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Dynamical systems with special properties are continually being proposed and studied. Many
of these systems are variants of the simple harmonic oscillator with nonlinear damping. This
paper characterizes these systems as a hierarchy of increasingly complicated equations with
correspondingly interesting behavior, including coexisting attractors, chaos in the absence of
equilibria, and strange attractor/repellor pairs.
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1. Introduction

The stable periodic motion of the simple harmonic
oscillator provides an ideal test bed for numerical
integrators as well as a launch pad for more compli-
cated chaotic dynamical systems in three or more
dimensions. The equations of motion produce a cir-
cular orbit in phase space that can be used to test
and compare numerical integration methods that
are still being developed.

Long ago, Gibbs [1902] predicted that such an
oscillator when driven by random thermal fluctu-
ations should have a Gaussian probability density
in phase space. That prediction motivated a search
for nonlinear modifications to the simple harmonic
oscillator that would generate such a Gaussian dis-
tribution rather than the simple one-dimensional
circle. Because chaos is a necessary ingredient for
populating the phase space and replicating thermal
randomness, the research has necessarily been car-
ried out in three or more dimensions rather than
two and has uncovered some unexpected mathe-
matical results of interest to the dynamical systems
community.

This work provides a summary of the gener-
alizations and observations based on autonomous
harmonic oscillators of the form

ẋ = y,

ẏ = −x − fy
(1)

where the damping coefficient f is a functional of
(x, y) and additional variables and their integrals as
required in higher dimensions and that controls the
dissipation which can be positive or negative. We
begin with an analysis of two-dimensional systems
where the solutions are regular, and then extend the
results to higher dimensions where chaos and new
less familiar phenomena occur.

2. Two-Dimensional Systems

2.1. Simple harmonic oscillator

The simplest nontrivial dynamical system is the
simple harmonic oscillator,

ẋ = y,

ẏ = −x,

(2)
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which might, for example, model the motion of a
mass on an ideal spring where x would represent
the displacement of the mass from its equilibrium
position and y would represent its velocity. For sim-
plicity, and without loss of generality, the mass and
spring constant have been set to unity.

Note that in the physics literature, the phase
space variables (x, y) are customarily written as
(q, p) or sometimes as (x, v). We use the more gen-
eral notation to emphasize that oscillations occur in
many contexts that do not involve moving masses
and velocities, such as electrical circuits [Buscarino
et al., 2014], musical instruments [Fletcher & Ross-
ing, 1998], population dynamics [Murray, 1989],
economics [Mishchenko, 2014], chemical clock reac-
tions [Epstein & Pojman, 1998], and many others.

The only equilibrium of Eq. (2) is at the origin
(x, y) = (0, 0), and it is neutrally stable with eigen-
values ±i, which means that nearby (in fact all)
solutions oscillate sinusoidally with a frequency of
1 radian per unit time forming concentric circles in
(x, y) space centered on the origin with radii that
depend on the initial conditions. Thus the origin is
called a center, and the surrounding circular orbits
have a radius r given by r2 = x2 + y2.

This system is conservative, both in the sense
that the total energy (potential 1

2x2 plus kinetic
1
2y2) is constant, and in the sense that the area occu-
pied by a cluster of initial conditions as they evolve
in time is constant (Liouville’s theorem). Thus the
flow, represented by the collection of all possible
orbits, is incompressible. This system is also the
simplest example of a Hamiltonian system with a
Hamiltonian given by H = 1

2x2 + 1
2y2 from which

the equations of motion can be derived using Hamil-
ton’s motion equations ẋ = ∂H

∂y and ẏ = −∂H
∂x .

Finally, the system is time-reversible, as
expected for a conservative system, since the trans-
formation (x, y, t) → (x,−y,−t) or (x, y, t) → (−x,
y,−t) leaves the equations unchanged. Another way
of reversing the direction of time is to change the
sign of ∆t in the numerical integrator, which gives
the same circular orbit but traversed in a counter-
clockwise rather than a clockwise direction.

2.2. Linearly-damped harmonic
oscillator

In the real world, all classical harmonic oscillators
have some form of damping that converts their
mechanical energy into heat and eventually brings

the system to rest. The simplest way to represent
such an effect is to add a linear term −by to the sim-
ple harmonic oscillator corresponding to a frictional
force that is proportional to the velocity,

ẋ = y,

ẏ = −x − by.
(3)

The resulting system is called a damped har-
monic oscillator, and b (if positive) is the damp-
ing constant. It describes the exponential rate at
which orbits spiral into the origin at (0, 0) and is
related to the Q (quality) factor of the oscillator
by b = 1/Q. The Q of an oscillator is the number
of radians of oscillation required for the energy to
decay to 1/e of its original value. A system with
Q = 1/2 (or b = 2) is critically damped, and smaller
values of Q (or b > 2) do not oscillate, but they
rapidly approach the origin.

It seems that it should be possible to eliminate
the b in Eq. (3) by a linear rescaling of x, y, and t,
but that cannot be done as simple algebra shows.
This system is special in that it has two distinct
time-scales, the damping rate and the frequency
of oscillation, and the parameter b controls their
ratio.

The origin is a stable equilibrium with eigenval-
ues −b/2 ± √

b2/4 − 1. For underdamped systems
(b < 2), the equilibrium is a called a focus, and for
overdamped systems (b > 2), it is called a node.
A stable equilibrium is the simplest example of an
attractor since orbits starting from nearby initial
conditions are drawn to it as time advances. In fact,
this system is a global attractor since all initial con-
ditions are drawn to it. Its basin of attraction is
the whole of phase space, a so-called class 1a basin
according to Sprott and Xiong [2015].

The damped harmonic oscillator is a dissipative
system. Furthermore, it is not time-reversible for
b > 0 since reversing the sign of t in the equations
converts the attractor into a repellor and causes the
orbits to spiral outward to infinity (we say the time-
reversed system is unbounded).

Normally systems with dissipation such as this
are not considered to be Hamiltonian, but the time-
dependent Hamiltonian H = 1

2(x2e+t +y2e−t) gives
the equations of motion ẋ = ye−t and ẏ = −xe+t,
so that a chain rule evaluation of ẍ gives ẍ =
d
dt(ye−t) = ẏe−t − ye−t = −x− ẋ, the motion equa-
tion of an underdamped harmonic oscillator with
b = 1. The orbit is a spiral in (x, y) space ending at
the origin.
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2.3. Nonlinearly-damped harmonic
oscillator

More complicated damping functions are also possi-
ble. For example, the damping could be cubic rather
than linear,

ẋ = y,

ẏ = −x − by3.
(4)

The origin (0, 0) is still an attractor for b > 0, but
this is not evident since the eigenvalues are ±i just
as for the simple harmonic oscillator in Eq. (2).
Nearby orbits are attracted to it, but they approach
it more slowly than a decaying exponential. We say
the equilibrium is nonlinearly stable, and a more
complicated analysis is required to determine its
stability.

