because actions are atomic, the component
machines communicate synchronously, which means that
many analyses of communication behavior are much sim-
pler than with asynchronous systems. An Esterel program
can be compiled into code by generating a product machine;
since in the product machine, communication between
components is implemented as products of states of the
component machines, the communication action does not
generate any code, thus satisfying the atomicity hypothesis.

B . Hardware Engine Design
ADAS, described in Section 111-E, supported early func-

tional verification and evaluation of system performance at
the first three stages of design, which the authors identified
as algorithm definition, system architecture design, and
detailed system design. In our terminology, the products
of ADAS were an architecture for the hardware engine
and an allocation of software processes onto processors.

While ADAS did not provide synthesis algorithms to au-
tomatically generate the engine architecture and software
partitioning, it did provide representations for the various
stages of design and assessment tools to help the designer
determine the best translation from one stage to the next.

ADAS used three representations of the design, one for
each stage of design. The highest level of abstraction was
a data flowgraph, which they called a software graph:
nodes represented processes and edges represented data
transfer. The algorithm to be implemented was specified as
a software graph; data flow is a sufficient representation for
signal processing algorithms with little control-dependent
behavior. The mapping of processes to hardware compo-
nents was represented by a projected processing graph,
which was constructed from the software graph by adding
synchronization arcs which forced sequential execution of
processes. Finally, the architecture of the hardware engine
was represented by a hardware resources graph, which was
a form of register-transfer machine.

To design an application, the designer first specified
a software graph, refined it to a projected processing
graph, then added multiplexers and registers to create a
hardware resources graph. The software graph could be
executed to check that the desired function was properly
specified. Performance analysis began with the projected
processing graph-Petri net analysis was used to determine
whether the sequentiality introduced by the sequentiality
constraints allowed the function to be executed at the
required rate. ADAS had algorithms which could determine
the utilization of a node and the latency of a computation.
ADAS apparently did not include tools to verify that
the hardware resources graph correctly implemented the
projected processing graph.

MICON [32] generates a board-level design of a micro-
processor system from a loose description of the board’s re-
quirements. The system’s specification includes information
such as: type of CPU required; types and amounts of mem-
ory required; I/O ports required; and the types of extemal
connectors. MICON selected a complete set of components
and interconnected them to produce a complete board
design. Several different components may implement a
particular requirement: for example, different combinations
of memory chips may be used to implement the required
memory. Components may also have to be interpolated into
the design to provide an interface between two required
components. MICON uses AI techniques both to learn how
to design boards from expert designers and to complete the
design of a board from requirements.

Parkash and Parker [78] used integer programming to
design a multiprocessing architecture for an embedded
hardware engine. Given a partitioning of an application
into tasks, their algorithm designs a heterogeneous engine
to run the application, allocates tasks to processors in
the engine, and schedules those tasks. Their model for
a system of tasks is a data flowgraph for which a task
may start computation before all its data have arrived.
They model the architecture of the engine to be designed
as a set of processors with direct communication links.

WOLF HARDWARESOITWARE CO-DESIGN OF EMBEDDED SYSTEMS 983

Each processor has local memory, communication occurs
via messages over the links, and one application runs on
a processor at a time. Their mathematical programming
model includes both integer-valued timing variables and
binary decision variables: timing variables represent data
availability times, output av ,ability times, task execution
times, and data transfer times; decision variables represent
allocation of tasks to processors and the direction of data
transfer. The model includes ten types of constraints which
determine: how tasks are mapped onto processors, whether
data transfer is local or remote, input and output availability,
task execution start and end times, data transfer start and
end times, and that each processor and communication link
is not used for more than one operation at a time. Their
model may be solved to satisfy a performance goal or to
minimize total engine cost. They rewrite several of their
constraints in linear form to create a mixed integer linear
program, then solve the program using standard techniques.

Srivastava et al. used templates to design real-time sub-
systems for a workstation-based embedded architecture
[93], [94]. Figure 12 shows a simple architectural template
with two levels of hierarchy: subsystems are connected
by a bus; each subsystem consists of a CPU and several
ASIC’s all connected by their own bus. They defined a
four-level hierarchy for their architecture template: the top
level is a workstation which communicates with the layer-
2 processor; custom boards form the third level of the
hierarchy, with the CPU and peripherals in the subsystem
forming the fourth level. They map a behavior described
as a system of process onto the architecture template.
After allocation, they generate the hardware and software
components separately, using the bus as a framework for
hardware design and a real-time kernel as the framework
for the software components. They developed a large suite
of reusable, parameterized subsystem generators to im-
plement functions ranging from memory subsystems to
bus interfaces, to fiber-optics communications. Software
components are generated as processes which operate under
the control of a real-time executive. In addition, each
hardware module has a wrapper software module to provide
a software interface. To illustrate the use of their system,
they designed a robot control system built from a Sun
workstation as the level-1 processor, a MC68020 as the
level-2 processor, and two subsystems each built from
a TMS320C30 processor and a DSP32C slave; software
processes were distributed among the subsystem CPU’s to
make sure that the real-time controller’s deadlines were
satisfied. The subsystem CPU’s also ran service processes
for run-time 1/0 and data routing.

