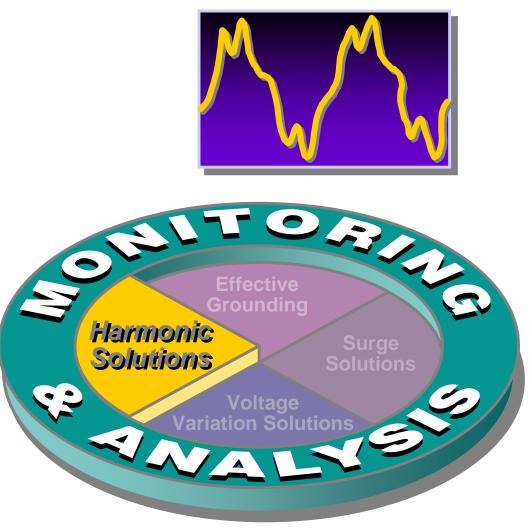
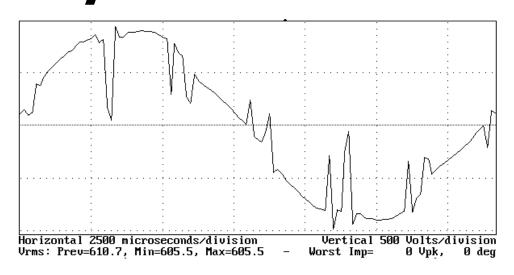


Harmonic Distortion from Variable Frequency Drives


Harmonics

- Introduction to Harmonics
- Symptoms
- Expected Harmonics from VFD's
- Harmonic Resonance
- Understanding IEEE519-1992
- Harmonic Solutions for VFD's

Harmonic Distortion


- Harmonic problems are becoming more apparent because more harmonic producing equipment is being applied to power systems
 - VFD's
 - Electronic Ballasts
 - UPS
- Additionally, in many cases, these electronic based devices can also be more sensitive to harmonics

FAT•N

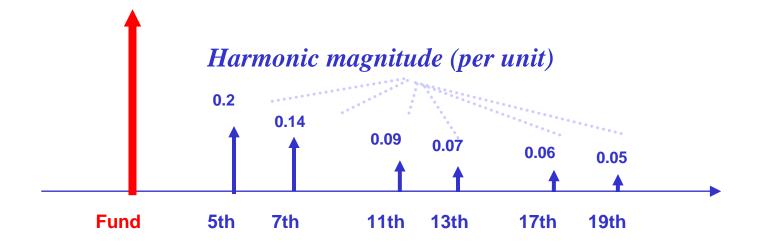
Electrical

"Harmonics are not a problem unless they are a problem!"

Harmonic Symptoms/Concerns

- Equipment Failure and Misoperation
 - Notching (electronic control malfunctioning, regulator misoperation)
 - Overheating/Failure (transformers, motors, cables/neutral)
 - Nuisance Operation (fuses, breakers, PC lock-ups)
 - Insulation deterioration
 - Capacitor resonance / failure
- Economic Considerations
 - Oversizing neutrals, transformers, generators
 - Losses/Inefficiencies/PF Penalties
 - Inconsistent meter reading

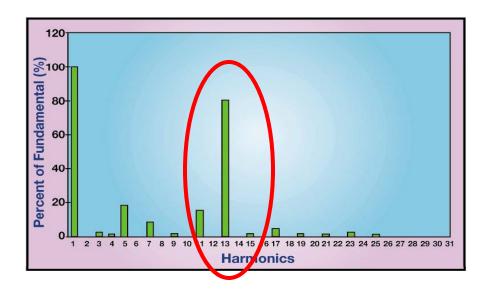
- Application of Power Factor Correction Capacitors
- Other Issues
 - Metering do you really have a problem?
 - Marketing hype buy my product!
 - "Specsmanship" Misinterpretation of the IEEE-519 Standard

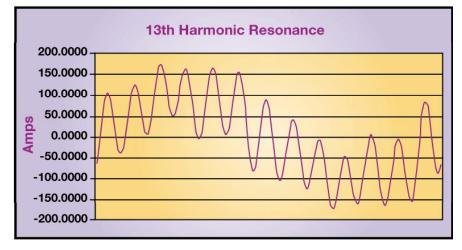


Expected Harmonics

	Source	Typical Harmonics*			
Γ	6 Pulse Drive/Rectifier	5, 7, 11, 13, 17, 19			
	12 Pulse Drive/Rectifier	11, 13, 23, 25			
	18 Pulse Drive	17, 19, 35, 37			
	Switch-Mode Power Supply	3, 5, 7, 9, 11, 13			
	Fluorescent Lights	3, 5, 7, 9, 11, 13			
	Arcing Devices	2, 3, 4, 5, 7			
	Transformer Energization	2, 3, 4			
	* Generally, magnitude decreases	as harmonic order increases			
$\mathbf{H} = \mathbf{NP} + / \mathbf{-1}$					

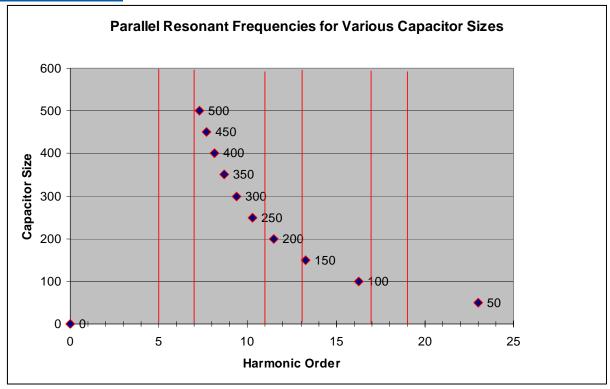
i.e. 6 Pulse Drive - 5, 7, 11, 13, 17, 19,...


