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1. INTRODUCTION 

The “orbit method” for a Lie group G with Lie algebra g associates 
unitary representations of G to suitable orbits of G on g*, the dual of g. In 
reasonable cases, these representations are generally obtained by some 
form of “induction,” starting from a polarization h for the orbit. The pur- 
pose of this paper is to study the representations obtained when lj is totally 
complex, not necessarily positive, and G is solvable (generally non- 
unimodular). We obtain both positive and negative results. On the positive 
side, we show that such “harmonically induced” representations are in 
principle computable, and we actually carry out the computations for one 
non-trivial example, G = N2,,+ I >a R; , the semidirect product of the 
Heisenberg group N,, + i of dimension 2n + 1 by a one-parameter group of 
dilations. (This G is the “AN-group” of the Iwasawa decomposition of 
SU(n + 1, l), n 3 1.) To some extent, these harmonically induced represen- 
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tations behave as in the better-understood nilpotent [17, 19, 231 and 
semisimple [25, 261 cases. We also collect together in Section 2 a number 
of general vanishing and non-vanishing theorems valid for harmonically 
induced representations of completely arbitrary Lie groups. These results 
are not particularly original but they seem not to be widely known. 

On the negative side, however, we find several new kinds of “pathology” 
not present in the more familiar unimodular cases, The Lie algebra 
cohomology groups associated to “formal harmonic spaces” turn out to be 
generally infinite-dimensional and non-Hausdorff. This means that the 
calculation of harmonically induced representations cannot be reduced to 
purely algebraic calculations, and the spectral sequences for Lie algebra 
cohomology that are so useful in the semisimple and nilpotent cases turn 
out to be useless for our purposes in the solvable case. Hence it is necessary 
to make direct analytical calculations, which seem hopelessly difficult 
unless G has a particularly simple structure. Worse still, there is a new sur- 
prise in the theory: it is possible for a harmonically induced representation 
to be not only non-irreducible but even of infinite multiplicity. This implies 
that the restriction of unimodularity in the L2-index theorem of Connes 
and Moscovici [6] is not just a technical convenience-in fact, there can 
be no such theorem when G is non-unimodular. (This initially came as a 
bit of a shock, since one of us had spent several months with Henri 
Moscovici in 1979, trying in vain to extend the Connes-Moscovici results, 
if only in a weak way, to the case of non-unimodular solvable groups!) 

From one point of view, then, our results consist basically of coun- 
terexamples. However, conversations with Nolan Wallach, Dan Barbasch, 
and David Vogan have shown us that our results for the “AN-group” of 
SU(n + 1, 1) lit in very nicely with the general theory of the discrete series 
on semisimple groups associated with hermitian symmetric spaces, and in 
fact could also have been obtained this way. A brief discussion of this other 
method of proof is given in Section 4. However, complete details, together 
with a more general analysis of the restriction of unitary representations of 
semisimple Lie groups to a maximal split solvable subgroup, will be the 
subject of another paper (with different authors). 

Let us say a few words about our notations. Lie groups are denoted by 
capital Roman letters, and their Lie algebras by the corresponding lower- 
case Gothic letters. If V is a real vector space, V* denotes its dual and V, 
its complexitication. Theorems, propositions, definitions, remarks, and for- 
mulas are all numbered with a single numbering system, consecutively in 
each section. Our main result is Theorem 3.8, but this depends on concepts 
developed in Section 2 and the earlier part of Section 3. Another proof of 
the same theorem is outlined in Section 4. Theorems 2.8, 2.15, and 2.20, 
though really only translations to our context of known results, may be of 
independent general interest. 
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2. THE GENERAL THEORY OF HOLOMORPHIC 
AND HARMONIC INDUCTION 

Suppose G is a Lie group with Lie algebra g and fe g* is an integral 
linear functional, i.e., there exists a unitary character x of the stabilizer 
G(f) off, with dx = if: Let Ij be an invariant polarization forf, which means 
that: 

(2.1) h is a (complex) Lie subalgebra of gc and flCh,h, =0 (we 
extendf from g to gc by complex linearity). 

(2.2) h is maximal isotropic for the alternating bilinear form 
B/=f( [ . , . I), i.e., (2.1) holds and 

dim,h=(dimg(f)+dimg)/2. 

(2.3) h + lj is a Lie subalgebra of gc, necessarily of the form e,, for 
some Lie subalgebra e of g. 

(2.4) (“Invariance”) Ad,,(G(f )) maps h into itself. We shall also 
need one other technical condition which is satisfied in all conditions of 
practical interest, namely, 

(2.5) The groups D = G(f) exp(hng) and E= G(f) exp(e) are 
closed in G. 

The character x is not necessarily uniquely determined byf, although it 
will be if G(f) is connected (and in this case (2.4) is automatic). In any 
event, a choice of x determines an induced line bundle 6pX on G/G(f), and 
from this line bundle, together with the extra structure given by the 
polarization lj, one would like to construct a unitary representation of G, 
preferably irreducible. (Caution: Even when this is possible, the unitary 
representation so obtained will not generally be associated, in the sense of 
[9], to the coadjoint orbit off: Instead, it will belong to the orbit of an 
admissible, but not necessarily integral, functional obtained from f by a 
certain shift. But for present purposes we do not need to worry about this 
point.) 

When h is real (i.e., h = Ij), it is clear how to proceed: one extends x to a 
character of D = E= G(f) exp(g n h) and takes the unitarily induced 
representation of G. In the presence of the “Pukanszky condition,” one 
expects the induced representation to. be irreducible, and in any event it is 
certainly non-zero. 

We shall -be concerned, therefore, with the opposite case which occurs 
when fj is totally complex, i.e., e = g. The general case reduces to this 
anyway, since assuming by (2.5) that E= G( f) exp(e) is closed in G, the 
normal procedure for obtaining a unitary representation of G is first to 
construct a unitary representation of E, then to induce unitarily. Of course, 
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h is a totally complex polarization for fl e. So we assume henceforth that, h 
is totally complex, i.e., (2.3) is replaced by 

(2.3’) b+b=gc. 

Then D = G( f ) and E = G so that (2.5) is automatic. Also h defines a left- 
invariant almost-complex structure on the complexified tangent bundle of 
G/G( f ) which is closed under Lie brackets (since fj is a Lie subalgebra of 
gc), hence integrates to a G-invariant complex structure on G/G(f). We 
choose this structure so that h corresponds to the anti-holomorphic tangent 
vectors. Then because of condition (2.1), the line bundle TX acquires a G- 
invariant holomorphic structure. 

DEFINITION 2.6. Assume the polarization h satisfies (2.1), (2.2), and 
(2.3’) above. Define a sesquilinear form S, on h by 

SAX, y) = if( [x, jq) = qx, jq. 

It is easy to see that S,-(y, x) = Sr(x, y) and that the radical of S, is exactly 
g(f)e, the complexified Lie algebra of G(f). Thus S, defines a non- 
degenerate hermitian form on h/g(f)c. 

The polarization is said to be positive if and only if the form S, is positive 
definite on h/g(f )e (or positive semidefinite on h). More generally, the 
negativity index q(lj,f) is defined to be the dimension of a maximal sub- 
space of h/g( f )c on which S, is negative definite. Clearly h is positive if 
and only if q(ij,f) = 0. Positivity of the polarization h corresponds 
geometrically to positivity of the line bundle Y, for the holomorphic struc- 
ture defined by h, or to G/G(f) being a Kahler manifold (for the complex 
structure defined by $ and the symplectic structure defined by Bf). 

