[2]:

[3]:

[4] :

Haskell Tutorial: Introduction
Jiirgen Schonwélder

April 9, 2022

:opt no-lint

1 Introduction

Haskell is a statically typed, purely functional programming language with type inference and lazy
evaluation. The first version of Haskell was defined in 1990 and the definition of the Haskell language
is a maintained by the Haskell Committee. Haskell 1998 appeared in 1998 and Haskell 2010 was
published in July 2010. Haskell is used widely in academia and (to a lesser extend) in the industry.
Pandoc, a popular tool to convert between different markup formats, is written in Haskell.

So why is it a neat idea to learn Haskell? There are a couple of possible answers:

A functional language expands the way you think about programming.
Haskell makes it easy to reason about programs.

Haskell is a safe language.

Haskell is a pure language avoiding side effects.

A popular implementation is the Glasgow Haskell Compiler. It comes with a number of tools. The
most important for beginners are:

e ghci - an interactive Haskell interpreter
e ghc - a Haskell compiler translating Haskell into native machine code
e runghc - a program to run Haskell code as scripts

A tool that can be quite helpful in particular for beginners is hlint. HLint suggests possible
improvements to Haskell source code, often providing suggestions how to simplify code. Another
package we like to use is HUnit, a framework for writing unit test cases.

1.1 Expressions

The easiest way to get started with Haskell is to launch ghci and to type expressions into the
interactive Haskell interpreter. Below are some simple arithmetic expressions. Haskell so far works
as a simple calculator. Note that it can do arbitrary precision integer arithmetic.

2 +5
7
2+5 %3

17

https://www.haskell.org/ghc/

[5]:

[6]:

[7]:

[8]:

[9]:

[10]:

[11]:

[12]:

(2 +5) 3
21
27123

10633823966279326983230456482242756608

Haskell is a functional language and that means that pretty much everything in Haskell are functions.
Even the simple arithmetic expressions above can be seen as function calls written in infix notation.
The + operator, for example, is just a syntactic shorthand refering to a function that takes two
arguments and returns the sum of them. We can actually write the above expressions in a pure
functional representation using prefix notation:

(+) 25

7

(+) 2 ((x) 5 3)
17

(*) ((+) 2 5) 3
21

(*) 2 123

10633823966279326983230456482242756608

Of course, writing arithmetic expressions in prefix notation usually does not make the expressions
more readable and hence nobody would do this in production code unless there is a very specific
reason. At the end, the goal of almost every programming effort is to produce code that is easy to
understand and easy to reason about.

Haskell is also a typed language. So far, we only used integral numbers. Lets see what happens if
we devide two numbers.

6/2

3.0

Apparently, this returns a floating point number. If we want integer division, we have to use the div
function. Note that in Haskell we write the function name followed by its arguments. If necessary,
parenthesis are placed before the function name and after the last argument. This is different from
other programming languages where parenthesis are required to enclose the arguments of a function.
In C or C++, one would write div(6, 2) but in Haskell this is simply div 6 2. If parenthesis are
necessary in an expression, the function call would be (div 6 2).

div 6 2

3

[13]:

[14]:

[15]:

[16]:

[17]:

[18]:

[19]:

[20]:

Since div is a function that takes two arguments and produces a single result value, we can write
this expression as well in infix notation by enclosing the function name in backticks.

6 [Jdiv(] 2
3

There are predefined functions to test whether a number is even or odd and we can use the ==
operator to test whether two values are equal. In a similar way, we can compare numbers. The
infix operator notation uses the operators < (less than), > (greater than), <= (less than or equal),
>= (greater than or equal), and /= (not equal).

odd 1

True

even 1

False
== 92

False

The results show that the comparison operators (functions) return truth values (True or False).

1.2 Lists

Lists are the most fundamental data type in Haskell. A list is represented by a comma-separated
sequence of elements surrounded by square brackets. All elements of a list must be of the same
type, i.e., they must all be numbers or they must all be characters and so on. An empty list is
represented by opening and closing square brackets with nothing inbetween.

(]
[
[0,1,2,1,3]
[0,1,2,1,3]

Haskell supports an enumeration notation, which is a conveninent way to create longer list (and
even infinite lists, as we will see later).

[1..10]
[0,5..20]
[10,9..1]

[1’2’3’4’5’6’7’8’9’101
[0,5,10,15,20]

[21]:

[22]:

[23]:

[24] :

[25]:

[26]:

[27]:

[28]:

(10,9,8,7,6,5,4,3,2,1]

More complicated lists can be created using list comprehensions. List comprehensions mimic what
we know from mathematics. In mathematics, if we want to define the set of odd numbers between
1 and 10, we could write {z|z € {1,..,10} and = is odd}. This is how this idea can be translated
into Haskell:

[x | x <- [1..10], odd x]

[1,3,5,7,9]

If we want the list of squares of all odd numbers between 1 and 10, we can simply apply a function.
In mathematics, we would write {z2|z € {1,..,10} and z is odd}. For readability, we use the infix
operator notation. (As an exercise, rewrite this example in prefix notation.)

[x~2 | x <- [1..10], odd x]

[1,9,25,49,81]

It is possible to create more complex list comprehensions with variables ranging over multiple lists:
[x+y | x<-[1..5], y <- [1..3], x == y]

[2,4,6]

Lists can be concatenated using the ++ operator.
[1..5] ++ [6..10]

[1,2,3,4,5,6,7,8,9,10]

The elements of a list have a defined order and a elements can appear multiple times in a list. Hence,
lists should not be confused with sets. Since lists maintain an order, it makes sense to talk about
the first element of a list or the last element of a list. The head function returns the first element of
a list while the tail function returns the list without its first element. The last function returns
the last element of a list while the init function returns the list without the last element.

head [1..10]

1

tail [1..10]
(2,3,4,5,6,7,8,9,10]
last [1..10]

10

init [1..10]
[1,2,3,4,5,6,7,8,9]

The : operator (often called the cons operator) prepends a head element to a list. In other words,
the (:) function takes as first argument an element and as second argument a list and it returns

[29]:

[30]:

[31]:

[32]:

[33]:

[34]:

the list with the element prepended. Do not confuse this with the (++) function, which takes two
lists and returns the concatenation of these two lists.

head [1..10] : tail [1..10]

[1’2’3’4’5’6’7’8’9)101

Note that the : operator is right associative. This makes it easy to use the cons operator repeatedly
to create a list.

1 :2:3:1[]
[1,2,3]

The null function returns True if a list is empty and False otherwise. This gives us a convenient
(and fast) way to test whether a list is empty. The length function returns the number of elements
in a list.

null [1..10]
False
length [1..10]

10

Since Haskell allows us to create infinite lists (yes it does!), it is strongly recommended to use
null to test whether a list is empty. The evaluation of the expression length [1..] == 0 will not
terminate since the calculation of the length of an infinite list will not terminate.

null [1..]

False
null [x | x <- [1..10], x == 27x]

True
There are more predefined useful list functions. Some frequently used functions are:

e The concat function takes a list of lists and concatenates them

e The reverse function takes a list and reverses all elements in it

e The take function takes a list and a number n and returns the first n elements (or fewer if
the list has less than n elements)

e The drop function takes a list and a number n and returns the tail after removing the first n
elements (or an empty list if the list has less than n elements)

e The elem function returns True if a given value is in the list and False otherwise

e The map function takes a function and a list and applies the function to all elements of the
list

e The filter function takes a function returning either True or False and a list and returns
all elements of the list for which the function applied to the list element returns True

The last two functions are examples of higher order functions. Higher order functions take functions
as arguments or return functions. Programming with higher order functions is extremely powerful.

[35]:

[36]:

[37]:

[38]:

[39]:

[40] :

[41]:

[42] :

[43]:

Higher order functions often replace simple loops that you may know from imperative programming
languages.

concat [[1..3],[4..7]1,[8..10]1]
[1’2’3’4’5’6’7’8’9’101
reverse [1..10]

(10,9,8,7,6,5,4,3,2,1]

take 5 [1..10]
[1’2’3’4’5]
drop 5 [1..10]

[6,7,8,9,10]
elem 5 [1..10]

True

map even [1..10]

[False,True,False,True,False,True,False,True,False, Truel
filter odd [1..10]

[1,3,5,7,9]

filter (< 7) [1..10]

[1,2,3,4,5,6]

The last example shows something rather special. We want to select all numbers from the list that
are less than 7. To do this, we take the operator < and we fix the second argument to the constant
7. This gives us a function that has only a single argument and we apply this new function to all
list elements in order to produce the result. The technique applied here is called currying and is
rather fundamental in Haskell. Currying encourages programmers to solve generic problems and
then the generic solution can be tailored easily to solve a given task at hand. In the example, we
take the generic “less than” operator and we curry it down to the much more specific “less than 7”
function.

We finish this section with introducing the indexing operator !!. The indexing operator takes two
arguments, the first argument is a list and the second argument is an index number. The operator
returns the element of the list at the index position. (The first element of a list has the index
position 0.) An index number that is not present in the list leads to an error. Hence, seasoned
Haskell programmers often try to avoid the indexing operator in order to write pure functions that
have no side effects.