Harmonic Spectrum

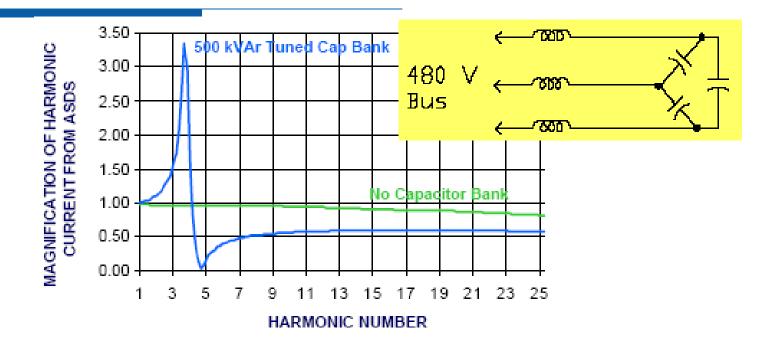


- Normal VFD Harmonic Spectrum
 - Lower harmonic orders have the higher magnitudes
 - Magnitudes should decline as the harmonic order increases

Harmonic Spectrum



- If the harmonic spectrum exhibits abnormal magnitudes, it is a good sign of harmonic resonance
- Typically caused by interaction with Power Factor Correction Capacitors


Power Factor Correction and Harmonics

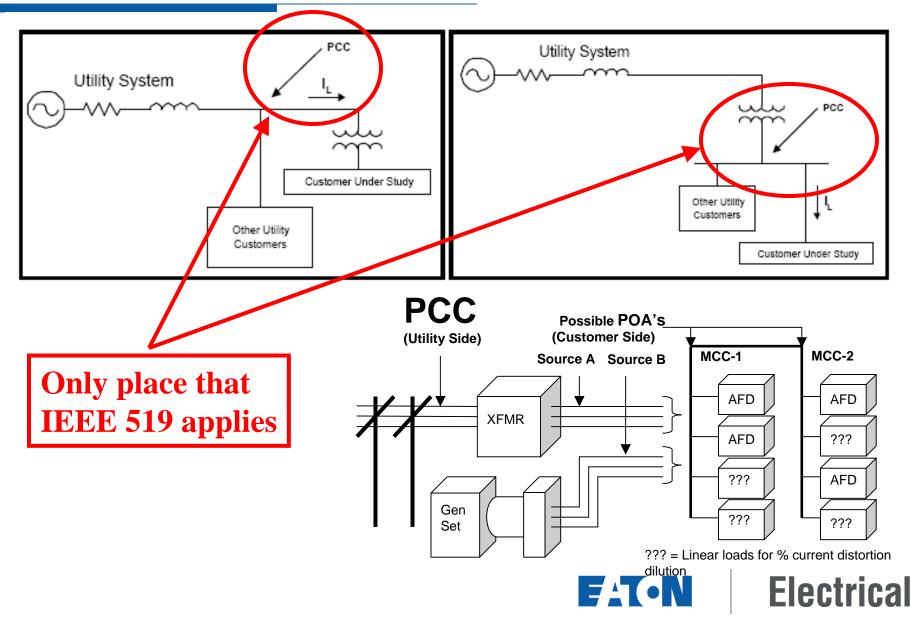
- PFCC's change the resonant frequency of the distribution system
 - Depends on the size of the caps and the impedance of the system
- Can magnify any existing harmonics

Power Factor Correction and Harmonics

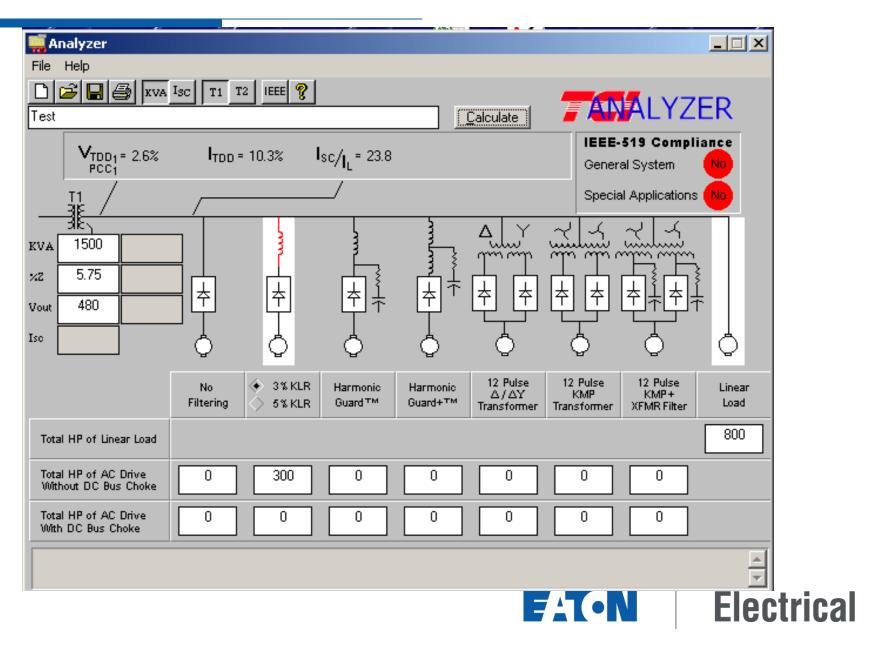
 Reactors can be added to the PFCC bank to create a tuned filter

- Tuned to a 'non-characteristic' harmonic (i.e. 4.7th)

• Becomes a sink for 5th harmonic currents


IEEE 519 - 1992

- It is currently the only recognized industry standard in North America for setting harmonic limits (voltage and current)
- Designed to limit utility harmonics as well as customer harmonic contribution to the utility grid
- Standard <u>ONLY</u> applies to the Point of Common Coupling (PCC)
 - The point where the utility connects to multiple customers
 - If a utility transformer is provided, the PCC is most likely on the LINE side of the transformer


IEEE 519 is widely misunderstood and misapplied in the industry

IEEE 519 – Point of Common Coupling (PCC)

Harmonic Calculators

Which came first?.....

