
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages

Haskell 101

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Contents
1. Historical Background of Haskell
2. Lazy, Pure, and Functional Language
3. Using ghc and ghci
4. Functions
5. Haskell Scripts
6. Exercises

Lee CSCE 314 TAMU

3

Historical Background (1/8)

1930s:

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

Lee CSCE 314 TAMU

4

Historical Background (2/8)

1950s:

John McCarthy develops Lisp, the first functional
language, with some influences from the lambda
calculus, but retaining variable assignments

Lee CSCE 314 TAMU

5

Historical Background (3/8)

1960s:

Peter Landin develops ISWIM, the first pure
functional language, based strongly on the
lambda calculus, with no assignments

Lee CSCE 314 TAMU

6

Historical Background (4/8)

1970s:

John Backus develops FP, a functional
language that emphasizes higher-order
functions and reasoning about programs

Lee CSCE 314 TAMU

7

Historical Background (5/8)

1970s:

Robin Milner and others develop ML, the first
modern functional language, which introduced
type inference and polymorphic types

Lee CSCE 314 TAMU

8

Historical Background (6/8)

1970s - 1980s:

David Turner develops a number of lazy functional
languages, culminating in the Miranda system

Lee CSCE 314 TAMU

9

Historical Background (7/8)

1987:

An international committee of researchers
initiates the development of Haskell, a
standard lazy pure functional language

Lee CSCE 314 TAMU

10

Historical Background (8/8)
2003: The committee publishes the

Haskell 98 report, defining a
stable version of the
language

Since then highly influential in language research
and fairly widely used in commercial software.
For example, Facebook’s anti-spam programs, and
Cardano, a cryptocurrency introduced in Sep. 2017,
are written in Haskell.

Lee CSCE 314 TAMU

11

Haskell is a
Lazy
Pure

Functional Language

Lee CSCE 314 TAMU

12

“Haskell is a Lazy Pure Functional Language”

Lazy programming language only evaluates
arguments when strictly necessary, thus,
(1) avoiding unnecessary computation and
(2) ensuring that programs terminate whenever
possible. For example, given the definitions

omit x = 0
keep_going x = keep_going (x+1)

what is the result of the following expression?
omit (keep_going 1)

Lee CSCE 314 TAMU

13

“Haskell is a Lazy Pure Functional Language”

Pure functional language, as with mathematical functions,
prohibits side effects (or at least they are confined):
§ Immutable data: Instead of altering existing values,

altered copies are created and the original is
preserved, thus, there’s no destructive assignment:

a = 1; a = 2; -- illegal
§ Referential transparency: Expressions yield the same

value each time they are invoked; helps reasoning.
Such expression can be replaced with its value without
changing the behavior of a program, for example,

y = f x and g = h y y
then, replacing the definition of g with g = h (f x) (f x)
will get the same result (value).

Lee CSCE 314 TAMU

14

“Haskell is a Lazy Pure Functional Language”

Functional language supports the functional
programming style where the basic method of
computation is application of functions to
arguments. For example, in C,

int s = 0;
for (int i=1; i <= 100; ++i) s = s + i;

the computation method is variable assignment
In Haskell,

sum [1..100]
the computation method is function application

Lee CSCE 314 TAMU

15

Features of Functional Languages
¢ Higher-order functions are functions that take

other functions as their arguments. E.g.,
> map reverse ["abc","def"]
["cba","fed”]

¢ Purity – prohibits side effects
(Expressions may result in some actions in addition to

return values, such as changing state and I/O; these
actions are called side effects)

¢ Recursion – the canonical way to iterate in
functional languages

Lee CSCE 314 TAMU

16

A Taste of Haskell

f [] = []

f (x:xs) = f ys ++ [x] ++ f zs

where

ys = [a | a <- xs, a <= x]

zs = [b | b <- xs, b > x]

?