[1..] 'r 9

[44] :

[45] :

[46]:

[47]:

[48]:

[49] :

[50]:

10

1.3 Characters and Strings

A character value is defined by writing the character surrounded by single quotes. Hence, 'a'
represents the character a. Haskell supports unicode and it is no problem to write funny characters
in Haskell code. (Whether doing so is a good idea is a different discussion.) Special characters
like newlines are represented by escape sequences that start with a backslash. For example, the
escape sequence '\n' represents a newline character while the escape sequence '\\' represents the
backslash character.

l\nl

A string is simply a list of characters. Since string literals appear quite frequently, there is a special
notation for string literals (lists of characters). A string literal is a possibly empty sequence of
characters surrounded by double quotes.

"this is a string"

"this is a string"

Since a string literal defines a list of characters, we can use list functions on strings.

length "this is a string"
16

"this " ++ "is " ++ "a " ++ "string"
"this is a string"

null ""
True

head "foo"

tail "foo"

last "foo"

init "foo"

Y

oo"

!

ngEQn

Comparison operators are defined for characters and strings. On strings, the operators do lexico-
graphic comparison.

[61]: 'a' < 'b'
'b' < 'a'
"aa" < "ab"
"21t < "1t
21 < 11

True
False
True
False

False

1.4 Tuples

Tuples are another way to pack multiple values together. Tuples are represented by the values
contained in the tuple separated by comma and enclosed in parenthesis. There are some key
differences between lists and tuples: - Tuples have a fixed number of values and they are immutable.
It is not possible to add values to a tuple or to remove values from a tuple. Tuples are useful in
situations where the number of elements is fixed. For example, an edge in a graph can be represented
by the two nodes connected by the edge. - The values of a tuple can be of different types. A tuple
can easily contain a number, a string, another tuple, and a list.

[52]: (42, "answer", ('a', "string"), [1..10])

(42,"answer",('a',"string"), [1,2,3,4,5,6,7,8,9,10])

Pairs are tuples that have two elements. For pairs, we have predefined functions that can be used
to access the first (fst) and the second (snd) element of a pair.

[63]: fst ("one", 2)
llonell
[54]: snd ("one", 2)

2

A useful function to create lists of pairs is zip. The zip function takes two lists and returns a list
of pairs: The first element of the first list is paired with the first element of the second list, the
second element of the first list is paired with the second element of the second list and so on. This
continues until one of the lists has been exhausted.

[65]: zip [1..] ["apple", "peach", "pear"]

[(1,"apple"),(2,"peach"), (3, "pear")]

[56]:

[57]:

[58]:

Lists of tuples can also be created using list comprehensions. Lets create a list of pairs where the
second element is a square of the first element and each element is in the range [1..10].

[(a,b) | a <- [1..10], b <- [1..10], b == a~2]

[(1,1),(2,4),(3,9)]

1.5 Types

Haskell is a strongly and statically typed programming language. This means that every value has
an associated type. Think of types as a set of values with defined operations on them. For example,
take the set of integral numbers. It is natural to think of these numbers as a type.

e strongly typed
— Haskell does not automatically cast a value from one type into a different type
— By avoiding automatic type conversions, some programming errors can be found before
they cause problems
o statically typed
— Types are known at compilation time by the compiler / interpreter
— Static typing, in combination with strong typing, makes type errors impossible to occur
at runtime
o type inference
— Haskell can infer type information and hence the programmer does not have to specify
types explicitely for all values (or functions)

Even though Haskell can infer types, we will always specify the type signatures of functions ex-
plicitely as this is good practice and captures the intention of the programmer. Some of the basic
Haskell types are:

Char: characters (unicode)

Bool: one of the two boolean values True and False

Int: small signed integer number, usually restricted to 64 bits or 32 bits (platform specific)
Integer: integer numbers of arbitrary precision (well, bounded by the available memory)
Double: floating point numbers, usually 64-bits wide

Rational: rational numbers

We can be explicit that a certain value (or expression) has a certain type. The :: operator indicates
that the value on the left side of the operator is to be understood as having the type defined on the
right side of the operator.

42 ::. Double
42.0
3/ 2 -1/ 4 :: Rational

5% 4

The last example says that we want the expression to return a rational number. The Haskell notation
5 % 4 represents the rational number commonly written as the fraction % in mathematics. While
we can define the type of values and expressions, we usally do not do this and rely on Haskell’s type

inference to determine the type of values and expressions.

[59]:

[60] :

[61]:

[62]:

[63]:

[64]:

[65]:

[66] :

[67]:

[68]:

In order to get used to types, it is useful to inspect what Haskell knows about types. In ghci or this
notebook, it is possible to enquire the runtime system about the type information of an expression.
This is done by sending the :type command to the runtime (the command may be abbreviated to
:t as long as there is no other runtime command that starts with a t).

:type 'a'
Char

:type "hello"
[Char]

:type []

forall a. [al

:type head
forall a. [a] -> a
:type map

forall a b. (a -> b) -> [a] -> [b]

The last example says that map is a function that takes a function mapping from type a to type
b and a list of values of type a and it returns a list of values of type b. Since a and b are not
constrained, the map function can be used for arbitrary types a and b.

1.6 Functions

Since Haskell is a functional language, the programmer primarily defines functions. Defining a

function can be very simple. Lets define a function that takes a single number and returns the

square of the number, i.e., f(z) = 22.

f x=x"2
f 4

16

f 25

625

We can use the newly defined function to define more functions. Lets define g(z) = f(z) — 8.

gx=£fx -8

g 4

8

10

[69]:

[70]:

[71]:

[72]:

[73]:

[74]:

[75]:

While this all works as one would expect, we never really specified that the argument of £ must be a
number. Still, if we try to invoke f on the character ¢, Haskell provides us with a type error. What
happens here is that Haskell has inferred that the function f is not defined for characters, because
the function definition uses an expression that is not defined for characters. The error message may
not be readable yet but the point here is that this is an error that is thrown at compile time and
before execution starts. This means that the programmer is required to fix the problem in the code
before it can be run and do harm.

f'c

No instance for (Num Char) arising from a use of “f'
Possible fix: add an instance declaration for (Num Char)
In the expression: f 'c'

In an equation for “it': it = f 'c'

It is good practice to not rely on Haskell’s type inference for functions and to define the type
signature of a function explicitly. This way, you also help Haskell’s type inference since you declare
the intended type of a function. Here is an example how you define an explicit type signature for a
function.

f :: Integer -> Integer
fx=x2

f 1234

1522756

The type signature of £ now says: f has a type that takes a value of type Integer and returns a
value of type Integer. While we have defined £ for Integer numbers above, it might be useful to
define £ also for Int numbers or all possible numbers. We can do this easily in Haskell.

f :: Num a => a -> a
f x=x"2

£f5

25

£ 5.0

25.0

f (5 :: Rational)

25 % 1

The type signature now says that f receives a value of a numeric type a and it returns a value of the
same numeric type a. The a in the type signature is a type variable; it holds the name of a numeric
type. Our new definition of f is a polymorphic function since it can be applied to arguments with
different types. As the examples above show, the type of the argument of the function £ determines
the type of the value returned by the function: f is either a function receiving an integer number
and returning an integer number or it is a function receiving a floating point number and returning

11

a floating point number, or it is a function receiving a rational number and returning a rational
number.

Since we now know how to define functions, we are essentially ready to start functional programming.
But hey, what about all those things that are common in other programming languages like variables,
conditional statements, loops? Well, you do not need them because there are functional equivalents
(such as pattern matching, guards, recursion, higher order functions, monads) that provide you
with a rich toolbox to implement arbitrary algorithms as functions in Haskell. If you are new
to programming, you might find that learning functional programming is not very difficult. If,
however, you have already some experience with imperative programming languages, then learning
Haskell may become a certain challenge since you have to learn to look at programming from a
somewhat different perspective. While things may appear initially in a sense weird or difficult, you
will hopefully soon start to realize the power of a functional programming style and carry it over
even when you write code in an imperative programming language. Many imperative programming
languages have been recently extended to better support functional programming. The recent
interest in functional programming is also driven by the fact that functional programs are much
easier to turn into concurrent programs than imperative programs since functional programs avoid
mutable state and functions are pure, i.e., they do not cause side effects.

Here are a few tips on how to think as a functional programmer:

Do not think about a program as a sequence of operations

Try to think about the relationship between input and output

Try to drive simplicity to a maximum

Think in terms of composition and not in terms of inheritance

Think about side-effects and how to separate them from the functional core of a program

12

[1]:

[2]:

[3]:

[4] :

Haskell Tutorial: Functions
Jiirgen Schonwélder

April 9, 2022

:opt no-lint

1 Functions

We have already seen how we can define simple functions. To define a function, we usually define
the type signature (although this is optional) and afterwards we define the function itself. This is
strongly resembling how you define a function in math.

sq :: Double -> Double
8SqQ X = X * X

sq 5

map sq [1..10]

25.0
(1.0,4.0,9.0,16.0,25.0,36.0,49.0,64.0,81.0,100.0]

Note the sq function is defined for floating point numbers. If we want a more generic sq function
that works for all numberic types, we can use the Num type class.

sq :: Num a => a -> a
8Sq X = X * X

sq 5.0
map sq [1..10]

25.0
[1,4,9,16,25,36,49,64,81,100]

This function now returns a floating point number if we call it with a floating point number as an
argument and it will return an integer if we call it with an integer argument. The function signature
defines that sq takes as input a value of type a and it returns a value of type a where a belongs to
the Num typeclass. We will talk more about typeclasses later.