Current Distortion

• In this case...the Egg!

- Current distortion causes Voltage distortion
- Voltage distortion is created by pulling <u>distorted current</u> through an impedance
- Amount of voltage distortion depends on:
 - System impedance
 - Amount of distorted current pulled through the impedance
 - If either increases, V_{THD} will increase

IEEE 519 - Voltage Distortion Limits

IEEE 519 sets limits for both Voltage distortion and Current distortion

Bus Voltage at PCC (V _n)	Individual Harmonic Voltage Distortion (%)	Total Voltage Distortion - THD _{Vn} (%)			
$V_n \leq 69 kV$	3.0	5.0			
$69 kV < V_n \le 161 kV$	1.5	2.5			
$V_n > 161 kV$	1.0	1.5			

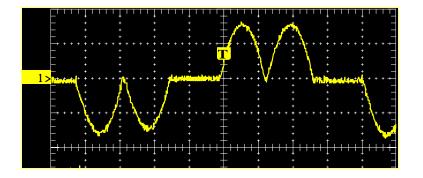
Harmonic Voltage Distortion Limits

$$THD_{V_n} = \frac{\sqrt{\sum_{h=2}^{\infty} V_h^2}}{V_n} \times 100\%$$

IEEE 519 - Current Distortion Limits

Harmonic Current Distortion Limits (I_h and TDD) in % of I_L (≤ 69kV)

	I _{SC} /I _L	<11	11≤h<17	17≤h<23	23≤h<35	35≤ł		TDD
	<20	4.0	2.0	1.5	0.6	0.3	5	5.0
	20<50	7.0	3.5	2.5	1.0	0.5		8.0
	50<100	10.0	4.5	4.0	1.5	0.7	,	12.0
	100<1000	12.0	5.5	5.0	2.0	1.(15.0
	>1000	15.0	7.0	6.0	2.5	1.4		20.0

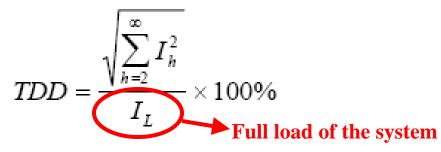

- Current distortion limits are dependent on the "stiffness" of the source (I_{sc}/I_{L})
 - A stiffer source has lower impedance = more distortion allowed
 - A softer source (i.e. generator) has higher impedance = less distortion allowed
- Current distortion limits are typically much more difficult to reach than Voltage distortion limits

Not THD

THD vs. TDD

- THD(I) = Total Harmonic Current Distortion
 - <u>Measured</u> distortion on actual instantaneous current flowing
 - "Sinewave Quality Factor"
 - Lower the % THD, the closer the current waveform is to a true sinewave
 - Not used anywhere in IEEE 519

THD = 80%


Is this acceptable? Depends on system full load, % linear load,

Electrical

etc.

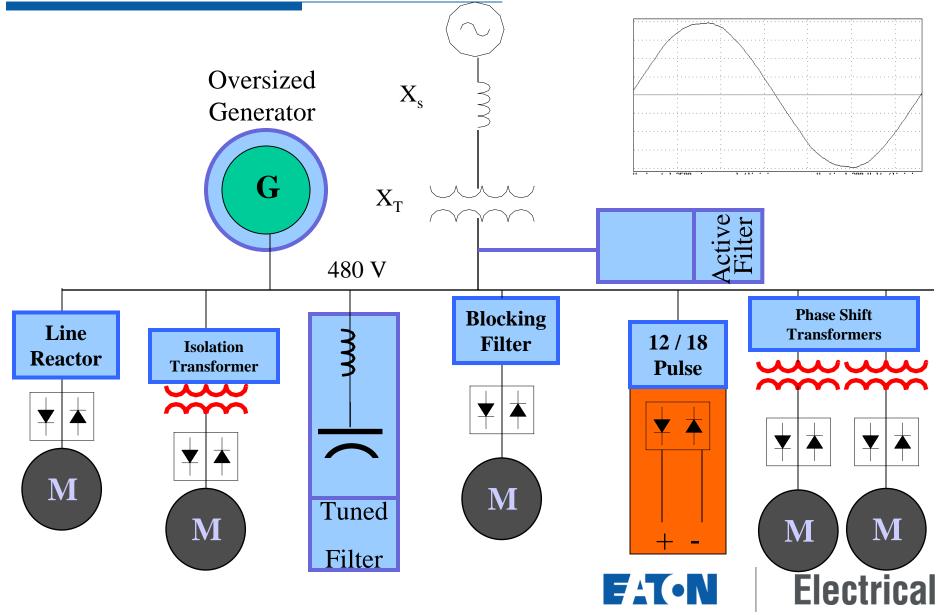
THD vs. TDD

- TDD(I) = Total Current Demand Distortion
 - <u>Calculated</u> harmonic current distortion against the full load (demand) level of the electrical system

- The greater the amount of Linear load, the less of an issue the current distortion becomes
- Looks at the full capacity of the system
 - If non-linear loads are a small % of the full system current demand, the TDD is less

TDD vs THD

Example: With Harmonic Correction


	Meas	sured			
Total I,	Fund I,	Harm I,			
rms	rms	rms	THD(I)	TDD	_
936.68	936.00	35.57	3.8%	3.8%	Equ load
836.70	836.00	34.28	4.1%	3.7%	- 1080
767.68	767.00	32.21	4.2%	3.4%	
592.63	592.00	27.23	4.6%	2.9%	
424.53	424.00	21.20	5.0%	2.3%	
246.58	246.00	16.97	6.9%	1.8%	
111.80	111.00	13.32	12.0%	1.4%	
	rms 936.68 836.70 767.68 592.63 424.53 246.58	Total I, rmsFund I, rms936.68936.00836.70836.00767.68767.00592.63592.00424.53424.00246.58246.00	rmsrms936.68936.0035.57836.70836.0034.28767.68767.0032.21592.63592.0027.23424.53424.0021.20246.58246.0016.97	Total I, rmsFund I, rmsHarm I, rmsTHD(I)936.68936.0035.573.8%836.70836.0034.284.1%767.68767.0032.214.2%592.63592.0027.234.6%424.53424.0021.205.0%246.58246.0016.976.9%	Total I, rmsFund I, rmsHarm I, rmsTHD(I)TDD936.68936.0035.573.8%3.8%836.70836.0034.284.1%3.7%767.68767.0032.214.2%3.4%592.63592.0027.234.6%2.9%424.53424.0021.205.0%2.3%246.58246.0016.976.9%1.8%

Equal at full load

* As the load decreases, TDD decreases while THD(I) increases.