2.7. The simplest way to try to construct a representation of G 
from the pair (x, h), where x is a character of G( f ) with differential if and 
h is an invariant totally complex polarization for f, is the process known as 
holomorphic induction. As is well known, this process is sufficient for the 
“geometric realization” of the irreducible representations of connected type 
I solvable Lie groups [4], of compact connected Lie groups, and, more 
generally, of connected type I Lie groups with cocompact radical [15]. 
However, it does not suffice for the geometric realization of the discrete 
series of semisimple Lie groups (except in the exceptional case of groups 
locally isomorphic to a product of copies of SL(2, lR)Fthis was the prin- 
cipal motivation for the study of harmonic induction, which we shall define 
later. 



12 ROSENBERG AND VERGNE 

The holomorphically induced representation obtained from (x, IJ), which 
we shall denote 7c”(x, 9) (or ~“(f, t,) in case G( f ) is connected), is defined 
to be the unitary representation of G by left translation on the Hilbert 
space 

X0(x, b) = {L2 holomorphic sections of 9,) 

= qECa(G):cp(gd)=X(d)P1 cp(g)forallgEG,dEG(f); 
i 

R(X) cp + if(X) cp = 0 for all XE b; and 1 
G/W f ) 

Here we use the notation 

cp(s exp M) for XE g, SE G, cp E C”(G), 

and extend R to gc by complex linearity. For cp E X0(x, b), thought of as a 
function on G, (cpl is constant on left cosets of G( f ), hence fG,G(,J 1~1 2 dp 
makes sense if dp is a G-invariant measure on G/G( f ). (Such a measure 
exists and is unique up to a scalar multiple, since we may pull back the 
canonical measure on the coadjoint orbit G .J) For purposes of defining 
no, it would suffice to consider the abstractly defined Hilbert space com- 
pletion of the above space of analytic functions; however, the space is 
already complete since the minimal and maximal domains of the aoperator 
coincide. 

A famous theorem of Blattner [5, Corollaries to Theorem 41 and of 
Kobayashi [ 13]‘, the idea of which may be traced back to Harish-Chan- 
dra [ 111, asserts that if G is connected and X0(x, 5) # 0, then K’(x, b) is 
automatically irreducible. Unfortunately this is of little help if one can’t 
decide when %‘(x, 8) # 0, so it is quite useful to know the following 
necessary condition. This result has been part of the folk literature for over 
a decade, and implicitly it plays an important role in motivating the study 
of positive polarizations in [4]. However, we have never seen this theorem 
in print, and since it is not as well known as it should be, we include the 
proof here. No claim is made for originality; in fact the proof is merely an 
adaptation of the argument of [ll, Lemma 181 to a more general setting. 

THEOREM 2.8. Let G be any Lie group andf, fj, x as above. Assume that 
X0(x, b) # 0. Then the polarization b is positive (for f). 

’ Kobayashi’s theorem at first seems different from Blattner’s, since it is formulated in terms 
of holomorphic n-forms rather than holomorphic sections. But one can easily pass from one to 
the other (changing the bundle, of course) if G/G(f) has a G-invariant hermitian metric. We 
return to this point later. 
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Proof The salient feature here is that Z”(x, h) has a “reproducing ker- 
nel.” More specifically, if 2 = X0(x, h) # 0, then this space consists of real- 
analytic functions on G, and by the Cauchy estimates, the functionals that 
evaluate such functions at points of G are continuous (for the Hilbert space 
topology). Then since any Hilbert space may be identified with its dual, 
there exists q. E 2 such that for all cp E 2, 

<% cpo> = cp(l)> 
where 1 is the identity element of G. Furthermore, .Z # 0 implies that 
‘p. # 0 (since if rp # 0, some translate of cp doesn’t vanish at 1). 

Let S, denote the space of P-vectors for n’(~, h) in Z’. Then cpo E XY 
(in fact, cpo is even an analytic vector), since for cp E 2 and s E G, we have 

hence SH rc(s) cpo is weakly real-analytic. 
Now let XE~, (PE&‘~. We have 

(WX) cpv cpo> =; _ cp((exp - fx) 1) = -(NW cp)(l) 
I-O 

= -(R(X) cp, cpo), 

hence for XE h, we have (denoting by drt also the complexification of the 
derived representation of g) 

(WJ-) % cpo) = -(NX) cp, cpo) 
= if(W(cpY cpo) (since R(X) cp + if(X) cp = 0) 

= <% -if(X) cpo), 

hence (since dn is skew-adjoint on the real Lie algebra) 

(cp> -WF) cpo) = (WW cp, cpo) = (cp, -if(x) cpo). 

Since cp was arbitrary in -X,, this shows 

dn(X) '~0 = if-W) '~0 for XE h. 

Again let XE h. We have 

(2.9) 

06 (NW (~0, NJ3 cpo> = (-d+Q ddx) cpo, cpo) 