Lets define a function to calculate the Euclidian distance between two points (x1,y1) and (22, y2).
We represent the points naturally as tuples.

dist :: (Double, Double) -> (Double, Double) -> Double
dist (x1, y1) (%2, y2) = sqrt (sq (x2 - x1) + sq (y2 - y1))

[5]:

[6]:

dist (0,0) (4,3)

5.0

1.1 Pattern Matching

While defining functions, it is often necessary to distinguish difference cases. There are several ways
to achieve this in Haskell. A simple but also very powerful mechanism for this is pattern matching:
We match the arguments passed to a function against pattern and we apply the first matching
function definition. Note that the order of the pattern matters (since we apply the definition of the
first matching pattern) and that the set of pattern should catch all possibilities.

Lets define a function vowel, which returns True if an English language character is a vowel and
False otherwise. Since the set of vowels is small, we can write a function definition for each vowel
and one for the case where the character is not a vowel.

vowel :: Char -> Bool
vowel 'a' = True
vowel 'e' = True
vowel 'i' = True
vowel 'o' = True
vowel 'u' = True
vowel = False

filter vowel "Hello World"
filter (not . vowel) "Hello World"

"eoo"
"H11 Wrld"

In the above example, we match the character passed to the function vowel against constants. The
last clause uses the underscore _, a pattern used in situations where one wants to match anything
but not use the matched value. The vowel function can be used as a filter function to extract
all vowels of a string (which is a list of characters). By composing the vowel function with the
not function, we can also easily extract all non-vowels of a string. We will come back to function
composition later.

Here is another pattern matching example demonstrating how patterns can be used to match lists.
Lets assume we want to define a function elems to obtain a string that says “no elements” if a list is
empty, “one element” if a list has exactly one element, and “multiple elements” if the list has more
than one element. We can achieve this using pattern matching by first testing the special cases and
having the catch all case last.

elems :: [a] -> [Charl]

elems [] = "no elements"
elems ([_]) = "one element"
elems _ = "multiple elements"

[7]:

"The list has " ++ elems []
"The list has " ++ elems [[]]
"The list has " ++ elems [[],[]1]

"The list has no elements"
"The list has one element"

"The list has multiple elements"

The first pattern tests whether the list is empty. The second pattern tests whether the list contains
a head element followed by an empty list. The third patter matches all arguments and it serves
as a catch-all pattern. Note that this definition works with infinite lists. An implementation that
counts the list elements would be inferior.

Pattern matching can also be used to extract specific elements of a tuple. Lets define fst’, snd’, and
trd’ for 3-tuples. The following definitions are polymorphic, they work regardless which data types
are present in a 3-tuple.

fst' :: (a, b, c) -> a
fst' (x, _, _) =x

snd' :: (a, b, ¢c) -> b
snd' (_, y,) =y

trd' :: (a, b, c) -> ¢
trd' (_, _, z) =z

fst' ("lost", 42, "number")
trd' (True, 1, "yes")

lllostﬂ

llyes

1.2 Recursion

Compared to imperative programming languages such as C, C++, or Java, a pure functional lan-
guage like Haskell does not have constructs to program loops. Instead, we use recursion to implement
loops. Recursion essentially means that the definition of a function may refer to itself. The idea is
that a given problem is transferred into a slightly simpler problem until the problem is so simple
that it can be directly solved. Hence, a recursive function definition typically consists of a simple
case (or multiple simple cases) where the result can be directly provided plus one or more complex
cases that can be transformed into simpler cases. This, however, requires that we need a mechanism
to distinguish the simple case from the more complex one. Luckily, pattern matching enables us to
do this.

Number sequences are classic examples for recursive functions and the probably most famous re-
cursively defined number sequence in computer science textbooks is the fibonacci series. Fibonacci

[8l:

[9]:

[10]:

numbers can be defined using the function fib: N — N:

0 n=0
fib(n) =< 1 n=1
fib(n — 1) 4+ fib(n —2) otherwise

We can translate this definition (almost) directly into Haskell code:

fib :: Integer -> Integer
fib 0 = 0

fib 1 =1

fib n = fib (n-1) + fib (n-2)

map fib [0..10]

(0,1,1,2,3,5,8,13,21,34,55]

Recursion is particularly interesting for inductively defined data structures such as lists. A function
to sum up the numbers in a list of numbers could be written as follows. (You will later see that this
can be done even simpler.) The basic idea is to think of this function as defined as follows:

0 if [is the empty list
head(l) + sum/(tail(l)) otherwise

sum/(l) = {

Below is the definition of sum’ in Haskell. Note how pattern matching is used to separate the head
from the tail of the list in the general case. This is a very common pattern when functions process

lists.

sum' :: Num a => [a] -> a
sum' [] =0
sum' (x:xs) = x + sum' xs

sum' [1..10]

55

The standard map function applies a function to all elements of a list. Lets define our own map'
function which does the same. The simple case is an empty list where we return an empty list. The
general case is a list where we apply the function to the first element and construct a new list out
of the new value returned by the function and the application of the function to the tail of the list.

map' :: (a -> b) -> [a] -> [b]
map' £ [1 = []
map' f (x:xs) = (f x) : map' f xs

map' fib []
map' fib [0..10]

(]
(0,1,1,2,3,5,8,13,21,34,55]

[11]:

[12]:

[13]

As another example, lets define another function that takes two lists and mixes them by always
taking the head element of the first list, the head element of the second list and so on until a list is

empty or both lists are empty.

mix :: [a] -> [a] -> [a]

an-=10n

mix [] ys = ys

mix xs [] = xs

mix (x:xs) (y:ys) = [x,y] ++ mix xs ys

mi

™

mix "hlowrd" "el ol"

"hello world"

1.3 Guards

While pattern matching is a convenient mechanism, there are limitations. If you want to test whether
a more general condition is true or false, you can use guards. Guards are essentially expressions
returning a boolean value that are evaluated in order of their appearance. The first guard expression
evaluating to True determines the function definition that is used.

We can rewrite the function producing fibonacci numbers using guards as follows:

fib' :: Integer -> Integer
fib' n
| n == =0
| n == =
| n> 1 = fib' (n-1) + fib' (n-2)
I

otherwise = error "fib' not defined for negative numbers"

map fib' [0..10]
fib' (-1)

(0,1,1,2,3,5,8,13,21,34,55]
fib' not defined for negative numbers

We can now handle the situation where the argument is negative. Instead of going into an infinite
recursion, we call the error function. Note that error should only be used in situations where
an error indicates a programming error. The error function should not be used to signal runtime
errors. In fact, a good Haskell programmer prefers pure functions that have no side effects. Calling
error is a pretty strong side effect since the call will abort the program execution. We will later
learn about better mechanisms to handle runtime errors.

Since pattern are often more concise and thus more readable than guards, it is sometimes a good
idea to mix guards and pattern. Here is another attempt to define a function producing fibonacci
numbers. This time, instead of calling the error function, we use the predefined function undefined
to indicate that the fibonacci function is not defined for negative integers.

: [fib'' :: Integer -> Integer

fib'' 0 =0

fib'' 1 =1

fib'' n
| n > 1 = fib'' (n-1) + fib'' (n-2)
| otherwise = undefined

map fib'' [0..10]
fib'' (-1)

(0,1,1,2,3,5,8,13,21,34,55]

Prelude.undefined

Lets look at some more examples. Here are two functions that compute the greates common divisor
(ged) of two integers.

[14]: -- greatest common divisor (Euclid)
gcdEuclid :: Integer -> Integer -> Integer
gcdEuclid n m

| md mn ==0=n
| n>m gcdEuclid m n
| otherwise gcdEuclid n (m ﬂmodﬂ n)

-- greatest common divisor (dijkstra)
gcdDijkstra :: Integer -> Integer -> Integer
gcdDijkstra n m

| n ==m=n

| m >n = gcdDijkstra (m-n) n

| m < n gcdDijkstra m (n-m)

gcdEuclid 54 24
gcdDijkstra 54 24

6
6

And here is a function that calculates binomial coeflicients (Z)

[15]: -- binomial coefficient (n choose k)
binom :: Integer -> Integer -> Integer
binom n k

| k = 0 =
| n ==k =

| otherwise = binom (n-1) k + binom (n-1) (k-1)

binom 4 2

6

1.4 Where Bindings

Where bindings can be used in function definitions to bind names to constants, to define local helper
functions, or to perform pattern matching. Lets again look at calculating the distance between two
points. This time, we use where bindings to introduce constants that are used in the function
definition.

[16]: dist :: (Double, Double) -> (Double, Double) -> Double
dist (x1, y1) (x2, y2) = sqrt (dx"2 + dy~2)
where dx = x2 - x1

dy = y2 - y1
dist (0,0) (4,3)

5.0

It is also possible to do pattern matching in where bindings.

[17]: dist :: (Double, Double) -> (Double, Double) -> Double
dist x y = sqrt ((x2 - x1)°2 + (y2 - y1)°2)
where (x1, y1) = x
(x2, y2) =y

dist (0,0) (4,3)

5.0

Finally, we can define helper functions in where bindings that are not accessible outside the function
definition. While where bindings may improve readability and may help to reduce duplication of
code, they may also reduce readability if they are used too much. Remember, the fine art of
computer programming is to write easy to read code.

[18]: dist :: (Double, Double) -> (Double, Double) -> Double
dist (x1, y1) (x2, y2) = sqrt (sq dx + sq dy)
where sq x = x * X
dx = x2 - x1
dy = y2 - y1

dist (0,0) (4,3)

5.0

1.5 Let Bindings

Let bindings are similar to where bindings. Since let bindings are expressions, they can appear
anywhere where expressions can appear. However, different to where bindings, let bindings cannot
be referenced in guards.