Harmonic Solutions for VFD's

Harmonic Solutions for VFD's

- Line Reactors
- K-Rated / Drive Isolation Transformers
- Harmonic Mitigating Transformers/Phase Shifting
- 12-Pulse Converter
- 18-Pulse Converter
- Passive Parallel Tuned Filters
- Passive Series Tuned Filters
- Active Filters
- Active Rectifier (Regenerative VFD's)

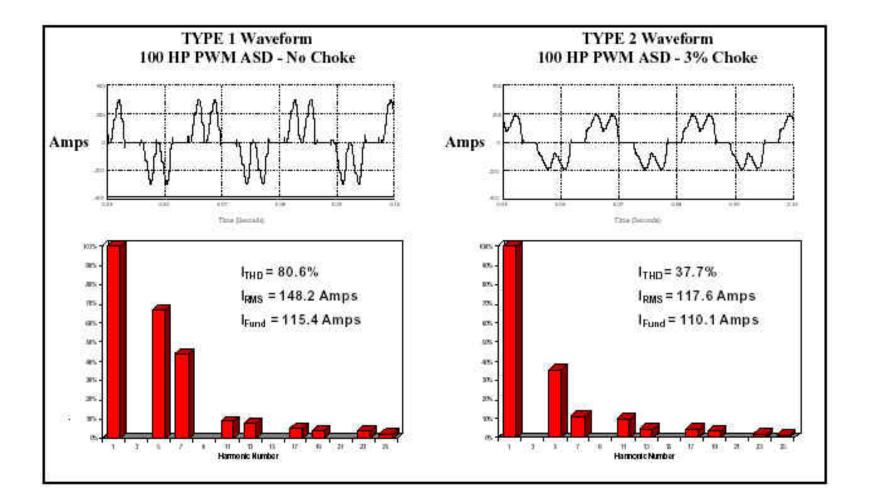
Line Reactors

- Line Reactor = *Inductor*
- An *inductor* slows down the rate of rise of current.

Impedance of an inductor increases as frequency increases

$$X_L = 2\pi fL$$
 $Z = \sqrt{2}$

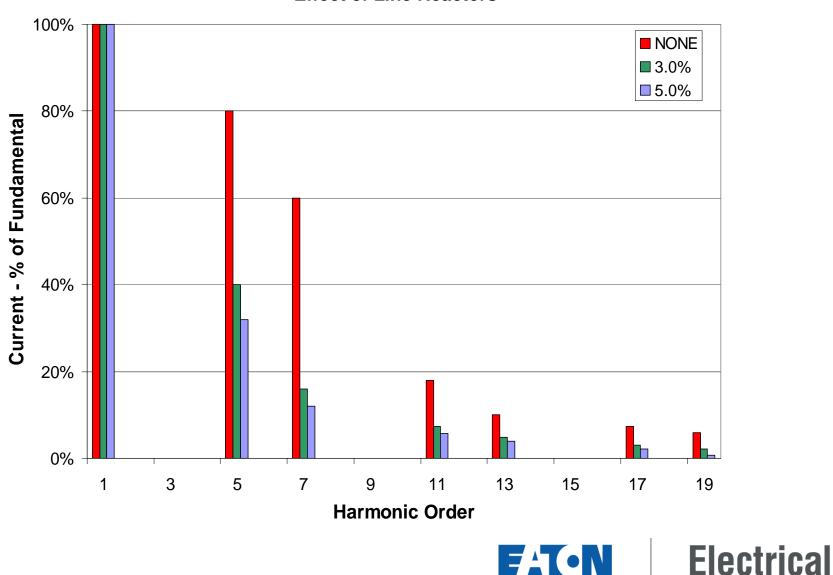
$$Z = \sqrt{R^2 + X_L^2}$$


where: f=freq (Hz)

L=inductance (H)

Reactors have more impedance the higher the harmonic order

Effect of Drive Line Reactors


EAT-N Electrical

Effect of Drive Line Reactors

Harmonic	Reactor Size						
Order	0.5%	1.0%	3.0%	5.0%	10.0%		
5 th	80.0%	60.0%	40.0%	32.0%	23.0%		
7 th	60.0%	37.0%	16.0%	12.0%	7.5%		
11 th	18.0%	12.0%	7.3%	5.8%	4.0%		
13 th	10.0%	7.5%	4.9%	3.9%	2.8%		
17 th	7.3%	5.2%	3.0%	2.2%	0.4%		
19 th	6.0%	4.2%	2.2%	0.8%	0.2%		
I _{THD} (%)	102.5%	72.2%	44.1%	35.0%	24.7%		
Ι _T / Ι ₁	143.0%	123.0%	109.0%	106.0%	103.0%		

EAT-N Electrical

Effect of Drive Line Reactors

FAT-N

Effect of Line Reactors

Line Reactor Ratings

- Reactors are rated in %Z for the rated voltage system (i.e. 3%, 5%, 8%, etc.)
- Line reactors greater than 5% are not recommended due to voltage drop
- Example: A 3% line reactor will cause a 3% voltage drop when passing full rated current

