

Harmonic Distortion of Drives: Issues and Solutions

REVCON sales channel

REVCON Focus:

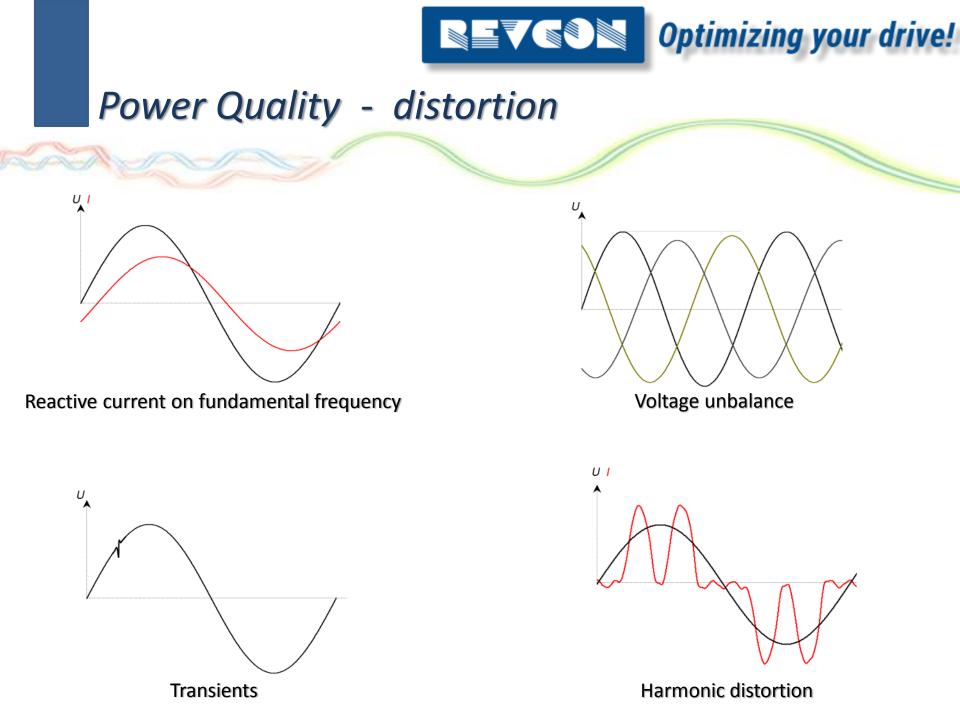
Efficiency

Power Quality Regen Applications

Harmonic Distortion of Drives: Issues and Solutions

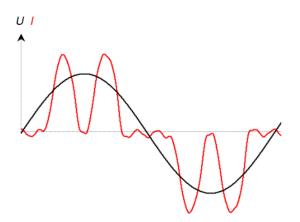
Part 1:

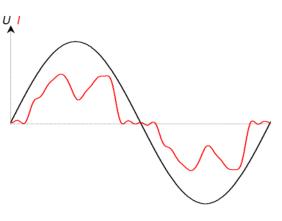
- **1.1 Training on harmonics: Basics**
- 1.2 Training on harmonics: Problems and issues
- 1.3 The impact of the short circuit power ratio


Part 2:

2.1 Harmonic solutions available2.2 Passive Harmonic Filter technologies2.3 Hybrid Harmonic Filter2.4 Open Discussion

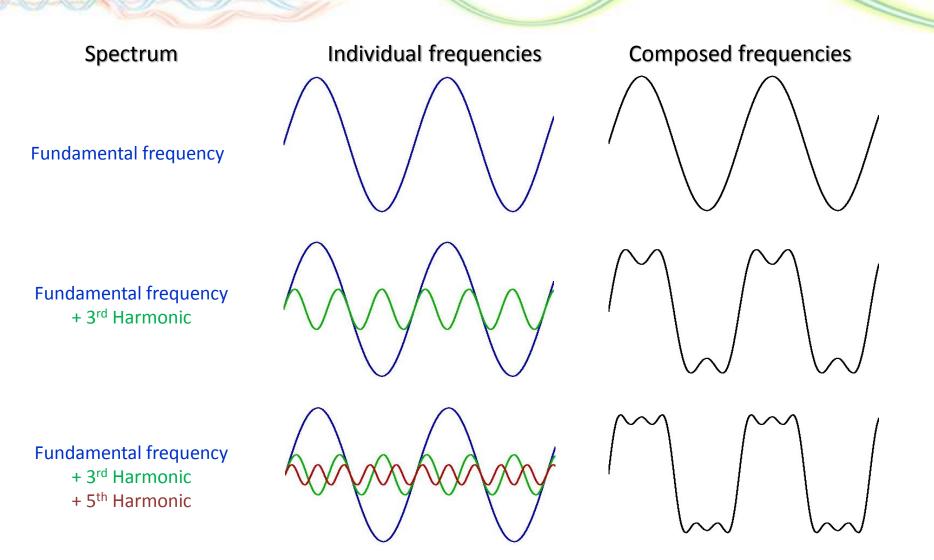
Harmonics


What is a Harmonic?



υI

Power Quality - non-linear loads



Rectifier with no/low inductance	Rectifier with ~4% inductance	Mix of non-linear loads
Current shape is significantly different from sinus. Significant distortion.	Current shape is significantly different from sinus, but fundamental part is significantly higher than without choke.	High distortion: The current shape is extremely different from sinus.
Typical equipment: 6-Pulse rectifier without inductance. (e.g.: low power or low quality drives)	Typical equipment: 6-Pulse rectifier with 4% DC-inductance. (e.g.: quality drives)	Typical equipment: mix of single phase and 6-Pulse rectifier without inductance.

Harmonics - composed frequencies

The harmonic frequency is defined by: (n = harmonic number) $f_h = n \bullet fundamental frequency$

Example for n = 11 (11th harmonic) in a 50Hz network: $f_{h11} = 11 \bullet 50$ Hz = 550Hz

The harmonic current is the amplitude value of the corresponding frequency. $I_{h11} =$ current amplitude of the 550Hz signal

Harmonics - mathematical basic

Fourier transform

- Any signal can be expressed as a sum of its harmonics.
- Harmonics are multiples of the fundamental frequency.
 - Examples for 50Hz:
 - 2nd Harmonic = 100Hz
 - 3rd Harmonic = 150Hz
 - 5th Harmonic = 250Hz
 - 7th Harmonic = 350Hz
 - 11th Harmonic = 550Hz
 - 13th Harmonic = 650Hz
- The **Fourier transform** decomposes a function of time (*a signal*) into its individual frequencies

What is a Harmonic?

Harmonics are sinewave signals overlapping the main (fundamental) frequency.

Every Harmonic is defined by:

Harmonic **order** (5th Harmonic = 250Hz, 7th Harmonic = 350Hz ...) Harmonic **amplitude** (how strong is the harmonic) Harmonic **angle** (harmonics of different angle compensate each other)

How are Harmonics evaluated?

THDi and THDv value

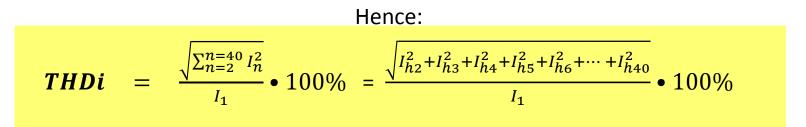
The harmonic distortion is evaluated by the "Total Harmonic Distortion" (*THD*). This is separated into *THDv* (or *THDu*) for voltage distortion and *THDi* for current distortion. This is typically defined for harmonics up to 40th or 50th.

Flashback: what is the I_{RMS}

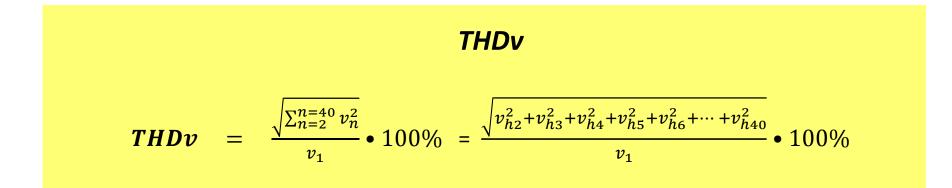
$$I_{RMS} = \sqrt{\sum_{n=1}^{n=40} I_n^2} = \sqrt{I_{h1}^2 + I_{h2}^2 + I_{h3}^2 + I_{h4}^2 + I_{h5}^2 + I_{h6}^2 + \dots + I_{h40}^2}$$

Fundamental part

Harmonic part

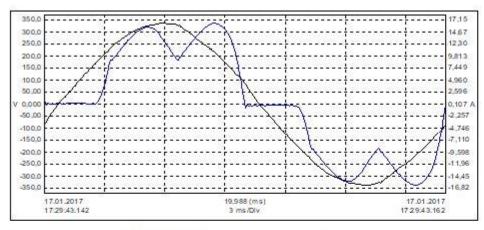


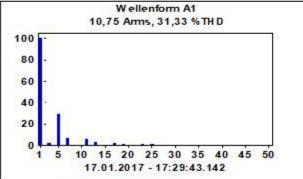
THDi


The sum of all harmonic currents up to the 40th, are defined as THC

$$THC = \sqrt{\sum_{n=2}^{n=40} I_n^2} = \sqrt{I_{h2}^2 + I_{h3}^2 + I_{h4}^2 + I_{h5}^2 + I_{h6}^2 + \dots + I_{h40}^2}$$

The *THDi* is defined as: $THDi = \frac{THC}{I_1} \bullet 100\%$





Harmonic distortion - typical measurement

Drive input current

		Wel	lenform A1		
	(%)		(%)		(%)
H01	100,0	H19	2,2	H37	0,5
H02	0,3	H20	0,0	H38	0,0
H03	2,4	H21	0,3	H39	0,2
H04	0,1	H22	0,0	H40	0,0
H05	29,2	H23	1,1	H41	0,3
H06	0,1	H24	0,0	H42	0,0
H07	7,1	H25	1,2	H43	0,4
H08	0,1	H26	0,0	H44	0,0
H 09	0,6	H27	0,3	H45	0,2
H10	0,1	H28	0,0	H46	0,0
H11	6,5	H29	0,6	H47	0,2
H12	0,0	H 30	0,0	H48	0,0
H13	3,4	H31	0,7	H49	0,4
H14	0,0	H 32	0,0	H 50	0,0
H15	0,5	Н 33	0,2		
H16	0,0	H 34	0,0		
H17	2,4	H35	0,4		
H18	0,0	H36	0,0		

The drive input current shows a significant deviance from the sinusoidal waveform. The drive input current can be decomposed into its individual frequencies (Harmonics). For drives these are typically the 5th, 7th, 11th, 13th harmonic.