Such an analysis usually involves a transforma-
tion of variables to polar coordinates (r, θ), where
r2 = x2 + y2 and θ = arctan(y/x). Differentiating
r2 with respect to time gives rṙ = xẋ + yẏ = −by4.
Then the stability is determined by the sign of
− b

ry
4, which is always negative for b > 0 since y4

is always positive. Thus the distance of the orbit
from the origin decreases monotonically in time.
In fact, given that the orbit is nearly circular and
sinusoidal near the origin for b small, it follows
from the integration of y4 = (r sin θ)4 over one
cycle that 〈y4〉 = 3r4/8, from which the differen-
tial equation becomes ṙ = −3br3/8, whose solution
is r = ( 1

r2
0

+ 3bt
4 )−1/2 or r ≈ 2/

√
3bt for t → ∞.

For more complicated cases, or in higher dimen-
sions where the real parts of the eigenvalues are
zero, it may be easier to check the stability numeri-
cally by taking an initial condition in the vicinity of
the equilibrium and see if the orbits get closer to it
or farther from it as time advances. However, this
can be difficult if the orbit is noncircular because
the distance will itself oscillate, and it is necessary
to follow the orbit for exactly one cycle or for a very
long time.

This is a good time to mention the importance
of using an accurate numerical integrator. In par-
ticular, the popular fourth-order Runge–Kutta inte-
grator is known to introduce a spurious numerical
damping proportional to the fifth power of the step
size ∆t, such that a solution of the simple har-
monic oscillator in Eq. (2) behaves like the lin-
early damped harmonic oscillator of Eq. (3) with
b = (∆t)5/5! for ∆t � 1. The fifth-order Runge–
Kutta integrator produces a similar antidamping

given by b = −(∆t)6/6! for ∆t � 1. This is typ-
ically not an issue for dissipative systems that have
an attractor, but for conservative systems, an inte-
grator with an adaptive step size and stringent error
control is recommended [Press et al., 1992].

2.4. van der Pol oscillator

Another famous and very old system with nonlinear
damping is the van der Pol oscillator [van der Pol,
1920, 1926],

ẋ = y,

ẏ = −x − b(x2 − 1)y,
(5)

which was originally proposed as a model of oscilla-
tions in electronic circuits but has been applied to
a wide variety of other phenomena including heart-
beats [van der Pol & van der Mark, 1928], sunspot
cycles [Passos & Lopes, 2008], and pulsating stars
called Cepheids [Krogdahl, 1955]. Unlike the pre-
vious systems, the van der Pol oscillator requires
an external source of energy to maintain the oscil-
lations, and this energy is coming from whatever
produces the antidamping represented by the +by
positive feedback term.

For b > 0, the origin is an unstable equilib-
rium (a repellor) with eigenvalues b/2±√

b2/4 − 1.
Nearby orbits are antidamped, causing the ampli-
tude of the oscillations to grow until the time aver-
age of 〈x + b(x2 − 1)y〉 = 0, which occurs for
〈x2〉 = 〈y2〉 ≈ 2.0594 when b = 1. The resulting tra-
jectory in state space is a kind of periodic attractor
called a limit cycle. The existence and uniqueness
of such a limit cycle follows from Liénard ’s theorem
[Perko, 1991], which simply states that if the damp-
ing is negative for all small values of x and positive
for all large values, the orbit for such an oscillator
has nowhere else to go but to a limit cycle.

This limit cycle is a global attractor since all
initial conditions are drawn to it except for the sin-
gle equilibrium point at the origin (a class 1a basin).
The orbit in (x, y) space oscillates back and forth
across a circle of radius 2 twice per cycle. The limit
cycle attractor for the system with b = 1 is shown in
Fig. 1 with the unstable equilibrium shown as a blue
dot at the origin. This limit cycle is a self-excited
attractor according to Leonov and Kuznetsov [2013]
since initial conditions in the neighborhood of the
unstable equilibrium are drawn to it.

The stability of a limit cycle is determined by
the Lyapunov exponents [Wolf et al., 1985; Geist
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Fig. 1. Limit cycle for the van der Pol oscillator in Eq. (5)
with b = 1. The blue dot at the origin is the unstable equi-
librium, and the colors along the orbit are the local values
of the largest Lyapunov exponent with red positive and blue
negative.

et al., 1990], which play the same role for a peri-
odic orbit as do the eigenvalues for an equilibrium
point. For a two-dimensional system such as Eq. (5),
there are two Lyapunov exponents, one of which,
corresponding to the direction parallel to the orbit,
must be zero for an oscillating continuous-time flow.
The sum of the Lyapunov exponents is equal to the
time average of the trace of the Jacobian matrix,
which for Eq. (5) is b(1 − 〈x2〉) ≈ −1.0594 when
b = 1. Thus the Lyapunov exponents for the van
der Pol system with b = 1 are (0,−1.0594). A
positive Lyapunov exponent would indicate that
the system is chaotic, but that is not possible for
a two-dimensional continuous-time system because
the orbit must not intersect itself as formalized
in the Poincaré–Bendixson theorem [Hirsch et al.,
2004].

The Lyapunov exponents are determined by a
time average of the rate of separation of nearby tra-
jectories over one cycle of the limit cycle. Although
the largest exponent for a limit cycle must average
to zero, its local value varies greatly over the orbit,
ranging from approximately −3.0345 to 2.8138 for
Eq. (5) with b = 1. This variation is indicated in
Fig. 1 and the following figures by a color scale in
which the negative values are in a shade of blue and
the positive values are in a shade of red.

The van der Pol oscillator is not time-reversible.
When time is reversed, the repellor at the origin
becomes an attractor, and the attracting limit cycle
becomes a repellor. Such attractor/repellor pairs are

common in dynamical systems and will play an
important and perhaps unexpected role in the more
complicated systems to follow.

2.5. Periodically-damped oscillator

Slightly more interesting behavior occurs if the 1−
x2 factor in Eq. (5) is replaced with cos x [Kahn &
Zarmi, 1998; Sprott et al., 2017] giving

ẋ = y,

ẏ = −x + by cos x.
(6)

For small values of x, the behavior resembles the
van der Pol oscillator, which is not surprising since
the Taylor series expansion (more properly called a
Maclaurin series since it is centered at x = 0) of
the cosine function is cos x = 1 − 1

2x2 + 1
24x4 − · · · .

The origin is an unstable equilibrium (a repellor)
with the same eigenvalues as for the van der Pol
oscillator.

