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When using Hartree-Fock (HF) trial wave functions in
quantum Monte Carlo calculations, one faces, in case of HF
instabilities, the HF symmetry dilemma in choosing between
the symmetry-adapted solution of higher HF energy and
symmetry-broken solutions of lower HF energies. In this work,
we have examined the HF symmetry dilemma in hydrogen
rings which present singlet instabilities for sufficiently large
rings. We have found that the symmetry-adapted HF wave
function gives a lower energy both in variational Monte Carlo
and in fixed-node diffusion Monte Carlo. This indicates that the
symmetry-adapted wave function has more accurate nodes than
the symmetry-broken wave functions, and thus suggests that
spatial symmetry is an important criterion for selecting good
trial wave functions.
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I. Introduction

It is well known that the symmetry-adapted solution of the nonlinear Hartree-
Fock (HF) equations of an electronic system is sometimes unstable. An unstable
solution corresponds to a saddle point of the energy as a function of the orbital
parameters, and breaking of space and/or spin symmetries of the wave function
then necessarily leads to one or several lower-energy HF solutions. The stability
conditions of the HF equations were first formulated by Thouless (1), and the
different instabilities were first categorized by Čiček and Paldus (2–7). For closed-
shell systems, onemay encounter “singlet instabilities” when only space symmetry
is broken, and “triplet (or nonsinglet) instabilities” when spin symmetry is also
broken. There is thus a symmetry dilemma (8) in choosing between the symmetry-
adapted wave function of higher HF energy and a symmetry-broken wave function
of lowerHF energy, in particular as a reference for a post-Hartree-Fock calculation.

A particularly spectacular example is provided by closed-shell hydrogen
rings H4n+2 with equal bond lengths (9) (see, also, ref. (10)). The metallic
symmetry-adapted HF solution exhibits singlet instabilities for sufficiently large
numbers of hydrogen atoms, and one can obtain insulating symmetry-broken HF
solutions with orbitals localizing on either the atoms or the bonds. However, both
Møller-Plesset perturbation theory or linearized coupled cluster doubles theory
(also called CEPA--0 or DMBPT–∞) give a lower total energy when starting from
the symmetry-adapted solution than when starting from the symmetry-broken
solutions, which casts doubts on the physical significance of the symmetry-broken
solutions. Of course, the symmetry dilemma would be removed with a full
configuration-interaction calculation which must give one unique solution,
independent of the orbitals used.

Quantum Monte Carlo (QMC) approaches are alternatives to the traditional
quantum chemistry methods (11–13). The two most commonly used variants
are variational Monte Carlo (VMC) which simply evaluates the energy of a
flexible trial wave function by stochastic sampling, and diffusion Monte Carlo
(DMC) which improves upon VMC by projecting the trial wave function onto
the exact ground state, while keeping the nodes of the wave function fixed. The
most common form of the trial wave function is a Jastrow factor multiplied by
a fixed HF determinant. If a system exhibits HF instabilities, then QMC also
faces the symmetry dilemma in choosing between different HF wave functions.
Indeed, different HF wave functions necessarily lead to different energies in
VMC, but also in DMC since the nodes of these HF wave functions are generally
different. This symmetry dilemma in DMC is only due to the fixed-node
approximation, since without this approximation DMC would give one unique
solution, independent of the orbitals used.

In this work, we study the impact of the HF symmetry dilemma for QMC in
hydrogen rings H4n+2. In Sec. II, we recall the HF symmetry-breaking problem
in these systems, and discuss the effect of using a Slater basis versus a Gaussian
basis. In Sec. III, we explain the QMC methodology and report our VMC and
DMC results. Our conclusions are summarized in Sec. IV.
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II. Hartree-Fock Symmetry Breaking