480v*3% = 14.4 volts 480v*5% = 24 volts 480v*8% = 38.4 volts

 Higher % reactors may cause VFD undervoltage nuisance trips

Drive Line Reactors

Advantages

- Lowest cost
- Moderate reduction in harmonics
- Provides increased protection for AFD
- Insensitive to system changes

<u>Disadvantages</u>

- May require larger enclosure / separate mounting
- Harmonic reduction may not be sufficient
- Possible voltage drop issues
- Produce heat

Drive Isolation Transformers

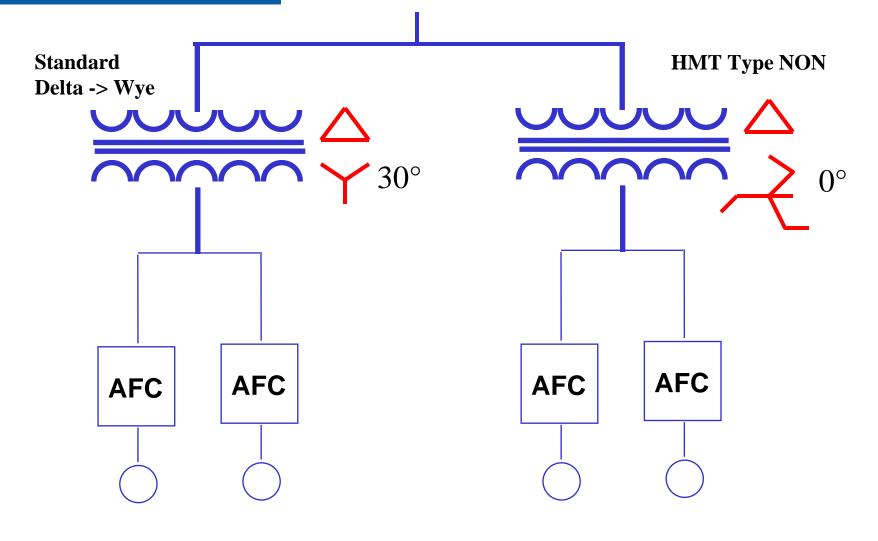
Provide the similar benefits as Line Reactors. Isolation transformers are like a 3.5 - 6% line reactor. (Transformer %Z)

Advantages

- Moderate reduction in harmonics
- Isolation from Ground
- Moderate cost (compared to some other attenuation methods)

Disadvantages

- Large footprint
- Separate mounting
- Harmonic reduction may not be sufficient
- No increased protection for VFD



Phase Shifting – Harmonic Mitigating Transformers (HMT)

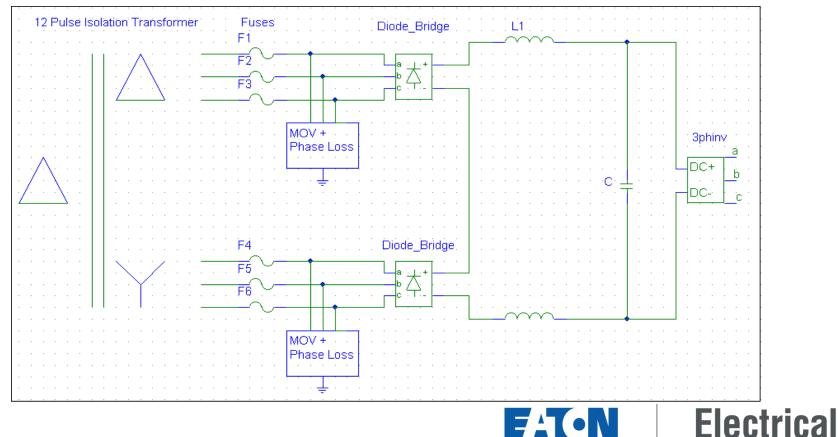
- Special wound transformers (typically zig-zag) that use phase shifting to cancel harmonics
- Application depends on the targeted harmonics
- Triplen harmonics (3rd, 9th, etc.) can be cancelled with single transformer
- VFD harmonics (5th, 7th, etc.) are cancelled using pairs of transformers.
 - Delta -> Wye transformers have 30° phase shift
 - HMT's have various degrees of phase shifting depending on manufacturer - 0°, +15°, 15°, etc.

Phase Shifting – Harmonic Mitigating Transformers (HMT)

Phase Shifting – Harmonic Mitigating Transformers (HMT)

<u>Advantages</u>

- Energy Savings
- Heat reduction
- Can provide additional 3th harmonic attenuation
- Cancels harmonics in primary system
- No derating of transformer
- Typically include additional electrostatic shielding
- Highly reliable (no electronic components)
- No maintenance
- Simple installation


<u>Disadvantages</u>

- Engineering intensive solution. (Difficult to retrofit)
- Multiple transformers needed to target 5th, 7th, 17th, 19th, etc.
- Load must be balanced between transformer pairs. (Only the balanced load gets attenuated.)
- May need supplemental harmonic reduction to meet IEEE 519

Multi-Pulse VFD's – 12 Pulse

- Phase shifting isolation transformer provides dual outputs that go to (2) separate rectifiers. (12 diodes)
- Turns 3-phase power into "6-Phase" power

Multi-Pulse VFD's – 12 Pulse

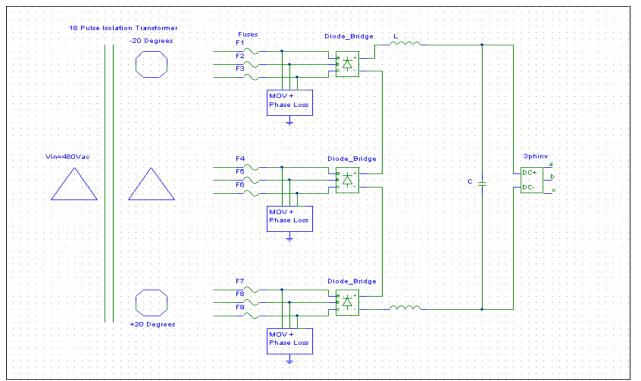
- Phase shifting isolation transformer provides dual outputs that go to (2) separate rectifiers. (12 diodes)
- Turns 3-phase power into "6-Phase" power