= < -WW dG7 cpo, ~0) + (WCX xl) (PO, cpo>. (2.10) 
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However, lj is totally complex, so we can write [X, R] = Y, + Y, with 
Y,, Y, E lj. Then 

~~~~c~~~l~cpo~cpo~=~~~~~,~cpo~cpo~+~~~~~*~cp,~cp,~ 

= -(cpo~~~(~~)(Po)+~~~(~*2)(Po~(Po) 

= -(cpo, if(Y,) cpo) + (if(Y*) (PO, cpo) by (2.9) 

=if(ylKcpo, cpo> +if(Y*)(cPo, cpo) 

= if(lIX nK(Po, cpo), (2.9) 

and in fact 

(~~(y)cpo,cpo)=if(y)(cpo~cpo) for any YEgc. (2.11) 

Substituting in (2.10), we obtain 

0% <wm CPOT WX) cpo> +if(CK mK(Po, cpo> 
={If~~~12+if~C~,~l~}~(Po~(Po~. 

Since ‘p. # 0, this shows 

Ifm*+if(Cx m)>o for all XE h. (2.12) 

In case fJeCTj is not identically zero, this finishes the argument, since we 
may apply (2.12) to a vector subspace V of h such that VG kerf and 
b = g( f ) 0 V (as vector spaces). 

Otherwise, (2.12) at least shows S, is positive on lj n kerf, which will be 
of codimension 1 in h. Choose XE h withf(X) = 1. Using (2.9), (2.10), and 
(2.1 l), we have 

Since (cpo, cpo) > 0 and <, > must be positive definite on the linear span 
of &r(X) q. and &c(x) cpo, the determinant of 
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must be positive, i.e., SAX, X) > 0. This completes the proof in the second 
case. 1 

Remark 2.13. The converse of Theorem 2.8 is certainly false; positivity 
of h for f does not imply X0(x, h) # 0. The actual conditions for non- 
vanishing of rr” tend to be complicated (see [ 11, Theorem 3; 24, 
Theorems 4.26 and A.12; 10; 28]), and involve the detailed structure of the 
group G and the polarization h. Nevertheless, it is a general phenomenon, 
which is hard to make precise (but see Theorem 2.15 below), that rc” will be 
non-zero provided lj is “sufficiently positive” for f, or that h is positive not 
only for f but also for some shift off involving the root structure of g and 
h. In fact, if one is willing to make this shift slightly larger than necessary, 
non-vanishing results for no of exponential groups become fairly easy [21]. 
We shall state a non-vanishing theorem of this type valid for arbitrary Lie 
groups. 

Before formulating the partial converse of Theorem 2.8, it is useful to 
introduce one additional notion. 

DEFINITION 2.14. If h is a totally complex invariant polarization for 
fog* (satisfying (2.1) (2.2), (2.3’) and (2.4)), we say Ij is a metric 
polarization if one has 

(2.5’) Ad,,,, r,G( f ) is compact. 

This is equivalent to assuming there exists a G-invariant Riemannian 
metric on G/G(f), or even a G-invariant hermitian metric (for the complex 
structure defined by h). 

Note that if h is positive, it is automatically metric, since G(f) maps h 
into itself by (2.4), and S, is a G(f )-invariant hermitian inner product on 
h/g(f) (which can be used to define an invariant hermitian metric on 
G/G( f )). In this case, as we said before, G/G( f ) even carries a G-invariant 
Kahler metric. 

Very little is known about how to construct unitary representations of G 
from the totally complex polarization h if condition (2.5’) is not satisfied. 
Theorem 2.8 shows that holomorphic induction yields nothing for non- 
metric polarizations, and “harmonic induction” can’t be defined either. In 
fact, the only positive results we know of on non-metric polarizations are 
those of [22] and [ZO]. All the polarizations we consider in this paper will 
be metric. 

A natural alternative to holomorphic induction is to consider L2 
holomorphic (n, 0)-forms with values in 9. (where n = dim,G/G( f )) 
instead of L2 holomorphic sections. This has the advantage that the L2- 
condition has an intrinsic meaning even in the absence of a choice of a 

580/62/l-2 
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metric on G/G(f) or on 3” (o is L2 if and only if [SW A 01 -C cc); 
however, this is not a great advantage for us here since one can always put 
a hermitian metric and connection on 3” having holomorphic curvature 
form associated to S,- (“Kostant’s prequantization theorem” [ 14]), and as 
we remarked, G/G( f ) carries a canonical volume form. When lj is metric 
(but not in general), G(f) acts isometrically on .4”h and on A’$*, hence 
the holomorphic line bundle X of holomorphic (n, 0) forms on G/G(f) 
admits a G-invariant hermitian metric. Using this metric, one may identify 
L* holomorphic sections of 9x with L* holomorphic (n, 0)-forms with 
values in TX 0 X - ’ (and L2 holomorphic (n, 0)-forms with values in 9x 
with L2 holomorphic sections of YX@X), so the Blattner and Kobayashi 
irreducibility theorems are equivalent in this case. 

Now we can state the partial converse of Theorem 2.8. 

THEOREM 2.15. Assume f, x, and b are as above (i.e., f is integral, dx = if, 
and 6 satisfies (2.1), (2.2), (2.3’), and (2.4)) and t, is positive. Then for N suf 
ficiently large (depending perhaps on G, f, and 6)) X0( xN, Ij ) # 0. In par- 
ticular, if G( f ) is connected, n’(Nf, I)) # 0 for N sufficiently large. 

ProoJ Modulo the conversion between holomorphic sections and 
holomorphic (n, 0)-forms discussed above, this is just a special case of [27, 
Lemma I-B]. In other words, this amounts to the generalization of a 
famous theorem of Kodaira to the case of non-compact complete Kihler 
manifolds, using L2 estimates for the 3 operator. See also [7] for much of 
this theory. 1 

Remark 2.16. In the statements above, the hypotheses that h be G( f )- 
invariant and that there exist a character of G( f ) with differential if were 
not strictly necessary. Everything we have said (including the 
Blattner-Kobayashi Theorem, Theorem 2.8, and Theorem 2.15) applies just 
as well if we substitute for G(f) any open subgroup D, of G( f ) and 
require only that h be D,-invariant and that there exists a character of D, 
with differential z$ (This is only integrality in the weakest sense if we take 
D,=G(f),.) 

This appears to have a surprising consequence. Suppose h is positive and 
D,-invariant and f is D,-integral, and suppose D, is an open subgroup of 
finite index in D I. Let 1 i be a character of D i with differential if, and let x2 
be the restriction of x1 to D,. By Theorem 2.15, for N sufficiently large, 
A?“(x;“, h) and P’(x”, h) are both non-zero, and in fact by the proof in 
[27], they “separate points” in G/D, and G/D,, respectively. It is also clear 
that Z”“(xy, h)sX”(xF, 5); if D, # D1, then Y’(x;“, h) cannot separate 
points in G/D2 and so the inclusion is strict. However, by the 
Blattner-Kobayashi Theorem, if G is connected, both n’(x;Y, 5) and 
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nO(~f, h) are irreducible! This is a contradiction, hence D1 can have no 
open proper subgroups of finite index. This proves 

THEOREM 2.17. Suppose G is a connected Lie group and f E g* is 
(G( f )- ) integral and admits an invariant totally complex positive 
polarization. Then G( f ) is connected, 

Proof: If G(f )/G(f ), has a non-trivial finite subgroup, let D, be its 
inverse image in G( f ) and let D, = G( f)o. If G( f )/G( f). is non-trivial 
