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Hashing with open addressing

“Uniform probing”

Insert key 𝑘 in the first free position among

(Sometimes) assumed to be a permutation

To search, follow the same order

Table is not full   Insertion succeeds

Hash table of size 𝑚



Linear probing
“The most important hashing technique”

But, many fewer cache misses

More probes than uniform probing due to clustering:

long runs tend to get longer and merge with other runs

How do we analyze it? 

Which hash functions should we use?

Extremely efficient in practice



Order of insertions

Theorem:  The set of occupied cell and the total 

number of probes done while inserting a set of  items

into a hash table using linear probing does not depend

on the order in which the items are inserted 

Exercise:  Prove the theorem

Exercise:  Is the same true for uniform probing?



Number of probes

Exercise:  Show that if, after inserting 𝑛 items into a 

table of size 𝑚, the occupied cells in the table form 

runs of length ℓ1, ℓ2, … , where   𝑖 ℓ𝑖 = 𝑛, then the

expected number of probes in an unsuccessful search, 

assuming the searched key is mapped into a 

uniformly random location in the table, is

1 +
1

𝑚
 

𝑖

ℓ𝑖(ℓ𝑖 + 1)

2

Exercise:  What are the smallest and largest possible 

total number of probes needed to construct 

a hash table that contain runs of length  ℓ1, ℓ2, … ?



Probabilistic analysis of uniform probing

[Petersen (1957)]

𝑛 – number of elements in table

𝑚 – size of hash table

Uniform probing: for every 𝑘𝑈,

ℎ(𝑘, 0), … , ℎ(𝑘,𝑚 − 1) is random permutation,

independent of all other permutations

 = 𝑛/𝑚 – load factor (Note:   1)

Expected no. of probes in a 

successful search is at most

Expected no. of probes in an unsuccessful

search of a random item is at most



Claim: Expected no. of probes 

in an unsuccessful search is at most:

The probability that a random cell is occupied is 

The probability that the first 𝑖 cells probed 

are all occupied is at most 𝑖

Probabilistic analysis of uniform probing

[Petersen (1957)]

Exercise: Do the calculation more carefully and show 

that the expected no. of probes in an unsuccessful 

search is exactly (𝑚 + 1)/(𝑚 − 𝑛 + 1)



Probabilistic analysis of linear probing 
[Knuth (1962)]

Random hash function: 

for every 𝑘𝑈, ℎ(𝑘) is uniformly distributed, 

independent of all other ℎ(𝑘’), for 𝑘 ≠ 𝑘′

 = 𝑛/𝑚 – load factor (  1)

Expected no. of probes in an 

unsuccessful search is at most

Expected no. of probes in a successful

search of a random item is at most



Expected number of probes
Assuming random hash functions

Successful

Search

Unsuccessful

Search

Uniform Probing

Linear Probing

When, say,   0.6, all small constants



Expected number of probes

0.5
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What is the probability that 𝑇[0] is empty?

Probabilistic analysis of linear probing 
[Knuth (1962)]

𝑛 – number of elements in table

𝑚 – size of hash table

By symmetry, all cells are 

equally likely to be empty
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What is the probability that 

𝑇[0], 𝑇[𝑘 + 1] empty, 𝑇[1], … , 𝑇[𝑘] occupied?

Exactly 𝑘 items should be mapped to [0, 𝑘]
and 𝑛 − 𝑘 items should be mapped to [𝑘 + 1,𝑚 − 1]

Given that 𝑘 items are mapped to [0, 𝑘],
𝑇[0] should remain empty

Given that 𝑛 − 𝑘 items are mapped to [𝑘 + 1,𝑚 − 1],
𝑇[𝑘 + 1] should remain empty

0 1 2 𝑘 𝑚 − 1
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0 1 2 𝑘 𝑚 − 1

What is the probability that 

𝑇[0], 𝑇[𝑘 + 1] empty, 𝑇[1], … , 𝑇[𝑘] occupied?

