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We show an existence and uniqueness result for mildly nonlinear Schr6dinger systems of
(self-consistent) Hartree-Fock form. We also shortly resume the already existing results
on the semiclassical limit and the asymptotic and dispersive behavior of such systems.
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1. INTRODUCTION

We consider Hartree-Fock systems in d of the
form

0 2
ie-t -f A] + VE(x) + Vei_I(X, t))b]

j:l

x E a, E ,l [

(1.1a)

(1.1b)

Here e > 0 denotes the scaled Planck-constant,

A _> 0 the occupation number ofthe state b and n
the number density. V is the self-consistent Hartree
potential (defined by the interaction potential
U U(x)), V represents a given exterior potential
and VIi stands for the interaction of the/-th andj-th
state.The last term in (1.1a) is called the exchange
correlation term. The density matrix pC and the
current density jc are defined as

;, t) l(y,t) (1.1f)
/-1

A b (x, t)V] (x, t) 1.1 g)
/=1

Hartree-Fock systems are considered an accu-
rate description of the quantum-mechanical evolu-
tion of a Fermion system, since their derivation
from many body physics takes into account the
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Pauli exclusion principle [16], which is not the case
for Hartree systems (obtained by setting Vj 0).
An existence analysis for the three dimensional
Coulomb case can be found in [2]. The corre-
sponding long time behavior was analysed in [3].

In Section 2 we give an existence and uniqueness
result for the system (1.1) for very general interac-
tion potentials in any space dimension and for
both the attractive and repulsive case.

Section 3 is a summary of already existing results
[4] on the classical limit and the asymptotic and
dispersive behavior of the system (1.1).

For the definition of the ’weak LP-spaces Lp’ we
refer to [RS, page 30]. Obviously, the Coulomb
interaction U(x) (1/Ixl) on [3 satisfies assump-
tion (A3).
A crucial tool in the following analysis are the a

priori conserved quantities. We have

LEMMA 2.1 Let U(x) U(-x) on d hold. Then

a
n(x, t) dx ./a nl(x) dx,

Vt E (charge conservation),
(2.1)

2. EXISTENCE AND UNIQUENESS
OF SOLUTIONS

In this section we investigate the existence and
uniqueness of solutions for the system (1.1). Our
proof follows the proof in the three dimensional
Coulomb case [2] and the existence proof of the
corresponding Hartree case [1, 7]. In the following
we skip the superscript c since c is a fixed param-
eter in this section. We make the following
assumptions

(A 1) (i) V e N" A > 0;
(ii) C > 0"

On the external potential we assume
(A2) VE E Hoc(d); V ’VE(x)> V on [d,
and on the interaction potential:
(A3) (i) U(x) U(- x) on a

(ii) U Lr(d) + L*’() with

max(1 d) < r < oo ifd> 1,’:2

_< s < oc ifd > 2,
< s < oe ifd-1,2;

where nl(x) 1 2, and

E(t)- E(O), Vt , (2.2)

where

(2.3)

(energy conservation).

ProofofLemma 2.1 Relation (2.2) is obtained by
multiplying the Hartree-Fock equation (1.1a) by
Albt, integrating by parts, taking imaginary parts
and summing over 1.

(2.3) is the result of a somewhat more tedious
calculation based on multiplying (1.1 a) by At t t,
taking real parts and summing over I. Details can
be found in [2] (at least for the Coulomb interac-
tion potential U(x) (1/Ixl) on []3). I

Note that if U is not nonnegative, it is a priori
not clear whether both the kinetic and the poten-
tial energy are bounded or not.



HARTREE-FOCK SYSTEM 359

In order to state the main existence result we
define the following Hilbert space

Y-{P- (’Ym)ml’Ym E Hl([d)Vm E N and

(2.4)

LEMMA 2.3 For every T > 0 the map F: Y x
[0, T] -+ Y is locally Lipschitz continous in Y un-

iformly in [0, T].

Proof of Lemma 2.3 For notational convenience
we consider the case d > 2 (The cases d--1,2
differ only in the limiting cases). We are going to
show that

(2.7)

Using this definition it is possible to reformulate
problem (1.1) with I, (2/3m)mE N as

For this purpose we need to estimate

[c2ic2t + VE(x) + F() (2.5a)

with

(2.5b)

Now we can state our main result

THEOREM 2.1 Let assumption (A1)-(A3) hold.
Then, the evolution system (2.5) (and (1.1)) has a

unique global solution C([0, oo), Y).