but has all elements of infinite order, let D, be the inverse image of a cyclic 
subgroup and let D, be a subgroup of finite index. Either way, the 
argument above gives a contradiction. 1 

Remark 2.18. Theorem 2.17 reflects several well-known facts in Lie 
group structure theory. Coadjoint orbits of connected compact groups, or 
regular elliptic orbits of connected semisimple groups, always have 
connected stabilizers. In fact if we strengthen the “metric polarization” con- 
dition (2.5’) to state merely 

(2.5”) Ad G(f) is compact, i.e., G(f) is compact modulo the center 
of G. 

then rr”(x h) if non-zero will be square-integrable modulo the center of G, 
and connectedness of G(f) reflects the structure theory for groups with 
such representations [2, 31. 

So far we have only considered holomorphic induction. If h is an 
invariant metric polarization for f which is not necessarily positive, one can 
more generally define “harmonically induced” representations in the sense 
of [25, 17-19, 12, etc.]. 

DEFINITION 2.19. Suppose G is any Lie group, fe g* is integral with 
associated character x, and h is an invariant totally complex metric 
polarization for J i.e., satisfies (2.1), (2.2), (2.3’), (2.4) and (2.5’). The 
harmonically induced representations nnk(x, h) (or n”(f, h) if G(f) is 
connected), 0 <k 6 n = dimcG/G(f), are defined to be the unitary 
representations of G by left translation on the Hilbert spaces 

J@(x, h) = (L* (0, k)-forms w with values in 

YX satisfying &0 = 0, a*w = 0}, 

where a is defined with respect to the complex structure defined by h, and 
a*, its formal adjoint, is defined using a G-invariant hermitian metric on 
G/G(f), which we fix once and for all. The metric also defines the notion 
of an L* form. This metric is not unique, but by [ 121, the equivalence class 
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of nk(x, h) is independent of the metric chosen. Once again (see [ 183 and 
[12] for details), ellipticity of the &complex ensures that we may work 
only with smooth forms and still get a complete Hilbert space; all dis- 
tributional solutions of the equations 3~ = 0, a*~ =0 are C” by elliptic 
regularity. Also there are no domain problems for our unbounded 
operators since the minimal and maximal domains of 8 coincide. 

Formal curvature calculations suggest that just as rr’(x, h) tends to be 
non-zero exactly when h is positive, rc’(~, h) should be non-zero exactly 
when k=q(t),f) ( recall the definition of the negativity index in 2.6). 
Furthermore, one would again hope nk(x, h) is irreducible, or at least 
finitely decomposable, when it is non-zero. In fact, both of these statements 
are false in general, although they are true under some circumstances. For 
instance, as an accompaniment to Theorem 2.15, one has the following 
“vanishing theorem.” 

THEOREM 2.20. With f, x, and b as above and Ij positive (i.e., the same 
hypotheses as in Theorem 2.1.5), for N sufficiently large, 

Xk(XN, JJ) = 0 

for all k > 1. 

Proof See [27] or [7]. A more group-theoretic formulation of what is 
essentially the same argument may be found in [16]; the restriction of 
nilpotence of G there is not particularly important. Results analogous to 
Theorems 2.15 and 2.20 are also proved in [8]. 1 

More generally, the same sorts of arguments would appear to give the 
following result. We record this as a “statement” rather than a “theorem” 
since we have not checked all the details in the non-positive case, except to 
the extent that they may be found in [16]. 

STATEMENT 2.21. If G is any Lie group, f E g* is integral, x is a character 
of G( f ) with differential if, and b is an invariant totally complex metric 
polarization for f (satisfying (2.1), (2.2), (2.3’), (2.4), and (2.5’)), then there 
exists a positive integer No (possibly depending on all the data) such that for 
N> No, one has 

aXN, b) = 0 forkfdbf 1, 

7FqXN, lj) # 0. 

Two questions that we have not been able to answer are the following. 
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Open Problems 

(2.22) Under the above hypotheses, can it ever happen that rcnk(x, h) 
is non-zero for two distinct values of k? We see no obvious reason why not, 
but at the same time we know of no such examples. 

(2.23) Under the hypotheses of (2.21), is x~‘~,.‘)(x~, tj) irreducible for 
N sufliciently large? 

3. HARMONICALLY INDUCED REPRESENTATIONS 
OF CERTAIN SOLVABLE LIE GROUPS 

In order to obtain more precise results than those in Section 2 above, it 
is necessary to make some assumptions about the groups G, linear 
functionals f, and polarizations h which we will consider. To provide a 
reasonable motivation for our calculations, we first remind the reader of 
the results in the semisimple and nilpotent cases. 

Although, historically, the situation for semisimple groups was worked 
out before that for nilpotent groups, we begin with the nilpotent case since 
the results are easier to state. Various cases of the following theorem were 
first worked out by Carmona, Satake, Okamoto, and Moscovici and 
Verona. The result is as pretty as one could hope for. 

THEOREM 3.1 [ 19, 231. Let G be a connected nilpotent Lie group, f E g* 
an integral linear functional. (In this case, G( f ) is always connected.) Sup- 
pose f admits a metric totally complex polarization 5. Then nk(f, Q) = 0 for 
k#q(h,f), and ~4(h~f)(.L b) is the irreducible unitary representation X~ 
associated by the Kirillov correspondence to the orbit ofj 

The semisimple case is similar except for a certain shift which already 
occurs in the compact case (Borel-Weil-Bott Theorem). Once again, many 
special cases of the following theorem were worked out before the definitive 
result was proved by Schmid. Some of the names involved were Bore1 and 
Weil, Bott, Kostant, Okamoto and Narasimhan, Hotta, and 
Parthasarathy. The hypothesis that G be a linear group, which one finds in 
Schmid’s paper, is not in fact necessary. 

THEOREM 3.2. [25, 261. Let G be a connected semisimple Lie group, 
f E g* such that G( f ) is a Cartan subgroup of G which is compact module 
the center (hence automatically connected). Suppose f is integral, and let b 
be a totally complex polarization for f: (Such an b always exists and will be a 
Bore1 subalgebra of gc.) Let p = (i/2) Za, where a runs over the roots of 
g( f )c in lj. (The factor of i is inserted so as to have p in the real dual of 
g( f ).) Then iff i- p is singular, rc”( f 6) = 0 for all k. Otherwise, nk( f, 6) is 
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non-zero exactly when k = q(t), f + p); for this value of k, nk( f, b) is the 
irreducible discrete series representation of G attached (via the 
Harish-Chandra parametrization) to the orbit off + p. 

Remarks 3.3. (a) Note that for f “sufficiently large,” i.e., for large 
multiples f of any f. satisfying the hypothesis of (3.2), f + p will lie in the 
same Weyl chamber asf, so that one may substitute q(Q,f) for q(b,f+ p). 
However, q(ij,f) and q(t), f + p) may differ for f “close to the walls.” This 