𝑔𝑘 is the probability that a run of 

size exactly 𝑘 starts at a given position

Exercise: 𝑔0 → 1− 𝛼 e−𝛼 ,  𝑔1 → 𝛼 1 − 𝛼 e−2𝛼
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What is the probability that an unsuccessful search 

encounters exactly 𝑘 occupied cells?

0 1 2 𝑘

Interesting to note that

𝑝0 = 1 − 𝛼

𝑝1 = 𝑝0 − 𝑔0 → 1− 𝛼 1 − e−𝛼
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The expected no. of probes in an unsuccessful

search, which is also the expected no. of probes 

needed to insert the (𝑛 + 1)-st item is

′
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Ex. 6.4.27

Knuth, Vol. 3

′



Abel’s binomial theorem

(see Knuth Eq. 1.2.6-(16)) 

𝑥 + 𝑦 𝑛 =  

𝑘=0

𝑛
𝑛

𝑘
𝑥 𝑥 − 𝑘𝑧 𝑘−1 𝑦 + 𝑘𝑧 𝑛−𝑘



𝐶𝑛
′ =

1

2
1 + 𝑄1(𝑚, 𝑛)

𝑄1 𝑚, 𝑛 =  

𝑘=0

𝑛

𝑘 + 1
𝑛 𝑘

𝑚𝑘
≤  

𝑘=0

𝑛

𝑘 + 1
𝑛

𝑚

𝑘

<
1

1 − 𝛼

2

𝑛 𝑘 = 𝑛 𝑛 − 1 … 𝑛 − 𝑘 + 1 ≤ 𝑛𝑘

 

𝑘≥0

𝑘 + 1 𝛼𝑘 =
1

1 − 𝛼

2

Unsuccessful search

The birth of Knuth’s style Analysis of Algorithms…



Successful search / Construction time

The expected number of probes in a 

search of randomly selected item is

𝐶𝑛 =
1

𝑛
 

𝑘=0

𝑛−1

𝐶𝑘
′ <

1

2
1 +

1

1 − 𝛼

The expected number of probes in 

the construction of the table is 

𝑛 𝐶𝑛 =  

𝑘=0

𝑛−1

𝐶𝑘
′
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The “parking problem” 
[Knuth (1962)] [Konheim-Weiss (1966)]

A one-way street contains 𝑚 parking spots 

𝑛 cars arrive, one after the other

The 𝑖-th car chooses a random number ℎ𝑖
between 1 and 𝑚 and parks in the first free spot 

at or after location ℎ𝑖, if there is one

Exercise: What is the probability that 

all cars find a parking spot?



In practice, we cannot use

a truly random hash function

Does linear probing still have a 

constant expected time per operation 

when more realistic hash functions are used?

For chaining,  2-independence,

or just “universality”, was enough

Linear Probing: Theory vs. Practice

How much independence is 

needed for linear probing?



5-independence suffices for linear probing!

[Pagh-Pagh-Rŭzíc (2009)]

4-independence does not suffice!

[Pătraşcu-Thorup (2010)]

Linear Probing: Theory vs. Practice



𝑘-independence

Definition: 

𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑘-independent iff for every 

distinct 𝑖1, 𝑖2, … , 𝑖𝑘, 𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝑘 are independent

Definition:

𝑋1, 𝑋2, … , 𝑋𝑘 are independent iff

for every 𝑥1, 𝑥2, … , 𝑥𝑘, we have

Pr[𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘] =
Pr[𝑋1 = 𝑥1] Pr 𝑋2 = 𝑥2 … Pr[𝑋𝑘 = 𝑥𝑘]



Families of 𝑘-independent hash functions

Let 𝐻 be a family of hash functions from 𝑈 to 𝑉.