Gabriel [SX], a precursor of Ptolemy, is a design en-
vironment for DSP which supports both simulation and
direct execution of functions on processors. The function
under design is specified as a block diagram. Gabriel’s
simulation scheduler can simulate the block diagram under
synchronous data flow semantics. The same schedule can
be used to guide the generation of code for the target DSP;
an individual operations has assembly language templates
to implement the operation on the target machine.

system bus
L 7

I 1

-&-
Fig. 12. A simple hierarchical architecture template.

C . System and Hardware-Software Partitioning
A system’s function must be partitioned when it is

implemented on either multiple physical units (chips) or
onto heterogeneous units (CPU’s and ASIC’s). System
partitioning requires some performance information to be
able to compute the system’s critical performance path,
but partitioning should use a simple timing model which
can be quickly evaluated while analyzing large partitioning
problems. Lagnese and Thomas [55] developed APARTY, a
system partitioning tool which partitions a control data flow
graph to minimize chip area and interconnect requirements.
APARTY uses a multistage clustering algorithm which
operates in several stages. Each stage has its own clustering
objective, which it uses to cluster nodes in the design. At
the end of the stage, clusters of a given size are selected as
elements for the next stage of clustering. Ismail et al. [U]
developed an interactive system-level partitioning tool. The
design is specified as a set of communicating processes:
the user can specify a sequence of transformations-move,
merge, split, cut, and map-to redesign the process net-
work.

Hardware-software partitioning algorithms try to meet
performance goals by implementing some operations in
special-purpose hardware. The hardware unit generally
takes the form of a co-processor, communicating with the
CPU over its bus. In some cases, a fairly large set of
routines may be implemented totally in hardware to avoid
instruction interpretation overhead, but hardware-software
partitioning algorithms are targeted to systems in which
only a few operations need specialized hardware. However,
the computation performed in the co-processor must be long
enough to compensate for the time required to transfer
data back and forth to the CPU. If the co-processor’s
computation is too short, the CPU may be able to perform
the operation faster by keeping values in its registers
and avoiding bus protocol overhead. Hardware-software
partitioning algorithms are closely related to the process
scheduling model used for the software side of the
implementation.

Hardware-software partitioning algorithms generally tar-
get their hardware design to high-level synthesis algorithms.
High-level synthesis generates a register-transfer implemen-
tation from a behavior description, which may be either
a pure data flowgraph or a mixed control-data flowgraph.
Synthesis algorithms schedule operations in time and per-

9XJ PROCEEDINGS OF THE IEEE, VOL. X2. NO. 7, JULY 1994

form several allocations: operations to hardware function
units, values to registers, and data transfers to interconnect.
Readers interested in high-level synthesis algorithms can
consult books by De Micheli [22], Gajski et al. [29], and
Michel et al. [66].

Most partitioning algorithms divide the behavior spec-
ification into a set of software processes running on one
CPU and one co-processor. Two styles of algorithms have
been proposed: ones which start with all operations in
hardware and move some to software; and ones which start
with everything in software and move some operations to
hardware.

Gupta and De Micheli [33] developed an algorithm which
migrates operations from the hardware partition to the
software partition. Their algorithm accepts a behavior in the
form of a control-data flowgraph and a set of rate constraints
on the constituent operations. It divides the behavior into a
set of threads bounded by operations with nondeterministic
delays either I/O or loops with data-dependent bounds. The
execution time of each thread depends on whether it will
be implemented in hardware or software. Initially, threads
which start with a data-dependent loop are initially assigned
to the software partition and all other threads are assigned
to the software partition. Threads are then moved between
partitions such that rate constraints are satisfied and CPU
and bus utilization constraints are met.

Emst et al. [26] developed a partitioning algorithm which
identifies critical operations in an instruction stream and
moves those operations to hardware. They measure the
performance of compiled code to identify execution paths
which do not meet their performance requirements. They
iteratively refine the partition due to the difficulty of es-
timating the results of both instruction execution times
and high-level synthesis. At each step, they identify an
operation to move to hardware and estimate the speedup
gained by moving that operation to hardware. They use
an operator table to estimate the hardware speed of the
basic operation. Rescheduling an operation may not always
result in instruction execution speedup if the next operation
depends on other values or pipeline interlocks restrict
the execution time of an instruction, the value may sit
idle waiting for the instruction stream to catch up. The
partitioning algorithm creates a local schedule of operations
to check availabilities. Communication time overhead in the
basic block is estimated using data flow analysis, counting
a constant number of clock cycles per variable.