However, for larger values of x, the system has
annular regions of alternating damping and anti-
damping, giving rise to an infinite series of nested
limit cycles, the first four of which for b = 1 are
shown as black curves in Fig. 2. The second Lya-
punov exponent (the damping) for the four cases are
(−0.4090,−0.2522,−0.1978,−0.1680), respectively,
and the first Lyapunov exponent is zero as required
for a limit cycle. Each limit cycle resides within
a finite-sized basin of attraction (a class 4 basin)
as shown with different colors in the figure. The

Fig. 2. The first four of infinitely many limit cycles (in
black) for the periodically-damped oscillator in Eq. (6) with
b = 1 along with their basins of attraction (in colors). The
blue dot at the origin is the unstable equilibrium.
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boundary between each basin is a repellor, and ini-
tial conditions in its vicinity take a long time to
reach one of the limit cycles.

This is an example of a multistable system with
coexisting attractors. The innermost limit cycle is
self-excited since it can be found by starting with
an initial condition in the neighborhood of the equi-
librium at the origin, but the others are hidden
[Leonov & Kuznetsov, 2013] and require a careful
selection of initial conditions such as (nπ, 0), where
n = 1, 3, 5, 7, . . . .

When time is reversed, the repellor at the
origin becomes an attractor, and all the limit
cycles become repellors, forming the basin bound-
aries of the new adjacent attractors. Furthermore,
the repelling boundaries between the limit cycles
become limit-cycle attractors, giving a plot similar
to the one in Fig. 2. This is a system with infinitely
many attractor/repellor pairs of ever increasing
energy, reminiscent of the orbitals in an atom.

2.6. Rayleigh oscillator

A similar system to the van der Pol oscillator is the
Rayleigh oscillator [Birkhoff & Rota, 1978] in which
the x2 damping factor in Eq. (5) for the van der Pol
oscillator is replaced by y2,

ẋ = y,

ẏ = −x − b(y2 − 1)y.
(7)

In fact, Eq. (5) can be derived from Eq. (7) by dif-
ferentiating each term with respect to time and then
replacing ẋ with x and ẏ with y.

Its dynamics resemble those of the van der Pol
system with a single unstable equilibrium (a repel-
lor) at the origin with the same eigenvalues. For
initial conditions near the origin, the oscillations
grow until the time average of 〈x + b(y2 − 1)y〉 = 0,
which occurs for 〈x2〉 ≈ 0.7622 and 〈y2〉 ≈ 0.6865
when b = 1. The self-excited limit cycle attractor
for the system with b = 1 is shown in Fig. 3 with
the same coloring scheme as Fig. 1. It is a global
attractor with a class 1a basin.

The Lyapunov exponents are (0,−1.0594), and
the local largest Lyapunov exponent varies from
about −0.9127 to 1.0 over a cycle, averaging exactly
to zero. The nonlinear damping factor b(y2 − 1)
can be thought of as an integral feedback controller,
maintaining the average energy of the oscillator at
a value of order unity.

Fig. 3. Limit cycle for the Rayleigh oscillator in Eq. (7)
with b = 1. The blue dot at the origin is the unstable equi-
librium, and the colors along the orbit are the local values
of the largest Lyapunov exponent with red positive and blue
negative.

The Rayleigh oscillator can be modified as was
the van der Pol oscillator by replacing the 1 − y2

factor with cos y, but the result does not lead to
any new behavior, and so it will not be further dis-
cussed. Finally, all of these two-dimensional nonlin-
ear oscillators can be periodically forced by adding
an A sin Ωt term in the ẏ equation giving chaotic
solutions for an appropriate choice of the parame-
ters, but the resulting nonautonomous systems are
not in the form of Eq. (1), and their description
would take us too far afield, except see Eq. (15).

3. Three-Dimensional Systems

3.1. Nosé–Hoover oscillator

A different way to control the energy of the oscil-
lator is to replace the damping factor b(y2 − 1) in
Eq. (7) with a variable z that obeys its own differ-
ential equation,

ẋ = y,

ẏ = −x − zy,

ż = b(y2 − 1).

(8)

For z to be bounded, it is necessary that its time
derivative averages to zero, which implies that
〈y2〉 = 1. Recalling that y is a velocity, the extra
equation can be considered as a thermostat, keep-
ing the average kinetic energy 〈1

2y2〉 of the oscilla-
tor fixed at a value of 1/2. This is because z, which
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would be a constant for a linearly damped oscilla-
tor, can be either positive or negative, allowing y2 to
either increase or decrease as required to maintain
a constant average value.

As a physical model, you can imagine the mass
on a spring being shrunk to the point where colli-
sions with individual molecules in the air cause it
to dance around, visiting all points in phase space
with a Gaussian probability distribution. It then
becomes a kind of thermometer in thermal contact
with a heat bath at a fixed temperature. The mass
will continually oscillate in response to the energy
exchange with the heat bath. Such behavior is com-
mon in electronic RLC circuits where thermal fluc-
tuations in the resistor voltage (Johnson [1928] or
Nyquist [1928] noise) cause aperiodic oscillations
(electrical noise) in the circuit.

Equation (8) is the Nosé–Hoover oscillator.
Nosé [1984] was attempting to find a Hamilto-
nian dynamical system that generated the Gaus-
sian distribution predicted by Gibbs [1902], called a
canonical distribution, which in this case just means
simple or prototypical. He added to the conven-
tional Hamiltonian a time-scaling variable s along
with its conjugate momentum ps giving a highly
unusual Hamiltonian with (y/s)2 rather than the
y2 for the simple oscillator and found chaotic solu-
tions. Shortly thereafter, Hoover [1985] noted its
strange dynamics for the oscillator and modified
Nosé’s approach, eliminating the time-scaling vari-
able s from the four-dimensional system and obtain-
ing Eq. (8) by applying a continuity equation in the
three-dimensional phase space (x, y, z), with a dif-
ferent constant b than Nosé’s [Posch et al., 1986].
This discovery set off efforts to understand and con-
trol the unexpected complexity. It was evident that
the solutions of Eq. (8) did not cover the whole of
(x, y, z) space. Kusnezov et al. [1990] formalized and
evaluated extensions of Eq. (8) including additional
variables as described below. By the time of Nosé’s
early death in 2005, many dozens of extensions to
his work had been developed. Hoover [2007] sum-
marized this work and its amazing impact on clas-
sical and quantum mechanics, and Nosé was further
commemorated in Japan at the 2014 International
Symposium on Extended Molecular Dynamics and
Enhanced Sampling : Nosé Dynamics 30 Years.

The additional ż equation introduces a num-
ber of important and unusual features, the first of
which is that the system no longer has any equilib-
rium points, and thus many of the usual methods

for studying dynamical systems do not apply. Sec-
ondly, the additional variable allows the possibility
of chaotic solutions since the system is now three-
dimensional. Indeed, this system with b = 1 was
independently discovered in an exhaustive com-
puter search for three-dimensional chaotic systems
with five terms and two quadratic nonlinearities
[Sprott, 1994] and is thus sometimes called the
Sprott A system. It is the simplest such system that
exhibits chaos [Heidel & Zhang, 1999].