In previous studies (9, 14), the electronic structure of periodic rings of 4n+2
evenly spaced hydrogen atoms (with a fixed distance of rH–H = 0.74747Å) has been
investigated. The number of hydrogen atoms is restricted to 4n+2 in order to obtain
a possible closed-shell single-determinant solution with 2n+1 occupied orbitals.
The symmetry-adapted HF wave function has a metallic character and can be
expressed with either delocalized canonical orbitals or localized Wannier orbitals.
The canonical orbitals are doubly degenerate, except for the lowest-energy one,
and in a minimal basis the orbital coefficients are fixed by the cyclic symmetry.
Besides the symmetry-adapted (SA) solution, two different symmetry-broken HF
solutions of lower energy can be obtained beyond critical ring sizes, when using
unit cells of 2 hydrogen atoms. One solution corresponds to orbitals localized on
hydrogen atoms and is referred to as the symmetry-broken atom-centered (SB-AC)
solution, while the other corresponds to orbitals localized on bonds and is referred
to as the symmetry-broken bond-centered (SB-BC) solution. The SB-BC solution
is the lowest one in energy and corresponds to a true minimum. The three solutions
can be schematically described as ···H···H···, ···H+···H–···, and ···H–H···. In each
case, the symmetry breaking is accompanied by an opening of an energy gap
between occupied and virtual orbitals, and orbitals decay much more rapidly than
for the symmetry-adapted solution, in agreement with the theoretical result of
Kohn (15).

In order to distinguish the three different wave functions, one may look at the
one-particle density matrix P

This equation contains the expansion coefficients cαi of the occupied

molecular orbitals

expanded in a minimal set of atom-centered basis functions, i.e. one single basis

function per hydrogen atom. As depicted in Figure 1, for the SA solution,
we see equal elements on the diagonal and the sub-diagonals of the density matrix.
For the SB-AC solution, an alternation of element values on the diagonal of the
density matrix is obtained, but equal elements on the first sub-diagonal, and for
the SB-BC solution we have equality of the diagonal elements and alternation on
the first sub-diagonal.
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Figure 1. Structure of the one-particle density matrix for the HF
symmetry-adapted (SA) and symmetry-broken (SB-AC and SB-BC) solutions.

In ref. (9), a minimal Gaussian basis set (five s Gaussian functions contracted
to one single basis function for each hydrogen atom) was used. However,
Gaussian basis functions are not appropriate for all-electron QMC calculations.
They give large statistical fluctuations due to their incorrect vanishing gradient
at the nuclear positions. It is thus much preferable to use Slater basis functions
which correctly have a non-zero gradient on the nuclei and an exponential decay
at large distance. In this work, we use a minimal Slater basis set (one 1s Slater
function on each hydrogen atom) with an exponent of 1.17, which is smaller
than the optimal exponent of 1.24 for an isolated H2 molecule as we aim at
describing systems with diffuse electron distributions and still keep a single fixed
exponent. Spin-restricted HF (and MP2) calculations were performed with an
experimental code for ring systems, employed already for the previous studies
(16). The necessary integrals over Slater functions have been calculated with the
program SMILES (17). In order to obtain the symmetry-broken HF solutions, we
start from a set of localized Wannier orbitals describing either an ionic situation
or an explicit bond in the two-atom unit cell, and use an iterative configuration
interaction procedure using singly excited determinants (18, 19) instead of
diagonalizing a Fock operator to avoid complete delocalization of the molecular
orbitals.

Table I reports the HF energy differences between the symmetry-broken
solutions and the symmetry-adapted one for the Gaussian basis set of ref. (9) and
the Slater basis set of the present study. With the Gaussian basis set, the departure
of the SB-BC and SB-AC solutions from the SA solution occurs for H46 and H54
rings, respectively. With the Slater basis set, the onset of symmetry breaking takes
place for larger rings, i.e. for H50 and H62 for SB-BC and SB-AC, respectively.
In addition, for a fixed ring size, the lowering in energy of the symmetry-broken
solutions is smaller with the Slater basis set. This is an indication that the Slater
basis is better than the Gaussian basis, since the amount of symmetry breaking
is usually larger for poorer wave functions. The HF total energies are indeed
lower with the Slater basis, for example for H42, the (SA) energy is –0.950252
hartree with the Gaussian basis and –0.997003 hartree with the Slater basis. As
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an additional verification of the usefulness of Slater functions, we can look at
Kato’s cusp condition (20) at the nuclear positions :

where and are the density and the spherical average of density
gradient at the nuclear positions, and Z is the nuclear charge. For example, for the
H86 ring, we find 1.009 for SA, 1.012 for SB-BC, and 1.034 and 0.980 for SB-AC,
close to the ideal value of Z = 1.