It may also be desirable to map some functions onto
existing specialized hardware. ASIC’s may be divided into
two categories: a catalog ASIC, such as a cache controller,
is designed for a particular function but is described in
a catalog; a custom ASIC is one of the components
being designed for the current system. If the designer is
willing to partition parts of the system specification which
can be implemented by catalog ASIC’s, the allocation of
those functions to catalog ASIC components is relatively
straightforward. If the function must be assembled from
several ASIC’s, the synthesis task is more difficult. Haworth
et al. [37] describe part selection algorithms.

A related but distinct problem is the design of the
hardware and software portions of a device interface: given
a microcontroller and a set of devices, generate the interface
logic and associated driver routines. The main partitioning
has been done in this case, but synthesis must determine
where additional hardware is required and be able to
generate efficient code to control that interface logic. Chou
et al. [13] describe one synthesis algorithm for interface
design. They use a program as the behavior specification
and have models for the devices, the microcontroller, and
additional interface components. Their synthesis algorithm
recursively allocates operations to microcontroller ports
and takes advantage of special-purpose microcontroller or
interface logic functions to improve the implementation.

D. Distributed System Scheduling
The scheduling of the processes on the hardware engine

clearly influences system cost. The schedule must be chosen
to meet hard deadlines and soft performance constraints. If a
feasible schedule cannot be found, the designer has several
choices: use a faster, more expensive hardware engine;
repartition the software; reallocate processes to CPU’s in
the engine; or some combination of the above. Process
scheduling over the distributed engine is the measure of
feasibility of our hardware engine and software architecture.

Femandez and Bussel [27] gave bounds on two problems:
the number of processors required to execute the process
data flowgraph in a given amount of time; and the time
required to complete a computation on a fixed number
of processors. Adam et al. [l] experimentally compared
several scheduling heuristics on both benchmark programs
and randomly generated examples: HFELT (highest levels
first with estimated times); HLFNET (highest levels first
with no estimated times); random; SCFET (smallest co-
level first with estimated times); and SCFNET (smallest
co-level first with no estimated times). All these schemes
except random are variations of list scheduling: in their
terminology, the level of a process is measured in the
data flowgraph from the graph’s sinks while the co-level
is measured from the sources. Their experiments showed
that HFELT gave the best results and performed close to
optimally. Kasahara and Narita [50] proposed extensions
on HFELT. Lee et al. [57], [43] proposed two algorithms
for scheduling taking interprocessor communication delays
into account. El-Rewini and Lewis proposed other im-
provements to the HFELT strategy, taking into account
interprocessor communication and contention.

Leinbaugh and Yamani [61] developed algorithms to
bound the amount of time required to execute a set of
processes on a distributed system. Ramamritham et al.
[80] developed a heuristic scheduling algorithm for real-
time multiprocessors. Their algorithm greedily chooses
a schedule which ensures that all processes meet their
deadlines and minimizes a heuristic cost function; their
experiments showed that minimizing the sum of minimum
deadline-first and minimum-earliest-start-time-first gave the
best results.

WOLF: HARDWARESOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 985

for (k0; icN i++)

send(w.a);
for (i=O; icM; i++)

send(w,b);

procl (La);

procZ(i,b);

P l

s = receive(w);

--
lor (id: icN i++)

send(w,a);

for (id; icM; i++)
procZ(i.b);

r = receive(w);
s = receive(x);

P3

single p r w w dmmpositian

Fig. 13. How process partitioning affects distributed system per-
formance.

E. Process Partitioning
Process partitioning affects the implementation cost of

a software architecture-poor partitioning may delay a
computation on one node, causing another processor to
be idle while it waits for the result. Figure 13 gives
one example of the problem: when process p l computes
two values in series, p3 must wait for both values to
be computed, which may leave the CPU assigned to p3
idle. If pl’s computation is split into two parts which are
assigned to different processors, p3’s processor will be idle
for less time. Stalls which reduce CPU utilization may
also be introduced by waits for U0 devices, particularly
devices like disks which take significant amounts of time
to complete a transaction.

Huang [41] studied process partitioning for distributed
systems which have acyclic data flowgraphs. His algorithm
merges data-flow nodes according to a simple set of rules:
a pair of nodes which both precede and succeed each other
are put in the same process; if a module Mi precedes all
other modules in a process 9, has all preceding, adjacent
models in process Pk, or has each noninclusive preceding
adjacent module precede the module included in the task
with highest precedence, then Mi is included in Pk. This
work only considers interprocess communicating delay, not
I/O overhead.

F . Distributed Process Allocation
Process allocation affects system performance in two

ways: by changing the cost of interprocess communica-
tion and by changing how tasks sharing a CPU can be
scheduled. Figure 14 shows a simple example of allocation
for communication. The given process graph shows that
PI , P2, and P3 all communicate very closely, while P 4
has little communication with the other processes. If, for
example, P1 and P4 are put on one processor and P 2
and P3 on another, the three tightly coupled processes
will have to communicate over the link between CPU1
and CPU2. That link must have enough bandwidth to
support the communication. If P1, P2, and P3 are put on
the same CPU, they can communicate via shared memory,
which is both faster and cheaper than the communication
link. Process allocation can also affect the scheduling of
processes on the CPU’s, much as scheduling and allocation
influence each other in high-level synthesis.