Expanded 12 Pulse Current Waveform

Multi-Pulse VFD's – 12 Pulse

<u>Advantages</u>

- Cost varies
- Substantial reduction in harmonics
 - THD(I) = 9% @ full load 11% @ ½ load
- Almost complete cancellation of 5th and 7th harmonics
- Insensitive to system
 changes


<u>Disadvantages</u>

- Cost varies
- Increased size and weight
- More complexity
- Current distortion is load dependent
- Doesn't guarantee compliance with IEEE 519

Multi-Pulse VFD's – 18 Pulse

- Phase shifting isolation transformer provides dual outputs that go to (3) separate rectifiers. (18 diodes)
- Turns 3-phase power into "9-Phase" power

Multi-Pulse VFD's – 18 Pulse

- Phase shifting isolation transformer provides dual outputs that go to (3) separate rectifiers. (18 diodes)
- Turns 3-phase power into "9-Phase" power

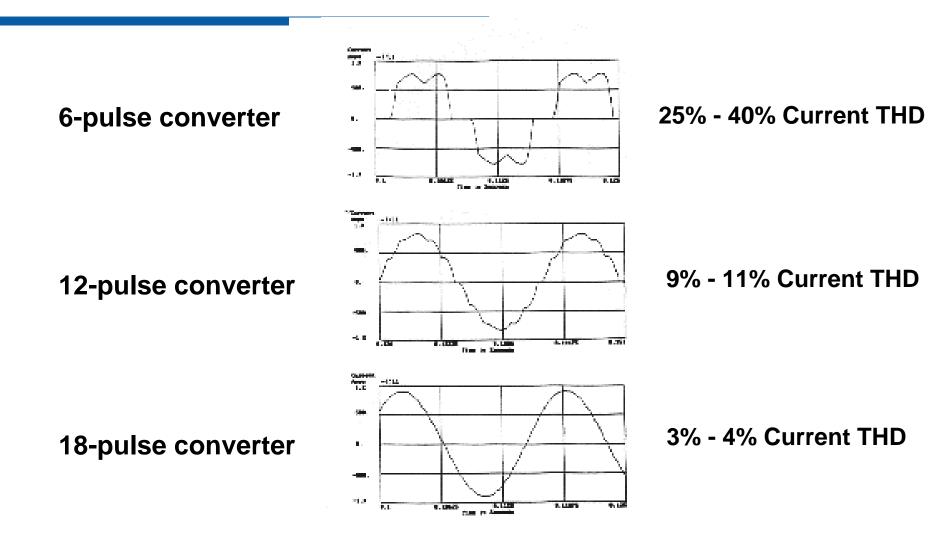
Electrical

Multi-Pulse VFD's – 18 Pulse

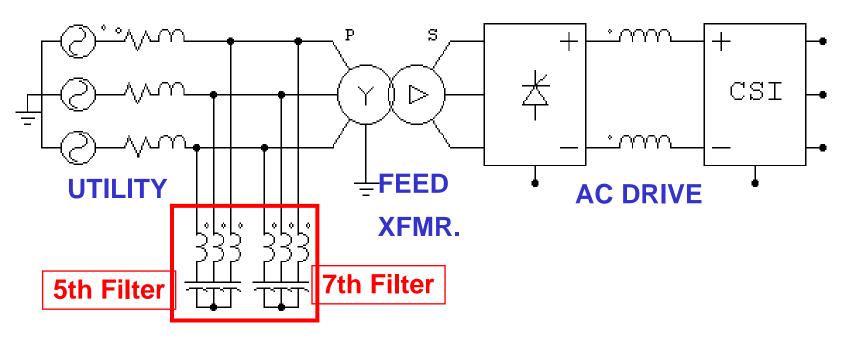
Advantages

- Guarantees compliance with IEEE 519 <u>at the drive</u> <u>terminals</u>
- Up to 4x the reduction of 12 pulse
- Excellent for large drives
- Substantial reduction in harmonics
 - THD(I) = 3.5% @ full load 6% @ no load
- Almost complete cancellation of 5th, 7th, 11th, and 13th harmonics
- Insensitive to system changes

- Higher Cost
- Must be applied to each VFD
- Increased size and weight
- More complexity



Multi-Pulse VFD's – 18 Pulse

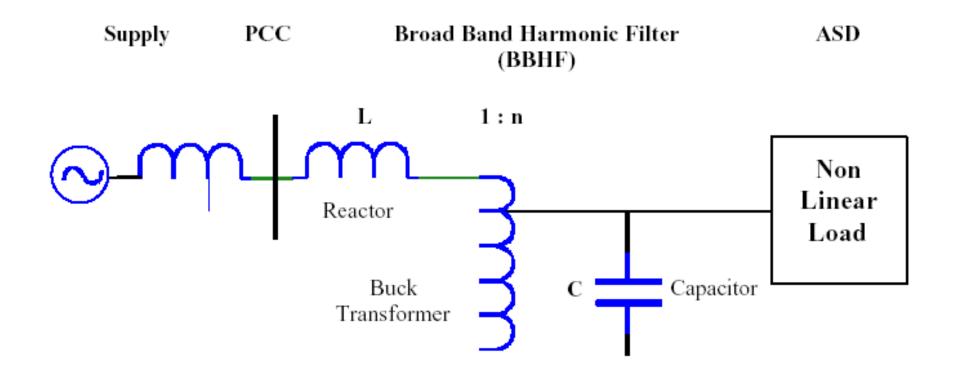


Multi-Pulse VFD's

Passive Filters (Parallel / Tuned)

- Consists of LC combinations tuned to a specific frequency (Typically the 5th or 7th)
- Act as a shunt (or trap) for harmonics
- Applied close to harmonic generating loads