Thirdly, it happens that 〈z〉 = 0, which means
that the average dissipation is zero, and thus the
system is conservative as expected because it was
derived from a Hamiltonian. The orbit repeatedly
traverses regions of positive and negative damping
that exactly cancel when time-averaged along the
orbit. Thus it is conservative only on average, some-
times called nonuniformly conservative [Heidel &
Zhang, 1999]. Since it is conservative, it does not
have attractors, which would be a set of measure
zero in the three-dimensional space. It is also time-
reversible under the transformation (x, y, z, t) →
(x,−y,−z,−t) as well as (x, y, z, t) → (−x,−y, z, t)
as expected for a conservative system.

Furthermore, different initial conditions lead
to qualitatively different solutions, including peri-
odic, quasiperiodic, and chaotic as shown in Fig. 4.

Fig. 4. Coexisting torus and chaotic sea for the Nosé–
Hoover oscillator in Eq. (8) with b = 1. Initial conditions
for the torus are (0, 2, 0) and for the sea are (0, 5, 0).

1730037-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
11

/2
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 10, 2017 9:10 WSPC/S0218-1274 1730037

Harmonic Oscillators with Nonlinear Damping

The quasiperiodic solution with initial conditions
(0, 2, 0) resides on the surface of one of infinitely
many nested tori on the axis of which is a single
periodic orbit (not shown), and the tori are linked
by a chaotic orbit that forms a chaotic sea, which
is the term used for a chaotic region that is not an
attractor.

This structure is more easily seen in a cross-
section of the flow in the z = 0 plane as shown
in Fig. 5. (We do not call this a Poincaré section
because crossings of the plane in both directions
are plotted.) Different initial conditions lead to infi-
nite chains of islands as is typical of nonlinear con-
servative systems. The Lyapunov exponents in the
chaotic sea are (0.0139, 0,−0.0139) and on any of
the tori are (0, 0, 0), both of which sum to zero as
expected. The Kaplan and Yorke [1979] dimension
is 3.0 in the sea, and the sea is a fat fractal [Farmer
et al., 1983] since it contains infinitely many holes
of arbitrarily small size.

An additional property of the system is that
the chaotic sea is unbounded, but with a mea-
sure P (x, y, z) that approaches zero according to
P (x, y, z) ∼ exp(−1

2x2 − 1
2y2 − 1

2z2) far from the
origin. The second moment of the velocity 〈y2〉 is
accurately controlled at 1.0, but the second moment
〈x2〉 is approximately 1.4265, the second moment

Fig. 5. Cross-section of the flow for the Nosé–Hoover oscil-
lator in Eq. (8) with b = 1 in the z = 0 plane showing the
intricate toroidal island structure surrounded by a chaotic
sea.

〈z2〉 is approximately 2.3190, and the measure is
far from Gaussian because of the large quasiperi-
odic holes in the chaotic sea. Only six percent of
the expected Gaussian distribution is populated by
the chaotic sea.

The mechanism for the long tail in the distri-
butions can be understood by considering an orbit
that passes close to the origin, which is within the
chaotic sea. Then Eq. (8) reduces to ż = −b, and
the orbit is thrown out to a large negative value of z
causing large-amplitude oscillations that eventually
damp away.

The conservative nature of the system also fol-
lows from the fact that it can be derived from a
Hamiltonian function. Dettmann and Morriss [1997]
added to Eq. (8) an additional variable s simi-
lar to Nosé’s that obeys the equation ṡ = zs and
rescaled the velocity by y → y/s. The resulting
four equations then follow from the Hamiltonian
H = 1

2(sx2 + y2

s + 2s ln s + sz2) provided H = 0.
It is remarkable that the (x, y, s, z) equa-

tions generated with Nosé’s Hamiltonian and with
Dettmann’s Hamiltonian trace out exactly the same
four-dimensional orbits but at different rates. The
same is true of two similar sets of three-dimensional
equations in (x, y, z) space. Nosé’s motion equa-
tions are extremely stiff and difficult to solve,
while Dettmann’s can be solved easily and precisely
[Hoover et al., 2016a].

The Nosé–Hoover system is inherently a one-
parameter system because it has five terms, four
of whose coefficients can be set to ±1 by a linear
rescaling of x, y, z, and t. The choice of where to
put the parameter is arbitrary, but a slight alge-
braic simplification occurs if the last equation is
written instead as ż = y2 − a, where the parame-
ter a now is just the second moment of the velocity
〈y2〉, or loosely speaking, the “temperature” setting
of the thermostat. In fact, the two forms are equiv-
alent as one can see by making the transformation
(x, y) → (x/

√
b, y/

√
b) in Eq. (8) from which it fol-

lows that a = b. As b increases, the frequency and
complexity of the oscillations increase with the Lya-
punov exponent reaching a value of about 0.06 at
b ≈ 3 [Posch et al., 1986]. Tori coexist with a chaotic
sea for arbitrarily large values of b.

Very recently it was discovered that a heat-
conducting variation of the damped harmonic oscil-
lator gives a set of three interlinked “knotted”
periodic orbits with each orbit linked to the other
two like the links of a chain [Sprott et al., 2014].
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Soon after Wang and Yang [2015] explored the
Nosé–Hoover oscillator’s phase space for b = 10.
They considered six periodic orbits in (x, y, z) space
and found that each of them was similarly knotted
with the other five. They also discovered a trefoil
knot (an overhand knot in a closed loop). These
unexpected and unexplained findings invite addi-
tional topological studies of the Nosé–Hoover oscil-
lator’s knot-tying abilities.

3.2. Munmuangsaen oscillator

As a model of a harmonic oscillator driven by ran-
dom thermal fluctuations, the Nosé–Hoover system
has a serious flaw in its preponderance of quasiperi-
odic solutions. A real physical oscillator would visit
all values of (x, y) with a Gaussian probability dis-
tribution. The chaotic sea would fill all of space
without any holes, and such a system is said to
be ergodic. Starting from any initial condition, the
orbit would eventually come arbitrarily close to
every point in the space. A simple system [Mun-
muangsaen et al., 2015] that satisfies this condition
for a = 5 is

ẋ = y,

ẏ = −x − zy,

ż = |y| − a.

(9)

However, for a = 1, there are no chaotic
solutions, but something even more remarkable
happens. There is a set of nested tori with nonuni-
formly conservative quasiperiodic orbits surrounded
by a dissipative region with two limit cycles as
shown in Fig. 6. Orbits in the dissipative region
approach one of the limit cycles after a relatively
long chaotic transient.