𝐻 is 𝑘-independent iff for every distinct

𝑥1, 𝑥2, … , 𝑥𝑘 ∈ 𝑈, ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ(𝑥𝑘) are 

independent, when ℎ is chosen at random from 𝐻

If 𝐻 is 𝑘-independent and 𝐻′ = 𝑓 ℎ 𝑥 ℎ ∈ 𝐻 },

for some function 𝑓, then 𝐻′ is also 𝑘-independent

We usually require that for every 𝑥 ∈ 𝑈, 

ℎ(𝑥) is (almost) uniformly distributed on 𝑉



Polynomial hash functions

Lemma: If 𝐹 is a field, then 

𝐻 = {  𝑖=0
𝑘−1 𝑎𝑖𝑥

𝑖 | 𝑎0, 𝑎1, … , 𝑎𝑘 ∈ 𝐹 }
is a 𝑘-independent family of hash functions

Corollary: If 𝑝 is a prime, and 𝑚 is arbitrary, then 

𝐻 = { (( 𝑖=0
𝑘−1 𝑎𝑖𝑥

𝑖) mod 𝑝) mod 𝑚 | 𝑎0, 𝑎1, … , 𝑎𝑘 ∈ 𝐹 }
is a 𝑘-independent family of hash functions

When 𝑝 ≫ 𝑚, ℎ(𝑥) is almost uniformly 

distributed on 𝑚 = {0,1,… ,𝑚 − 1}



ℎ 𝑥 =  𝑖=0
𝑘−1𝑎𝑖𝑥

𝑖

𝑥1, 𝑥2, … , 𝑥𝑘 ∈ 𝐹 distinct

𝑦1, 𝑦2, … , 𝑦𝑘 ∈ 𝐹 (not necessarily distinct)  

ℎ 𝑥1 = 𝑦1 , ℎ 𝑥2 = 𝑦2 , … , ℎ 𝑥𝑘 = 𝑦𝑘

1 𝑥1 … 𝑥1
𝑘−1

1 𝑥2 … 𝑥2
𝑘−1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑘 … 𝑥𝑘

𝑘−1

𝑎0
𝑎1
⋮

𝑎𝑘−1

=

𝑦1
𝑦2
⋮
𝑦𝑘

Unique solution!

Polynomial hash functions



Vandermonde Determinant

det

1 𝑥1 … 𝑥1
𝑘−1

1 𝑥2 … 𝑥2
𝑘−1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑘 … 𝑥𝑘

𝑘−1

=  

𝑖<𝑗

𝑥𝑗 − 𝑥𝑖



Tabulation-based hash functions
[Carter-Wegman (1979)]

[Pătraşcu-Thorup (2010)]

ℎ 𝑥1, 𝑥2, … , 𝑥𝑐 = ℎ1 𝑥1 ⊕ℎ2 𝑥2 ⊕⋯⊕ℎ𝑐 𝑥𝑐

ℎ1, ℎ2, … , ℎ𝑐 ∶ 𝑢1/𝑐 → [2𝑘]

ℎ ∶ 𝑢 → [2𝑘]

𝑢 = 0,1,… , 𝑢 − 1

ℎ1, ℎ2, … , ℎ𝑐 may be implemented 

using small look-up tables

Very efficient in practice



Tabulation-based hash functions
[Carter-Wegman (1979)]

[Pătraşcu-Thorup (2010)]

ℎ 𝑥1, 𝑥2, … , 𝑥𝑐 = ℎ1 𝑥1 ⊕ℎ2 𝑥2 ⊕⋯⊕ℎ𝑐 𝑥𝑐

If ℎ1, ℎ2, … , ℎ𝑐 are independently chosen from a 

uniform 2-independent family, then ℎ is 2-independent

If ℎ1, ℎ2, … , ℎ𝑐 are independently chosen from a 

uniform 3-independent family, then ℎ is 3-independent

Not 4-independent!