[19]: dist :: (Double, Double) -> (Double, Double) -> Double
dist (x1, y1) (x2, y2) =
let dx = x2 - x1

[20]:

[21]:

[22]:

dy = y2 - y1
in sqrt (dx"2 + dy~2)

dist (0,0) (4,3)

5.0

Let bindings can also do pattern matching.

dist :: (Double, Double) -> (Double, Double) -> Double
dist x y =
let (x1, y1) = x
(x2, y2) =y
in sqrt ((x2 - x1)°2 + (y2 - y1)°2)

dist (0,0) (4,3)

5.0

1.6 Case Expressions

Case expressions are expressions where the expression evaluated is selected by a value (yielded by
another expression) matched against a sequence of pattern. Lets look at an example. The value
returned by the expression n is matched against the pattern 0, 1, and otherwise and depending on
the match, either the expression 0, 1, or £ib (n-1) + fib (n-2) is evaluated.

fib n = casen of 0 -> 0
1 >1
otherwise -> fib (n-1) + fib (n-2)

map fib [0..10]

(0,1,1,2,3,5,8,13,21,34,55]

We can also rewrite the sum' function from above using a case expression.

sum' :: Num a => [a] -> a
sum' xs = case xs of [] -> 0
(x:x8) -> x + sum' xs
sum' [1..10]
55

Case expressions tend to be relatively verbose and hence most Haskell programmers try to avoid
them if other syntactic constructs are sufficient and lead to shorter and more elegant and readable
code. However, there are situations where resorting to case expressions is a benefit.

1.7 Function Composition

It is possible to create new functions by combining existing functions. Function composition is
denoted using the . operator. (We have already used function composition once at the very

[23]:

[24]:

[25]:

[26]:

[27]:

beginning of this notebook.) In general, function composition means that the function on the right
hand side of the . operator is applied first and then the function on the left hand side of the .
operator. In other words, £ . g results in the application of g followed by the application of f.
Obviously, the types of the functions need to match. The type of the . operatoris (.) :: (b ->
c) -> (a->b) ->a ->c.

filter (not . vowel) "Hello World"

"H11 wrld"

1.8 Lambda Functions

Lambda functions, also called anonymous functions, are helper functions without a name. Haskell’s
foundation is a universal model of computation called Lambda Calculus. A backslash character is
commonly used to define lambda functions because of its visual resemblance with the Greek letter

lambda ().

(\x -> x*x) 2

4

Lambda functions behave like regular functions with names. However, a lambda function can only
have a single clause in its definition. Hence, we must be sure that our pattern covers all cases,
otherwise runtime errors will occur. For example, the following definition of tail' will be unsafe

for an empty list.

tail' :: [t] -> [t]
tail' = \(_:xs) -> xs

tail' [1..10]

(2,3,4,5,6,7,8,9,10]

Lambda functions are useful in situation where a function is needed that can be easily defined inline.
For example, lets multiply all integers of a list by two and add one.

map (\x -> x * 2 + 1) [1..10]

(3,5,7,9,11,13,15,17,19,21]

A lambda function gives us a very concise and readable solution without having to define a helper
function and finding a good name for it. Of course, we could solve the same task using other means,
for example, using function composition.

map ((+ 1) . (x 2)) [1..10]

(3,5,7,9,11,13,15,17,19,21]

1.9 Partial Functions and Currying

In Haskell, all functions take only a single argument. This may sound like a contradiction since
we are meanwhile used to functions will multiple arguments. To resolve what may appear as a
contradiction, we need to look at type signatures again.

https://en.wikipedia.org/wiki/Lambda_calculus

[28]: take' :: Int -> [a] -> [al
take' 0 _ = []
take' _ [] = [
take' n (x:xs) = x : take' (n-1) xs

The function take' has in its signature only one parameter (i.e., an Int). After the Int argument
has been applied, a function is returned that takes a list of some type a as the argument and which
returns a list of the same type a. We can make use of this when we need a function take3 that takes
the first three elements of a list. We define take3 to be the take function with the first argument

fixed to 3.

[29]: take3 :: [a] -> [a]
take3 = take' 3

take3 [1..10]

[1,2,3]

We have already used currying when we created a +1 function or a *2 function.
[30]: map ((+ 1) . (x 2)) [1..10]

(3,5,7,9,11,13,15,17,19,21]

From a mathematical point of view, currying a function expression means successively splitting away
arguments from the right to the left. In the general case of currying an m-ary function expression:

flxy, 2o, o) = N wr)(22) ... (T0).

10

https://en.wikipedia.org/wiki/Currying

[1]:

[2]:

[3]:

Haskell Tutorial: Higher Order Functions

Jiirgen Schonwélder

April 9, 2022
:opt no-lint

1 Higher Order Functions

Functions are first class citizens in Haskell. They can be passed as arguments, they can be returned
as results, and they can be constructed from other functions (e.g., via function composition or
currying). In the following, we will look at some of the higher order functions that are used very

frequently.

1.1 Mapping with map

The perhaps most basic function that takes a function as an argument is map, which applies a
function given as the first argument to all elements of a list given as the second argument.

map even [1..10]
map (*2) [1..10]
map (\x -> x*x) [1..10]

[False,True,False,True,False,True,False,True,False,Truel
[2,4,6,8,10,12,14,16,18,20]
[1,4,9,16,25,36,49,64,81,100]

We could implement our own version of map in the following way:

map' :: (a -> b) -> [a] -> [b]
map' £ [] = []
map' f (x:xs) = (f x) : (map' f xs)

map' even [1..10]
map' (x2) [1..10]
map' (\x -> xxx) [1..10]

[False,True,False,True,False,True,False,True,False, Truel
[2,4,6,8,10,12,14,16,18,20]
[1,4,9,16,25,36,49,64,81,100]

1.2 Filtering with filter

A filter is a function that takes a predicate and a list and returns the list of elements that satisfy
the predicate. A predicate is a function returning a boolean value indicating whether an element

should pass the filter or not.

[4]: filter even [1..10]
filter (<6) [1..10]

[2,4,6,8,10]
[1,2,3,4,5]
We could implement our own version of filter in the following way:
[6]: filter' :: (a -> Bool) -> [a] -> [al]
filter' p [1 = []

filter' p (x:xs)

| p x
| otherwise

x : filter' p xs
filter' p xs

filter' even [1..10]
filter' (<6) [1..10]

[2,4,6,8,10]
[1,2,3,4,5]

1.3 Zipping with zip and zipWith

Sometimes values of two lists have to be zipped together by building a list of tuples where the first
tuple contains the first list elements, the second tuple the second list elements and so forth. This is
what the zip function does. The zipWith function generalizes this idea by allowing you to provide
a function that should be applied to the matching list elements. Note that the zipping stops when

one of the list runs out of elements.

[6]:|zip [1..] "hello"
zipWith (\a b -> (a, b)) [1..] "hello"

[(1,'h"),(2,'e"),(3,'1'),(4,'1"),(5,'0")]
[(1,'h"),(2,'e"),(3,'1"),(4,'1"),(5,'0")]

The zip and zipWith functions can be easily implemented.

[7]: zipWith' :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipWith' £ _ []1 = []
zipWith' £ [1 _ = []

zipWith' f (x:xs) (y:ys) = (f x y) : zipWith' f xs ys

zip' = zipWith' (\a b -> (a, b))

[8]:

[9]:

[10]:

[11]:

zip' [1..] "hello"

zipWith' (\a b -> (a, b)) [1..] "hello"
[(1,'h"),(2,'e'),(3,'1"),(4,'1"),(5,'0")]
[(1,'h’)’(2,'e')’(s’|1|),(4’|1|),(5’|o|)]

With the zipWith function, we can implement a function generating the Fibonacci sequence in a
rather efficient way. Apparently, Haskell’s lazyness allows us to process lists while they are being
constructed.

fib = 0 : 1 : zipWith (+) fib (tail fib)

take 20 fib

(0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181]

1.4 Reducing with foldl and foldr

Sometimes it is necessary to reduce the elements of a list to a single value. The fold functions are
often an effective means to do that. An example is the calculation of the sum of all elements in a

list of numbers.

foldl (+) 0 [1..3]

6

The above call to foldl does a left associative addition of all list elements: (((0+ 1) 4+ 2) + 3 = 6.
The first parameter of foldl is a step function and the second argument initializes an accumulator.
Subsequently, the step function is called with the accumulator and the next list element until all
list elements have been processed.

foldr (+) 0 [1..3]

6

The above call to foldr does a right associative addition of all list elements: 0+ (1 + (2 +3)) = 6.
Since the addition is associative, both folds produce the same result. (An operation is associative if
within an expression containing two or more occurrences of the same associative operator, the order
in which the operations are performed does not matter as long as the sequence of the operands is
not changed.)

For operations that are not associative, the difference between foldl and foldr matters. Lets look
at substraction, which is not associative:

foldl (-) 0 [1..3]
foldr (-) 0 [1..3]

-6
2
The left fold calculates (((0—1)—2)—3 = —6. The right fold, however, calculates 0—(1—(2—3)) = 2.

The foldl and foldr functions require that a starting value is provided. In some situations, it is
possible to use the first (or last) element of a list as a starting value. In such situations, the foldl1l
and foldri functions can be used if the list is guaranteed to have at least one element. (If the list
has only a single element, then foldll and foldrl return that element.)