986

\%dl process graph

processor graph it--m
P1, P2, P3 P4

or
P1, P4 P2, P3

Fig. 14. Process allocation for communication efficiency.

Stone [95] developed the first algorithm for allocation of
processes to processors on distributed systems. He modeled
multiprocessor scheduling as a network flow problem. His
formulation can be efficiently solved for two processors,
but the formulation becomes more complex and its solution
more difficult when there are more processors. Dasarathy
and Feridun [19] developed extensions for real-time con-
straints.

Work on distributed system allocation quickly moved to
the examination of heuristics which were effective for larger
networks. Chu et al. [15] developed heuristics for taking
interprocess communication times into account during the
allocation process. Chu and Tan [14] developed heuristics
to include precedence relations between processes into the
optimization task. They did not use the data flowgraph
directly, but instead used process size as an approxima-
tion for important precedence relationships-their heuristic
assumed that smaller and larger processes are often paired:
the smaller process pre-computes data and smooths the load
for the larger process when both are placed on the same
CPU. Shen and Tsai [84] used a graph-matching heuristic to
allocate processes; their algorithm minimized interprocessor
communication and balanced system load.

Researchers have also studied more computation-
intensive algorithms for allocation. Ma et al. [63]
developed a branch-and-bound algorithm for process
partitioning which minimized the sum of processing
and interprocess communication costs. They measured
interprocess communication costs by counting the number
of data objects sent from one process to another. Peng
and Shin [75] developed a branch-and-bound partitioning
algorithm whose objective function was minimization of the
maximum normalized task response time. Their algorithm
takes into account data dependencies between processes
during execution.

Gopinath and Gupta [31] applied a combination of
static and dynamic techniques to improve processor
utilization. They statically analyze process code and
assign two predictability/unpredictability and monotonic-
ity/nonmonotonicity values to each process. They estimate

PROCEEDINGS OF THE IEEE. VOL. 82. NO. 7. JULY 1994

the mean and standard deviation of the execution time of
each process and use that data to move less predictable code
earlier in the schedule. They then use software monitors to
keep track of actual execution time of processes and adjust
the schedule on-line.

V. SUMMARY
Embedded computer system design requires intimate

knowledge of the interactions between the hardware and
software components, even if no custom chips are de-
signed for the system. In the mainframe world, system
analysts constructed large systems for specialized tasks
having relatively few choices for hardware (i.e., IBM).
Microprocessors and ASIC’s together provide a much larger
range of choices for hardware engines than were available
to early system analysts.

At present, we have a much deeper understanding of the
hardware and software design disciplines separately than we
do about co-design. While it is possible to design embedded
systems as separate hardware and software systems, failure
to consider tradeoffs between choice of hardware engine
and design of application software can lead to designs that
are too expensive, too slow, and never perform as intended.

A key element of our understanding of co-design is the
study of system modeling in all its forms. We need a deeper
understanding of the properties of CPU’s, interconnect
structures, and software modules. While we have many
abstract models of the components of embedded systems,
we do not have detailed, accurate models which reflect the
idiosyncrasies of those components. It is the peculiarities of
components which makes system design challenging and
interesting: certain properties may cause a certain design
to fail to meet a requirement, while other properties may
provide an unexpectedly efficient means to meet a goal.
Because embedded systems are always designed to cost and
performance requirements, a comprehensive understanding
of modeling which includes both high-level and detailed
properties of components is essential to making the most
of the components available to us.

Embedded systems also give us the opportunity for
higher level software synthesis than are provided by
general-purpose programming languages. Embedded ap-
plications give hard constraints, giving clear optimization
goals-while difficult optimization goals require sophisti-
cated optimization algorithms, it is impossible to optimize a
system in the absence of goals. Embedded system designers
are more willing than generic programmers to wait for
synthesis tools to finish the compilation of embedded
system software if those synthesis algorithms truly provide
added value.

While embedded system designers can get the job done
today, they may not always complete new designs as
quickly or converge on designs as cost-effective as they
could if more sophisticated design tools were available.
And as powerful microprocessors become even cheaper and
come into wider use, the need for tools will increase. A
more comprehensive understanding of hardware-software

co-design is essential to making use of the computational
power provided to us by VLSI.

ACKNOWLEDGMENT
I would like to thank S. Malik and A. Wolfe of Princeton

for any number of lively discussions on embedded system
design in general and performance analysis in particular,
I would also like to thank to thank A. Dunlop and N.
Woo of AT&T Bell Laboratories, with whom the author
collaborated on early co-design projects. The Tigerswitch
design team includes S. Chinatti, R. Koshy, G. Slater and
S. Sun.