We anticipate some lemmas we need in the proof
of the above theorem.
We denote by A the operator

A --A+ VE , D(A) c Y. (2.6)

The assumption (A2) on Vu suffices to state

U(. z)[l(Z)12dz’s(.)

_< g(.- z)(lbz(z)l 2

-Ipz(z)12)dz,(.)
L2(d)

vu(. z)(ll(Z)]2

-Iz(z)12)dz,(.)
2(ud)

U(. z)(lz(z)l 2

-Iz(z)12)dzV,(.)
L2(d)

+..., W,s N, (2.8)

LEMMA 2.2 The operator A generates the group
eTM, of unitary operators in Y.

and, in analogy, we estimate in the exchange
correlation part
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Using

(2.9)

and

v(. z)(z)b(z)dz(.)

2d
b E L2 d)a’c LP(d)’2 <-P <- d-2

(2.13)

In the first case, considering the weak L part of the
interaction potential U only and using the general-
ized Young inequality we have

(2.14)

for all (5 (0, 80] and some 2 <_ p <_ (2d/d-2). Pas-
sing to the limit 8 0 we obtain the estimate for the
L2 norm. For the strong L part of U we use the
Young inequality and obtain the estimate directly.
In the second case we have

-i,(z)121 ,(z) ,(z)I,(z)+ ,(z)l
(2.10)

and (as an example)

f vU(x )()()

VzU(x- )()()d, U(x- )v(()())d

(2.11)

we are able to estimate the many terms having
similar structure. It turns out that there are basically
two types of L2 norms to be estimated,

U(. z)a(z)b(z)dzc(.)

a,b Lp(Rd), 2 < p <_

L2()
2d
d-2’

c L2’),’
(2.12)

U(.-z)a(z)b(z)dzc(.)][ L:

(2.15)

for some 2 <p < (2d/d-2). The strong U part of
U can be estimated in the same way. Collecting all
the terms and summing over and s we obtain the
result

IIF[’]- F[’]ll 2 < c(U)[llll4 + I1]1 n2
y y.

(2.6)

Proof of Theorem 2.1 We split the proof into two
parts. First we prove the existence ofa local (in time)
solution. Then, we deduce the existence of a global
solution by using the conserved quantities.
Lemmas 2.1 and 2.2 guarantee the existence of

a T > 0 such that the Eq. (2.5) has a unique
solution on [0, T) and that

lim I1 -tTM
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if TM < oc (see semigroup theory in [14]). The
global (in time)existence follows by using the
conserved quantities. Assumption (A1) provides
bounded total initial density and energy. Lemma 2.1
gives bounded total density at every time. Also, for
U_> 0 we obtain immediately [[(t) [y < oo, Vt > O,
since using Schwartz inequality we have

n(x, t)n(z, t) > If (x,z, t)[ 2. (2.17)

In the case of non nonnegative interaction
potential the boundedness of the Y norm of is
also true but needs an explanation. In fact, we
have

/=1

< l(x)l2 2d
H,(Ud), 2 _<p <

d-2’
/=1

(2.18)

and (again for the weak L part of the interaction
potential)

(2.19)

for some 2 <p <_ (2d/d- 2). The same holds for the
strong L part of the interaction potential. There-
fore, not only the total energy is conserved, but also
the kinetic and potential energies are bounded uni-
formly in time and as a consequence ]l(t)l] r < oo,
Vt>O.

3. OTHER PROPERTIES
OF HARTREE-FOCK SYSTEMS

In this section we collect other interesting proper-
ties of the system (1.1). We only give a description
of the results. Details of the following results can
be found in [4]. The superscript e is important in
this section, especially in the first part. The results

are valid for d > l, for d special assumptions
are needed (see [4]).

3.1. The Classical Limit

In this section we describe the results on the classical
limit of the Hartree-Fock systems. The appro-
priate formulation to perform the classical limit is
the Wigner formalism, which we shortly describe.
The Wigner transform ofthe density matrix is the

Fourier transform of the function f(x+(e/2)rl,
x- (e/2)r/, t) with respect to /, i.e.,

w(x,v,t).
(2re) a

x +-,x , &
(3.1)

(cf. [5,8,17]), where the Fourier transform is
defined by

3(v) (2rr)d 99(x)eiVx dx. (3.2)