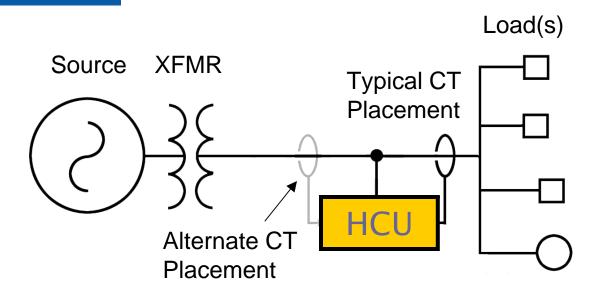
Passive Filters (Parallel / Tuned)


Advantages

- Allows higher VFD content
- Single filter for multiple drives
- Can target specific "trouble" harmonics
- Can be designed to guarantee compliance with IEEE 519

- Higher cost
- Engineering intense solution
- Separate mounting and protection
- May require multiple "steps" to meet IEEE 519
- Must design to avoid overload, excessive voltage rise
- Interact with all plant and utility non-linear loads
- May change as load profile changes

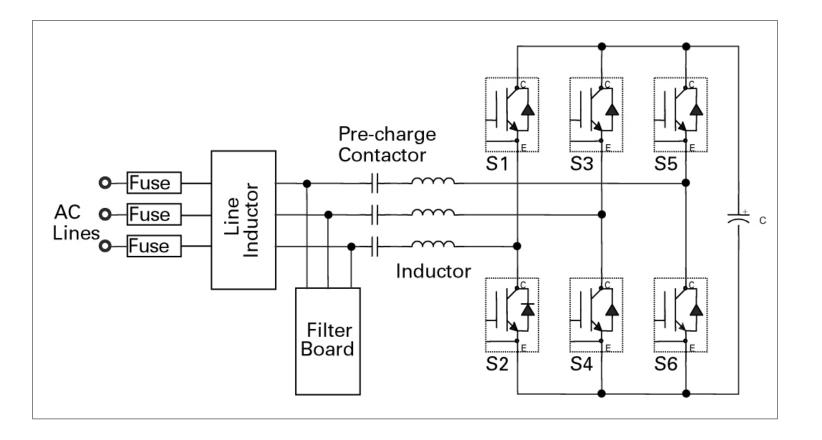
Passive Filters (Series / Broadband)


Passive Filters (Series / Low Pass)

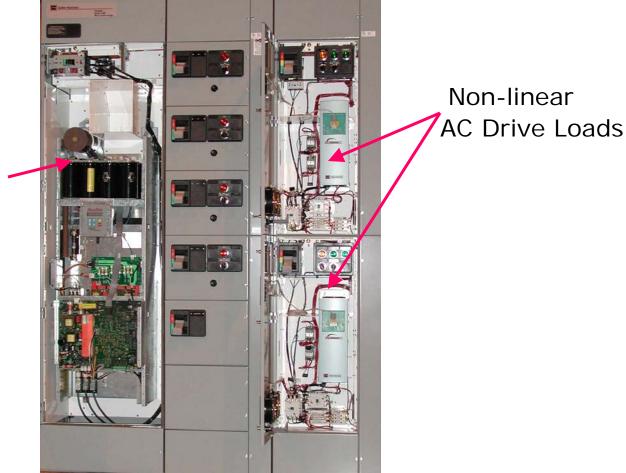
<u>Advantages</u>

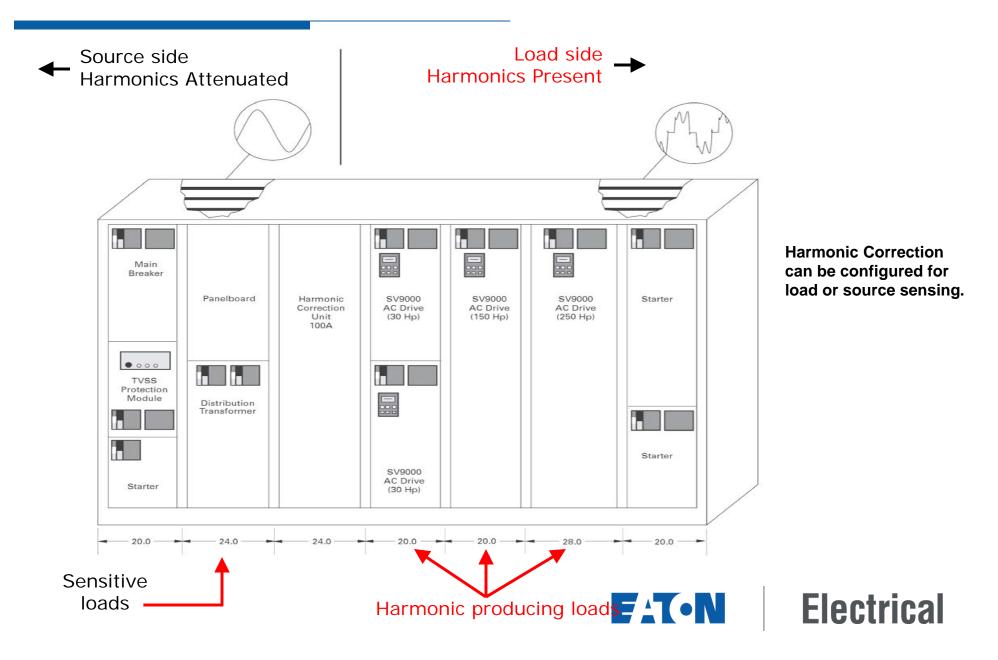
- Allows higher VFD content
- Increased protection for VFD
- Power factor correction
- Simple configuration that doesn't require detailed analysis

- High cost
- Increased size
- One filter required per drive
- Could result in leading power factor when lightly loaded
- Possible resonance



- Actively senses harmonics
- Injects equal and opposite currents to cancel harmonic currents
- Multiple units operate in parallel to get additional capacity
- · Can also use extra capacity to correct power factor