phenomenon is in accord with (2.15), (2.20), and (2.21) above. 

(b) Actually, in the above theorem, it is not really necessary to sup- 
pose the stabilizer off is a Cartan subgroup. Essentially the same statement 
holds whenever one induces harmonically from a unitary character of an 
Ad-compact Cartan subgroup, even if the stabilizer of the character is 
larger. 

(c) There is an analogue of the above results valid for extensions of a 
nilpotent Lie group by a reductive one, obtained essentially by combining 
Theorems 3.1 and 3.2 [23, Theorem 4.81. Thus one has fairly precise results 
on harmonic induction for all locally algebraic unimodular Lie groups 
having square-integrable representations [ 11. See [23, Sect. 41 for further 
discussion. 

Since the theory of harmonic induction from a compact subgroup of a 
unimodular Lie group is largely complete, we wish now to attack the non- 
unimodular case. Our methods would in principle work in much greater 
generality, but for reasons that will become apparent shortly, the 
calculations involved rapidly get out of hand except for the simplest 
groups. We therefore restrict attention to the same sort of groups con- 
sidered in [24]. In other words, we assume for the rest of this section that 
the following holds. 

HYPOTHESIS 3.4. G is a connected, simply connected, locally algebraic 
Lie group, completely solvable over iw (hence an exponential solvable group). 
We also assume G has at least one open orbit in g*. 

The open-orbit assumption guarantees that Gd, the set of equivalence 
classes of square-integrable irreducible representations (or “discrete series”) 
of G, is non-empty. This coupled with the algebraicity implies that the 
Plancherel measure class of G is supported on G,, and that this is a finite 
set. (In fact, the union of the open orbits of G in g* is Zariski-open, and 
the complex adjoint group of G acts transitively on this open dense set.) 
We shall always assume that f E g* is chosen in one of the open orbits, 
hence that G(f) is trivial, and that f admits a totally complex polarization 
h. Obviously, conditions (2.4) and (2.5’) are automatic, so that rrk(L h) is 
well defined for 0 < k < dim,G .f = (dim G)/2. We remind the reader that 
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large numbers of interesting groups satisfying these conditions may be 
obtained by taking the “AN-group” of the Iwasawa decomposition KAN of 
the automorphism group of a hermitian symmetric space of non-compact 
type. In this case there is a “standard” choice of h corresponding to the 
complex structure on the symmetric domain. For details and the structure 
theory of a larger class of solvable groups satisfying our conditions, see 
[24, Sections 3-4-j 

THEOREM 3.5. Let G satisfy (3.4) and suppose f E g* lies in an open orbit 
and lj is a totally complex polarization for f: Then xk( f, 5) (0 6 k 6 n = 
dim, G. f) decomposes G-equivariantly as follows: 

Here Xk(5,A h), the kth formal harmonic space of 7t with respect to f and b, 
may be variouslv described as 

Xk(3f,f, b)= {~EYt?,0Ak~*:~1(6+6*)((~~)~OA*t)*)} 

z (ker 6) n (ker 6*) in (&)), 0 /ikh* 

rRk(b, (yi?,), @@$+A,?.). 

We have used the following notation: & is the Hilbert space on which rc 
acts, ti is the contragredient representation on z$, (JY,)~ is the Frechet 
space of P-vectors for 5, and A = tr ad is the differential of the modular 
function of G. Also 

is the coboundary operator for the standard complex that computes the Lie 
algebra cohomology of an h-module M, applied here to M= 
(%),@a=,+,,* (the second factor being a one-dimensional module on 
which h acts by the indicated linear functional). 6* is the formal adjoint of 
6, and Rk(lj, M) is the “Hausdorhification” of the Lie algebra cohomology 
Hk(b, M), i.e., 

Rk(lj, M)= ker(b: M@nkh* -M@/lk+lh*)/ 

cl im(6: M@nkP’h* -+ M6J/ikh*). 

Note that 6 is a continuous linear map from one Frechet space to another, 
but a priori, its image may not be closed. 

Proof Since Pk( f, h) is a G-invariant subspace of L’(G)@ Akb*, it is 
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obviously quasi-contained in the left regular representation of G, and so we 
have a G-equivariant Plancherel decomposition 

We now follow the method of Schmid [25] for analyzing the space of 
intertwining operators 

How&G =@U b)), 

as extended to the case of more general groups by Moscovici and Verona 
[17], Penney [18], and Hersant [12]. The one thing that is new in our 
case is the adjustment needed to take into account the non-unimodularity 
of G. This results from the fact that holomorphic sections cp of 9x are 
defined (recall (2.7)) by the conditions 

cp E Cm(G), R(X) cp + if(X) cp = 0 for XE h, 

whereas when we make the Plancherel identification 

L*(G)% @ X,,OXe (as unitary representations of G x G), 
nE& 

the differential of the action of G on Xfi corresponds not to R but to 
R-A/2. The rest of the details, including the coincidence of the three 
possible definitions of X“(C,f, h), are in [12, Sect. 51. I 

Remark 3.6. In the semisimple and nilpotent cases, the Lie algebra 
cohomology groups analogous to our Hk(h, (X*), @ C,,,,,) were com- 
putable with the help of the Hochschild-Serre spectral sequence, and 
turned out to be finite-dimensional, hence a fortiori already Hausdorff (by 
the closed graph theorem). This is not always the case here, as the follow- 
ing example illustrates. 

EXAMPLE 3.7. Let G be the “ax + 6” group with Lie algebra spanned by 
X and Y, where [X, Y] = Y. Let X*, Y* be the dual basis of g* and sup- 
pose f= aY*, a # 0, h = @(X+ iY). Note that A =X* in this case. 

There are two open orbits of G on g*, and the corresponding represen- 
tations in G, are x + and K , both acting on L*(R), where 

dn + (X) = d/d& 

dn+( Y)= fie’ 
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on suitable domains of C” functions. Note that ti + z K, K z z + . Thus 
on 

X + iY E h acts by the differential operator 

This has formal adjoint 

D*= --&e&a. 

A simple calculation shows that the kernels of D and D* in P(W) are 
spanned (respectively) by the functions 

tt-+exp((a-+) t T e’), exp( - (c1- 3) t & et). 

Thus 

(ker D)nL2(R)#OoM=(~~+),@@if+d,2andcr>~, 

(kerD*)nL2(R)#OoM=(Xfi_)~@Oa=ir.+d,2anda<~. 

Applying Theorem 3.5, we see 

@u b)E’n+ if a > 4, k = 0, 

EO ifa=&orifa>fandk=l,orifa<tandk=O, 

E:n - ifa<+,k=l. 

For comparison, note that 

if([X+iY,X-iY])=2a, 

so that 

shf)=O ifa>O, 

= 1 ifa<O. 

In accordance with (2.21), n“(f, h) is non-zero exactly when k = q(t),f ), 
provided that Ial > 1. However, for a “small” there is some anomalous 
behavior. Furthermore, although in this case R’(Ij, M) always has dimen- 
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sion 0 or 1, H’(h, M) may be inlinte-dimensional. To see this, let us take 
a=+ and show that 

is not closed and is of infinite codimension in (X*+),. First note that 
WC+ L consists of C” functions q such that cp and all its derivatives lie in 
L2(R) and have very rapid (exponential) decrease on the right half-line. 