It is relatively easy to implement the fold functions:

[12]: foldr' :: (a -=> b ->b) ->b -> [a] -> b
foldr' f z [] = 2
foldr' f z (x:xs) = £ x (foldr' f z xs)

foldr' (-) 0 [1..3]

2
[13]:|foldl" :: (a => b -> a) -> a -> [b] -> a
foldl' f z [] = 2

foldl' f z (x:xs) = foldl' f (f z x) xs

foldl' (+) 0 [1..3]

6
The fold functions can be used to implement many standard utility functions. Here are some
examples:

[14]: sum' :: Num a => [a] -> a
sum' = foldl (+) O
sum'' = foldll (+)
sum' [1..5]
sum'' [1..5]
sum' []
15
15
0

[15]: product' :: Num a => [a] -> a
product' = foldl (%) 1
product'' = foldll (*)

product' [1..5]
product'' [1..5]
product' []

120
120
1

[16]:

[17]:

[18]:

[19]:

maximum' :: Ord a => [a] -> a
maximum' = foldll (\x acc -> if x > acc then x else acc)

maximum' [1,3,5,2,3,4]
maximum' "hello world"

5

IWI

1.5 Example: Sorting using quicksort

The basic idea of the quicksort algorithm is to sort a list by picking an element and and then
sorting all elements smaller than the chosen element and sorting all elements larger than the chosen
element and combining the results. Obviously, the lists to be sorted get smaller and smaller until
we reach the trival case where the list to be sorted is an empty list. This can be translated directly
into Haskell. (The typeclass Ord is for totally ordered datatypes. The compare function compares
two values and returns whether the first is less than (LT), greater than (GT) or equal (EQ) to the

second.)

quickSort :: (0Ord a) => [a] -> [a]
quickSort [] = []
quickSort (x:xs) = quickSort smaller ++ [x] ++ quickSort larger
where
smaller = filter (< x) xs
filter (>= x) xs

larger

quickSort [1..3]
quickSort [1,4,2,3,1,2,3]
quickSort "Hello World"

[1,2,3]
[1,1,2,2,3,3,4]

" HWdelllooxr"

Note that this implementation of quicksort can be improved since it does multiple passes over the
to be sorted list in each iteration and it does not perform an in place sort, i.e., it creates new
temporary lists. You will learn more about sorting algorithms and quicksort in the Algorithms and

Data Structures module.

To avoid the two passes over the list to calculate smaller and lesser, we can write our own function
or simply use the partition function provided by Data.List.

import Data.List

quickSort :: (Ord a) => [a]l -> [a]
quickSort [] = []
quickSort (x:xs) = quickSort smaller ++ [x] ++ quickSort larger

where

[20]:

[21]:

[22]:

[23]

(smaller, larger) = partition (< x) xs

quickSort [1..3]
quickSort [1,4,2,3,1,2,3]
quickSort "Hello World"

[1,2,3]
[1,1,2,2,3,3,4]

" HWdellloor"

The quickSort function is nice but kind of limited since it always sorts the data according to the
native order of the elements. We can make our sorting function more general by adding an extra

argument that provides a comparison function.
quickSort' (0rd a) => (a -> a -> Ordering) -> [a] -> [a]

quickSort' _ [] = []
quickSort' c¢ (x:xs) = quickSort' c smaller ++ [x] ++ quickSort' c larger

where
smaller = filter (\y -> ¢ y x == LT) xs

larger = filter (\y -> ¢ y x /= LT) xs

quickSort' compare [1,4,2,3,9,8,7,6,5]
quickSort' (flip compare) [1,4,2,3,9,8,7,6,5]
[1’2’3’4’5’6’7’8)9]

(9,8,7,6,5,4,3,2,1]
The flip function flips the arguments of a function, which causes the comparison to be done in the
different direction (descending order instead of ascending order).

Note that we can easily derive a quicksort function using the native sort order out of the more

generic quicksort function via currying.

: quickSortNative = quickSort' compare

quickSortNative [1,4,2,3,9,8,7,6,5]

[1,2,3,4,5,6,7,8,9]

[1]:

[2]:

Haskell Tutorial: Datatypes
Jiirgen Schonwélder

April 9, 2022
:opt no-lint

1 Datatypes

Sometimes we may want to introduce new data types for specific purposes.

1.1 Employee

We introduce the mechanisms that can be used to define our own datatypes by defining a datatype
representing information about an employee.

data EmployeeInfo = Employee String Int Double [String]
deriving (Show)

p = Employee "Joe Sample" 22 186.3 []
print p

Employee "Joe Sample" 22 186.3 []

To define a new datatype, use the keyword data, which is followed by the name of our new type
(also called a type constructor), in our example EmployeeInfo. The type constructor is followed by
the data constructor Employee. The data constructor is used to create a value of the EmployeeInfo
type. Both the type constructor and the data constructor must start with a capital letter. The
Int, Double, String and [String] (that follow after the data constructor Employee) are the com-
ponents/fields of the type. (If you are familiar with an object-oriented language, these components
serve the same purpose as fields for a class).

In this particular example, the name of the type constructor (EmployeeInfo) and the value/data
constructor (Employee) use a different name for you to see which is which. It is common practice to
give them both the same name. There is no ambiguity because the type constructor’s name is used
only in type declaration / type signatures and the value constructor’s name is used in the actual
code (in writing expressions).

The deriving (Show) part asks Haskell to make sure that the new type belongs to the Show
typeclass, which implies to derive a show function that renders an instance of our newly defined
datatype into a string. This show function is used by the print function. If there would be no
deriving (Show), Haskell would not be able to print an instance of our new datatype. We will talk
more about typeclasses later, so lets not dig deeper here.

[3]:

[4] :

[5]:

Consider the fields from the example above. It is not very clear what the Int, Double, String and
[String] fields mean. To make things as clear as possible, it is possible to introduce synonyms for
existing types at any time. Such synonyms give a type a more descriptive name.

type Age = Int

type Salary = Double

type Name = String

type Manager = [Name]

data EmployeeInfo = Employee Name Age Salary Manager
deriving (Show)

p = Employee "Joe Sample" 22 86123.35 ["Lucy Boss"]
print p

Employee "Joe Sample" 22 86123.35 ["Lucy Boss"]

Data type definitions can be nested. We improve our example by replacing the Age field with a
Birthday field. Using a Birthday in our Employee type has the advantage that the birthday is
immutable while the age changes once every year. Since a date consists of a year, a month, and a
day, we construct another data type to represent dates. (In real projects, you likely want to use a
pre-defined date type.)

type Day = Int

type Month = Int

type Year = Int

data Date = Date Year Month Day
deriving (Show)

type Name = String

type Birthday = Date
type Salary = Double
type Manager = [Name]

data Employee = Employee Name Birthday Salary Manager
deriving (Show)

p = Employee "Joe Sample" (Date 1983 06 17) 86123.35 ["Lucy Boss"]

print p

Employee "Joe Sample" (Date 1983 6 17) 86123.35 ["Lucy Boss"]

New data types can also be alternatives of types. The simplest examples are enumerations. We can
use alternative types to define the sex of a person.

data Sex = Female | Male | Diverse
deriving (Show)

The Sex datatype has three data constructors, Female, Male and Diverse, separated by a bar
symbol (the bar symbol can be read as “or”). The data constructors are commonly referred to as
alternatives or cases. The data constructors can take zero or more arguments.

[6]:

[7]:

[8]:

[9]:

data Employee = Worker Name Birthday Sex Salary Manager
| Manager Name Birthday Sex Salary
deriving (Show)

w = Worker "Joe Sample" (Date 1983 06 17) Diverse 86123.35 ["Lucy Boss"]
print p

m = Manager "Lucy Boss" (Date 1967 02 20) Female 113213.23

print m

Employee "Joe Sample" (Date 1983 6 17) 86123.35 ["Lucy Boss"]
Manager "Lucy Boss" (Date 1967 2 20) Female 113213.23

Data type definitions can be recursive, giving us the option to have inductively defined data types.
Lets make the manager of an employee another employee so that we can represent a whole employee
hierarchy.

data Employee = Worker Name Birthday Sex Salary Employee
| Manager Name Birthday Sex Salary
deriving (Show)

lucy :: Employee
lucy = Manager "Lucy Boss" (Date 1967 02 20) Female 113213.23

joe :: Employee
joe = Worker "Joe Sample" (Date 1983 06 17) Diverse 86123.35 lucy

print joe

Worker "Joe Sample" (Date 1983 6 17) Diverse 86123.35 (Manager "Lucy Boss" (Date,
—1967 2 20) Female 113213.23)

1.2 Maybe

Type definitions can be parameterized by introducing a type parameter in the type definition. A
common example is the definition of Maybe in the prelude.

data Maybe a = Nothing | Just a
deriving (Show)

The definition of Maybe has a type as its argument, i.e., the type is parametrized. The Maybe type
can be used to create types that contain a certain typed value or nothing. This helps in situation
where some value is optional or not always defined. Lets take a short excursion by looking at the
standard tail function: it fails if called with a list that has no tail.

tail [1..3]
tail [1]
tail []

[2,3]

[10]:

[11]:

[12]:

(]
Prelude.tail: empty list

Throwing an error is a pretty bad side effect. With Maybe, we have a tool that we can use to write
a safe tail function, which returns Nothing or Just a list.

safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (_:xs) = Just xs

safeTail [1..3]
safeTail [1]
safeTail []

Just [2,3]
Just []

Nothing

1.3 Employee (continued)

With this definition of Maybe, we can further improve our Employee type by enabling managers to
be managed by other managers but top-level managers are not managed by anyone. And at this
point, we may want to give up the distinction between managers and workers (since an employee is
a manager once she manages someone).

data Employee = Employee Name Birthday Sex Salary (Maybe Employee)
deriving (Show)

lucy = Employee "Lucy Boss" (Date 1967 02 20) Female 113213.23 Nothing
joe = Employee "Joe Sample" (Date 1983 06 17) Diverse 86123.35 (Just lucy)
print joe

Employee "Joe Sample" (Date 1983 6 17) Diverse 86123.35 (Just (Employee "Lucy,
—Boss" (Date 1967 2 20) Female 113213.23 Nothing))

The interpretation is that the manager is either Just Employee or Nothing. The Maybe type is
very widely used to indicate missing values in Haskell.