The fundamental frequency "1st harmonic" is 50Hz, this is the intended frequency. All other components are considered as "harmonic distortion".

How are Harmonics evaluated?

Harmonic current distortion is evaluated by the **THDi** (or TDD = Total Demand Distortion) This is the harmonic content of the I_{RMS} (measured current) divided by the fundamental part

Harmonic voltage distortion is evaluated by the **THDv** This is the harmonic content of the v_{RMS} (measured voltage) divided by the fundamental part

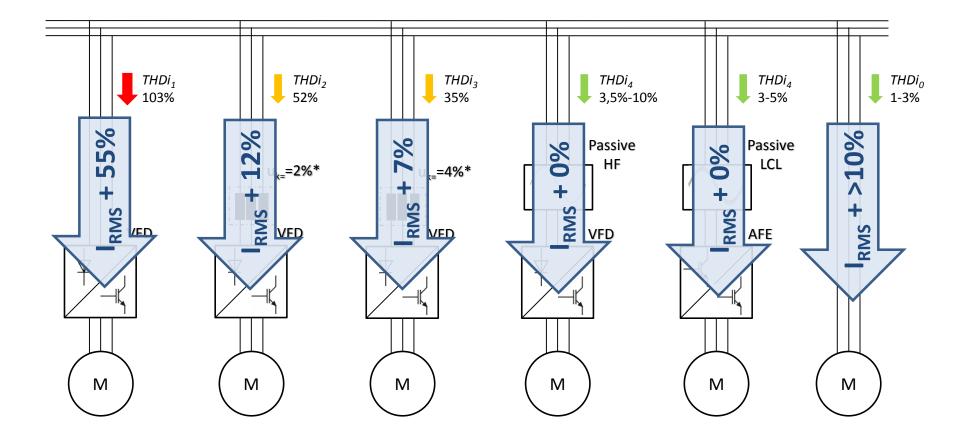
Harmonic Distortion of Drives: Issues and Solutions

Part 1:

- 1.1 Training on harmonics: Basics
- **1.2 Training on harmonics: Problems and issues**
- 1.3 The impact of the short circuit power ratio

Part 2:

2.1 Harmonic solutions available2.2 Passive Harmonic Filter technologies2.3 Hybrid Harmonic Filter2.4 Open Discussion



Harmonics

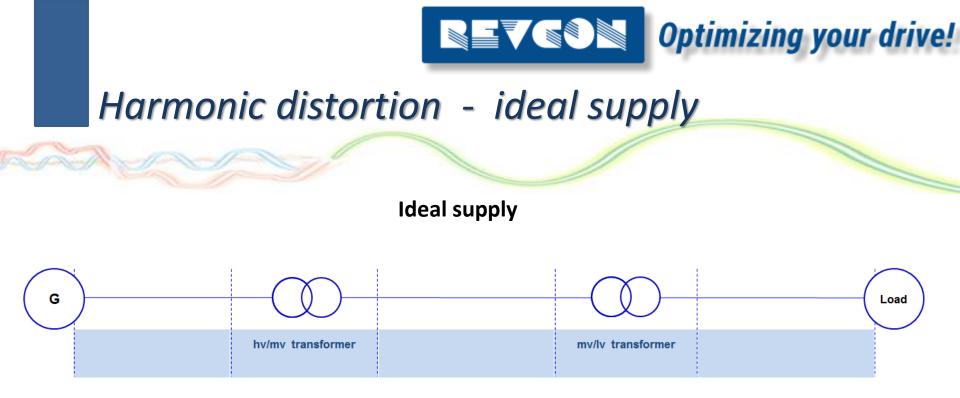
Simple! That's it?

Harmonic distortion of motors / VFD

*choke can be added AC or DC side with similar result. Typically installed DC side.

Simple! That's it?

No!


Using THDi as an evaluation for harmonics, gives you quick picture of the harmonic situation.

Looking at the *THDi* equation, all Harmonic orders are equal. They are not!

$$THDi = \frac{\sqrt{I_{h2}^2 + I_{h3}^2 + I_{h4}^2 + I_{h5}^2 + I_{h6}^2 + \dots + I_{h40}^2}}{I_1} \cdot 100\%$$

Why do we care about Harmonic currents?

- Generators produce ideal sinusoidal current.
- Transformers and wires don't have any impedance
- The Loads are consuming ideal sinus current
- --> No voltage distortion

- Generators produce (almost) ideal sinusoidal current.
- The Loads are consuming non linear current

Ohm's Law

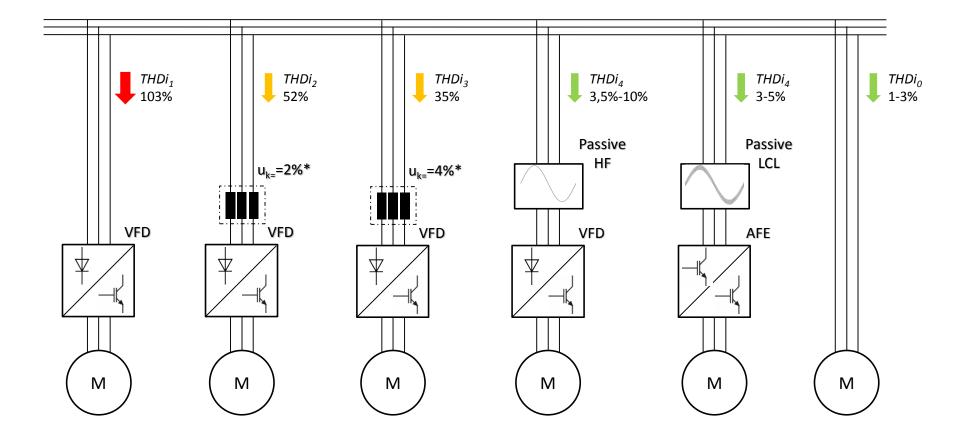
 $V = I \bullet Z$

Why do we care about Harmonic currents?

Due to: $V = I \bullet Z$

all harmonic currents cause voltage distortion

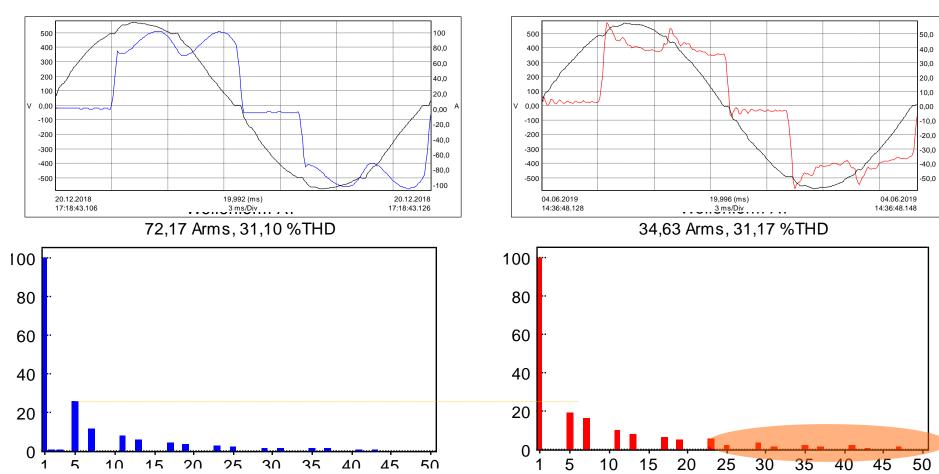
Voltage Distortion affects all equipment connected



Harmonics

Are all Harmonics equal?

Harmonic distortion of motors / VFD

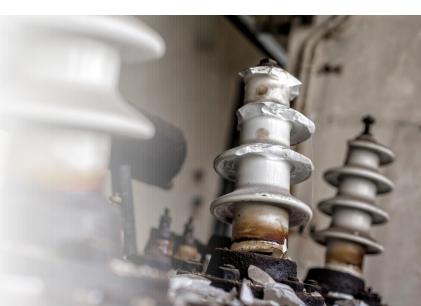


*choke can be added AC or DC side with similar result. Typically installed DC side.

Harmonic distortion - comparison

Standard Drive vs. Slim DC Bus Drive

The *THD* is a good evaluation for Harmonic Distortion but it **is not sufficient to give a full** evaluation of the problems that may be caused by harmonics.


Example:

100A distortion on the 5th Harmonic (I_5 =100A) will cause the same *THDi* as: 100A distortion on the 37th Harmonic (I_{37} =100A),

Power loss inside a transformer caused by I_{37} would be significantly higher.

Power loss inside a motor caused by I_{37} would be significantly higher.

And so on...