Thus (XX+), contains an infinite-dimensional subspace of functions q(t) 
that look like const/t for t negative. Since D = d/dt - e’ has zero kernel in 
L2(R), any solution of D$= cp must be of the form 

t,b(t)=e”j cp(s)e-“ds. 
-m 

If q(t)-ItI-’ for t < co, then t,Qt)-log It], and so q+ is not in L2. 1 

We are now ready for our main calculation, which involves another 
rather special group. For the moment the example may seem somewhat ad 
hoc, though we found it very instructive. Our methods will be strictly 
classical for the moment, although we shall give another interpretation of 
the theorem in Section 4. 

THEOREM 3.8. Let G = N2,,+ 1 >a IR ; be the semidirect product of the 
Heisenberg group N2,, + 1 of dimension 2n + 1, n B 1, by a one-parameter 
group of dilations. More explicitly, G is the connected, simply connected Lie 
group with Lie algebra g spanned by the elements X, ,..., X,,, Y, ,..., Y,,, H, Z, 
where 

lIxj, ykl =djkz, CH, xj] = xl, 
[H, Yj] = Y,, and [H, Z] = 22. 

Let f =‘Z* with tl # 0, where xl; ,..., x, q ,..., c, H*, Z* is the dual basis of 
cl*> and let b be the totally complex polarization for f spanned by the 
elements 

J,=H+iZ, 

J,= Xi+ iY,, j = l,..., n. 

Let us designate the representations in G, by TT+ and rc _, where both 
representations act on L*( R”+ ‘) and h ave differentials given by the formulae 
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d7c,(Xj) = et0 -$ 1 djdn, 
J 

&c,( Yj) = iEerotj, 1 Gjdn, 

&c,(Z) = i&e’@ 

on suitable function spaces. Then the representations 7rk( J IJ) are given as 
follows: 

(a) Zf ~1 E { 1, 2 ,..., n + 1 }, all of the %“( f, 5) are zero. 
(b) Otherwise, %‘“(A 6) is non-zero for exactly one value of k, 

name!v, 

k=O 

k=l 

ifcr>n+ 1, 

ifn<a<n+ 1, 

k=n if 1 < CI < 2, 

k=n-1 ifa< 1. 

(c) In case (b), we have Vor the above value of k) 

n”(f, r))Z71+ ifcr>n+l, 

nk(A b)E:71- ifa< 1, 

~k(f,~)rCO.n+Occ,.n_~regularrep.ofG 

if 1 < CI < n + 1 and CI is not integral. 

Remark 3.9. Before we begin the proof, a few comments are in order. 
First of all, (3.7) is really a degenerate case of the above (n = 0), with the 
change of notation H = 2X, Z = 2 Y, Y* = 2Z*. Second, one sees as before 
that 

d6,f) = 0 if c( > 0, 

-n+l - if c1-c 0. 

Thus the results are again consistent with (2.21) for jell > n + 1, although 
the anomalous behavior for 1~1 small is now much more marked. One also 
finds as in (3.7) the pathology of non-Hausdorff Lie algebra cohomology. 
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Proofof(3.8). As before we use (3.5) and calculate Xk(ZE,f, h) for all 
possible values of k and for E = + 1. It is the interpretation of the formal 
harmonic space as (ker 6) n (ker 6*) which is most effective here. The 
calculation when k = 0 or k = n + 1 is fairly simple; all the other cases are 
much harder but ultimately come down to the same equations, so we shall 
discuss the case k = 1 in detail and then indicate what modifications are 
needed to treat the cases 1 <k < n + 1. 

A simple calculation gives A = (2n + 2) H’. Thus on the module 
M=(~E)ooOc~~+,,,=(~_~),o@,,*+,,~,,,*~CaO(IWn+’), the action 
of h is given by 

j = l,..., n. 

(3.10) 

We omit discussion of domains and proceed formally, since by the theorem 
in [ 123 that the minimal and maximal domains of (6 + 8*)2 coincide, any 
form in (ker 6) n (ker 6*) which is C” and L2 will in fact be in Sm @ n*h*. 

First note that ker J, (in L2), for j> 1, will be non-zero if and only if 
E>O. Thus 

X”(7i _, aZ*, 5) = 0 for all a, 

and 

dim Z”(ti + , aZ*, 6) = 1 

o(ker J,)n(kerJ,)n ... n(kerJ,)#(O) (in L2) 

oexp[(a-n-l)to-ie’o-$(t:+ . ..ti)] 

is an L2 function of (to, t 1 ,..., t,) 

oa>n+l. 

Hence 

HO(f, JJ)EO ifadn+ 1, 

z7r+ ifa>n+ 1. 

The calculation of X” + ‘(f, h) is similar, although one must remember 
that the formula for S* in top degree involves a term that depends on the 
brackets in h. (Our h is nor commutative, unlike the situation in (3.7). 
Instead, [Jo, Ji] = Jj for 1 <j <n.) The formal adjoints of the operators 
corresponding to Jo,..., J, are 
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s*,= --g+Ee2’O+(n+l-a), 
0 

(3.11) 

j = l,..., n. 

Thus ker J: (in L*), for j 3 1, is non-zero if and only if E < 0, and 

,“+‘(jt +,aZ*,t))=O for all a; 

dim Y”+ ‘(K, aZ*, lj) = 1 (the only possibility aside from 0) 

o(ker(J,-n)*)n(kerG)n ... n(kerJ*)#(O) (in L2) 

~exp[(l-a)to-~e2’o-+(t~+ ... +ti)] 

is an L2 function of (to, t, ,..., t,) 

oacl. 

Hence 
iF+yf, l))rO ifa> 1, 

kzlL ifa< 1. 

Next we compute X*(72+, aZ*, h). Now M@A’h* consists of elements 
of the form o,@~+u,@~+ ... u,,@z. Since the only non-trivial 
brackets in h involve Jo, one finds that the equations 

d*(u”@J$+ ... +u,@sl:)=O in M, 

6(u,@s*,+ ... +u,@~)=O in MO f12h*, 

become 
G.uv,+ . . . + &q . u, = 0, 

J, . uk = J, . vi, ifj, k 3 1, (3.12) 

Jo . uk = Jk . U. + Uk, ifk3 1. 

Here the operators J,, Jj* are given by (3.10) and (3.11). To simplify Eq. 
(3.12) it is useful to make the transformation 

K,= Jj o e-lo, 

Ko=e~‘o~+~eto+(n-a)e~ro, 
0 

(3.13) 

K,=;+~fi, j= l,..., n. 
J 
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This converts the system (3.12) to the system 

Kyouo+ “‘GV,=O, 

Kjvk = Kkvi, j, k = 0 ,..., n. 
(3.14) 

Recall once again that we are looking for solutions with v,,,..., v, E 
L*([W”+ ‘). Using the fact that we now have the variables separated (K, 
involves only tj), we may apply each K, in turn to the first equation in 
(3.14), then use the second equation to obtain 

K,,K$v,+~K,v,+ “’ +~K,v,=O, 

gK,v, +K,ev, + ... +cK,v, =O, (3.15) 

GXovn + ... +K,*_,K,_,v,+K,Xf:v,=O. 

Since the operators K,Kr, KJ!K, are all formally positive, one might think 
that this implies u0 = vr = . * . = v, = 0. However, this is not necessarily the 
case since these operators are not necessarily essentially self-adjoint. For 
j # 0, KjKT and KTK, become the Hamiltonian operators for a quantum 
harmonic oscillator, which of course have a well-understood spectral 
theory. Thus one can see that if (3.15) has any L’ solutions at all, it must 
have L* solutions with the variables separated, i.e., with each vj a product 
of a function of t, and of Hermite functions in the remaining variables 
(since these are the eigenfunctions of the harmonic oscillator). Let 
eo, el, e2,... be the classical Hermite functions giving an orthogonal basis of 
L*(R). They satisfy 

( 1 

i+f fZj(t)=JijeipI(t), 

( 1 

$+I 

* 

ei(t)=Jaej+,(f). 

(3.16) 

Thus one finds that if the systems (3.14) and (3.15) have any L2 solutions 
at all, one may take them to be of the following special type: 

When E= +l, 

u. = c~~(f~) e& 1.. . e&J (for some fixed r) 

vj=~~(f~)e,(f,)".e,-,(fi)"'e,(f,), 16j<n, 

Kocp, = fi cpo, fGcpo= -n& ‘PI, (3.17) 

KoKbo = -2rwo, 

lCjK,cp, = -2rn(p,. 
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When E= -1, 

uo=cpo(to)e,(t,)...e,(t,) (for some fixed r ) 

uj=cP,(tO)e,(t,)"'e,+,(ti)"'e,(t,), 1 <jdn, 

Ko(P,= -Jmrpo, mPo=nJrnrp,, (3.18) 