Table I. HF energy differences of H4n+2 rings, per H2 cell in mhartree,
between the symmetry-broken solutions (SB-AC and SB-BC) and the
symmetry-adapted (SA) one, for the Gaussian and Slater basis sets

Gaussian basis Slater basis

4n+2 ESB-AC – ESA ESB-BC – ESA ESB-AC – ESA ESB-BC – ESA

42 — — — —

46 — −0.00258 — —

50 — −0.03555 — −0.00199

54 −0.00115 −0.08933 — −0.02739

58 −0.01900 −0.15116 — −0.06961

62 −0.04980 −0.21440 −0.00080 −0.11914

66 −0.08678 −0.27565 −0.01223 −0.17074

III. Quantum Monte Carlo Study
QMC methods are considered as producing benchmarks in quantum

chemistry, approaching the electronic-structure problem through a drastically
different way than common wave-function-based methods or density-functional
theory. As QMC methods often rely of a HF trial wave function, it is interesting
to check their sensitivity to HF symmetry breaking. We start by giving a brief
overview of the VMC and DMC methods employed in this work.

A. Brief Overview of VMC and DMC

We consider Jastrow-Slater trial wave function of the form

where R designates the electron coordinates, is a HF determinant and
is a Jastrow correlation factor depending explicitly on the

electron-electron distances rij and the nuclei-electron distances rIj . In VMC, one
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calculates the energy as the expectation value of the Hamiltonian H over the wave
function by stochastic sampling

is the local energy, and the M points are sampled from
by aMetropolis algorithm. In DMC, one improves over the distribution
by generating another distribution: ), obtained by evolving the

importance-sampling Schrödinger equation in imaginary time

This equation resembles an ordinary diffusion equation with diffusion, drift
and source terms on the right-hand side. This diffusion process is simulated
stochastically with a population of walkers representing the distribution ) .
The trial energy ET is adjusted in the course of the calculation in order to maintain
a stable population of walkers. After some iterations the stationary distribution is
obtained from where is the fixed-node
(FN) wave function, i.e. the best approximation to the ground-state wave function
having the same nodes as the trial wave function. In practice, this fixed-node
approximation is automatically enforced by using as a positive
probability density, meaning that must necessarily be of the same sign
as . The DMC energy is then calculated as the statistical average of the local
energy of the trial wave function over the mixed distribution: .

The nodes of the wave function are the locations of the points R where
the wave function vanishes. For a system of N electrons in 3 dimensions, they
form (3N-1)–dimensional hypersurfaces. A subset of these nodes is given by
the antisymmetry property of the fermionic wave function with respect to the
exchange of two electrons, which implies that the wave function vanishes when
two same-spin electrons are at the same point in space. However, these “Pauli” (or
exchange) nodes form only (3N-3)–dimensional hypersurfaces, and are therefore
far from sufficient to determine the full nodal hypersurfaces (see, e.g., ref. (21)
for examples on simple atomic systems). Likewise, space symmetry is generally
far from sufficient to specify the nodes (22). For a given system, different HF
wave functions (of different space symmetries) share the same Pauli nodes, but
otherwise generally have very different nodal hypersurfaces, and thus lead to
different fixed-node errors on DMC energies.
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B. Computational Details

The QMC calculations have been performed with the program CHAMP (23)
on a massively parallel IBM BlueGene architecture using up to 4096 processors.
The trial wave functions are constructed by multiplying the previously obtained
HF wave functions by a Jastrow factor consisting of the exponential of the sum
of electron-nucleus, electron-electron and possibly electron-electron-nucleus
terms, written as systematic polynomial and Padé expansions (24) (see also refs.
(25, 26)). Some Jastrow parameters are fixed by imposing the electron-electron
cusp condition, and the others are optimized with the linear energy minimization
method in VMC (27–29), using an accelerated Metropolis algorithm (30, 31).
The orbital and basis exponent parameters are kept fixed in this work. Once the
trial wave functions have been optimized, we perform DMC calculations within
the short-time and fixed-node approximations (see, e.g., refs. (32–36)). We use an
imaginary time step of Δτ = 0.01 hartree-1 in an efficient DMC algorithm having
very small time-step errors (37). We use a target population of 100 walkers per
processor, and estimate statistical uncertainties with blocks of 1000 iterations, for
an energy autocorrelation time of about 50 iterations. The statistical uncertainty
on the average energy per H2 cell is decreased to smaller than 2 x 10-5 hartree.