ℎ 𝑥1, 𝑦1 ⊕ℎ 𝑥1, 𝑦2 ⊕ℎ 𝑥2, 𝑦1 ⊕ℎ 𝑥2, 𝑦2 = 0



Tabulation-based hash functions
[Thorup-Zhang (2012)]

ℎ 𝑥, 𝑦 = ℎ1 𝑥 ⊕ ℎ2 𝑦 ⊕ ℎ3 𝑥 + 𝑦

If ℎ1, ℎ2, ℎ3 are independently chosen from a 

5-independent family, then ℎ is 5-independent

Higher independence possible at 

the cost of more table look-ups
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Linear probing with bounded independence
[Pagh-Pagh-Rŭzíc (2009)]

[Pătraşcu-Thorup (2010)]

5432Independence

Θ(1)Θ(log 𝑛)Θ( 𝑛)Search time

Θ(𝑛)Θ(𝑛 log 𝑛)Construction time

Upper bounds hold for any set of keys 

and any family with the specified independence

Lower bounds hold for some sets of keys 

and some families with the specified independence



Balls in Bins

Throw 𝑛 balls randomly into 𝑚 bins

All throws are uniform and (partially-)independent



Balls in Bins

Throw 𝑛 balls randomly into 𝑚 bins

Let 𝑋 be the number of balls 

that fall into a specific bin, e.g., the first

Let 𝑋𝑖 be 1 if the 𝑖-th ball falls into 

the specific bin, and 0 otherwise 

We want to bound the probability that 𝑋 is large



Tail bounds
Markov’s inequality:

If 𝑋 ≥ 0, Pr 𝑋 ≥ 𝑏𝜇 ≤
1

𝑏

Chebyshev’s inequality:     

Pr X − 𝜇 ≥ 𝑏𝜇 = Pr 𝑋 − 𝜇 2 ≥ 𝑏2𝜇2

≤
𝐸 𝑋 − 𝜇 2

𝑏2𝜇2
=

𝑉𝑎𝑟 𝑋

𝑏2𝜇2

Higher (even) moments:     

Pr X − 𝜇 ≥ 𝑏𝜇 = Pr 𝑋 − 𝜇 𝑘 ≥ 𝑏𝑘𝜇𝑘

≤
𝐸 𝑋 − 𝜇 𝑘

𝑏𝑘𝜇𝑘
=

𝑀𝑘 𝑋 − 𝜇

𝑏𝑘𝜇𝑘



Tail bounds

Chernoff bound:

If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent indicators, 

𝑋 =  𝑖=1
𝑛 𝑋𝑖 , 𝜇 = 𝐸 𝑋 , and 𝛿 > 0, then

Pr 𝑋 ≥ 1 + 𝛿 𝜇 <
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

Chernoff bound is stronger.

But it requires complete independence.

Proof: Apply Markov’s inequality 

to 𝑒𝑡𝑋 and choose 𝑡 = ln(1 + 𝛿)



Computing moments
𝑋 =  𝑖=1

𝑛 𝑋𝑖 𝑋𝒊 =  
1 w. p. 𝑝
0 w. p. 1 − 𝑝

𝜇 = 𝐸[𝑋] = 𝑛𝑝

𝑌𝑖 = 𝑋𝑖 − 𝑝 =  
1 − 𝑝 w. p. 𝑝
−𝑝 w. p. 1 − 𝑝

𝑋 − 𝜇 =  𝑖=1
𝑛 𝑌𝑖

𝐸 𝑋 − 𝜇 𝑘 = 𝐸  𝑖=1
𝑛 𝑌𝑖

𝑘

= 𝐸[ 𝑖1,𝑖2,…,𝑖𝑘
𝑌𝑖1𝑌𝑖2 …𝑌𝑖𝑘]

=  𝑖1,𝑖2,…,𝑖𝑘
𝐸[𝑌𝑖1𝑌𝑖2 …𝑌𝑖𝑘]

𝐸[𝑌𝑖1𝑌𝑖2 …𝑌𝑖𝑘]  =  𝐸[𝑌𝑖1]𝐸[𝑌𝑖2]…𝐸[𝑌𝑖𝑘]
?