IEC define PWHD

The **Partial Weighted Harmonic Distortion** is a value to evaluate the higher harmonics between the 14th and 40th. This evaluation is available for current (*PWHD,i*) and voltage (*PWHD,v*) and is used in several standards.

PWHD,
$$i = \frac{\sqrt{\sum_{n=14}^{n=40} I_n^2}}{I_1} \cdot 100\% = \frac{\sqrt{I_{h14}^2 + I_{h15}^2 + I_{h16}^2 + I_{h17}^2 + \dots + I_{h40}^2}}{I_1} \cdot 100\%$$

$$PWHD, v = \frac{\sqrt{\sum_{n=14}^{n=40} U_n^2}}{U_1} \bullet 100\% = \frac{\sqrt{U_{h14}^2 + U_{h15}^2 + U_{h16}^2 + U_{h17}^2 + \dots + U_{h40}^2}}{U_1} \bullet 100\%$$

Standards - IEEE

IEEE 519-2014 Current distortion level of for systems 120V – 69kV

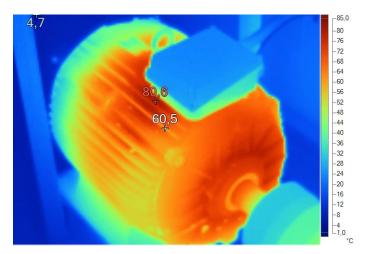
Maximum Harmonic Current Distortion in Percent of IL								
Individual Harmonic Order (Odd Harmonics)								
I _{SC} /I _L	<11	11≤h<17	17≤ <i>h</i> <23	2 3≤h<35	35≤h	TDD		
<20*	4.0	2.0	1.5	0.6	0.3	5.0		
20<50	7.0	3.5	2.5	1.0	0.5	8.0		
50<100	10.0	4.5	4.0	1.5	0.7	12.0		
100<1000	12.0	5.5	5.0	2.0	1.0	15.0		
>1000	15.0	7.0	6.0	2.5	1.4	20.0		
Even harmonics are limited to 25% of the odd harmonic limits above.								
Current distortions that result in a dc offset, e.g. half-wave converters, are not allowed.								
* All power generation equipment is limited to these values of current distortion, regardless of actual /sc//L.								
Where								
I _{sc} = maximum short-circuit current at PCC.								
IL = maximum demand load current (fundamental frequency component) at PCC.								
TDD = Total demand distortion (RSS), harmonic current distortion in % of maximum demand load current (15 or 30 min demand).								
PCC	= Point of common coupling.							

Are all Harmonics equal?

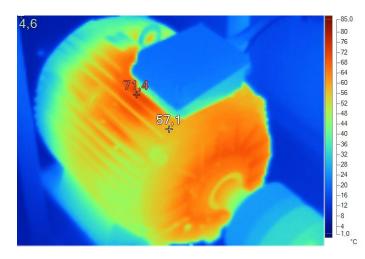
No. Higher Order Harmonics will typically cause more harm than lower order harmonics.

Evaluation of Harmonic distortion based on *THDi* or *TDD* is only possible, if the harmonic spectrum is known. (e.g. Drive load with high performance / high quality drive)

Which damage is caused by harmonics?



Harmonic voltage distortion


Voltage distortion cause power loss!

Comparison of Motors DOL @ equal load but different voltage distortion

18.5kW THDv = 6,8%

18.5kW THDv = 1,8%

@ 8% THDv, a motor DOL can run max. 85% load

Harmonic distortion - Problems

Transformers and PFC

Increased losses! Reduced power! Expected lifetime lower! Transformers and capacitor banks must be oversized or might overheat at nominal load.

Electronical equipment

Increased losses, and reduced lifetime expectation. Equipment failures → Lost data, Production stop, Equipment costs Wrong evaluation of signals → troubleshooting costs and production loss

Harmonic distortion - Problems

Motors and Generators (uncontrolled) Increased losses, and reduced lifetime expectation. Reduced torque and unsteady torque (even vibrations) on shaft output. Lower lifetime expectations of Bearings, gearboxes and further connected equipment

System Efficiency

Equipment efficiency may be affected by the harmonic distortion of the mains voltage. In addition connection wires will produce higher losses. This leads to higher costs for user.

Which damage is caused by harmonics?

Every non resistive equipment will suffer from Harmonics.

Lower lifetime Electrical and mechanical damage Less efficiency

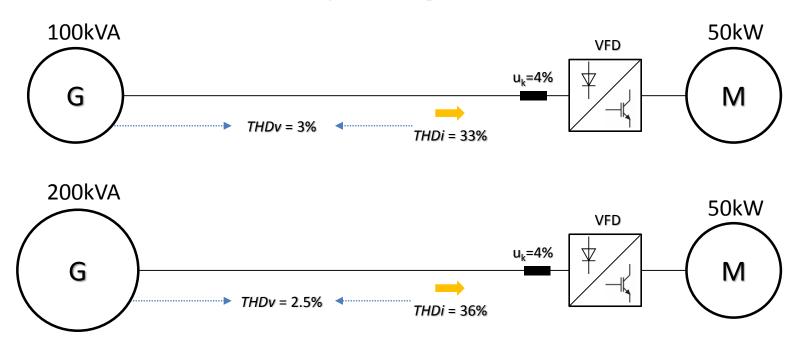
Harmonic Distortion of Drives: Issues and Solutions

Part 1:

- 1.1 Training on harmonics: Basics
- 1.2 Training on harmonics: Problems and issues
- **1.3 The IEEE 519 and the impact of the short circuit power ratio**

Part 2:

- 2.1 Harmonic solutions available
- 2.2 Passive Harmonic Filter technologies
- 2.3 Hybrid Harmonic Filter
- 2.4 Open Discussion


Harmonics

Do I need Harmonic mitigation?

21 Standards - Network conditions

The harmonic currents of equipment cause harmonic distortion on the mains voltage. The impact of the voltage depend on the strength of the mains supply.

Simplified diagrams:

Harmonics – Standards and Recommendation

Standard	Class	<i>THDv</i> limit
EN 50160	-	8%
IEC 61000-2-4	1	5%
IEC 61000-2-4	2	8%
IEC 61000-2-4	3	10%
IEEE 519-2014	<1000V	8%
G5/4	400V	5%

Practice	-	<i>THDv</i> limit
Good Practive	-	5%
IEEE 519-2014 Target	-	5%

Standards - IEEE

IEEE 519-2014 Current distortion level of for systems 120V – 69kV

Maximum Harmonic Current Distortion in Percent of IL						
		Individual Har	monic Order (O	dd Harmonics)		
I _{SC} /I _L	<11	11≤h<17	17≤ <i>h</i> <23	2 3≤h<35	35≤h	TDD
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0
Even harmonics are limited to 25% of the odd harmonic limits above.						
Current distortions that result in a dc offset, e.g. half-wave converters, are not allowed.						
* All power generation equipment is limited to these values of current distortion, regardless of actual Isc/IL.						
Where						
I _{sc} = maximum short-circuit current at PCC.						
IL = maximum demand load current (fundamental frequency component) at PCC.						
TDD = Total demand distortion (RSS), harmonic current distortion in % of maximum demand load current (15 or 30 min demand).						
PCC = Point of common coupling.						

Harmonic distortion - evaluation of harmonics

TDD

Total Demand Distortion of the current (used in e.g. IEEE-519:2014) Equal to THDi the TDD express the distortion of harmonics from $2^{nd} - 40^{th}$. But the THC is divided through I_L instead of I_1 .

I_L is also the fundamental frequency amplitude, but defined as the maximum demand current. IEEE-519: "This current value can be established at the PCC and should be taken as the sum of the currents corresponding to the maximum demand during each of the twelve previous months divided by 12."

$$TDD = \frac{\sqrt{\sum_{n=2}^{n=40} I_n^2}}{I_L} = \frac{\sqrt{I_{h2}^2 + I_{h3}^2 + I_{h4}^2 + I_{h5}^2 + I_{h6}^2 + \dots + I_{h40}^2}}{I_L} \bullet 100\%$$

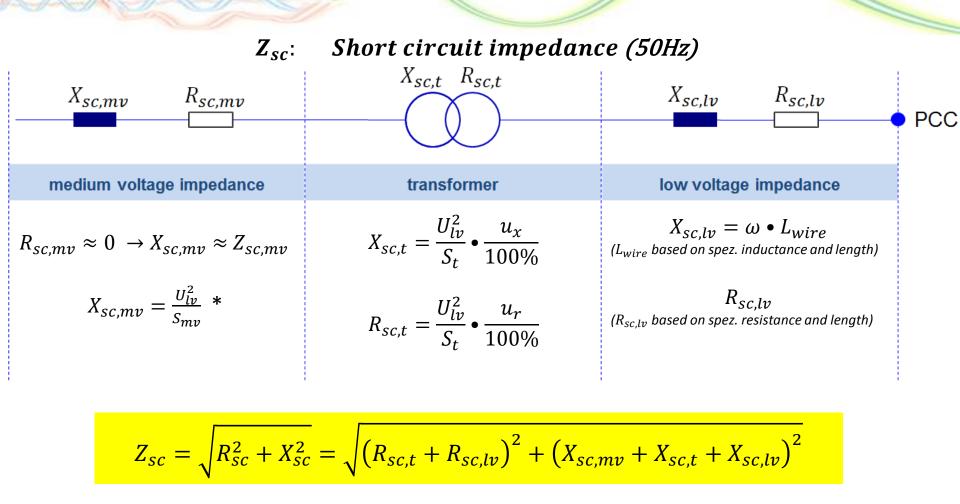
At full load: *TDD = THDi*

Harmonic distortion - TDD vs. THDi

Looking at THDi only, an Inexperienced user, might think that 18% load is worst case harmonic distortion. **TDD is user friendly** as always taking reference to the maximum current and showing worst case harmonic distortion (here 120% load).