The Lyapunov exponents for the torus are
(0, 0, 0) and for the limit cycles are (0,−0.0755,
−0.0755). The limit cycles have class 2 basins of
attraction since they equally share the entire space
not occupied by tori, shown in the z = 0 cross-
section in Fig. 7. The basin boundary is a compli-
cated fractal. The brown region immediately sur-
rounding the tori actually consists of red and green
regions, representing the closely riddled basins of
the two limit cycles. Only a few other examples are
known of systems that are conservative for some
initial conditions and dissipative for others [Politi
et al., 1986; Moran et al., 1987; Sprott, 2014, 2015;
Patra et al., 2016].

Fig. 6. Coexisting conservative torus and two limit cycles
for the Munmuangsaen oscillator in Eq. (9) with a = 1. Initial
conditions for the torus are (0, 1.2, 0) and for the limit cycles
are (±4,±3, 0).

When a increases, the tori shrink, and the limit
cycles merge into one large limit cycle at a ≈ 2.0
that gives birth to a strange attractor surrounding
the tori at a ≈ 2.07. Eventually the tori vanish,

Fig. 7. Cross-section in the z = 0 plane for the nested con-
servative tori (black curves) and two limit cycles (black dots)
for the Munmuangsaen oscillator in Eq. (9) with a = 1. The
basins of attraction for the two limit cycles are shown in red
and green, respectively.
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Fig. 8. Strange attractor for the Munmuangsaen oscillator
in Eq. (9) with a = 5.

leaving only dissipative regions and a strange
attractor whose orbit for a = 5 is shown in Fig. 8.
This behavior is different from the Nosé–Hoover
oscillator where the tori persist along with a chaotic
sea for arbitrarily large values of b, and there are no
attractors.

Figure 9 shows the absence of tori in a cross-
section of the flow in the z = 0 plane as evidenced by
the lack of holes in the chaotic region. The two hori-
zonal bands at y = ±5 are the z-nullclines where
ż = 0 and the flow is locally tangent to the plane.
The measure is not perfectly smooth as evidenced
by the structure in the upper left and lower right as
well as a few nearly vertical streaks of white. The
local largest Lyapunov exponent has a more compli-
cated structure than the measure itself as evidenced
by the variations in color.

However, a careful calculation shows that this
system is weakly dissipative with 〈z〉 ≈ 0.0023,
although the equations are time-reversible under
the transformation (x, y, z, t) → (x,−y,−z,−t)
just like the Nosé–Hoover system. When time is
reversed, for example by reversing the sign of ∆t
in the integrator, the repellor becomes an attrac-
tor that looks identical to the one in Fig. 9 except
with (y, z) → (−y,−z) and 〈z〉 ≈ −0.0023. Thus
there exist a symmetric strange attractor/repellor
pair that are nearly coincident and intertwined and
that exchange roles when time is reversed and whose

“centers of mass” are separated in z by a distance
of about 2〈z〉 ≈ 0.0046. The symmetry breaking is
paradoxical because the solution always seeks out
the attractor despite the symmetry of the govern-
ing equations.

The Lyapunov exponents for the attractor
are (0.1610,−0,−0.1633), giving a Kaplan–Yorke
dimension of 2.9859. However, all indications are
that the orbit eventually comes arbitrarily close
to every point in space, as presumably does the
repellor. Thus the capacity dimension appears to
be exactly 3.0 for both the attractor and repel-
lor, which implies that they are multifractal. Indeed
a calculation of the Renyi [1970] dimensions gives
approximate values of D0 = 3.01, D1 = 2.94, D2 =
2.56, D3 = 2.26, D4 = 2.12. Whether the attrac-
tor and repellor actually touch or weave through
one another on infinitesimal scales like the odd and
even rational numbers is an open and interesting
question, although they must coalesce in the y = 0
plane.

Attractors such as this are very different
from the vast majority of strange attractors that
have been studied in three-dimensional autonomous
chaotic systems. These are unbounded, eventually
visiting points arbitrarily far from the origin before
returning, and they are multifractal with a Kaplan–
Yorke dimension only slightly less that 3.0. They

Fig. 9. Cross-section of the flow for the Munmuangsaen
oscillator in Eq. (9) with a = 5 in the z = 0 plane show-
ing the chaotic region without any apparent holes.
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Fig. 10. Probability distribution function for the three vari-
ables in Eq. (9) with a = 5 showing the positive kurtosis and
departure from a Gaussian.

are time-reversible, which is unusual for a dissipa-
tive system, and their repellor overlaps and is nearly
coincident with the attractor, both of which fill the
whole of space.

Since there are no equilibria in the system, the
attractor is hidden, which is an odd terminology
in this case since the attractor is unbounded and
globally attracting with a class 1a basin (all initial
conditions except for a set of measure zero will find
the attractor), and every initial condition is so close
to the attractor that the separation is unobservable.

However, this system is still not a satisfactory
model of a thermally-excited harmonic oscillator
because the measure is not Gaussian. Figure 10
shows the probability distribution function for the
three variables. The departure from a Gaussian is
most evident for Py, but all three plots have a
nonzero kurtosis, which is a measure of the depar-
ture of the fourth moment from the expected nor-
mal distribution [Press et al., 1992]. The positive
kurtosis means the attractor is leptokurtic with
enhanced tails relative to a Gaussian.

By adding a −bz term to the ż equation in
Eq. (9), the dimension of the strange attractor can
be continuously and monotonically tuned from 3.0
to 2.0 by increasing the value of b for a = 5, and
the predicted behavior has been demonstrated in an
electronic circuit [Munmuangsaen et al., 2015].

3.3. KBB oscillator

In two classic and highly recommended papers,
Kusnezov et al. [1990], Kusnezov and Bulgac [1992]
describe a general class of thermally-excited oscilla-
tors, one especially simple example of which is

ẋ = y,

ẏ = −x − az3y,

ż = y2 − a,

(10)

which differs from the Nosé–Hoover system only in
the use of z3 rather than z in the damping factor.

A cross-section of the chaotic region in the
z = 0 plane for a = 1 is shown in Fig. 11.
It is nearly ergodic, but at least twenty small
quasiperiodic holes are evident. Presumably there
are infinitely many ever smaller such holes in a fat
fractal distribution. Since the Lyapunov exponents
are (0.0903, 0,−0.0903), the system is nonuniformly
conservative with a Kaplan–Yorke dimension of 3.0
and a chaotic sea, but no attractors.

Furthermore, the probability distribution for
x and y shown as black curves in Fig. 12 closely
approximate the Gaussian shown in red, although
small departures are evident, and the distribution
is slightly leptokurtic. However, the average 〈y2〉 is
accurately 1.0. Had the system been ergodic, the

Fig. 11. Cross-section of the flow for the KBB oscillator in
Eq. (10) with a = 1 in the z = 0 plane showing the chaotic
sea with at least twenty small quasiperiodic holes.