&~cp,= -au+ l)wo, 

~Kocp, = -2(r+ l)ncp,. 

It remains to solve Eqs. (3.17) and (3.18) and to see when the solutions for 
‘p. and cp, lie in L2. For this purpose we make another change of variables 
that converts (3.17) and (3.18) to confluent hypergeometric equations, 
which can be solved by classical integral formulas. Thus let 

To solve (3.17), the case E = + 1, we let 

c~~(t~)=e~~/‘5(‘-~)/‘g(5), 

which gives for g “Kummer’s equation” 

where t = e2’0, 

5g”(5)+(b-4)s1(5)-ug(5)=01 (3.20) 

where b = c( - n and a = (r + 1) n/2. We are interested in solutions with 
‘p, E L’(dQt). Equation (3.20) has two linearly independent solutions, one 
which grows like e: as [ -+ co (which we can obviously discard), and the 
other given by the integral formula 

s(5)=js* e -:ssu- 1( 1 +s)hpU- 1 ds 

(convergent since a > 0). Then 

(p,(t) = eCt(‘2tb’2 Ioa e -<y-1(1 +S)b--o--l ds (3.21) 

will die exponentially as 5 + co. The behavior of cp, near 5 = 0 depends 
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essentially on b = 01 -n. If b > 1, i.e., u> n + 1, then up to a constant, 
c~~(5)-5~“r’-‘==(~~~)” and ~r(5)~/<-<‘-~, which is integrable in 5 if 
b < 2. If b = 1, i.e., c1= n + 1, then the integral behaves like log 5 and 
(~i(t)~/t -log 5, which is integrable. If b < 1, the integral tends to a con- 
stant as t-0, so (p1(<)2/<-<bP’, which is integrable for b > 0, i.e., c( > n. 
Thus we get a solution for cpi in L2 if and only if n < a < n + 2. However, 
we must also have (by 3.17) K,cp, E L2, which means 

e-c’2<(b+ ‘“2g’(() E L2(&/[), 

or 

e-5/2 
5 

(b+1)/2 

Since b > 0, the integral behaves like <-b as < -+ 0, so cpo(<)- tCb’ 1”2< -’ = 
5” -bW and (Pan/< - 5 -b, which is integrable in b only if b < 1. Thus we 
have both cpi and cpo in L2 exactly when n < a < n + 1. In this case, we can 
solve (3.17) for infinitely many distinct values of r, which proves 
mR+, aZ*, h) is infinite-dimensional. 

Equations (3.18) corresponding to E = - 1 are treated similarly. In this 
case, the substitution (3.19) together with 

cp,(t,) = ec’2<‘“-““2g([) 

leads again to an equation resembling (3.20): 

with b = n - CI and with a = (r + 1) n/2. Once again, one of the two linearly 
independent solutions will give a ‘p, with exponential growth as 5 + co, so 
that up to a constant, we must have 

(p,(t) = ept/2(pb12 joa e -SsSu’-b-l(l +s)-o-l ds (3.22) 

(this converges if we take r, hence a, sufficiently large), or a similar 
expression for u small. When (3.22) is valid, the conditions to be satisfied 
are that cp,(<) E L2(d[/<), and also that 

e.U2 5 (l-b)/2 s O” e-“y-b-l(l +S)-a&E~2(&/5) 
0 

Both conditions again depend only on b. If b > -1, the integral in (3.22) 
approaches a positive constant as t + 0, so CJJ~(<)~/~-~-~- ‘, which is 
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integrable in 5 when b < 0 but not when b 2 0. If - 1 -C b < 0, then for < 
small, we have cpO( 5) N 5” - ‘)‘*tb = 5” + b)/2, so cpO( 5)*/l IV 5’ which is 
integrable. Thus we have infinitely many independent solutions of (3.18) 
when -l<b<O or n<cc<n+l. When b< -1, we again have 
cpo([)-p’+b’/* and &<)*/t”:t’, which is not integrable, and (3.18) has 
no solutions in L2. Putting everything together, we see thus that 

7r’(CLZ*,l))EcwiT+@00.7C~ ifn<cc<n+ 1, 

ZO otherwise. 

It remains to deal with the calculation of @(aZ*, h) when 2 <k <n. This 
gets a bit messy but is really quite similar: to illustrate we take the case of 
k=2. If o=CiCjoii@ (JT A JT) and 6(0)=0, 6*(0)=0, we obtain the 
following equations which replace (3.14): 

Jk. w,, - J, o,~ + Jj. wjk = 0 ifO<i<j<k, 

J, w,; - 2~0, + J, . woi - J; . ooj = 0 ifO<i<j, 

J:.o,,, +J;.w,,+ ... +J,*.w,,=O, (3.23) 

(J,*-~).o,;-C J;F.O,+ 1 JT.o,=O if i > 0. 
i<j O<j<i 

Once again, the asymmetry in the equations coming from the non-com- 
mutativity of h can be remedied by a change of variables, but in place of 
(3.13), we now let 

K.=e-‘OJ. 
I / ifj> 0, 

Ko=epro(Jo-2). 
(3.24) 

(In computing YY, we would let K, = ecro(Jo - k).) This changes the 
system (3.23) to the system one would have if the algebra h were com- 
mutative. As before the variables can be separated, and we have to look for 
eigenvectors of K,G and K$K, which are in L* (as functions of to) and 
have negative eigenvalues (for these formally positive operators). One 
obtains the same equations as before, except for the shift due to the dif- 
ference between (3.24) and (3.13). In other words, we find 

7rk(aZ*,t))zwX+@cw71~ ifn+l-k<a<n+2-k, 

=O otherwise, 

which is the assertion of the theorem. 1 
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4. CONNECTIONS WITH THE THEORY OF THE 
DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS 

Although Theorem 3.8 may seem quite mysterious from the point of view 
of the representation theory of solvable Lie groups, it has a nice inter- 
pretation if we bring semisimple groups into the picture. For purposes of 
this section, it will be easiest if we alter the notation of Section 3 and 
instead assume 

HYPOTHESIS 4.1. G is a connected, simply connected, simple Lie group, K 
a maximal Ad-compact subgroup, such that GJK is a heimitian symmetric 
space of non-compact type. Note that the center Z of G will be infinite, so 
that K is non-compact; however, K/Z is maximal compact in G/Z. Let 
G = KAN be an Iwasawa decomposition of G and let S = AN. 

By a theorem of C. Moore, S will have open coadjoint orbits on 5*, the 
dual of its Lie algebra. Also, rk G = rk K, so G will have a relative discrete 
series G, of irreducible unitary representations square-integrable modulo Z. 
However, since Z is infinite, this discrete series will in fact be “continuous” 
(think of the universal covering group of SL(2, W)). 

Because of the Iwasawa decomposition G = SK, S acts simply transitively 
on the hermitian symmetric space G/K. In this way, the open coadjoint 
orbits of S (which as manifolds may be identified with S or G/K) acquire a 
canonical invariant complex structure, which may be interpreted as being 
given by a totally complex polarization. (For details of all of this, see [24, 
Sects. 1.6 and 5, and Appendix].) Let f-, be the specific element of a* con- 
structed in [24], and let h be the associated positive totally complex 
polarization for it. We wish to study the representations ~?(a&, h) of S for 
CI E R\(O). In fact, Theorem 3.8 deals with precisely this situation, when 
G/K is the unit ball in Vf’ and G is the universal covering group of 
SU(n + 1, 1). 

We note now that via the identification of S.fO with G/K (as 
homogeneous complex manifolds), the line bundle 9x associated to x = e’f 
f = orfo, may be identified with the homogenous line bundle on G/K induced 
by a character II/, of K. (It was to make this true without an annoying 
integrality restriction on a that we took G and K to be simply connected.) 
It is now clear that nk(orfo, h) is just the restriction to S of the natural 
unitary representation of G on L2 harmonic (0, k)-forms with values in this 