Standards - Network conditions

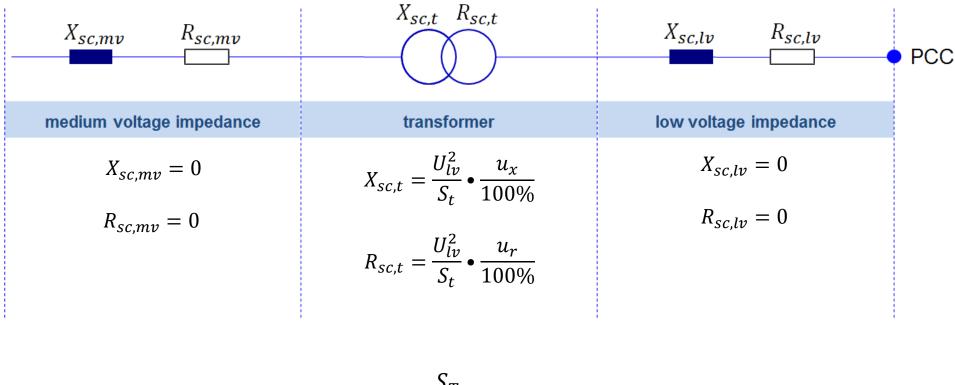
$$R_{SCE} = \frac{S_{SC}}{S_{equ}} \approx \frac{I_{SC}}{I_L}$$


$$S_{SC} = \frac{U_{nom}^2}{Z_{sc}}$$

$$Z_{sc} = \sqrt{R_{sc}^2 + X_{sc}^2}$$

- *R_{SCE}*: Short circuit power ratio
- *S_{SC}*: *Short circut power*
- *I_{SC}*: Short circut current
- S_{equ}: Eqipment power
- I_L : Load current
- Z_{sc} : Short circuit impedance (50Hz)

Standards - short circuit power calculation



*low voltage value must be used in order to add up the Impedance values!

Standards - short circuit power estimation

Z_{sc}: **Short circuit impedance (50Hz)** (simplified calculation based on transformer impedance)

$$S_{sc,t} = \frac{S_T}{u_k} \bullet 100\% =$$

Harmonics

Do I need Harmonic mitigation?

Good Practice

Transformer Load	% Non-linear Load	Harmonic Mitigation
<30%	0-100%	Not required
>30% <90%	<10%	Not required
>30% <90%	10-100%	Required*
>90%	<10%	Required*
>90%	10-100%	Target 5% TDD

*Harmonic mitigation in accordance to IEEE 519-2014: Table 2

Part 1 completed, Thanks!

10min. Break

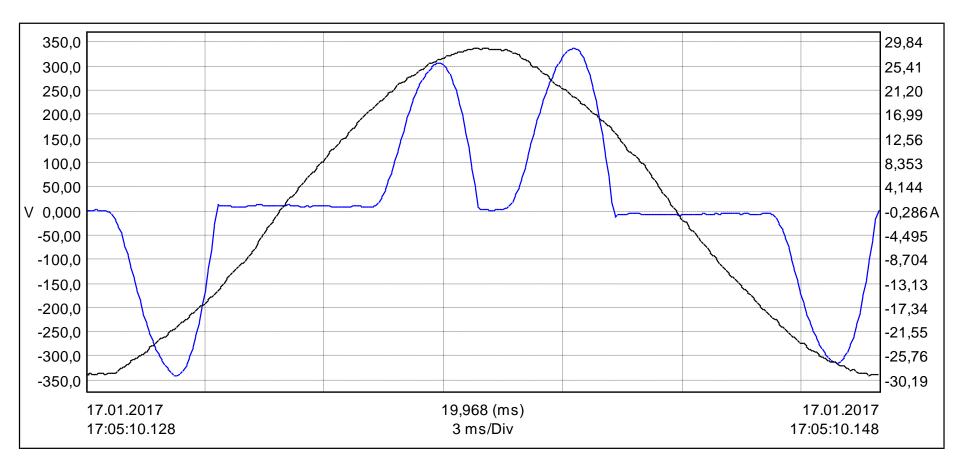
Harmonic Distortion of Drives: Issues and Solutions


Part 1:

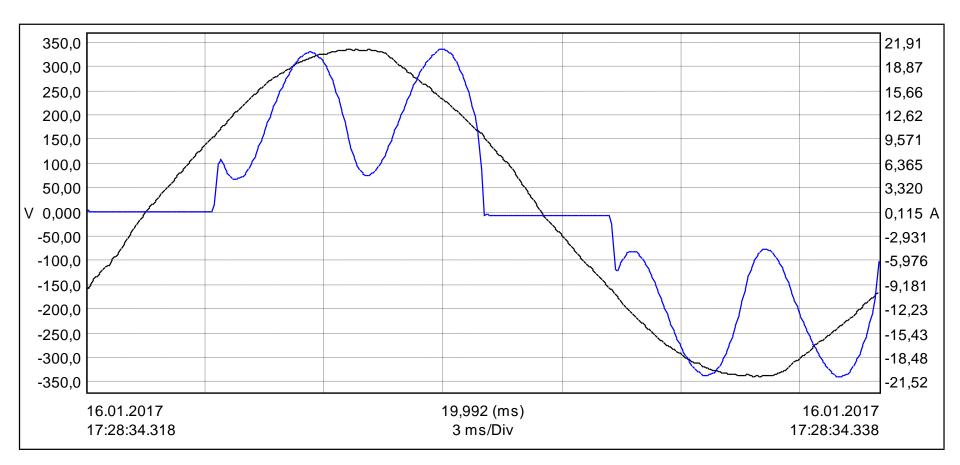
- 1.1 Training on harmonics: Basics
- 1.2 Training on harmonics: Problems and issues
- 1.3 The IEEE 519 and the impact of the short circuit power ratio

Part 2:

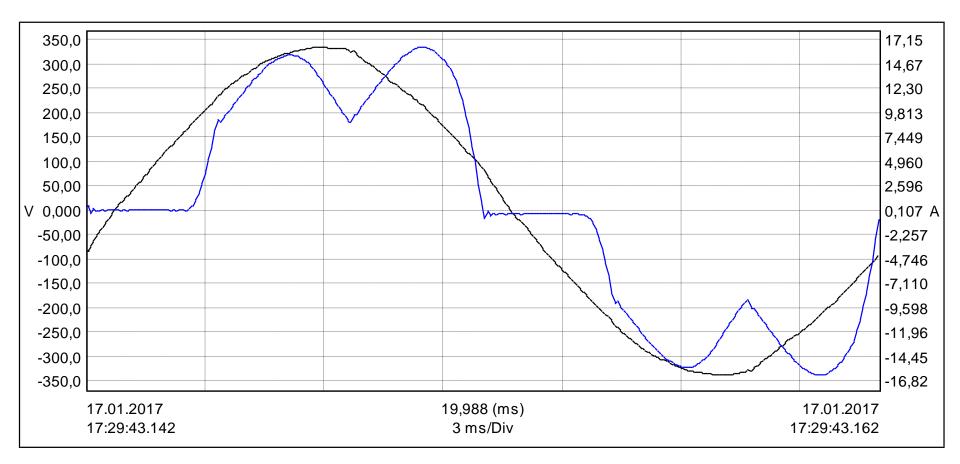
2.1 Harmonic solutions available


- 2.2 Passive Harmonic Filter technologies
- 2.3 Hybrid Harmonic Filter
- 2.4 Open Discussion

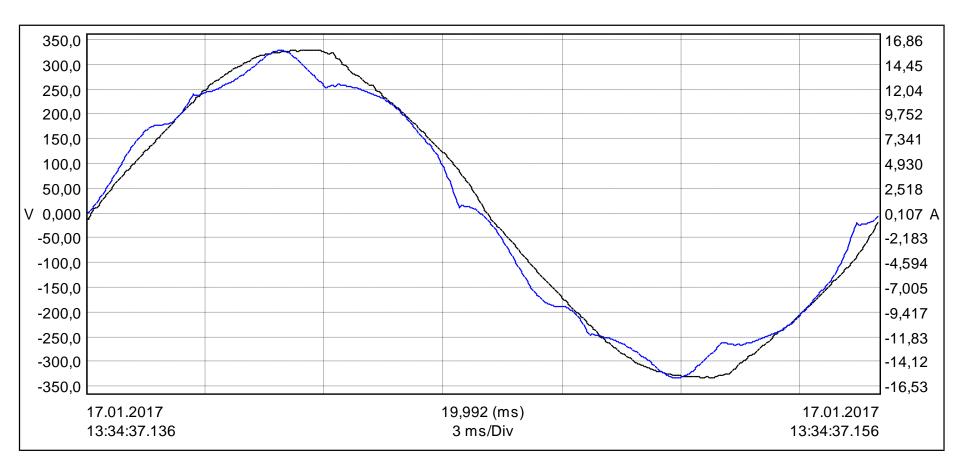
What does a Harmonic current look like?