The Wigner transform is the solution of the
Wigner-Hartree-Fock equation, obtained from
(1.1) by an easy calculation [11]:

w + . Vxw + o[v]w
+ 0[W.]w + [w] 0,

(3.3a)

f
v,,(x, t) I U(x z)n (z, t)dz, (3.3b)

f
ne(x, t) I w(x, , ) d, (3.3c)

w(x, v, t- o)

(2rr)d PI x + - rl, x - l drl

(3.3d)
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For a given potential V V(x) the pseudo-
differential operator O[V] is defined by

(3.4a)

where v? denotes the inverse Fourier transform of
w w(x, v) with respect to v"

W(X, v)e-iv’r dv.(x,) (3.4b)

fe is the (quadratically) nonlinear operator

Under additional assumptions on the interaction
potential (and on its gradient) and on the initial
data it is possible to carry out the limit c 0.

THEOREM 3.1 Let (A 1), (A2), (A3) of [4] hold.
Then, for every sequence -- 0 there exists a subse-
quence (denoted by the same symbol) such that

wi w >_ 0 inL2(x av) weakly, (3.6a)

we --w > 0 inL(t;L2

(3.6b)
([Rx x va’)) weak ,,
P

ne -- n-/wdv in

a+4 dL(t; C-a-(x) weak ,, (3.6c)

j __+ jO J vwo dv in

d+4

L(Rt; LZ+-(Rx)) weak ,, (3.6d)

vv;, - vv,, VzU(X- z)(z,t)z

L(Nt; LZ(Nx)) weak ,,
in

(3.6e)

d d [t)fY[w] --+ 0 inS (xX v x (3.6f)

where (w, n, E --VV) are weak solutions of
the self consistent Vlasov equation"

ow + v. Vxw VxVn’VvW Oin
(3.7a)

w(t O) wi (3.7b)

The contribution of the exchange correlation
part originating from the Pauli principle does not
give any contribution in the classical limit in
which no such principle exists. Therefore, the result
is physically reasonable and expected.

In three dimensions with Coulomb interaction
the limiting classical problem is the Vlasov-Poisson
system, which also represents the limiting problem
if we start from the Hartree system only (with-
out exchange correlation part) [8, 9, 12].

3.2. Long Time Behavior

In this section we report on the asymptotic
behavior in the repulsive case (U > 0) and without
external potential VE 0. In the non (totally)
repulsive case or if VEt-0 the following result
cannot be expected. For simplicity, we give the
result for the interaction potential U(x)= (1/Ixl)
only.

THEOREM 3.2 Under the assumptions of [4] the
following decay estimates hold:
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(i) IlnllLqlx) c -(l-a),
(ii) JllLlx) c -(1

(iii) ][Wnlltr() c -(l-a),
(iv) with a (d/2)(1 (l/q)), (l/s) (2/q) /

(1/2), + (l/r) (l/q) + (l/d), <_ q <_ (d/
d-2), l<_s<(2d/3d-4) and max(l, (d/
2d+ 1))<r < d.

Note that results along the lines of the ones
presented (and in the more general in [4]) entirely
based on the Schr6dinger formalism restricted to
the 3d Coulomb case and finitely many coupled
states can be found in [3, 13]. Decay results for the
Hartree case with Coulomb interaction can be
found in [7].

3.3. A Dispersive Identity

Let x0Ea fixed, set 0 or and c > 0.
Then multiplying (3.3a) by (v.(x-xo)/(5+ x-
x01)(1/) gives the identity:

for all -oc < T1 < T2 < o. Integral identities of
this type were obtained in [10] for the free trans-
port equation, in [13] for the Vlasov-Poisson and
Wigner-Poisson systems and in [6] for a large class
of equations.

A lengthy calculation shows that the first term
on the left hand side of (3.8) is nonnegative. For
example in the case d 3 and 0 it is equal to

1=1

I(x (x, t)I ) dx (3.9)

(see [10] also for the other cases). Now let’s assume
that VE=0 (no exterior field) and that the
interaction potential is radial U U0(lxl) with

Uo(r) <_ O. Then, an easy calculation using
(x, z, t) 9 (z, x, t) and (2.17) shows that also

the third term in (3.8) is nonnegative. Thus, the
identity (3.8) gives the bound for the first term on
its left hand side:

Energy conservation shows that IIJ(t)ll,(g/ is
uniformly bounded in e and t. Thus, we conclude
for d 3 and all x0 E N3:

(just as for the free Schr6dinger equation). Similar
estimates can be obtained for dimensions different
from 3.
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