Lee CSCE 314 TAMU

17

In C++
void f(int xs[], int first, int last)
{ int mid;
if (first < last)
{ mid = partition(xs, first, last);
f(xs, first, mid);
f(xs, mid+1, last);

}
return;

}
int partition(int xs[], int first, int last)
{ int k = xs[first];
int i = first-1;
int j = last+1;
int temp;
do {
do { j--; } while (k<xs[j]);
do { i++; } while (k>xs[i]);
if (i<j) { temp=xs[i]; xs[i]=xs[j]; xs[j]=temp; }

} while (i<j);
return j;

}

Lee CSCE 314 TAMU

18

Recursive function execution:

f [3,2,4,1,5]

f [2,1] ++ [3] ++ f [4,5]

f [1] f []++ [2] ++ f [] f [5]++ [4] ++

[1] [] [] [5]

Lee CSCE 314 TAMU

19

Other Characteristics of Haskell

¢ Statically typed
¢ Type inference
¢ Rich type system
¢ Succinct, expressive syntax yields short

programs
¢ Indentation matters
¢ Capitalization of names matters

Lee CSCE 314 TAMU

20

Using GHC and GHCi
¢ From a shell window, the compiler is invoked as

> ghc myfile.hs

> ghci (or as > ghc --interactive)

¢ For multi-file programs, use --make option
¢ GHCi operates on an eval-print-loop:

¢ Efficient edit-compile-run cycle, e.g., using Emacs with
haskell-mode (https://github.com/serras/emacs-haskell-tutorial/blob/master/tutorial.md)

helps indenting, debugging, jumping to an error, etc.

> sqrt (3^2 + 4^2)
5.0
>

User types in a Haskell expression

The interpreter evaluates it and prints out the result

Waits for the next expression

Lee CSCE 314 TAMU

21

Using GHCi
¢ Useful basic GHCi commands:
:? Help! Show all commands
:load test Open file test.hs or test.lhs

:reload Reload the previously loaded file
:main a1 a2 Invoke main with command line args a1 a2
:! Execute a shell command
:edit name Edit script name
:edit Edit current script
:type expr Show type of expr
:quit Quit GHCi

¢ Commands can be abbreviated. E.g., :r is :reload
¢ At startup, the definitions of the “Standard Prelude”

are loaded

Lee CSCE 314 TAMU

22

The Standard Prelude
Haskell comes with a large number of standard
library functions. In addition to the familiar
numeric functions such as + and *, the library
also provides many useful functions on lists.

-- Select the first element of a list:
> head [1,2,3,4,5]
1

-- Remove the first element from a
list: > tail [1,2,3,4,5]

[2,3,4,5]

Lee CSCE 314 TAMU

23

-- Select the nth element of a list:
> [1,2,3,4,5] !! 2
3

-- Select the first n elements of a list:
> take 3 [1,2,3,4,5]
[1,2,3]

-- Remove the first n elements from a list:
> drop 3 [1,2,3,4,5]
[4,5]

-- Append two lists:
> [1,2,3] ++ [4,5]
[1,2,3,4,5]

Lee CSCE 314 TAMU

24

-- Calculate the length of a list:
> length [1,2,3,4,5]
5

-- Calculate the sum of a list of numbers:
> sum [1,2,3,4,5]
15

-- Calculate the product of a list of numbers:
> product [1,2,3,4,5]
120

-- Reverse a list:
> reverse [1,2,3,4,5]
[5,4,3,2,1]

Lee CSCE 314 TAMU

25

Functions (1)
¢ Function and parameter names must start with a lower

case letter, e.g., myFun1, arg_x, personName, etc.
(By convention, list arguments usually have an s suffix
on their name, e.g., xs, ns, nss, etc.)

¢ Functions are defined as equations:
square x = x * x add x y = x + y

¢ Once defined, apply the function to arguments:
> square 7 > add 2 3

49 5
In C, these calls would be square(7); and add(2,3);

¢ Parentheses are often needed in Haskell too
> add (square 2) (add 2 3)

9

Lee CSCE 314 TAMU

26

Functions (2)
¢ Function application has the highest precedence

square 2 + 3 means (square 2) + 3 not square (2+3)

¢ Function call associates to the left and is by pattern
matching (first one to match is used)

¢ Function application operator $ has the lowest
precedence and is used to rid of parentheses
sum ([1..5] ++ [6..10]) -> sum $ [1..5] ++ [6..10]

¢ Combinations of most symbols are allowed as operator
x @#$%^&*-+@#$% y = "What on earth?” J

Another (more reasonable) example:
x +/- y = (x+y, x-y)

> 10 +/- 1
(11,9)