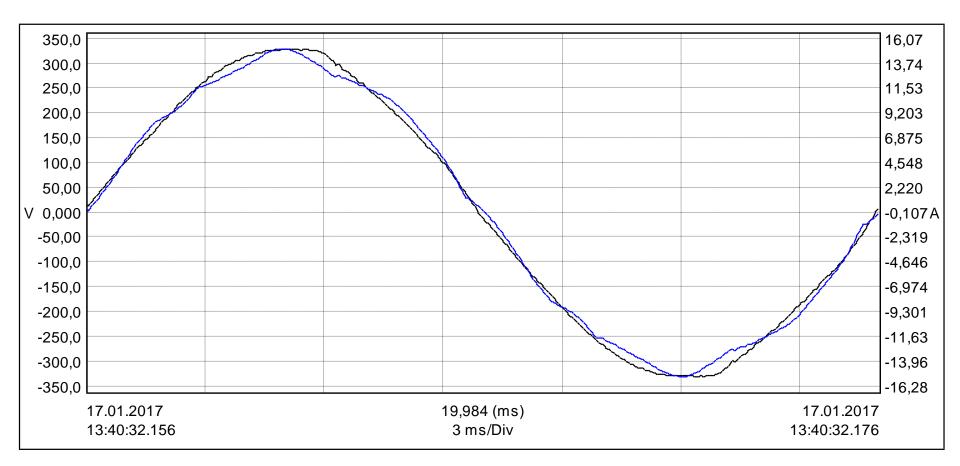
Input current of a drive with 0,6% choke at 7kW load, 89%THDI



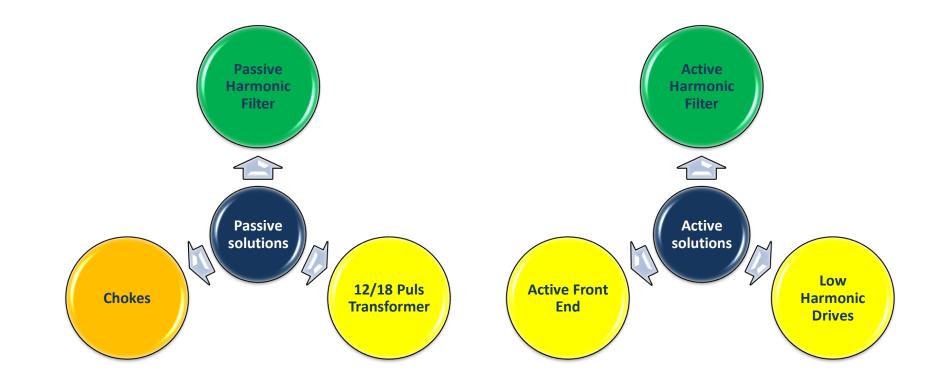
Input current of a drive with 1,8% choke at 7kW load, 51%THDI

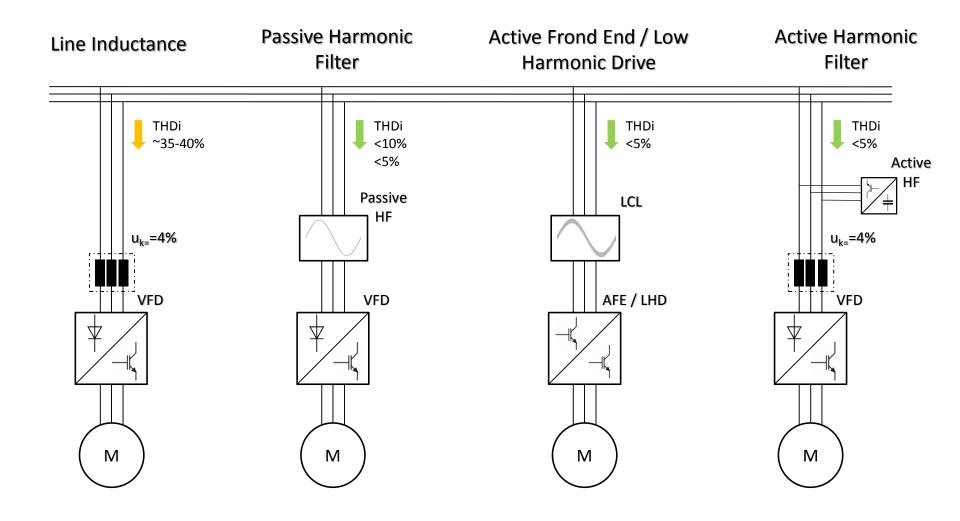


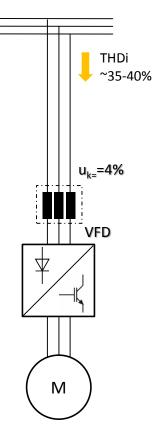
Input current of a drive with 5,4% (AC + DC) choke at 7kW load, 32%THDI



Input current of a drive with RHF-8P filter at 7kW load, 7%THDI

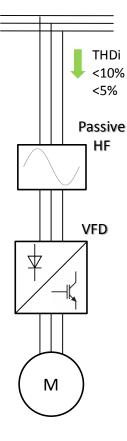

Input current of a drive with RHF-5P filter at 7kW load, 3.9%THDI


What kind of Harmonic Solutions are useful?



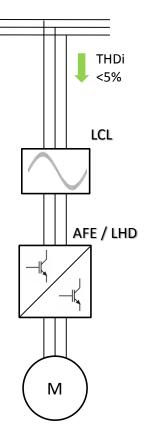
Harmonic Solutions for VSD - overview

Harmonic Solutions for VSD - Choke



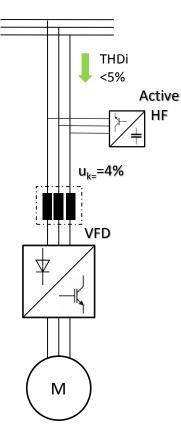
Solution	DC or AC choke
Value	4% impedance
Typical performance	35-50% THDi
Advantage	Low costs
Disadvantage	Low performance
Recommended	Yes, for small drives and networks with much linear loads

This solution is very basic and usually inbuilt by factory inside the VSD. Therefore this is not considered as a harmonic solution in the following presentation.

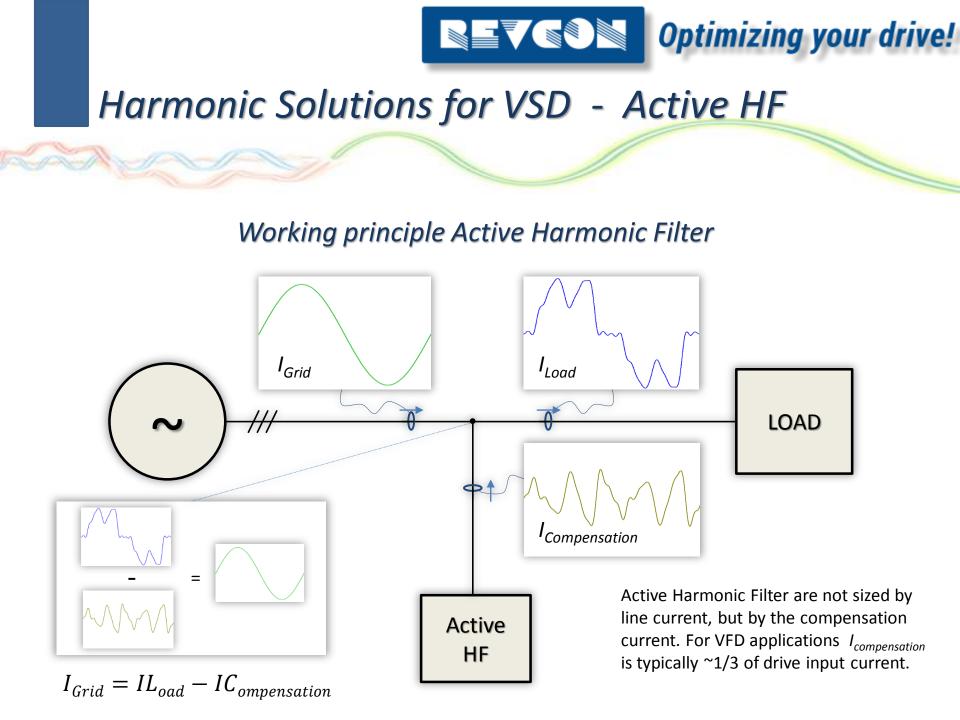

Harmonic Solutions for VSD - Passive HF

Solution	Passive Harmonic Filter
Typical value	n.a.
Typical performance	<5% or <10%
Advantage	Good cost/performace ratio
Disadvantage	Significant different circuits and products available.
Recommended	Yes, if taking brand specific specification such as performance and efficiency into account.

Harmonic Solutions for VSD - AFE and LHD



Solution	Active Front End Technology / (ultra) Low Harmonic Drives*
Typical performance	<5%
Advantage	Low THDi (<40 th Harmonic)
Disadvantage	Bad cost/performance ratio Low efficiency (high switching) High distortion (>100 th Harmonic) Expensive Low Lifetime expectance No performance scaling
Recommended	No


*Some manufacturer have recognized the disadvantage of IGBT active infeed for harmonic mitigation. Still the drive is considered as "low harmonic drive" but it use internal passive filter or active filter. These solutions are recommended.

Harmonic Solutions for VSD - Active HF

Solution	Active Harmonic Filter
Typical performance	<5%*
Advantage	High performance Easy to retrofit in systems Can be used for universal load Scalable for any performance High Efficiency
Disadvantage	Medium price/performance ratio Some brand require expensive commissioning
Recommended	Yes, especially in combination with passive harmonic filter

Harmonic Solutions for VSD - conclusion

What kind of Harmonic Solutions are useful?