REFERENCES
[11 T. L. Adam, K. M. Chandy. and J. R. Dickson, “A comparison

of list schedules for parallel processing systems,” Commun.
ACM, vol. 17, no. 2, pp. 685-690, Dec. 1974.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Priniciples,
Techniques and Tools;, Reading, MA: Addison-Wesley, 1986.

[3] “GPS: when to buy?, Aviation Consumer, pp. 12-13, Apr. 1,
1993.

[4] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein, “The
program dependence web: a representation supporting control-
, data- and demand-driven interpretation of imperative lan-
guages,” in Proc. ACM SIGPDW’YO Conf. on Programming
Language Design and Implementation, pp. 257-271, 1990.

[5] A. Benveniste and G. Berry, “The synchronous approach to
reactive and real-time systems,” Proc. IEEE, vol. 79, no. 9, pp.’
127&1282, Sept. 1991.

[6] F. Boussinot and R. de Simone, “The Esterel language,” Proc.
IEEE, vol. 79, no. 9, pp. 1293-1304, Sept. 1991.

[7] F. Brooks, The Mythical Man-Month. Reading, MA: Addison-
Wesley, 1975.

[8] K. Buchenrieder and C. Veith, “CODES: A practical concurrent
design environment,” presented at the 1992 ACM/IEEE Int.
Workshop on Hardware-Software CO-Design, Estes Park CO,
Oct. 1993.

[9] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A platform for heterogeneous simulation and prototyping,” in
Proc. I991 European Simulation Conf., June, 1991.

[101 M. Burke, “An interval-based approach to exhaustive and in-
cremental interprocedural data-flow analysis,” ACM Trans. Pro-
gramming Languages and Systems, vol. 12, no 3, pp. 341-395,
July, 1990.

[1 11 M. Chiodo and A. Sangiovanni-Vincentelli, “Design methods
for reactive real-time systems co-design,” presented at the 1992
ACMDEEE Int. WorkshoD on Hardware-Software CO-Design.
Estes Park CO, Oct. 199j.

1121 M. Chiodo, P. Giusto. A. Jurecska. M. Marelli. L. Lavagno. H. - -
Hsieh, and A. Sangiovanni-Vincentelli, “A formal specikation
model for hardware/software codesign,” presented at the Int.
Workshop on Hardware Software CO-Design, Cambridge MA,
Oct. 1993.

[131 P. Chou, R. Ortega, and G. Borriello, “Synthesis of the hard-
warehoftware interface in microcontroller-based systems,” in
Proc. ICCAD-92. IEEE Computer Society Press, 1992, pp.
488495.

[14] W. W. Chu and L. M.-T. Tan, “Task allocation and prece-
dence relations for distributed real-time systems,” IEEE Trans.
Comput., vol. C-36, no. 6, pp. 667-679, June 1987.

[15] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, “Task
allocation in distributed data processing,” IEEE Computer, pp.
57-69, Nov. 1980.

[16] M. A. Cusumano, Japan’s Software Factories: A Challenge to
U S . Management.

[17] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
K. Zadeck, “An efficient method of computing static single
assignment form,” SIGPLAN Notices, 1989; from 1989 ACM
Principles of Programming Languages Conf..

[18] J. G. D’Ambrosio, S . Hu, and A. Tang, “The role of analysis in
hardwarehoftware codesign,” presented at the 1993 ACM/IEEE
Int. Workshop on Hardware-Software Co-Design, Cambridge
MA. Oct. 1993.

Oxford, UK: Oxford Univ. Press, 1991.

WOLF: HARDWARE-SOITWARE CO-DESIGN OF EMBEDDED SYSTEMS 987

[19] B. Dasarathy and M. Feridun, “Task allocation problems in the
synthesis of distributed real-time systems,” in Proc. IEEE 1984
Real-Time Systems Symp., pp. 135-144, 1984.

[20] J. V. D’Anniballe and P. J. Koopman, Jr., “Towards execution
models of distributed systems: a case study of elevator design,’’
presented at the 1993 ACMDEEE Int. Workshop on Hardware-
Software CO-Design, Cambridge MA, Oct. 1993.

[21] A. M. Davis, Software Requirements: Analysis and Specifica-
tion. Englewood Cliffs, NJ: Prentice Hall, 1990.

[22] G. De Micheli, Synthesis of Digital Circuits. New York:
McGraw-Hill, 1994.

[23] M. Dorfman and R. H. Thayer, Standards, Guidelines, and
Examples on System and Software Requirements Engineering.
IEEE Computer Society Press, 1990.

[24] P. Ein-Dor and J . Feldmesser, “Attributes of the performance
of central processing units: a relative performance prediction
model,” Commun. ACM, vol. 30, no. 4, pp. 308-317, Apr.
1987.