Lee CSCE 314 TAMU

27

Function Application

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space

f(a,b) + c d Apply the function f to a and b, and add
the result to the product of c and d

In Haskell, function application is denoted using
space, and multiplication is denoted using *

f a b + c*d As previously, but in Haskell syntax

Lee CSCE 314 TAMU

28

Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

Lee CSCE 314 TAMU

29

Evaluating Functions (1)
Think of evaluating functions as substitution and reduction
add x y = x + y; square x = x * x

add (square 2) (add 2 3)
−− apply square

add (2 * 2) (add 2 3)
−− apply ∗
add 4 (add 2 3)
−− apply inner add

add 4 (2 + 3)
−− apply +

add 4 5
−− apply add

4+5
−− apply +

9

Lee CSCE 314 TAMU

30

Evaluating Functions (2)
¢ There are many possible orders to evaluate a function

head (1:(reverse [2,3,4,5])) head (1:(reverse [2,3,4,5]))

−− apply reverse −− apply head
−− ... many steps omitted here 1
head ([1,5,4,3,2])

−− apply head
1

¢ In a pure functional language, evaluation order does not
affect the value of the computation

¢ It can, however, affect the amount of computation and
whether the computation terminates or not (or fails with
a run-time error)

¢ Haskell evaluates a function’s argument lazily
“Call-by-need” - only apply a function if its value is
needed, and “memoize” what’s already been evaluated

Lee CSCE 314 TAMU

31

Haskell Scripts
A Haskell program consists of one or more scripts
A script is a text file comprising a sequence of
definitions, where new functions are defined
By convention, Haskell scripts usually have a .hs
suffix on their filename. This is not mandatory,
but is useful for identification purposes.
Loading new script causes new definitions to be in
scope:
Prelude> :l test.hs

[1 of 1] Compiling Main (test.hs, interpreted)

Ok, modules loaded: Main.

*Main>

Lee CSCE 314 TAMU

32

My First Script

double x = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to keep
two windows open, one running an editor for the script,
and the other running GHCi:
Start an editor, type in the following two function
definitions, and save the script as test.hs:

% ghci test.hs

In another window start up GHCi with the new script:

> quadruple 10
40
> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Now both the standard library and the file test.hs are
loaded, and functions from both can be used:

Lee CSCE 314 TAMU

33

factorial n = product [1..n]

average ns = sum ns `div` length ns

Leaving GHCi open, return to the editor, add the following definitions,
and resave:

§ div is enclosed in back quotes, not forward
§ x `f` y is syntactic sugar for f x y
§ Any function with two or more arg.s can be used as an infix

operator (enclosed in back quotes)
§ Any infix operator can be used as a function (enclosed in

parentheses), e.g., (+) 10 20

Note:

>:r
(test.hs, interpreted)

> factorial 10
3628800

> average [1,2,3,4,5]
3

GHCi does not automatically detect
that the script has been changed, so
a reload command must be executed
before the new definitions can be
used:

Lee CSCE 314 TAMU

34

The Layout Rule
§ Layout of a script determines the structure of definitions
§ Commonly use layouts instead of braces and semicolons

(which are still allowed and can be mixed with layout)
§ Each definition must begin in precisely the same column:

a = 10
b = 20
c = 30

a = 10
b = 20
c = 30

a = 10
b = 20
c = 30

means

a = b + c
where
b = 1
c = 2

d = a * 2

a = b + c
where
{b = 1;
c = 2}

d = a * 2

implicit
grouping
by layout

explicit
grouping
by braces

and
semicolons

Lee CSCE 314 TAMU

35

Exercises

N = a ’div’ length xs

where

a = 10

xs = [1,2,3,4,5]

(1) Try out the codes in slides 15-24 using GHCi.

(2) Fix the syntax errors in the program below, and test
your solution using GHCi.

n = a `div` length xs

where

a = 10

xs = [1,2,3,4,5]

Lee CSCE 314 TAMU

36

Show how the library function last that selects
the last element of a list can be defined using
the functions introduced in this lecture.

(3)

Similarly, show how the library function init
that removes the last element from a list
can be defined in two different ways.

(5)

Can you think of another possible definition?(4)
last xs = head (reverse xs)

last xs = xs !! (length xs – 1)

init xs = take (length xs – 1) xs
init xs = reverse (tail (reverse xs))