Inductane			
Low performance. Therefore not considered as solution			
↓ THDi ~35-40%	THDi <10% <5%	THDi <5% Active	THDi <1-5%

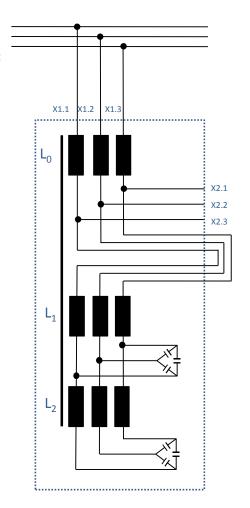
Harmonic Distortion of Drives: Issues and Solutions

Part 1:

- 1.1 Training on harmonics: Basics
- 1.2 Training on harmonics: Problems and issues
- 1.3 The IEEE 519 and the impact of the short circuit power ratio

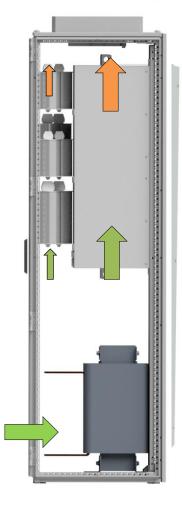
Part 2:

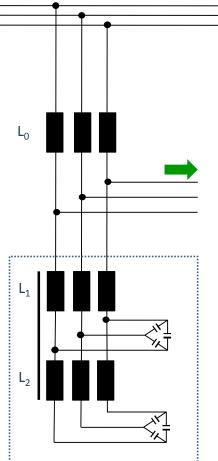
- 2.1 Harmonic solutions available
- **2.2 Passive Harmonic Filter technologies**
- 2.3 Hybrid Harmonic Filter / Hybrid Solution
- 2.4 Open Discussion


RHF - 5P and RHF-8P

RHF – 3rd Generation

Standard Compact Size


- Two different performance levels [THDi] RHF-8P <8% (typ. test result 6,7%) RHF-5P <5% (typ. test result 2,7%)
- High efficiency typically >99-99.5%
- Most efficient harmonic solution available
- Core temperature supervision and fan control
- Improves (true) power factor (*pf* or λ)
- Available for all common networks
- High lifetime expectation (typ. >15 Years)


RHF - high power range 2nd generation

RHF – 3rd Generation

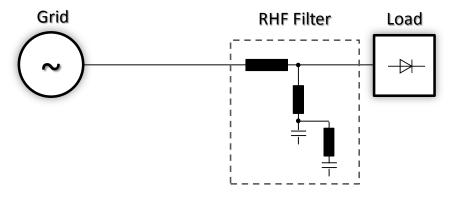
High Power Split or Enclosed design

- Available up to 710kW (400V nom.)
- Available up to 1MW (690V nom.)
 Mains inductance separated
- High efficiency typically 99,5%
- Two different performance levels [THDi]
 RHF-5P <8% (typ. test result 6,7%)
 RHF-B <5% (typ. test result 2,7%)
- Most efficient harmonic solution available
- Core temperature supervision and fan control
- High lifetime expectation (typ. >15 Years)

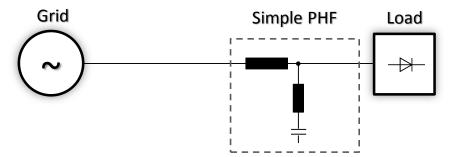
A passive filter, is a passive filter. Right?

Benefits of the RHF

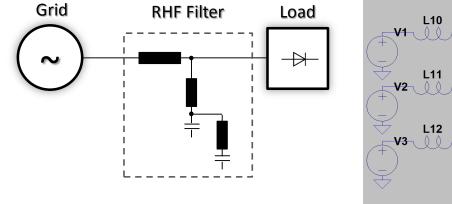
Benefit 1: **Performance**

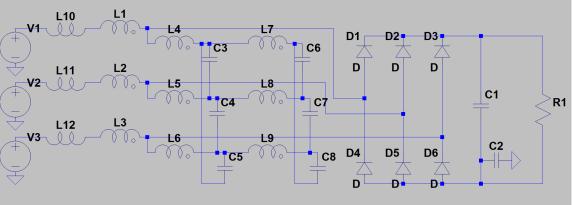

Benefit 2: **Efficiency**

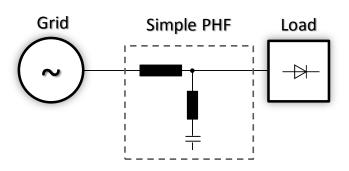
Benefit 3: DC-Bus Level

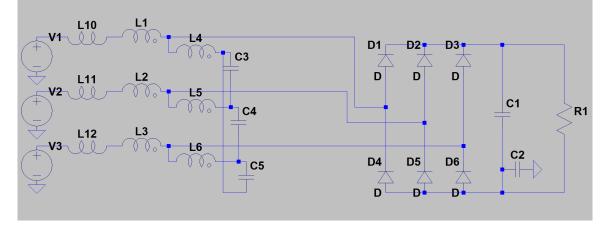

> Benefit 4: Quality

Harmonic Solutions for VSD - Passive HF

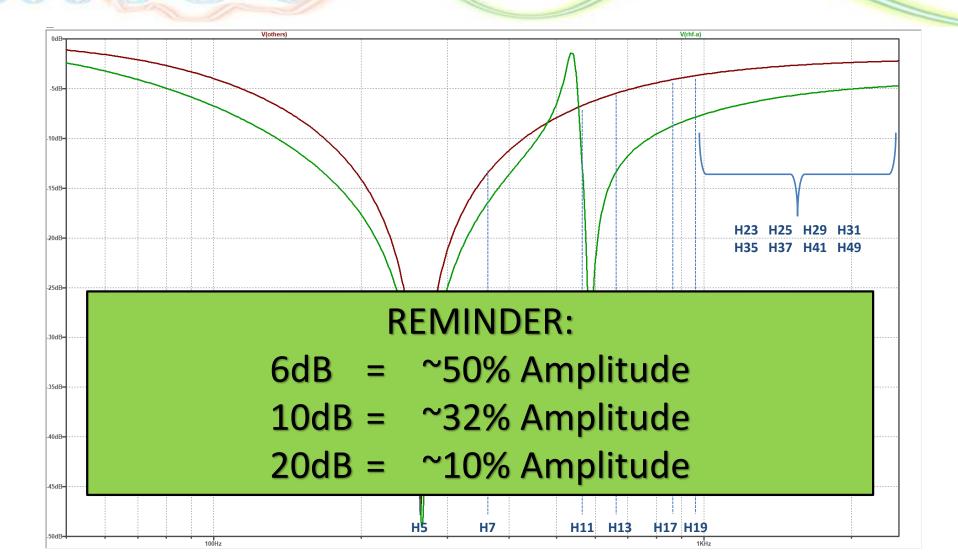

Setup	RHF-8P: High Efficient Harmonic Filter
Typical THDi	6-8%
Circuit	2 – Stage Filter
Advantage	Harmonic mitigation for all Harmonics
Disadvantage	Higher production costs




Setup	Simple Passive Harmonic Filter
Typical THDi	10-12%
Circuit	1 – Stage Filter
Advantage	Cheap
Disadvantage	Strong absorption only for 5 th and 7 th Harmonic. Low absorption of 11 th and 13 th harmonic. Very low absorption of high harmonics (>13 th)



Simulation RHF (10%) vs. Simple-PHF (10%)



Simulation RHF (10%) vs. Simple-PHF (10%)

Benefits of RHF

Harmonic Spectrum * (frequency band based on 50Hz fund.)	<i>THD</i> with RHF-A/B	<i>THD</i> with Simple HF	<i>THD</i> with AFE
2 nd – 7 th Harmonic (100Hz - 350Hz)	Very Low	Very Low	Very Low
2 nd – 50 th Harmonic (0,1kHz - 2,5kHz)	Very Low	Medium	Very Low
50 th – 200 th Harmonic (2,5kHz – 10kHz)	Very Low	Medium	High

*most common standards are only referring to harmonics up to 40 or 50.

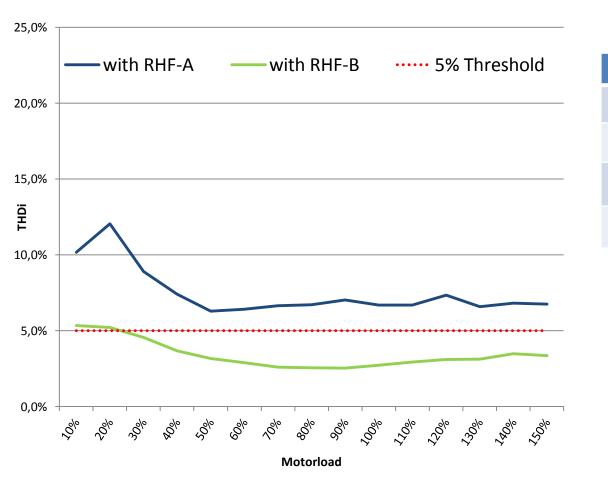
Performance Guarantee Competitor

Performance Guarantee

Select and install the Harmonic Filter in a variable torque AC variable frequency drive application, within our published system limits and we guarantee that the input

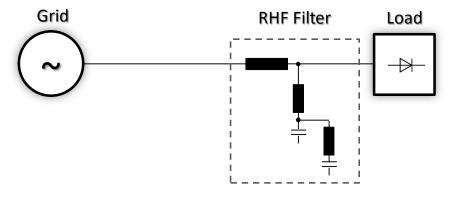
MINIMUM SYSTEM REQUIREMENTS

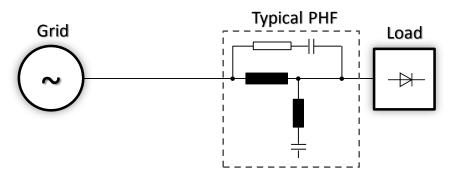
The guaranteed performance levels of this filter will be achieved when the following system conditions are met:


Frequency:Nominal Frequency ± 0.75HzSystem Voltage:Nominal System Voltage (line to line) ±10%Balanced Line Voltage:Within 1%Background Voltage Distortion:0% THVD

NOTE: The presence of background voltage distortion will cause motors and other linear loads to draw harmonic currents. Additional harmonic currents may flow into the **second** filter if there is harmonic voltage distortion already on the system.

harmonic voltage distortion already on the system.