[25] H. El-Rewini and T. G. Lewis, “Scheduling parallel program
tasks onto arbitrary target machines,” J. Parallel Distrib. Com-

[26] R. Emst, J. Henkel, and Th. Benner, “Hardware-software co-
synthesis for micro-controllers,” IEEE Des. & Test of Comput.,

put., vol. 9, pp. 138-153, 1990

- -
vol. 10, no. 4, pp. 64-75, Dec. 1993.

1271 E. B. Femandez and B. Bussell, “Bounds on the number of . -
processors and time for multiprocessor optimal schedules,’’
IEEE Trans. Comput., vol. C-22, no. 8, pp. 745-75 1, Aug. 1973.

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.
Programm. Languages Syst., vol. 9, no. 3, pp. 319-349, July
1987.

[29] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: In-
troduction to Chip and System Design. Norwell, MA: Kluwer,
1992.

[30] N. Gehani and K. Ramamritham, “Real-time concurrent C:
A language for programming dynamic real-time systems,” J.
Real-Time Syst., vol. 3, no. 4, pp. 377405, Dec. 1991.

[31] P. Gopinath and R. Gupta, “Applying compiler techniques to
scheduling in real-time systems,” in Proc. 1990 IEEE Real-Time
Systems Symp., pp. 247-256, 1990.

[32] A. P. Gupta, W. P. Birmingham, and D. P. Siewiorek,
“Automating the design of computer systems,” IEEE Trans.
CADIICAS, vo. 12, no. 4, pp. 473487, Apr. 1993.

[33] R. K. Gupta and G. De Micheli, “Hardware-software cosynthe-
sis for digital systems,” IEEE Des. & Test Comput., vol. 10, no.
3, pp. 2941 , Sept. 1993.

[34] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Sci. of Comput. Progr., vol. 8 , pp. 231-274, 1987.

[35] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Trauring, and M. Trakhtenbrot, “STATEM-
ATE: A working environment for the development of complex
reactive systems,” IEEE Trans. Sofnyare Eng., vol. 16, no. 4,
pp. 403414, Apr. 1990.

[36] D. J. Hatley and I. A. Pirbhai, Strategies for Real-Time System
Specification. Dorset House, 1988.

[37] M. S. Haworth, W. P. Birmingham, and D. E. Haworth,
“Optimal part selection,” IEEE Trans. CADIICAS, vol. 12, no.

[38] J. Hennessy and D. Patterson, Computer Architecture: A Quan-
titative Approach.

[39] C. A. R. Hoare, Communicating Sequential Processes. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

[40] C. E. Houstis, “Module allocation of real-time applications to
distributed systems,” IEEE Trans. Software Eng., vol. 16, no.
7, pp. 699-709, July 1990.

[41] J. P. Huang, “Modeling of software partition for distributed
real-time applications,” IEEE Trans. Software Eng., vol. SE-I I ,
no. 10, pp. 1113-1126, Oct. 1985.

[42] R. Hunziker and P. G. Schreier, “Field buses compete for en-
gineers’ attention. start gaining commercial support,” Personal
Eng. Instrum. News, vol. 10, no. 8, pp. 35-46, Aug. 1993.

[43] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Sched-
uling precedence graphs in systems with interprocessor commu-
nication times,” SIAM J. Comput., vol. 18, no. 2, pp. 244-257,
Apr 1989.

[44] T. Ben Ismail, K. O’Brien, and A. Jerraya, “Interactive system-
level partitioning with PARTIF,” in Proc. EDAC’94. IEEE
Computer Society Press, 1994.

10, pp. 1611-1617, Oct. 1993.

Morgan Kaufman Pub. 1990.

[45] Intel Corp., 80980KB Hardware Design Reference Manual,

[46] - ,80980KB Microprocessor Programmer’s Reference Man-

[47] -, Intel Price List, Dec. 1991.
[48] Y. Ishikawa, H. Tokuda, and C. W. Mercer, “An object-oriented

real-time programming language,” IEEE Comput., pp. 66-73,
Oct. 1992.

[49] A. Kalavade and E. A. Lee, “A hardware-software codesign
methodology for DSP applications,” IEEE Des. & Test, vol. 10,
no. 3, pp. 1628 , Sept. 1993.

[50] H. Kasahara and S. Narita, “Practical multiprocessor schedul-
ing algorithms for efficient parallel processing,” IEEE Trans.
Comput., vol. C-33, no. 11, pp. 1023-1029, Nov. 1984.

[51] D. B. Kirk, “Process dependent static cache partitioning for real-
time systems,” in Proc. 1988 Real Time Systems Symp.. IEEE
Computer Society Press, 1988, pp. 181-190.

[52] -, “SMART (Strategic Memory Allocaiton for Real-Time)
cache design,” in Proc. 1989 Real Time Systems Symp., IEEE
Computer Society Press, 1989, pp. 229-237.