1730037-10

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
11

/2
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 10, 2017 9:10 WSPC/S0218-1274 1730037

Harmonic Oscillators with Nonlinear Damping

Fig. 12. Probability distribution function (black) for the
three variables in Eq. (10) with a = 1 showing the depar-
ture from a Gaussian (red).

expected distribution would be exp(−1
2x2 − 1

2y2 −
1
4z4), and so the deviation of Pz from exp(−1

2z2) is
understandable.

Replacing the z3 damping factor in Eq. (10)
with other odd powers of z reduces the ergodicity.
Otherwise, the system shares the same properties as
the Nosé–Hoover oscillator in that it has no equi-
libria or attractors, and it is unbounded and time-
reversible with island chains and knots.

3.4. Nosé–Hoover oscillator with a
temperature gradient

The Nosé–Hoover oscillator was designed to model
a simple harmonic oscillator in equilibrium with
a heat bath at constant temperature, and the
result was a nonuniformly conservative system with
mostly quasiperiodic orbits surrounded by a chaotic
sea. One can also consider nonequilibrium cases
in which the “temperature” T (x) is a function of
position,

ẋ = y,

ẏ = −x − zy,

ż = y2 − T (x).

(11)

Much work has been done with the case T (x) =
1 + ε tanh x, representing a temperature that varies

from 1 − ε to 1 + ε with a maximum gradient of
ε at x = 0 [Hoover, 2007]. A similar, somewhat
less physical, but mathematically simpler case has
a parabolic temperature profile, T (x) = 1 + ax2

[Sprott, 2015].
Both cases are nonuniformly conservative with

nested tori for some initial conditions intertwined
with a dissipative region containing a strange
attractor for other initial conditions. Figure 13
shows one such torus for T (x) = 1 + 0.2x2 with
initial conditions (0, 2.2, 0) and a strange attractor
with initial conditions (0, 6, 0). The plot resembles
the one in Fig. 4 but with the important difference
that Fig. 4 is nonuniformly conservative for all ini-
tial conditions and has a chaotic sea rather than a
strange attractor as in Fig. 13. Figure 14 shows a
cross-section view in the z = 0 plane of the compli-
cated structure of nested tori and the intertwined
strange attractor.

The Lyapunov exponents for the strange attrac-
tor are (0.0066, 0,−0.0082) giving a Kaplan–Yorke
dimension of 2.8042. The Lyapunov exponents for
the two-dimensional tori are (0, 0, 0). There are no
equilibrium points, and so the attractor is hidden
with a class 1b basin of attraction.

Despite the dissipative nature of the strange
attractor, the system is time-reversible under the

Fig. 13. Coexisting torus and strange attractor for the
nonequilibrium Nosé–Hoover oscillator in Eq. (11) with
T (x) = 1 + 0.2x2. Initial conditions for the torus are (0, 2, 0)
and for the sea are (0, 5, 0).
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Fig. 14. Cross-section in the z = 0 plane for the nested con-
servative tori and strange attractor for the Nosé–Hoover oscil-
lator with a temperature gradient in Eq. (11) with T (x) =
1 + 0.2x2. The plot has inversion symmetry under the trans-
formation (x, y, 0) → (−x,−y, 0).

transformation (x, y, z, t) → (x,−y,−z,−t), which
implies that there is an attractor/repellor pair that
exchange roles when time is reversed as was the case
with the Munmuangsaen oscillator. This is evident
from the slight right/left asymmetry in Fig. 14 as
well as the fact that the “center of mass” of the
attractor and repellor are separated by a tiny dis-
tance of ∆z = 2〈z〉 ≈ 0.0032.

Time-reversibility has been a recurrent theme
in physics with thousands of papers since Boltz-
mann [1872] published his famous “H Theorem.”
This theorem shows that the effect of uncorre-
lated time-reversible gas-phase collisions is the
irreversible increase of the entropy. Boltzmann’s
entropy is a low-density approximation to Gibbs’
1902 entropy, which Liouville’s theorem shows is
constant for isolated systems. Dynamical systems
similar to this one [Holian et al., 1987] revealed the
existence of attractor/repellor pairs. The dynamics
avoids the time-reversed repellor trajectory which
satisfies exactly the same motion equations but is
unstable, with a positive sum of Lyapunov expo-
nents. In statistical mechanics, the thermodynamic
entropy, which is obtained by integrating reversible
heat transfers, is shown to be equal to Gibbs’
entropy, the logarithm of the phase volume, and

like Boltzmann’s entropy, it is a measure of random-
ness. This same relationship holds for many forms of
thermostat controls including Nosé–Hoover [Patra
et al., 2016; Ramshaw, 2017].

3.5. 0532 thermostated ergodic
oscillator

Of the several thermostated oscillators that appear
to be fully ergodic [Hoover et al., 2016b, 2016c;
Patra et al., 2016], a three-dimensional one in the
form of Eq. (1) is given by

ẋ = y,

ẏ = −x − z(a + by2)y,

ż = a(y2 − 1) + b(y2 − 3)y2.

(12)

This algebraically inelegant system attempts to
control simultaneously the second and fourth
moments of y such that 〈y2〉 = 1 and 〈y4〉 = 3
as required for a Gaussian distribution of unit
variance.

Most choices of a and b leave small holes in
the distribution, but some values such as a = 0.05,
b = 0.32 appear to be ergodic as the cross-section of
the chaotic region at z = 0 in Fig. 15 suggests. The
probability distribution of the four variables after a
time of 3×108 agrees with the expected distribution

Fig. 15. Cross-section of the flow for the 0532 ergodic oscil-
lator in Eq. (12) with a = 0.05 and b = 0.32 in the z = 0
plane showing the chaotic sea with no evident quasiperiodic
holes.
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P (x, y, z) = exp(−1
2x2 − 1

2y2 − 1
2z2) to a precision

of a few times 10−3 in the first six moments of the
distribution.

Otherwise, the system resembles the Nosé–
Hoover oscillator in Eq. (8) with an absence of equi-
librium points and an unbounded, nonuniformly
conservative, time-reversible chaotic sea. The Lya-
punov exponents are (0.1441, 0,−0.1441), and the
standard deviation of the largest Lyapunov expo-
nent along the orbit shown as color in Fig. 15 is
1.4650. This system is relatively stiff, requiring a
small integration step size or an adaptive integrator
for accurate calculations. An extension of Eq. (12)
that includes control of the sixth moment of the dis-
tribution also appears to be ergodic, but it is even
more stiff.

4. Four-Dimensional Systems

4.1. MKT doubly-thermostated
ergodic oscillator

Although there are three-dimensional oscillators
that appear to be fully ergodic, they are relatively
complicated and require a careful choice of param-
eters. However, robust ergodic oscillators are more
easily constructed in four dimensions, one example
of which is a doubly-thermostated oscillator [Mar-
tyna et al., 1992],

ẋ = y,

ẏ = −x − uy,

u̇ =
y2

a
− 1 − vu,

v̇ = u2 − 1.