The last improvement we want to make is to use the record syntax. With the record syntax, we
can give the various fields of our type names. Haskell will then automatically generate functions
that can be used to access the different fields of a type. The record syntax also changes how data
instances are rendered using the show function.

type Day = Int

type Month = Int

type Year = Int

data Date = Date { year :: Year, month :: Month, day :: Day }

deriving (Show)

type Name = String
type Euro

Double -- never represent money using floating point types in
—real code

data Sex = Female | Male | Diverse
deriving (Show)

data Employee = Employee { name :: Name
, birthday :: Date
, sex :: Sex
, salary :: Euro
, manager :: Maybe Employee }
deriving (Show)

lucy = Employee { name = "Lucy Boss"
, birthday = Date { year = 1967, month = 02, day = 20 }
, sex = Female
, salary = 113213.23
, manager = Nothing }

joe = Employee { name = "Joe Sample"
, birthday = Date { year = 1983, month = 06, day = 17 }
, sex = Diverse
, salary = 86123.35
, manager = Just lucy }

print joe
print (manager joe)

print lucy
print (manager lucy)

Employee {name = "Joe Sample", birthday = Date {year = 1983, month = 6, day = 171},
—sex = Diverse, salary = 86123.35, manager = Just (Employee {name = "Lucy Boss",,
—birthday = Date {year = 1967, month = 2, day = 20}, sex = Female, salary =,
-,113213.23, manager = Nothing})}

Just (Employee {name = "Lucy Boss", birthday = Date {year = 1967, month = 2, day =,
20}, sex = Female, salary = 113213.23, manager = Nothing})

Employee {name = "Lucy Boss", birthday = Date {year = 1967, month = 2, day = 20},
—sex = Female, salary = 113213.23, manager = Nothing}

Nothing

[13]:

[14]:

[15]:

1.4 Binary Tree

As another example, let us define a parametric type for a binary tree in order to practice what we
have learned.

data Tree a = Empty
| Leaf a
| Branch a (Tree a) (Tree a)
deriving (Eq, Show)

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print t

:type t
Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)

Tree Char

Haskell has derived that t is of type Tree Char. In the definition of Tree, we ask Haskell to derive
the typeclasses Eq and Show. We do this to obtain a show function that takes a Tree value and
converts it into a string so that we can print values. Lets see what happens if we create a Tree of
numbers.

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print t

:type t
Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)

forall a. Num a => Tree a

Haskell derived that t is of type Num a => Tree a, i.e., it is a tree of a type that is constrained to
the Num typeclass.

Lets now define a function toList :: Tree a -> [a] that takes a tree and returns all values stored
in the tree as a list. Note that this function works for any type that can be used with the tree type.
We can use this function with a tree of strings or a tree of numbers, i.e., this function is polymorphic.

toList :: Tree a -> [a]

tolist Empty = []

toList (Leaf x) = [x]

toList (Branch x 1 r) = toList 1 ++ [x] ++ tolList r

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print E tolist t

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print [§ tolist t

"abcdef"

[1,2,3,4,5,6]

The toList function can be implemented in different ways since the tree may be traversed in three
different ways: * pre-order (NLR): 1. Return the value of the current node (N) 1. Return the values
of the left subtree (L) 1. Return the values of the right subtree (R) * in-order (LNR): 1. Return
the values of the left subtree (L) 1. Return the value of the current node (N) 1. Return the values
of the right subtree (R) * post-order (LRN): 1. Return the values of the left subtree (L) 1. Return
the values of the right subtree (R) 1. Return the value of the current node (N)

Perhaps we should have three traversal functions.

[16]: preOrderTolList :: Tree a -> [a]
preOrderTolList Empty = []
preOrderToList (Leaf x) = [x]
preOrderTolList (Branch x 1 r) = [x] ++ preOrderToList 1 ++ preOrderTolList r

inOrderTolist :: Tree a -> [a]

inOrderToList Empty = []

inOrderTolList (Leaf x) = [x]

inOrderToList (Branch x 1 r) = inOrderToList 1 ++ [x] ++ inOrderTolList r

postOrderTolList :: Tree a -> [al

postOrderToList Empty = []

postOrderToList (Leaf x) = [x]

postOrderToList (Branch x 1 r) = postOrderToList 1 ++ postOrderTolList r ++ [x]

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print ﬁ preOrderTolist t

print § inOrderTolist t

print § postOrderTolist t

"dbacfe"
"abcdef"
"acbefd"

We can also define a function map :: (a -> b) -> Tree a -> Tree b applying a function to all
values stored in leaves of our tree.

[17]: map :: (a -> b) -> Tree a -> Tree b
map f Empty = Empty
map f (Leaf x) = Leaf (f x)
map f (Branch x 1 r) = Branch (f x) (map f 1) (map f r)

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print § map (+1) t

Branch 5 (Branch 3 (Leaf 2) (Leaf 4)) (Branch 7 (Leaf 6) Empty)

In a similar way, we can define a foldr function that takes a function to reduce a tree value and
an already reduced value, a zero value, and a tree and returns the reduced value.

[18]: foldr :: (a -> b ->b) -> b -> Tree a -> b
foldr _ z Empty = z

foldr £ z (Leaf x) = f x z
foldr f z (Branch x 1 r) = foldr £ (f x (foldr f z r)) 1

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
print ﬁ foldr (+) 0 t
$ foldr (¥) 1t

print
21
720

Note that our in-order toList function is a special case of a fold over the tree.

[19]: tolist :: Tree a -> [a]
tolList = foldr (:) []

t = Branch 'd' (Branch 'b' (Leaf 'a') (Leaf 'c')) (Branch 'f' (Leaf 'e') Empty)
print E tolist t

"abcdef"

Since Tree is also an instance of the Eq typeclass, we can test trees for equality.

[20]: t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
r = map (+1) t
print ﬁ t==r
print § t /= r
False
True
[30]: draw :: Show a => Tree a -> String
draw t = pfxDraw "" t where

pfxDraw p Empty p ++ "+:\n"
pfxDraw p (Leaf x) p ++ "+-" ++ show x ++ "\n"
pfxDraw p (Branch x 1 r) center ++ left ++ right where
center = p ++ "+_" ++ show x ++ "\Il”
left pfxDraw (p ++ " ") 1

right = pfxDraw (p ++ " ") r

t = Branch 4 (Branch 2 (Leaf 1) (Leaf 3)) (Branch 6 (Leaf 5) Empty)
putStr E draw t

+-4
+-2
+-1
+-3
+-6

[1]:

[2]:

[3]:

Haskell Tutorial: Typeclasses
Jiirgen Schonwélder

April 9, 2022
:opt no-lint

1 Typeclasses

Typeclasses describe a set of types that have a common interface and behaviour. We have already
seen typeclasses such as Ord or Num or Show. In a nutshell, a typeclass defines common behaviour
of types that belong to the typeclass. A type belonging to a typeclass implements the functions
and behaviour defined by the typeclass. Note that the notion of a typeclass is very different from
the concept of classes in object-oriented programming languages like C++ or Java. The closest
concepts in popular object-oriented programming languages are probably Java interfaces.

The perhaps simplest standard typeclass is Eq. Types that are instances of the Eq typeclass imple-
ment an operator (a function) that can be used to determine whether two values of the type are
equal. Note that the way equality is determined is type specific. For numeric types, equality is
defined by comparing two numerical values. For lists, equality is defined by comparing all elements
of two lists. There are also types where equality is not defined for all values or where it would be
infeasible to decide equality of two values. The Eq typeclass can be defined in Haskell as follows:

class Eq a where
(=) :: a -> a -> Bool
(/=) :: a ->a -> Bool

The definition says that type a is an instance of the class Eq if there are (overloaded) operations
== and /=, of the appropriate type, defined on it. A type implementing the Eq typeclass, i.e., a
type that is an instance of the Eq typeclass, must implement these operation with the given type
signature and the associated semantics. The functions (operations) of a typeclass are also called
methods of the typeclass. We can go even further and provide default implementations in case this
is possible. Note that in this particular example, the default implementations refer to each other,
which means that a type instance of Eq only needs to define one of the two methods.

class Eq a where

(==) :: a -> a -> Bool
(==) a b =not (a /= b) -- default implementation
(/=) :: a -> a -> Bool
(/=) a b =not (a == b) -- default implementation

Lets define a simple enumeration type for weekdays. We can make our Weekday type an instance of
the Eq typeclass by defining the methods of the Eq typeclass. Since we have default implementations

[4] :

[5]:

for the methods, it is sufficient to define only one of the methods. The other method will then be
available immediately due to its default implementation.

data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

instance Eq Weekday where
Mon == Mon = True
Tue == Tue = True
Wed == Wed = True
Thu == Thu = True

Fri == Fri = True
Sat == Sat = True
Sun == Sun = True
_ == _ = False

Sun == Sun

Sun /= Sat

True

True

The next example shows how we can define lists of a given type to be an instance of Eq. We assume
that the type of the list elements already is an instance of Eq.

instance Eq a => Eq [a] where

[] == [] = True
(x:xs) == (YZYS) =x ==y && xs == ys
= == _ = False

[Sun) Mons Tue] == [Sun, Mon, Tue]

True

When we write generic (polymorphic) code, we often refer to types that belong to certain type
classes, i.e., to all types that have a certain common behaviour. We can express that a type should
be an instance of a certain typeclass by expressing a constraint on a type, which we call a context.
The expression Eq a says that we constrain the type a to those types that are instances of the Eq
typeclass.