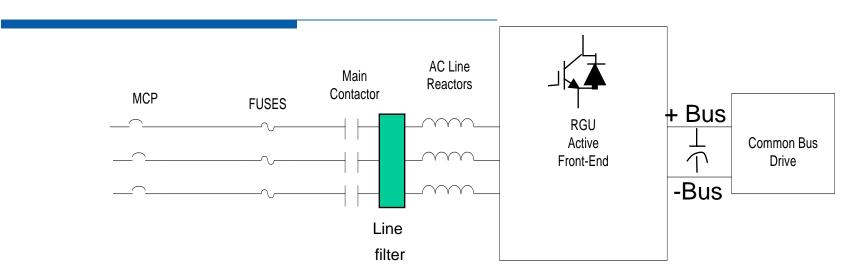

Power Schematic




Integration into Motor Control Center

Active Harmonic Correction Unit

- Highly accurate control and monitoring
- Flexible harmonic control
 - system can grow as customer's needs change
 - size based on actual running loads vs. provision
 - can be applied within MCC with integral drives or feeders


<u>Advantages</u>

- Can be sized to guarantee IEEE 519 compliance
- Shunt design cannot be overloaded
- Cancels 2nd-50th harmonic
- Provides 60 Hz reactive current (PF correction)
- Can be incorporated in MCC to compensate for multiple AFDs
- Fast response to varying loads
- Expandable

- Typically more expensive than other methods
 - More competitive where redundant VFD's are used
- Size
- More complex

Regenerative VFD's (Active Rectifier)

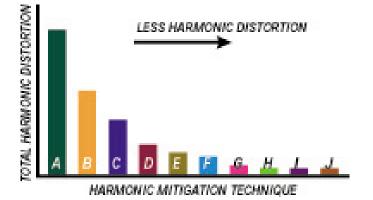
- Active front end rectifier
- IGBT devices replace diode in rectifier
- High frequency switching
- Supplies forward power to DC bus drive system
- Regenerates excess power back to the 3-phase AC line with sinusoidal input currents

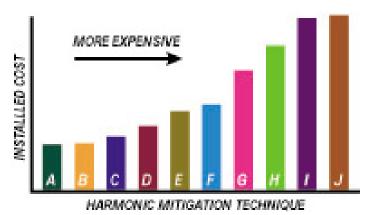
EAT-N Electrical

Regenerative VFD's

Advantages

- Creates little
 harmonic distortion
- Regenerates excess power back to AC line
- Fast response to varying loads


Disadvantages


- Not widely used
- Most complex
- Very expensive solution
 - More competitive for large regenerative loads
- Requires large line
 reactor
- Not as efficient in forward driving mode

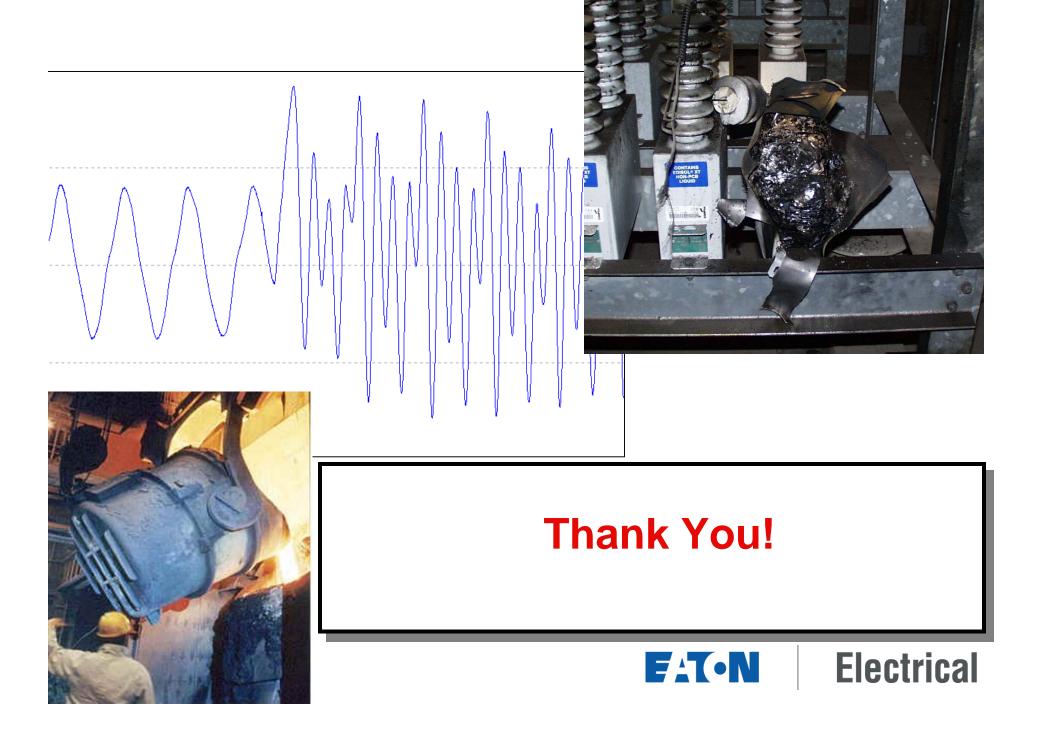
Mitigation Technique vs. Installed Cost

- A 6 pulse
- B 6 pulse with 3% reactor
- C 6 pulse with 5% reactor
- **D** Phase Shifting Transformer
- E 12 Pulse
- F Series Low Pass Filter
- G 18 Pulse
- H Parallel Tuned Filter
- I Active Filter
- J Regenerative active front end

ET·N Electrical

Summary

There are a wide variety of solutions


Different solutions are appropriate in different situations

Appropriate solutions depend on numerous factors

- 1. Number of VFD's
- 2. Redundancy
- 3. Existing or New Construction
- 4. Linear load
- 5. Facility type
- 6. Future growth

Best solution is determined from a complete system analysis considering all available filtering methods