(13)

Think of the v̇ equation as a thermostat that regu-
lates the temperature of the u̇ thermostat at 〈u2〉 =
1 which in turn maintains the temperature of the
harmonic oscillator at 〈y2〉 = a.

This system has spiral saddle points at (0, 0,
±1,∓1) with eigenvalues (−0.5 ± 0.86603i, 0.5 ±
1.32288i) and (0.5 ± 0.86603i,−0.5 ± 1.32288i),
respectively, embedded in a chaotic sea with no
apparent quasiperiodic solutions and their telltale
tori. Since the system is ergodic with two unstable
equilibrium points, there are homoclinic and hete-
roclinic orbits. The Lyapunov exponents for a = 1
are (0.0665, 0, 0,−0.0665) so that the dimension of
the chaotic sea is exactly 4.0, and the standard
deviation of the local largest Lyapunov exponent

along the orbit is 0.6720. The probability distribu-
tion of the four variables after a time of 1 × 108

agrees with the expected distribution P (x, y, u, v) =
exp(− 1

2ax2 − 1
2ay2 − 1

2au2 − 1
2av2) to a precision of

a few times 10−4 in the first six moments of the
distribution.

This system is a robust example of a nonuni-
formly conservative simple harmonic oscillator
excited by random thermal fluctuations whose orbit
visits the neighborhood of every point in phase
space with the probability distribution predicted
by Gibbs [1902] but with purely deterministic
chaotic dynamics. Since the phase space is four-
dimensional, it is difficult to show the orbit, but
Fig. 16 shows one such projection, which is typical
of all others.

It is also difficult to show a cross-section in
the usual way. However, Fig. 17 shows the local
largest Lyapunov exponent in a double cross-section
at u = v = 0. The figure was produced by start-
ing from points in the xy-plane at (x, y, 0, 0) and
following the orbit backward in time for 200 time
units while storing the coordinates for each iterate.
Then time is reversed, retracing the orbit using the
stored values while calculating the local Lyapunov
exponent, and plotting the value when it returns to
the starting point. This procedure is necessary to

Fig. 16. Chaotic orbit for the MKT oscillator in Eq. (13)
with a = 1. The two embedded equilibrium points at
(x, y, u) = (0, 0,±1) are shown as blue dots. The orbit fills
all of space, and other projections are similar.
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Fig. 17. Double cross-section of the flow for the MKT
ergodic oscillator in Eq. (13) with a = 1 at the intersection
of the u = 0 and v = 0 planes showing with color the local
largest Lyapunov exponent in the chaotic sea.

avoid Lyapunov instability in the calculated orbit
and to allow time for the expansion vector to orient
itself into the direction of maximum expansion. As a
bonus, it allows plotting values at the nullclines and
far from the origin that are otherwise rarely visited
by the orbit. However, the procedure would obscure
any quasiperiodic regions, although the evidence is
strong than none exist. The detailed structure of
the plot is remarkable for such a simple system with
such a smooth measure, and even more remarkable
is the fact that the time-reversed local Lyapunov
exponents look completely different despite the for-
ward/backward symmetry of the equations and the
global Lyapunov exponents, whose explanation is
the subject of the 2017 Ian Snook Prize [Hoover &
Hoover, 2017].

4.2. Sinusoidally-forced parametric
oscillator

Another four-dimensional system in the form of
Eq. (1) is given by

ẋ = y, ẏ = −x + (1 − y2 + u)y,

u̇ = v, v̇ = −Ω2u.
(14)

This is a master/slave system in which the last
two equations represent a master simple harmonic

oscillator with frequency Ω, amplitude A, and
phase φ determined by the initial conditions, A2 =
u2

0 + v2
0, φ = arctan(u0/v0), and the first two equa-

tions are the slave oscillator sinusoidally forced by
u = −A sin(Ωt − φ). The slave is a Rayleigh oscil-
lator that produces a limit cycle in the absence of
the uy unidirectional coupling term. Without loss
of generality, t = 0 can be chosen so that φ = 0,
which reduces Eq. (14) to a two-dimensional nonau-
tonomous system,

ẋ = y,

ẏ = −x + (1 − y2 + A sin Ωt)y,
(15)

or ẍ = −x+(1−y2 +A sin Ωt)y. It is often possible
to remove a parameter from a dynamical system
by adding an extraneous equation for an additional
variable whose initial condition plays the role of the
parameter [Sprott & Li, 2014].

This system is the temporally-periodic damp-
ing analog of the spatially-periodic damping case in
Eq. (6). It is a dissipative system with quasiperi-
odic, periodic, and chaotic attractors. It has a sin-
gle unstable equilibrium at the origin, and so the
attractors are self-excited. Typical attractors for
Ω = 0.8 are shown in Fig. 18. The torus and
strange attractor are symmetric about x = 0. The
case at A = 1.5 shows a symmetric pair of coex-
isting limit cycles. The case at A = 2.22 shows
two symmetric coexisting limit cycles. The Lya-
punov exponents for the four cases in the figure are
(0, 0,−1.0612) for A = 1.0, (0,−0.0792,−1.1555)
for A = 1.5, (0.0327, 0,−1.0945) for A = 2.0, and
(0,−0.0035,−1.2319) and (0,−0.0102,−1.3358) for
the coexisting limit cycles at A = 2.22. The limit
cycles are plotted in red and blue rather than
according to the local Lyapunov exponent for clarity
of viewing. Note that Eq. (15) has inversion sym-
metry since the equations are unchanged under the
transformation (x, y) → (−x,−y), and so the solu-
tions should either have that same symmetry, or
there is symmetry breaking with a symmetric pair
of solutions as for the case with A = 1.5.

Viewed in reverse, any Nth-order nonau-
tonomous system (one in which t appears explic-
itly on the right-hand side) such as Eq. (15) can be
converted into an (N + 1)-order autonomous sys-
tem by defining a new variable z = t governed
by the equation ż = 1. For some purposes, espe-
cially when t enters in the argument of a periodic
function such as sin Ωt, it is more convenient to
define the new variable as z = Ωt so that Eq. (15)
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Fig. 18. Attractors for the sinusoidally-forced oscillator in Eq. (15) with Ω = 0.8 for various values of A showing quasiperiodic
(A = 1.0), periodic (A = 1.5 and A = 2.22), and chaotic (A = 2.0) solutions. The periodic cases have a symmetric pair of
limit cycles shown in red and blue.

becomes

ẋ = y,

ẏ = −x + (1 − y2 + A sin z)y,

ż = Ω.

(16)

Then z can be interpreted as the phase of the forc-
ing function, and it always has a period of 2π inde-
pendent of Ω, and thus z can be replaced by (z
mod 2π) after each integration time step in order
to remain bounded.