[53] D. B. Kirk and J. K. Strosnider, “SMART (Strategic Mem-
ory Allocaiton for Real-Time) cache design using the MIPS
R3000,” in Proc. 11 th Real Time Systems Symp. IEEE Computer
Society Press, 1990, pp. 322-330.

[54] H. Kobayashi, Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology Reading, MA:
Addison-Wesley, 1978.

[55] E. Dirkes Lagnese and D. E. Thomas, “Architectural partition-
ing of system level synthesis of integrated circuits,” IEEE Trans.
CADIICAS, vol. 10, no. 7, pp. 847-860, July 1991.

[56] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sev-
cik, Quantatitive System Performance: Computer System Anal-
ysis Using Queueing Network Models. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

[57] C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D. Anger, “Mul-
tiprocessor scheduling with interprocessor communication de-
lays,” Operations Res. Lett., vol. 7, no. 3, pp. 141-147, June
1988.

[58] E. A. Lee, W.-H. Hu, E. E. Goei, J. C. Bien, and S. Bhat-
tacharyya, “Gabriel: A design environment for DSP,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 37, no. 11, pp.

[59] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proc. IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987.

[60] D. W. Leinbaugh, “Guaranteed response times in a hard-real-
time environment,” IEEE Trans. Software Eng., vol. SE-6, no.

[61] D. W. Leinbaugh and M. Reza Yamani, “Guaranteed response
times in a distributed hard-real-time environment,” in Proc.
1982 Real-Time Systems Symp.. IEEE Computer Society
Press, 1982, pp. 157-169.

[62] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J . ACM,
vol. 20, no. 1, pp. 4-1, Jan. 1973.

[63] P.-Y. R. Ma, E. Y. S. Lee, and M. Tsuchiya, “A task allocation
model for computing systems,” IEEE Trans. Comput., vol. C-3 1,
no. 1, pp. 4147 , Jan. 1982.

[64] S. Malik and A. Wolfe, “Tutorial on embedded systems perfor-
mance analysis,” presented at ICCD’93, Cambridge MA, Oct.
1993.

[65] E. McRae, “Avoiding microcontroller processing pile-ups,” Dr.
Dobb’s J., pp. 84-92, Oct. 1993.

[66] P. Michel, U. Lauther, and P. Duzy, Eds., The Synthesis
Approach to Digital System Design. Norwell, MA: Kluwer,
1992.

[67] J. Morfit, “A simple software profiler yields big performance
gains,” Comput. Des., p. 68, Oct. 1992.

[68] Motorola, Inc., CPU16 Reference Manual, rev. 1, 1991.
[69] - , MC68020 23-Bit Microprocessor User’s Manual, 2nd ed.

Jkglewood Cliffs, NJ: Prentice-Hall, 1985.
[70] K. O’Brien, T. Ben Ismail, and A. Amine Jerraya, “A flexible

communication modeling paradigm for system-level synthesis,”
presented at the 1993 ACM/IEEE Int. Workshop on Hardware-
Software Co-Design, Cambridge MA, Oct. 1993.

[71] C. Y. Park, “Predicting deterministic execution times of real-
time programs,” Ph.D dissertation, Dept. Comput. Science and
Eng., University of Washington, Seattle, Aug. 1992. Released
as Tech. Rep. 92-08-02.

1989.

ual, 1991.

1751-1762, NOV. 1989.

1, pp. 85-91, Jan. 1980.

988 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 7, JULY 1994

[72] C. Y. Park and A. C. Shaw, “Experiments with a program timing
tool based on source-level timing scheme,” IEEE Comput., vol.
24, no. 5, pp. 48-57, May 1991.

[73] M. C. McFarland, A. C. Parker, and R. Camposano, “The high-
level synthesis of digital systems,” Proc. IEEE, vol. 78, no. 2,
pp. 301-318, Feb. 1990.

[74] P. Paulin, C. Liem, T. May, and S. Sutarwala, “DSP design
tool requirements for embedded systems, a telecommunications
industrial perspective,” accepted for publication in 1. VLSI
Signal Process., Spring 1994.

[75] D.-T. Peng and K. G. Shin, “Static allocation of periodic tasks
with precedence constraints in distributed real-time systems,” in
Proc. 9th Int. Conf on Distributed Computing Systems. IEEE
Computer Society Press, 1989, pp. 19&198.

[76] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[77] L. L. Pollock and M. L. Soffa, “An incremental version of
iterative data flow analysis,” IEEE Trans. Software Eng., vol.
15, no. 12, pp. 1537-1549, Dec. 1989.

[78] S. Prakash and A. C. Parker, “SOS: Synthesis of application-
specific heterogeneous multiprocessor systems,” J . Parallel
Distributed Comput., vol. 16, pp. 338-351, 1992.

[79] P. Puschner and Ch. Koza, “Calculating the maximum execution
times of real-time programs,” J. Real-Time Syst., vol. 1, pp.
159-176, 1989.