𝐸 𝑌𝑖 = 0



Computing moments

If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑘-independent, 

then so are 𝑌1, 𝑌2, … , 𝑌𝑛

𝐸[𝑌𝑖1𝑌𝑖2 …𝑌𝑖𝑘]  = 𝐸[𝑌𝑖1] 𝐸[𝑌𝑖2]…𝐸[𝑌𝑖𝑘] = 0

If 𝑖1, 𝑖2, … , 𝑖𝑘 are distinct, then

𝐸[𝑌𝑖1𝑌𝑖2 …𝑌𝑖𝑘]  = 𝐸[𝑌𝑖1] 𝐸[𝑌𝑖2 …𝑌𝑖𝑘] = 0

If 𝑖1 differs from 𝑖2, … , 𝑖𝑘, then

𝐸[𝑌𝑖 𝑌𝑖 𝑌𝑗 𝑌𝑗]  = 𝐸[𝑌𝑖
2] 𝐸[𝑌𝑗

2]

If 𝑖 ≠ 𝑗, then



Computing moments

If 𝑋1, 𝑋2, … , 𝑋𝑛 are 2-independent

𝐸 𝑋 − 𝜇 2 = 𝐸  𝑖=1
𝑛 𝑌𝑖

2

=  𝑖=1
𝑛 𝐸 𝑌𝑖

2 = 𝑛𝑝(1 − 𝑝) < 𝜇

𝑌𝒊 =  
1 − 𝑝 w. p. 𝑝
−𝑝 w. p. 1 − 𝑝

𝐸 𝑌𝑖
𝑘 = 𝑝 1 − 𝑝 𝑘 + 1 − 𝑝 −𝑝 𝑘

= 𝑝 1 − 𝑝 1 − 𝑝 𝑘−1 − −𝑝 𝑘−1

≤ 𝑝 1 − 𝑝 ≤ 𝑝



Computing moments

If 𝑋1, 𝑋2, … , 𝑋𝑛 are 4-independent

𝐸 𝑋 − 𝜇 4 = 𝐸  𝑖=1
𝑛 𝑌𝑖

4

= 3 

𝑖≠𝑗

𝐸 𝑌𝑖
2 𝐸 𝑌𝑗

2 + 

𝑖

𝐸 𝑌𝑖
4

≤ 3𝑛2𝑝2 + 𝑛𝑝 = 3𝜇2 + 𝜇

If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑘-independent, 

where 𝑘 = 𝑂(1) and 𝜇 = Ω 1 , then 

𝐸 𝑋 − 𝜇 𝑘 = 𝑂(𝜇𝑘/2)

Why?

(We only need 4-th moments)



Planting a binary tree



Crowded nodes
[Pătraşcu-Thorup (2010)]

𝑚 is a power of 2

A node at height 𝑖 corresponds

to 2𝑖 consecutive cells in the table

𝛼 = 𝑛/𝑚 ≤ 2/3

A node at height 𝑖 is crowded, if at least 

(3/4)2𝑖 items are mapped into its interval

Simplifying assumptions:

The final locations of items mapped 

into an interval may be outside the interval



≤ 𝑦 − ℓ

Simple observation I

𝑦

ℓ

𝑥



𝑥

𝑦

ℓ

𝑥 + 𝑦 − ℓ

Simple observation II



Main observation
[Pătraşcu-Thorup (2010)]

1

2𝑖 ≤ ℓ

2𝑖−2

2 3 4𝑖 − 2

Consider a run of length 2𝑖 ≤ ℓ, where 𝑖 > 2

At least one of the first four nodes at level 𝑖 − 2
whose last cell belongs to the run is crowded



Proof of main observation

1

2𝑖 ≤ ℓ

2𝑖−2

2 3 4𝑖 − 2

Just before the run, there is an empty cell.