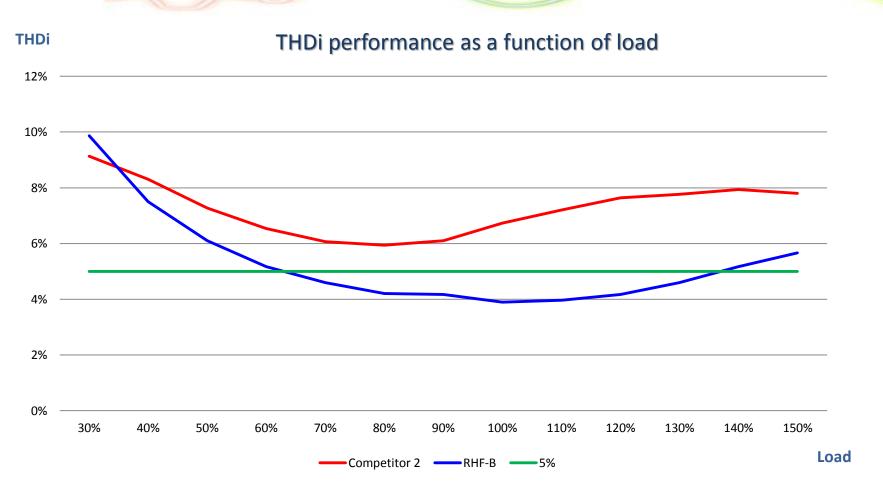

REVCON test conditions


Condition during test		
Mains voltage	+2-4%	
V Unbalance	0.7 – 1.1%	
Frequency	+0.13Hz	
Background THvD distortion	1.5-2%	

Harmonic Solutions for 5% THDi

Setup	High Efficient Harmonic Filter
Possible THDi	2-5%
Circuit	2 – Stage Filter
Advantage	Harmonic mitigation for all Harmonics
Disadvantage	Higher production costs

Setup	Simple Passive Harmonic Filter "S-PHF"
Possible THDi	4-6%
Circuit	1 – Stage Filter with RC Circuit.
Advantage	Lower Weight compared to 2-Stage
Disadvantage	High Power Loss



Misleading Statements (from competitor)

Recommended requirement			
Hardware	"Note: Performance specification in this brochure refer to six pulse diode rectifier with 8% DC-link choke. " Comment: There are no drives with 8% DC-link choke on the market. DC Bus decrease would be significant and reduce drive performance		
Performance	"THiD ~5%" Comment: ~ 5% = About 5%. This means can be 6-7%. Correct: <5%		
Power Quality	Background THvD distortion 0% Comment: this is not possible. Do not accept these kind of statements		
Standards	"Helps/Supports to reach the IEEE519-2014" Normally means you need further equipment to reach the standard.		

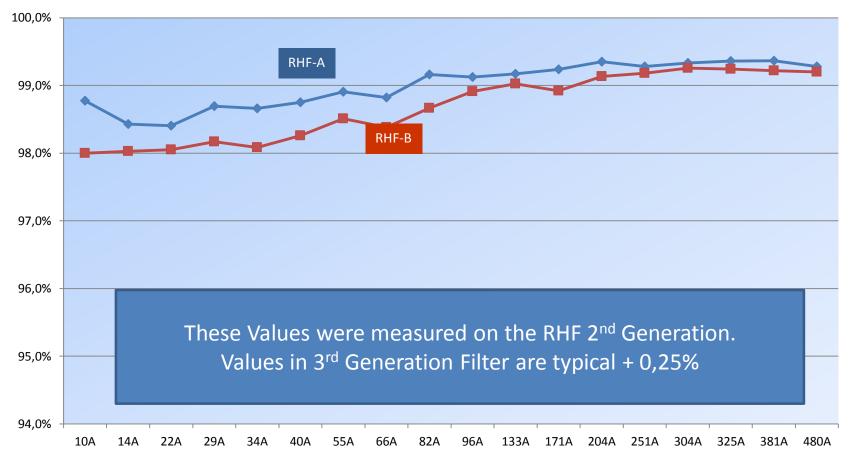
Benefits of the RHF

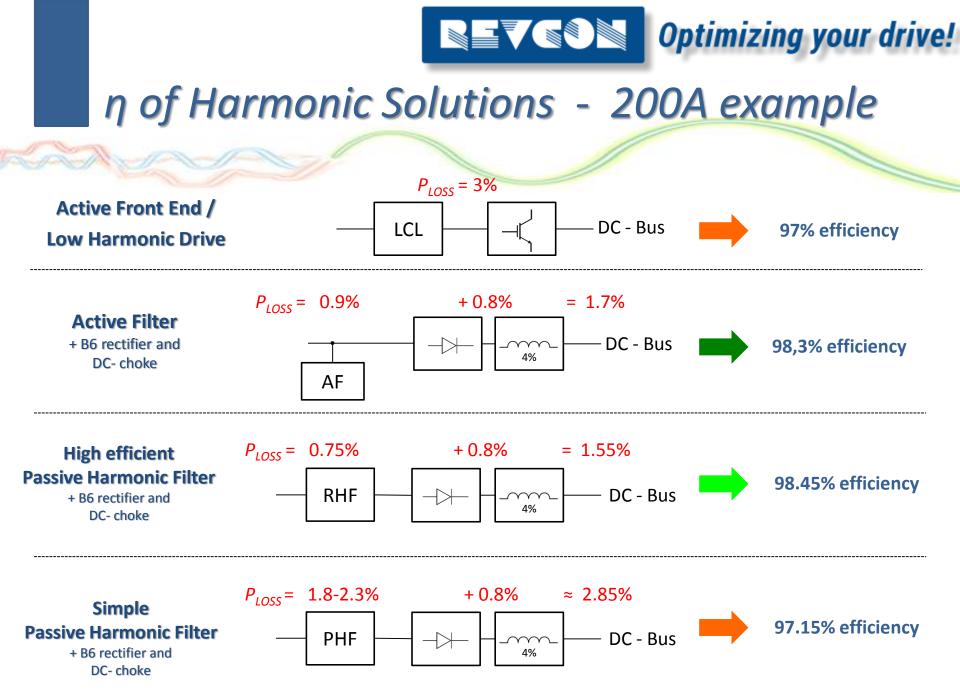
competitor products reach the required / stated values only under ideal conditions

Benefits of the RHF

Benefit 1: Performance

> Benefit 2: **Efficiency**


Benefit 3: DC-Bus Level


> Benefit 4: Quality

η of Harmonic Solutions - RHF

The efficiency of the Filter were measured with a Yokogawa high precision power meter WT 1800

* Assuming active filter sized for 30% of load current, filter efficiency of 97%.

η of Harmonic Solutions - 200kW example

Calculation example for: 200kW Drive $\left(\frac{24h}{d}; \frac{365d}{a}; \frac{0,15\$}{kWh}\right)$

Efficiency RHF topology: $\eta = 98.45\%$ Efficiency AFE topology: $\eta = 97\%$

Annual energy savings:

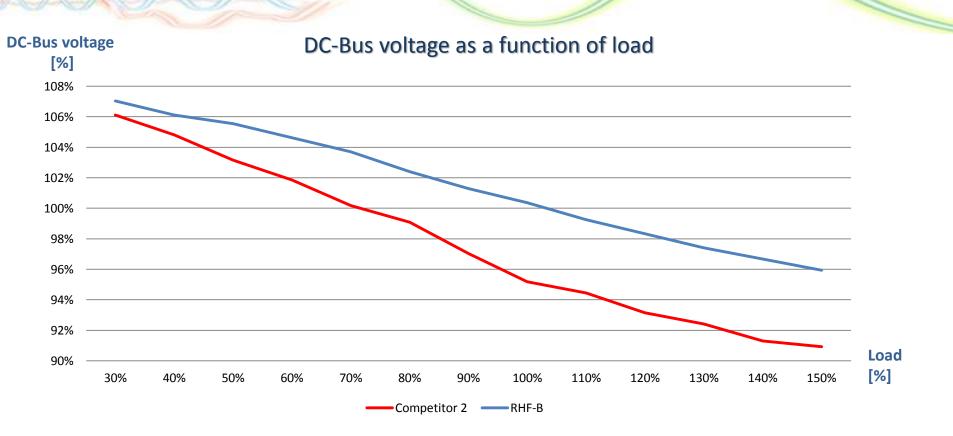
$$E_{save} = P_{Input} \bullet \Delta \eta \bullet \frac{24h}{d} \bullet \frac{365d}{a} = 220 \text{kW} \bullet 0.0145 \bullet \frac{24h}{d} \bullet \frac{365d}{a} = 27\,944\,\frac{\text{kWh}}{a}$$

Annual cost savings:

$$C_{save} = E_{save} \bullet energy \ cost = 27\ 944 \ \frac{\text{kWh}}{\text{a}} \bullet 0.15 \ \frac{\$}{\text{kWh}} = 4\ 192 \frac{\$}{\text{a}}$$

Benefits of the RHF

Benefit 1: Performance


> Benefit 2: **Efficiency**

Benefit 3: DC-Bus Level

Benefit 4: Quality

Benefits of RHF

 Higher DC bus voltage leads to better motor performance (full motor torque), less IGBT losses and higher lifetime expectance.