bundle. In other words, the problem of computing nk(afo, h) is equivalent 
to the problem of computing the kth harmonically induced representation 
of G from I+!,, but restricted to S. Thus if p is the parabolic subalgebra of 
gc defining the anti-holomorphic tangent vectors on G/K, 
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This relationship can be exploited in two ways. When $(afO, Q) is com- 
putable, (4.2) gives necessary and sufficient conditions for non-vanishing of 
x”,($~, p). When k = 0, this was used in [24] to recapture the results of 
Harish-Chandra [ 111 on the holomorphic discrete series. Our Theorem 3.8 
does essentially the same for certain representations of SW). 

However, since harmonic induction for semisimple groups is already well 
understood by Schmid’s theorem (Theorem 3.2 above), whereas the 
calculations of (3.8) become unmanageable even for G = Sa 
(corresponding to G/K = the Siegel upper half-space of complex dimen- 
sion 3), it is more effective to use the correspondence in the other direction. 
Let g, be the elliptic element of g* corresponding to& so that z&g,, is the 
differential of $,. Since all of K stabilizes g,, (3.2) does not apply directly, 
but we may use Remark 3.3(b). This yields 

THEOREM 4.3. Let t be a Cartan subalgebra off, the Lie algebra of K, 
and choose positive systems of roots P, E PO for the roots A, and A oft, in 
f, and gc, respectively, so that p contains none of the root spaces for 
P, = P,\P,.. Let p0 be half the sum of the roots in P,. Then if iag, + p. is 
singular, I&+=, p) =0 for all k. Otherwise, x:($~, p) will be non-zero for 
exactly one value of k, namely, # (/I E P, 1 (iag, + pO, p) > 0}, and will be 
the representation in G, with Harish-Chandra parameter iugO + pO. 

Proof: We merely indicate how this follows from (3.2) and (3.3)(b). By 
Borel-Weil-Bott, if b is the Bore1 subalgebra of gc containing t, and the 
root spaces for -P,, n:(@g,,, b n f,) will be 0 in degrees k > 0 and will be 
just II/, in degree 0. So by “harmonic induction in stages,” nk,(ag,, b)g 
x”,($,, p). By Schmid’s theorem, 7cz(ag,, b) will be zero for all k if iag, + p0 
is singular, and will be the appropriate discrete series representation,in 
degree k = q(agO - ipO, p) otherwise. Since p is positive for g,, this is easily 
seen to be the indicated number of roots. 1 

COROLLARY 4.4. With notation as in 4.1 and 4.3, xk,(afO, lj) vanishes if 
iEgg, + p0 is singular. Otherwise, &Jaf,, Ij) is non-zero for exactly one value 
ofknamely, #(BEP,I (iug,+p,,~>>O}. 

EXAMPLE 4.5. Let G = s-i, n 2 1, and let S be the group of 
(3.8). In the notation used there, fO = Z*. We have K= U$??)Z 
SU(n + 1) x [w. In this case P, has n + 1 simple roots p1 ,..., /?,+ 1, with all 
but the last one in P,, and 

Pn={Bn+*,Bn+l+Bn,...,Bn+,+Pn+ ... +a,>. 
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We may normalize the inner product so that (bj, pi) = 2, 
(pi, pi+ I) = - 1, (pO, flj) = 1. Then ig0 restricted to t is perpendicular to 
PI,..., P,, and (igo, Pn+l> = -1, so that 

( &70+p0, i: Pn+l-j 
> 

=(icrg,,/?,+,)+k+l=k+l-cc. 
j=O 

Thus &Jolfo, lj) vanishes for all k if c1 E { 1,2,..., n + 11, and otherwise is 
non-zero in exactly the degree given by (3.8)(b). 

We have now explained parts (a) and (b) of Theorem 3.8, and shown 
how they generalize to other hermitian symmetric spaces, but it remains to 
explain the mysterious aspect of (3.8)(c), namely, the appearance of har- 
monically induced representations which are not only non-irreducible, but 
equivalent to the regular representation of S! The underlying principle here 
was explained to us by Nolan Wallach, and will be discussed and 
generalized in another paper. Since the methods required for the proof of 
the following theorem involve a deep understanding of semisimple groups, 
and have almost nothing in common with the techniques of this paper, we 
shall illustrate the statement but say very little about how it is proved. 

THEOREM 4.6. Let G and S satisfy Hypothesis 4.1, and let 71 E G,. Then if 
71 is holomorphic or antfholomorphic, 7~1 s is offinite multiplicity. However, if 
71 is neither holomorphic nor anti-holomorphic, ~1 s has infinite multiplicity 
(i.e., contains some u E 3, with infinite multiplicity). 

Remarks 4.7. Let us at least define the terms in the statement and see 
how it applies to the situation at hand. Any n1 E G, has a Harish-Chandra 
parameter 1 in the weight “lattice” of t as above, and 1 is regular. (The 
word “lattice” is slightly misleading since K contains a copy of R, hence we 
really have a product of a lattice with a line.) Having ordered the roots as 
in (4.3), we may assume 1 is dominant for P,. Let PA = {PEA 1 
(2, fi) > 0). Then Pn is a new positive system for A and, by assumption, 
P, Z? P,. If PA = P, u ( - P,), we say 7c is holomorphic. This is equivalent to 
saying that x~E.~~,((A - p,)/i), b). (Note that P, u (-P,) is indeed a 
positive system since if y, 6 E P,, y + 6 is not a root, and if y E P, and 6 E A,, 
y + 6 either lies in P, or is not a root.) Similarly, x1 is said to be anti- 
holomorphic if Pn = PO. This implies nlg rcG IPJ((J - po)/i, b); equivalently, rc 
is holomorphic for the opposite complex structure on G/K. Among discrete 
series representations, the holomorphic and anti-holomorphic represen- 
tations are unusual in (a) being particularly easy to realize geometrically, 
since they come from holomorphic induction, and (b) being particularly 
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“small” in having a rather “narrow” set of K-types. One may characterize 
them algebraically by the property that 

y,S~P~nA,,*y+d is not a root. 

That rcIS is irreducible when 7c is holomorphic or anti-holomorphic 
follows immediately from (4.2) and the Blattner-Kobayashi Theorem 
(applied to S). However, showing that nlS has infinite multiplicity in the 
other cases requires making precise the difference in “size” between 
holomorphic and non-holomorphic representations. A nice way of viewing 
(4.6) is in terms of the orbit method, since the restriction of rc to S has 
something to do with the geometry of the projection of the coadjoint orbit 
of l/i from g* to 5*. 

We conclude by applying (4.6) to Example 4.5, thereby recovering the 
last part of Theorem 3.8. If cc>n+ 1, then x”,(L&, h)rnO,(IC/., p)lS is the 
restriction of a holomorphic representation, and so is irreducible. If a < 1, 
then n;+’ (afo, h)~?rr~‘($,, p)lS is the restriction of an anti-holomorphic 
representation, and again is irreducible. But if 1 < a < n + 1 and a is not an 
integer, then with 3. = iag, + po, 

P;,=P,.v i p 
i 

n+ 1~ j:k = [a], [a] + l,..., n 
j=O I 

u - i /In+,-,:k=O, l,..., [a] - 1 
i 

, 
j=O I 

The positive system contains two non-compact roots whose sum is a root: 

/=O j=O 

so z;+ l-[al(afo, f)) is th e restriction of a discrete series representation of G 
which is neither holomorphic nor anti-holomorphic, hence has infinite mul- 
tiplicity by Theorem 4.6. 
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