Thus, if 1 is not crowded, it contributes 

less than (3/4)2𝑖−2 items to the run  

If 2,3,4 are not crowded, then each of their 

intervals can absorb at least (1/4)2𝑖−2 items 

Thus, if none of 1,2,3,4 is crowded, the run ends at or 

before the interval of 4 and its length is less than 4 ⋅ 2𝑖−2 = 2𝑖



Probability of being crowded

Assume that 𝛼 =
𝑛

𝑚
≤

2

3

Consider a node at height 𝑖

Throwing 𝑛 balls into 𝑚/2𝑖 bins

𝜇 = 𝑛/(𝑚/2𝑖) = 𝛼 2𝑖 ≤ (2/3)2𝑖

Pr X ≥
3

4
2𝑖 ≤ Pr X − 𝜇 ≥ 𝑏𝜇

≤
𝐸 𝑋−𝜇 𝑘

𝑏𝑘𝜇𝑘 = 𝑂
1

𝑏𝑘𝜇𝑘/2 = 𝑂 2−𝑖𝑘/2

𝑏 ≥ (3/4 − 𝛼)/𝛼 ≥ 3/24



Construction time
[Pătraşcu-Thorup (2010)]

Let ℓ1, ℓ2, … , where   𝑖 ℓ𝑖 = 𝑛, be the length of the

consecutive runs in the table after inserting the 𝑛 items

The cost of the construction is at most   𝑖 ℓ𝑖
2

Runs of length ℓ𝑖 < 4 contribute only 𝑂 𝑛

By the main observation, if 2𝑖 ≤ ℓ𝑖 < 2𝑖+1, then 

at least one of the first four nodes at level 𝑖 − 2
whose last cell is in the run is crowded. 

Each node corresponds to at most one run.

 

𝑖

ℓ𝑖
2 = 𝑂  

𝑣

2 2⋅height 𝑣 𝑣 crowded



𝐸  

𝑖

ℓ𝑖
2 = 𝑂  

𝑣

2 2⋅height 𝑣 Pr 𝑣 crowded

= 𝑂  

𝑖=0

log2 𝑚
𝑚

2𝑖
22𝑖 2−

𝑘𝑖
2 = 𝑂 𝑛  

𝑖=0

log2 𝑚

2𝑖 2−
𝑘𝑖
2

If 𝑘 = 2, we get 𝑂(𝑛 log 𝑛)

If 𝑘 = 4, we get 𝑂(𝑛)

Construction time
[Pătraşcu-Thorup (2010)]



Query time (successful/unsuccessful)
[Pătraşcu-Thorup (2010)]

If ℎ(𝑘) is in a run of length ℓ,
then the search time is 𝑂 ℓ

If ℎ(𝑘) is in a run of length 2𝑖 ≤ ℓ < 2𝑖+1,
then at least one of 12 nodes at height 𝑖 − 2

associated with ℎ(𝑘) is crowded

𝑝 𝑖 = Pr 𝑣 crowded = 𝑂 2−𝑖𝑘
′/2 ,  height 𝑣 = 𝑖

𝐸 ℓ ≤ 3 + 12 

𝑖≥2

𝑝 𝑖 − 2 ⋅ 2𝑖+1



Query time (successful/unsuccessful)
[Pătraşcu-Thorup (2010)]

𝐸 ℓ ≤ 3 + 12 

𝑖≥2

𝑝 𝑖 − 2 ⋅ 2𝑖+1 = 𝑂  

𝑖=0

log2 𝑚

2𝑖 2−𝑘
′𝑖/2

𝑘′ - The independence after conditioning 

on the hash value of the key searched

𝑘′ = 𝑘 − 1

If 𝑘 = 2, we get 𝑂( 𝑛)

If 𝑘 = 5, we get 𝑂(1)

If 𝑘 = 3, we get 𝑂(log 𝑛)



Why 12?

1 2 3 4

The constant 12 itself, of course, if not too important.

The important thing is that it is a constant

5 6 7 8 9 10 11 12

2𝑖+1 Search position

2𝑖−2 2𝑖−2 …