Benefits of the RHF

Benefit 1: Performance

> Benefit 2: **Efficiency**

Benefit 3: DC-Bus Level

> Benefit 4: **Quality**

reasons to use the REVCON RHF

- Individual full load testing for each harmonic filter!
 - ✓ Reliable PELV thermal protection
 - High quality terminals with defined connection torque
 - ✓ Follows sustainable development goals of UN

✓ True ISO 9001 : 2015 certification

✓ Corporate Social
 Responsibility – our quality
 management personnel
 are ambassador of CSR

 Production in accordance to European quality standards

✓ ∑ RHF product failure = 0%

A passive filter, is a passive filter. Right?

Passive Harmonic Filter show some significant difference in internal setup. This leads to difference in:

> THDi Performance (higher order harmonics) Efficiency (for 5% THDi Filters) Drive Performance (DC-Bus level) Quality (Terminals! Thermal Protection!)

Harmonic Distortion of Drives: Issues and Solutions

Part 1:

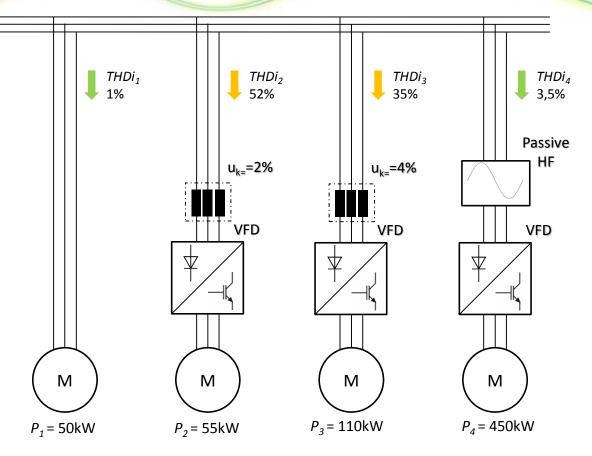
- 1.1 Training on harmonics: Basics
- 1.2 Training on harmonics: Problems and issues
- 1.3 The IEEE 519 and the impact of the short circuit power ratio

Part 2:

2.1 Harmonic solutions available

- 2.2 Passive Harmonic Filter technologies
- 2.3 Hybrid Harmonic Filter / Hybrid Solution
- 2.4 Open Discussion

What is the best Harmonic Solution?

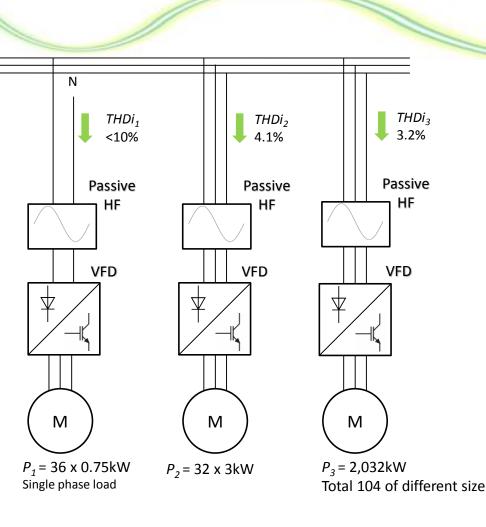

Harmonic Solutions for VSD - System distortion

 $P_{input} \approx 750 \text{kW}$ THDi_T = 11.24%

The calculation of resulting total grid *THDi* is very complex and considers the phase angle of every individual harmonic order. These values were simulated with Danfoss HCS.

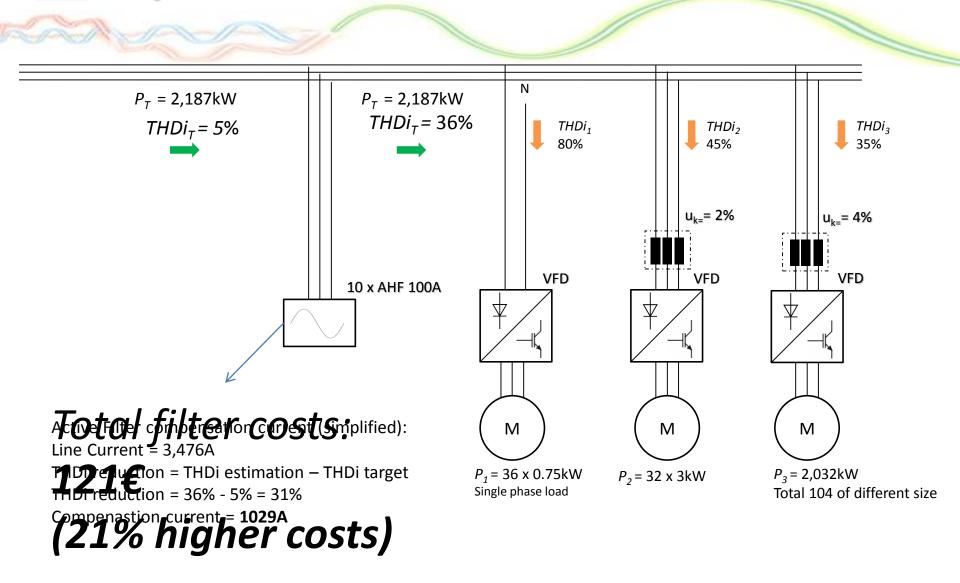
The following calculation can be used as a rough harmonic result **estimation.**

Different setups may cause bigger result difference!

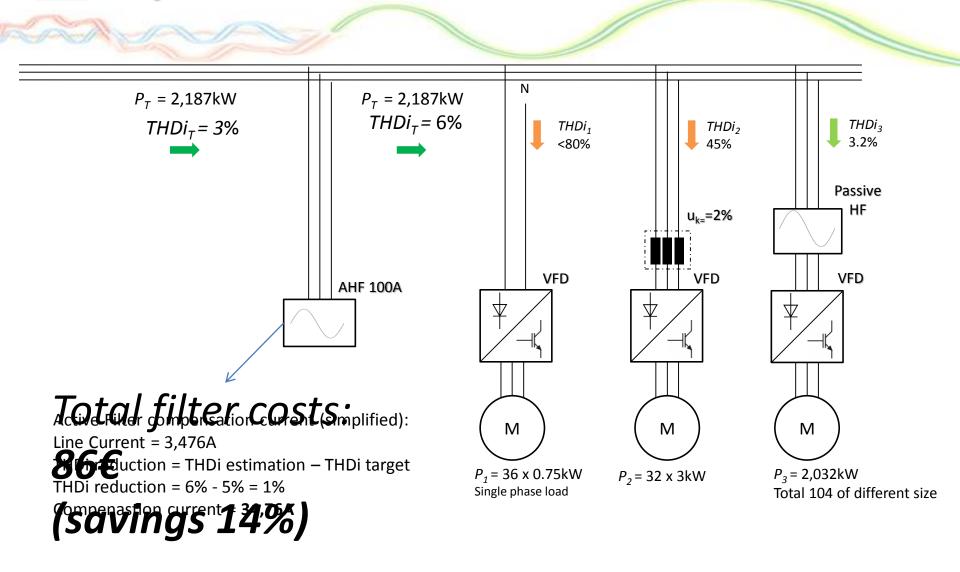


$$THDi_{input} \approx \frac{P_1 * THDi_1 + P_2 * THDi_2 + P_3 * THDi_3 + P_4 * THDi_4}{P_{1+2+3+4}} = 12,8\%$$

Project HK SST


 $P_{\tau} = 2,187$ kW THD $i_{\tau} = 3.3\%$

Total filter costs: **100€**



Project HK SST

Project HK SST

What is the best Harmonic Solution?

All Harmonic Solutions have their advantages and disadvantages

Pure Passive Solution (good when many big loads)

Pure Active Solution (good for many small drives)

Hybrid (good for mix of big and small drives)

Active Front End (good for applications with regenerative power)

Harmonic Distortion of Drives: Issues and Solutions

Part 1:

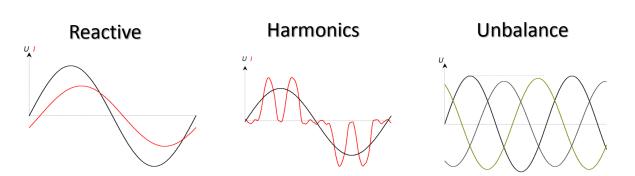
- 1.1 Training on harmonics: Basics
- 1.2 Training on harmonics: Problems and issues
- 1.3 The IEEE 519 and the impact of the short circuit power ratio

Part 2:

2.1 Harmonic solutions available2.2 Passive Harmonic Filter technologies

2.3 Hybrid Harmonic Filter

2.4 Open Discussion



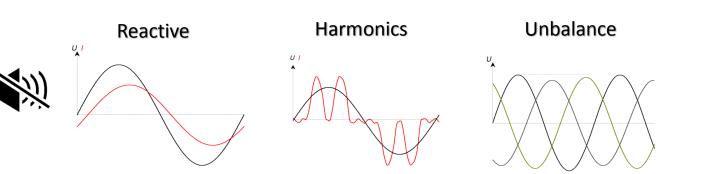
RHF - Active

RHF-Active 100-400-50/60-20-A

- Advanced IGBT 3-Level topology
- Low losses = Compact size
- Power Loss 2078W max.
- Switching frequency 10-20kHz
- Unlimited parallel setup
- Efficient Harmonic elimination up to 50th
- 99% system efficiency

44kg

50dm³



RHF - Active

RHF-Active 15-400-50/60-20-A

- SiC-Power MOSFET's and Schottky
- Low losses = Compact size
- System Efficiency 99,4% (based on 30% THDi Reduction)
- Unit Efficiency 98% @60kHz!
- High performance on strongly distorted load (e.g. 90% to 7%)
- High Performance on high order harmonics
- Noiseless!

7kg

8dm³

Revcon references