The computational cost of the VMC calculations grows with the third power
of the number of hydrogen atoms when optimizing all the two-body and three-
body terms in the Jastrow factor. When restricting the Jastrow factor to the two-
body terms only, the computational cost scales quadratically with the number of
hydrogen atoms, suggesting that it is the evaluation of the Jastrow factor which
dominates the computational cost and not the evaluation of the Slater determinant.
The large reduction of computational cost achieved by removing the three-body
terms comes without too much a loss on the VMC energy, and in principle no loss
at all on the DMC energy. For example, for the H26 ring system, we find a VMC
energy of –13.8894 ± 0.0005 hartree with the three-body term, and –13.8430 ±
0.0005 hartree without the three-body term. The computational effort is about 20
times more time consuming in the former case. We thus use a two-body Jastrow
only.

As the variance V of the local energy of a ring of n H2 molecules is
approximately n times the variance V for one H2 molecule, the statistical
uncertainty on the energy grows with the square root of n

Here M is the number of Monte Carlo iterations. Therefore, the statistical
uncertainty on the energy per H2 cell decreases as , and thus calculations
aiming at a given statistical uncertainty on this quantity demand fewer steps for
increasing ring sizes.
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C. Results

Figure 2 reports the VMC total energies of the hydrogen rings, per H2 cell,
for the three HF solutions from 46 to 102 hydrogen atoms. Like in Møller-Plesset
perturbation theory or linearized coupled cluster doubles theory, the energy
ordering of the three solutions are reversed in comparison to HF, the SA wave
function giving now the lowest total energy and the SB-BC solution giving the
highest one. For the case of H86, we show in Table II the QMC total energies
and energy differences of the symmetry-adapted and symmetry-broken solutions.
For comparison, we also report MP2 energies calculated with the same Slater
basis set. The VMC total energy per H2 cell lie about 50 mhartree below the MP2
energies, and the energy splittings between the different solutions are also smaller
than those in MP2, which shows the Jastrow factor better describes electron
correlation.

Figure 3 reports the corresponding DMC results. The energy ordering is the
same as in VMC and MP2, the SA wave function giving the lowest DMC total
energy, and thus the smallest fixed-node error. As shown in Table II, the energy
splittings between the different solutions are much smaller in DMC. This indicates
that DMC is less sensitive to symmetry breaking than other correlation methods.
It is an interesting feature for cases where symmetry breaking cannot be avoided.

Figure 2. VMC total energies of H4n+2 rings, per H2 cell in mhartree, for the
symmetry-adapted (SA) and the two symmetry-broken (SB-AC and SB-BC) HF
solutions from 46 to 102 hydrogen atoms. The statistical uncertainty is about the

size of the point.
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Table II. Total energy and energy differences, per H2 cell in mhartree, of the
symmetry-adapted (SA) and the symmetry-broken (SB-AC and SB-BC) HF

solutions, for the H86 ring, with the Slater basis set

Method E(SA) E(SB-AC)-E(SA) E(SB-BC)-E(SA)

HF −996.15 −0.14 −0.39

MP2 −1016.22 1.37 1.55

VMC −1063.24 0.93 1.36

DMC −1077.57 0.31 0.70

Figure 3. DMC total energies of H4n+2 rings, per H2 cell in mhartree, for the
symmetry-adapted (SA) and the two symmetry-broken (SB-AC and SB-BC) HF
solutions from 46 to 102 hydrogen atoms. The statistical uncertainty is about the

size of the point.

IV. Conclusion
When HF trial wave functions are used in QMC calculations, in case of

HF instabilities QMC faces the HF symmetry dilemma in choosing between the
symmetry-adapted solution of higher HF energy and symmetry-broken solutions
of lower HF energies. In this work, we have examined the HF symmetry dilemma
in hydrogen rings H4n+2 which present HF singlet instabilities for sufficiently
large ring sizes. We have shown that using a Slater basis set, instead of a
Gaussian basis set, delays the onset of HF symmetry breaking until larger rings
and slightly reduces the energy splittings between the symmetry-adapted and
symmetry-broken wave functions. When using these different HF wave functions
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in VMC and DMC, we have found that the energy ordering is reversed, the
symmetry-adapted wave function always giving the lowest energy. This confirms
previous post-Hartree-Fock studies in showing that these symmetry-broken
solutions are bad starting wave functions for correlated calculations. The fact
that the symmetry-adapted wave function gives the lowest DMC energy indicates
that this wave function has more accurate nodes than the symmetry-broken wave
functions. The present experience thus suggests that spatial symmetry is an
important criterion for selecting good trial wave functions.
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