The following example shows how our Eq typeclass can be used. In order to determine whether a
certain element is in a list, we test whether the first element is equal to the element we are looking
for or we test whether the element we are looking for is in the tail of the list. Our definition of the
elem function can be used with all list element types that are instances of the Eq typeclass. This
is expressed using the Eq a context in the type signature of our function. Since numeric types are
instances of the Eq typeclass, we can determine whether a number is an element of a list of numbers.
Similarly, since characters are instances of the Eq typeclass, we can determine whether a character
is an element of a list of characters (a string).

[1]: elem :: Eq a => a -> [a] -> Bool
elem _ [] = False

elem y (x:x8) =y ==x || elem y xs

It is possible to extend typeclasses. The Ord typeclass defines order relations. The Ord typeclass
can be defined as an extension of the Eq typeclass. We say that Eq is a superclass of Ord or that
Ord is a subclass of Eq. The definition below also provides default method implementations.

[6]: data Ordering = LT | EQ | GT

instance Eq Ordering where

LT == LT = True
EQ == EQ = True
GT == GT = True

== = False

class Eq a) => Ord a where
(<), (=), >=), (>) :: a -> a -> Bool

compare :: a -> a -> Ordering

max, min i a->a->a

compare X y | x ==y = EQ -- default implementation
| x <=y = LT
| otherwise = GT

X <=y = compare x y /= GT -- default implementation

x <y = compare x y == LT -- default implementation

X >= y = compare x y /= LT -- default implementation

x >y = compare x y == GT -- default implementation

max x y | x <=y =
| otherwise =

-- default implementation

min x | x <= -- default implementation
y y p

| otherwise

<M M <

An interesting typeclass is the Functor typeclass. It generalizes the map function we already know
from lists to any parametric types that can contain values. The Functor typeclass is defined as
follows:

[7]: class Functor f where
fmap :: (@ ->b) ->fa->fb

Note that the type variable f is applied to other types in £ a and £ b.

[8]: data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Show)

instance Functor Tree where
fmap £ (Leaf x) Leaf (f x)
fmap f (Branch 1 r) = Branch (fmap f 1) (fmap f r)

[15]:

[10]:

t = Branch (Leaf "hello") (Leaf "world")
print t
print E fmap reverse t

Branch (Leaf "hello") (Leaf "world")
Branch (Leaf "olleh") (Leaf "dlrow")

The type Maybe is an instance of the Functor typeclass as is the standard list type. Hence we can
apply functions to Maybe values in a list or Maybe values in a tree; the Functor typeclass nicely
hides the differences between a list and tree.

-- instance Functor Maybe where
-- fmap f Nothing = Nothing
-- fmap f (Just x) = Just (f x)

-- instance Functor [] where
-- fmap = map

print E fmap (*¥2) (Just 1)

1
t

[Just 1, Just 2, Just 3, Nothing]
Branch (Branch (Leaf (Just 1)) (Leaf (Just 2))) (Leaf Nothing)

print ﬁ fmap (fmap (*2)) 1
print § fmap (fmap (¥2)) t

Overlapping instances for Functor Maybe arising from a use of ~fmap'
Matching instances:
instance Functor Maybe -- Defined at <interactive>:1:10
instance Functor Maybe -- Defined at <interactive>:1:10
In the second argument of ~($)', namely “fmap (* 2) (Just 1)'
In the expression: print $ fmap (* 2) (Just 1)
In an equation for “it': it = print $ fmap (* 2) (Just 1)

[1]:

[2]:

Haskell Tutorial: Monads

Jiirgen Schonwélder

April 9, 2022
:opt no-lint

1 Monads

Functions in Haskell are pure. They do not have side effects, they do not have state. They are
composable. And because of this purity, functional code is easier to analyze and verify. Real-world
computing, however, requires to interact with a world that is full of state and side effects. Even
in pure math functions, we can hit situations where results are undefined (e.g., division by zero
or taking the square root of a negative real number). Monads provide a solution for dealing with
such situations. While Monads seem a bit difficult to understand, you have already used Monads.
(For the mathematically inclined students, Monads come out of category theory, a relatively recent
branch of mathematics that started to evolve in the 1940s.)

1.1 Maybe Monad

We have already mentioned that Maybe can be used to handle situations where a value may not
be present. Maybe is actually defined as a monad in Haskell. Lets look at an example and more
specifically at the head and tail functions of lists. Both functions fail if the list is empty. Using
Maybe, we can define safe head and tail functions:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x

safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (x:xs) = Just xs

safeHead []
safeTail []
Nothing
Nothing

Lets assume that we want to combine our safe functions to obtain the third element of a list. Given
a list, we could take twice the tail of it and then extract the head element. If we get Nothing at
any point in time, we return Nothing. Otherwise, we return Just a.

https://en.wikipedia.org/wiki/Category_theory

[3]:

[4] :

[5]:

third :: [a] -> Maybe a
third xs =
case safeTail xs of
Nothing -> Nothing
Just a -> case safeTail a of
Nothing -> Nothing
Just b -> safeHead b

third ""
third "1234"

Nothing
Just '3’

Maybe is implemented as a monad in Haskell, i.e., it is an instance of the Monad type class, which
requires that Maybe implements a bind and a unit operator. The bind operator is written as (>>=)
and the unit operator return. The bind operator for a monad m has the signature (>>=) :: m a
-> (a -> m b) -> m b. The first argument of the bind operator is a monadic value of type a and
the second argument is a function that takes a value of type a and returns a monadic value of type
b. The bind operator itself returns a monadic value of type b. The return operator takes a value
of type a and returns the value as a monadic value of type a. With the help of the bind operator,
we can write our third function in a more compact way:

third' :: [a] -> Maybe a
third' xs = safeTail xs >>= (\a -> safeTail a >>= (\b -> safeHead b))

thlrdl nn
third' "1234"
Nothing

Just '3’

One way to look at this is that the Maybe monad boxes the values returned and that the bind
operator allows us to apply a function to a boxed value, returning another boxed value. Since the
bind operator is associative, we can remove parenthesis and we get an even shorter version:

third' :: [a] -> Maybe a
third' xs = safeTail xs >>= \a -> safeTail a >>= \b -> safeHead b

third' ""
third' "1234"

Nothing
Just '3’

The bind operator for the Maybe monad is defined such that it returns Nothing if the first argument
is Nothing. In other words, the lamda functions are only applied if the monad has a proper value.
Haskell provides the do notation in order to make longer sequences of bind operations easier to read:

[6]:

[7]:

[8]:

[9]:

third'' :: [a] -> Maybe a
third'' xs = do
a <- safeTail xs
b <- safeTail a
safeHead b

thlrdl 1 nn
third'' "1234"

Nothing
Just '3’

This version is much easier to read and write since the handling of the mondic values is hidden in
the bind operator of the Maybe monad.

1.2 10O Monad

Anything of type I0 is called an action. An action is something we do that modifies the state of the
real world, e.g., print something to the terminal, read input from the console, establish a network
connection. The I0 monad helps to separate the side effects from the pure functional code.

isRaining :: I0 Bool

isRaining = do
putStrln "Is it raining outside? (y/n)"
input <- getChar
return (input == 'y')

isRaining

Is it raining outside? (y/n)
False

The isRaining function defines an action that returns an I0 Bool. The putStrLn function takes
a string and returns an IO action (putStrLn :: String -> IO ()). The getChar function is an IO
action returning a char (getChar :: 10 Char) and the <- operator runs the 10 action and binds
the result to input. The return operator finally encapsulates the boolean value returned by the
comparison operator in an I0 Bool. Note that we are sequencing IO actions here and finally use the
return operator to return the result as an IO action. This allows us to use isRaining to compose
more complex 1O actions. Also note that return is simply turning a Bool value into an I0 Bool
value. Do not confuse the return operator of a Haskell monad with return statements of other
programming languages that you may be familiar with.

hello :: IO String

hello = do
putStrLn "Please enter your name"
name <- getLine
putStrLn ("Hello " ++ name ++ "I")
return name

[10]:

[11]:

[12]:

[13]:

hello

Please enter your name
Hello !

As an exercise, try to convert the do notation used in the example above into the underlying sequence
of bind operators (»=).

dialog :: I0 O
dialog = do
name <- hello
rain <- isRaining
putStrLn ("Hi " ++ name ++ ", I have heard that it is " ++ (if rain then "",
—else "not ") ++ "raining")

dialog

Please enter your name

Hello Lena!