[80] K. Ramamritham, J. A. Stankovic, and P.-F. Shiah, “Effi-
cient scheduling algorithms for real-time multiprocessor sys-
tems,” IEEE Trans. Parallel Distributed Syst., vol. 1, no. 2, pp.
184-194, Apr. 1990.

[81] C. Rosebrugh and E.-K. Kwang, “Multiple microcontrollers in
an embedded system,” Dr. Dobbs J., pp. 48-57, Jan. 1992.

[82] R. Roth, J. Watkins, M. Hsieh, W. Radke, D. Hejna, R. Tom,
and B. Kim, “An integrated environment for concurrent devel-
opment of a pixel processor ASIC and application software,”
in Proc. ICCD’93. IEEE Computer Society Press, 1993, pp.
116-125.

[83] M. Schmit, “Optimizing Pentium code,” Dr. Dobb’s J., pp.
4049 , Jan. 1994.

[84] C.-C. Shen and W.-H. Tsai, “A graph matching approach to
optimal task assignment in distributed computing systems using
a minimax criterion,” IEEE Trans. Comput., vol. C-34, no. 3,

[85] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Real-time syn-
chronization for multiprocessors,” in Proc. 9th IEEE Real-
Time Systems Symp.. IEEE Computer Society Press, 1988, pp.

[86] A. C. Shaw, “Reasoning about time in higher-level language
software,” IEEE Trans. Software Eng . , vol. 15, no. 7, July
1989.

[87] -, “Deterministic timing schema for parallel programs,”
in Proc. 5th Int. Parallel Processing Symp.. IEEE Computer
Society Press, 1991, pp. 56-63.

[88] S. Shlaer and S. J. Mellor, Object Lifecycles: Modeling the
World in States. Yourdon Press, 1992.

[89] Signetics Corp., “The 12C-bus and how to use it (including
specification),” Jan. 1992.

pp. 197-203, Mar. 1985.

259-269.

[90] A. Smailagic and D. P. Siewiorek, “A case study in embedded
system design: the VuMan 2 wearable computer,” IEEE Des. &
Test Comput., vol. 10, no. 3, pp. 56-67, Sept. 1993.

[91] C. U. Smith, Performance Engineering of Sofrware Systems.
Reading, MA: Addison-Wesley, 1990.

[92] C. U. Smith, G. A. Frank, and J. L. Cuadrado, “An architecture
design and assessment system for softwarehardware codesign,”
in Proc. 22nd Design Automation Conf.. IEEE Computer So-
ciety Press, 1985, pp. 417-424.

[93] M. B. Srivastava and R. W. Brodersen, “Rapid-prototyping
of hardware and software in a unified framework,” in Proc.
ICCAD-91. IEEE Computer Society Press, 1991, pp. 152-155.

[94] M. B. Srivastava, T. I. Blumenau, and R. W. Brodersen,
“Design and implementation of a robot control system using
a unified hardware-software rapid-prototyping framework,” in
Proc. ICCD’92.

[95] H. S. Stone, “Multiprocessor scheduling with the aid of network
flow algorithms,” IEEE Trans. Sofrware Eng., vol. SE-3, no. 1,

[96] J. K. Strosnider, “Highly-responsive real-time token rings,”
Ph.D. dissertation, Dep. Electrical Comput. Eng., Camegie
Mellon University, Pittsburgh, PA, Aug. 1988.

[97] A. Takach, M. Leeser, and W. Wolf, “An automaton model for
scheduling constraints in synchronous machines,” accepted for
publication in IEEE Trans. Comput..

[98] F. K. Teichmann, Airplane Design Manual, 4th ed. New York:
Pitman, 1958.

[99] Texas Instruments, Inc.,TMS320C4x User’s Guide, 1991.
[1001 W. Wolf, Modern VLSI Design: A Systems Approach. Engle-

wood Cliffs, NJ: P T R Prentice-Hall, 1994.
[lo l l -, “Software cache partitioning,” accepted for publication

in Int. J. Comput. Sofrware Eng.
[1021 W. Ye, R. Emst, Th. Benner, and J. Henkel, “Fast timing anal-

ysis for hardware-software co-synthesis,” in Proc. ICCD’93.
IEEE Computer Society Press, 1993.

IEEE Computer Society Press, 1992.

pp. 85-93, Jan. 1977.

Wayne H. Wolf (Senior Member, IEEE) re-
ceived the B.S., M.S., and Ph.D. degrees in
electrical engineering from Stanford University,
Stanford, CA, in 1980, 1981, and 1984, respec-
tively.

He is Assistant Professor of Electrical Engi-
neering at Princeton University, Princeton, NJ.
Before joining Princeton University he was with
AT&T Bell Laboratories, Murray Hill, NJ. His
research interests include computer-aided design
for VLSI and embedded systems as well as

Dr. Wolf is a member of Phi Beta Kappa and Tau Beta Pi, and a senior
application-driven architecture.

member of the ACM.

WOLF: HARDWARE-SOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS 989