Sinusoidally-forced limit cycle oscillators have
been extensively studied, but the unusual feature
of this system is that the forcing is applied to the
damping term. It is an example of parametric forc-
ing since a parameter of the system (the damping

coefficient) is forced. Such a situation would be
unusual in a mechanical system, but it can be easily
modeled in an electronic circuit. It exhibits phenom-
ena similar to other forced limit cycle oscillators,
including chaos, frequency (or mode) locking (where
the slave oscillates at the frequency of the master),
Arnold tongues (triangular regions of (A,Ω) space
in which the locking occurs), and hysteresis (bifur-
cations occurring at different values of the parame-
ter depending on whether the parameter is increas-
ing or decreasing). An example of hysteresis is the
two limit cycles at A = 2.22 in Fig. 18 that coexist
over a narrow range of A. These behaviors have
been well studied and thus will not be further
described here except to note that they also occur
for systems in the form of Eq. (1) with parametric
forcing.
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4.3. Symmetric
parametrically-coupled
oscillators

There is a large literature and considerable current
interest in systems that involve coupled oscillators
and their synchronization [Strogatz, 2003]. Many
natural systems such as fireflies, flocking birds, and
circadian rhythms display synchrony, and it was
noted by Christian Huygens in 1665 that the pen-
dulums of two clocks mounted on a wall begin to
oscillate together. Perhaps the simplest mathemat-
ical example in the form of Eq. (1) that involves
two identical simple harmonic oscillators coupled
through their damping terms is

ẋ = y, ẏ = −x − uy,

u̇ = v, v̇ = −u − xv.
(17)

One could add a parameter to control the cou-
pling strength, but since the individual oscillators

are conservative, it is just as easy to control the
coupling by changing the initial conditions which
change the amplitude of the oscillation and hence
the strength of the nonlinear coupling.

This system has a trivial synchronized periodic
solution with x = u and y = v when the two oscil-
lators are started with the same initial conditions.
However, the synchronized solution is unstable, and
even a slight perturbation causes the difference in
the oscillations to grow. For small amplitude oscil-
lations, the coupled system is nonuniformly con-
servative, and the energy sloshes back and forth
between the two oscillators, conserved only on aver-
age, and forming a torus in the four-dimensional
state space as shown in Fig. 19 with initial condi-
tions (0, 0.6, 0,−0.6).

Larger values of the initial conditions such as
(0, 0.8, 0,−0.8) cause mode locking and a single
periodic orbit, and even larger initial conditions
such as (0, 0.9, 0,−0.9) lead to unbounded orbits.

Fig. 19. Tori for the symmetric parametrically-coupled oscillators in Eq. (17) with initial conditions (0, 0.6, 0,−0.6).

1730037-16

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
11

/2
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 10, 2017 9:10 WSPC/S0218-1274 1730037

Harmonic Oscillators with Nonlinear Damping

This is an example of a system that is (nonuni-
formly) conservative for some initial conditions but
unbounded for others. Apparently no chaotic solu-
tions exist. The equilibrium at the origin has eigen-
values (0,±i, 0,±i) and thus is a center for the two
oscillators. If either oscillator is started at the ori-
gin, it will forever remain there, and the other will
oscillate sinusoidally without damping independent
of its initial conditions. Altering the frequency of
one of the oscillators can produce long-duration
chaotic transients, but apparently not a chaotic sea.

4.4. Asymmetric
parametrically-coupled
oscillators

To obtain robust chaotic oscillations from two oscil-
lators coupled through their damping, it is appar-
ently necessary that they have dissipation and dif-
ferent natural frequencies. One such example is two

coupled Rayleigh oscillators,

ẋ = y,

ẏ = −x + (1 − y2 + au)y,

u̇ = v,

v̇ = −Ω2u + (1 − v2 + ax)v.

(18)

For a = 0.8 and Ω = 0.8 the strange attrac-
tor shown in Fig. 20 results. Initial conditions are
not critical because the attractor has a class 1a
basin of attraction, but the regions of parame-
ter space that admit chaos are relatively small
with most solutions periodic or quasiperiodic and
behavior similar to the periodically-forced case in
Eq. (15). The attractor is self-excited with Lya-
punov exponents (0.0146, 0,−0.6236,−2.1699), and
a Kaplan–Yorke dimension of 2.0235. The equilib-
rium at the origin is an unstable focus with eigen-
values (0.5,±0.86603i, 0.5,±0.62450i). The system

Fig. 20. Strange attractor for the asymmetric parametrically-coupled oscillators in Eq. (18) with a = 0.8 and Ω = 0.8.
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resembles countless others that have been described
in the literature over the past 50 years and thus is
unremarkable.

5. Discussion and Conclusions

All the systems considered here are in the form of
the damped harmonic oscillator in Eq. (1) with the
only difference being in the form of the damping
coefficient denoted by f . The various cases are sum-
marized in Table 1.

There are many other such cases that could be
examined, and likely there are additional phenom-
ena yet to be discovered. It is remarkable that such
an enormous variety of behaviors, some familiar and
others quite unusual, can be observed in a simple
harmonic oscillator when the damping coefficient
is allowed to vary in space or time. Nonetheless,
such systems are ubiquitous in nature, and so it
is important to understand their properties. This
paper has examined the mathematically simplest
examples that illustrate the diverse behaviors and
should serve as a launch pad for more detailed mod-
els and studies.

Table 1. Summary of the cases considered in this paper.

Equation Damping Coefficient

(2) f = 0

(3) f = b

(4) f(y) = by2

(5) f(x) = b(x2 − 1)

(6) f(x) = −b cos x

(7) f(y) = b(y2 − 1)

(8) f(z) = z, ż = b(y2 − 1)

(9) f(z) = z, ż = |y| − a

(10) f(z) = az3, ż = y2 − a

(11) f(z) = z, ż = y2 − T (x)

(12) f(y, z) = z(a + by2),

ż = a(y2 − 1) + b(y2 − 3)y2

(13) f(u) = u, u̇ =
y2

a
− 1 − vu, v̇ = u2 − 1

(14) f(y, u) = y2 − 1 − u, u̇ = v, v̇ = −Ω2u

(15) f(y, t) = y2 − 1 − A sin Ωt

(16) f(y, z) = y2 − 1 − A sin z, ż = Ω

(17) f(u) = u, u̇ = v, v̇ = −u − xv

(18) f(y, u) = y2 − 1 − au,

u̇ = v, v̇ = −Ω2u − (v2 − 1 − ax)v
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dynamics and statistical mechanics,” Mol. Simulat.
33, 13–19.

Hoover, W. G., Sprott, J. C. & Hoover, C. G. [2016a]
“Adaptive Runge–Kutta integration for stiff systems:
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