Is it raining outside? (y/n)

Hi Lena, I have heard that it is not raining

Haskell Tutorial: Functors, Applicatives, Monads

Jiirgen Schonwélder

April 9, 2022

[1]: :opt no-lint
import Control.Applicative
import Control.Monad

1 Functors

A very basic concept of Haskell is the application of a function to a value.
[2]: (x5) 2

10

Sometimes, we have values that are contained in a certain context. For example, Just 2 is the
value 2 contained in the context Just. Another example is the value 2 contained in a list: [2]. We
cannot directly apply the function (*¥5) to Just 2 or [2] since we first have to obtain the value 2
from its context. You can think of the context as a box that contains a value. For lists, we already
know that we can apply a function to all list elements by using the map function. A generalization

of map is the function fmap :: (a -> b) -> f a -> f b.

[3]: map (x5) [2]
fmap (x5) [2]
fmap (*5) (Just 2)
fmap (*5) Nothing
[10]
[10]
Just 10
Nothing

Types that implement fmap are called functors. A functor is formally defined as a type class:

[4]: -- class Functor f where
-- fmap :: (@ -=>b) ->fa->fb

Types implementing the Functor type class, i.e., types that are instances of the Functor type class,
implement fmap in a way that is consistent with the nature of the context.

[5]: fmap' :: (a -> b) -> [a] -> [b]
fmap' _ [1 = []
fmap' f (x:xs) = f x : fmap' f xs

fmap' :: (a -> b) -> Maybe a -> Maybe b
fmap' f (Just x) = Just $ £ x
fmap' f Nothing = Nothing

Haskell commonly defines the special operator <$> for fmap.

[6]: (<>) :: Functor £ => (a ->b) ->f a ->fb
(<>) = fmap

fmap (x5) [2]
(x5) <§> [2]
fmap (*5) (Just 2)
(x5) <§> (Just 2)

[10]

[10]

Just 10

Just 10

Interestingly, functions are functors as well. Hence, we can apply fmap to functions, giving us
function composition.

[71: £
g
h

fmap (*¥5) (+5)
(*5) <> (+5)
(x8) . (+5)

£0
g
h

(@}

25
25
25

Types implementing the Functor type class have to implement fmap such that the following functor
laws hold (id is the identity function):

[8]:|-- fmap id = id
-- fmap (f . g) = fmap f . fmap g

[9]:

[10]:

[11]:

[12]:

[13]:

2 Applicative

The Applicative type class extends the Functor type class. While the Functor type class assumes
that the values are wrapped in a context (a box), Applicative also supports functions wrapped in
a context (a box). The Applicative type class is defined as follows:

-- class Functor f => Applicative f where
-- pure :: a -> f a
-- (<x>) :: £ (a->b) >fa->fb

The function pure takes a value and puts it into the context (a box). The operator (<*>) applies
a function in a context to a value in a context and it returns a value in a context.

Just (*5) <*> Just 2
[(x5)] <*x> [2]

[(x1), (*¥2),(x3)] <> [1..3]

Just 10
[10]
[1,2,3,2,4,6,3,6,9]

The following example combines <$> (fmap) with <x>. The first parenthesis applies the (*) function
to Just 5, which givs us the function Just (*5). This function is then applied to Just 2, which
gives us Just 10.

((*) <§> (Just 5)) <#> (Just 2)

Just 10

Types implementing the Applicative type class have to implement the <*> operator and the
function pure such that the following applicative laws hold (id is the identity function):

-- pure id <*¢> v = v

-- pure f <*> pure x = pure (f x)

-~ u <> pure y = pure (§ y) <*> u

-—u <> (v <k> W) = pure . <k> ou <> v <k> oy

The last applicative law says that <*> is associative.

3 Monads

The Monad type class extends the Applicative type class. It defines a function return that puts
a value into a monad and a function (>>=) called bind that takes a value in a monad (a box), a
function that takes a value and returns a value in a possibly different monad, and returns the later
monadic value.

-- class Applicative m => Monad m where
== return :: a ->m a
= (>>) ::ma->(a->mb) ->mb

[14]:

[15]:

[16]:

[17]:

To illustrate this idea, we use the type Maybe, which happens to be an instance of the Monad type
class. Lets start with a function that takes an Integer and returns a Maybe Integer.

half :: Integer -> Maybe Integer
half x = if even x
then Just (x [ldiv| 2)
else Nothing

half 8

Just 4

Unfortunately, we cannot compose half with itself since half takes an Integer but returns a boxed
value. This is where the bind operator can help. (Note that return is a rather confusing name for
what the function does.) There is another operator (=<<), which swaps the first two arguments,
which is sometimes handy. Note that the operators kind of indicate how the value is flowing through
a sequence of functions.

Just 8 >>= half
Just 4 >>= half
Just 2 >>= half
Just 1 >>= half

return 8 >>= half >>= half >>= half >>= half
half =<< half =<< half =<< half =<< return 8

Just 4
Just 2
Just 1
Nothing
Nothing
Nothing

Types implementing the Monad type class have to implement the >>= operator and the function
return such that the following monad laws hold (id is the identity function):

-- return a >=f = f a
--m >>= return = m
- (m>>=f) >>=g==m >>= (\x -> f x >>= g)

Monds play an important role in Haskell since they can be used to encapsulate side effects. For
example, the I0 Monad takes care of input and output operations. The getLine :: I0 String
function takes no arguments and returns an IO action to read a string from the input. The putStrLn
:: String -> IO String takes a string and returns an IO action to print it. These functions can
be chained together:

getLine >>= putStrln

some input typed in here

In case the result of a chained function is not needed, one can use the then (>>) operator.

[18]: putStr "Hello" >> putStr " " >> putStrLn "World"

Hello World

Haskell has a special notation for monads, the do notation. Using the do notation, code manipu-
lating monads starts to look like imperative code. Hence, some people call monads programmable
semicolons since semicolons are often used to sequence statements in imperative languages. How-
ever, in Haskell, the behaviour of monads is programmable.

[19]: do
putStr "Hello"
putStr " "
putStrLn "World"

do
line <- getLine
putStrLn line

Hello World

some more input typed in here

4 Summary

Below is a summary of the operators defined by the type classes discussed here. Recall that a Monad
type is also Applicative and that an Applicative type is also a Functor.

[20]: -- fmap :: Functor f => (a ->b) ->f a ->fb
-~ <$> = fmap -- fmap operator
-- pure :: Applicative f => a -> f a
-- (<*>) :: Applicative f => (a -> b) ->f a ->£f b -- apply operator
-- (*>) :: Applicative f => f a ->f b ->f b -- then operator

-- (<%x) :: Applicative f => f a ->f b ->f a

-- return :: Monad m => a -> m a -- synonym for pure
-—— (>>=) :: Monadm=>ma -> (a->mb) ->mb -- bind operator
-- (5<<) :: Monad m => (a ->mb) ->ma->mb -- bind operator
-~ (>>) :: Monadm=>ma->mb->mb -- then operator

Haskell Tutorial: Sets

Jiirgen Schonwélder

April 9, 2022
[1]: :opt no-lint

1 Ordered Sets

Haskell has support for typed ordered sets with fast insert, delete, and lookup operations. It is
highly recommended to use the set implementation instead of abusing lists to represent ordered
sets. To use the set functions, you have to import Data.Set. It is a recommended to use a qualified
import in order to handle name clashes with functions defined by the prelude. And using a qualified
import may also help with readability.

[2]: import qualified Data.Set as Set

A common way to create sets is to create them from a list. But there are also convenient ways to
create an empty set or a set has a single member, called a singleton.

[3]: sO = Set.empty
sl = Set.singleton 'c'
s2 = Set.fromList "Hello World"
s3 = Set.fromlList ['a'..'z']

The null function can be used to test whether a set is empty while the size function returns the
number of elements of a set.

[4]: map Set.null [s0,s1,s2,s3]
map Set.size [s0,s1,s2,s3]

[True,False,False,False]
[0,1,8,26]

The toAscList function returns the elements of a set as a list in ascending order. Similarly,
toDescList returns the elements of a set as a list in descending order.

[5]: Set.toAsclList s3
Set.toDescList s3

"abcdefghijklmnopgrstuvwxyz"
"zyxwvutsrgqponmlkjihgfedcba"

Set member function can be used to test whether a value is a member of a given list and the
isSubset0f function can be used to test whether the first set is a subset of the second set.

[6]:

[7]:

[8]:

[9]:

[10]:

[11]:

[12]:

map (Set.member 'o') [s0,s1,s2,s3]
map (Set.isSubset0f s2) [s0,s1,s2,s3]

[False,False,True, True]
[False,False,True,False]

The insert and delete functions can be used to add and delete elements. There is also a filter
function that can be used to create a set from all members of a set where a given predicate is true.

Set.null Set.delete 42 Set.insert 42 Set.insert 42 sO
Set.toAscList § Set.filter (< 'g') s3

True

"abcdef"

You can use the standard set operations union, intersection, and difference. The isSubsetOf
function tests whether the first argument is a subset of the second argument and the member function
tests whether a member is in a set. The disjoint function tests whether two sets are disjoint, i.e.,
they have no common elements.

Set.union s2 s3
Set.intersection s2 s3
Set.difference s2 s3

fromList " HWabcdefghijklmnopgrstuvwxyz"
fromList "delor"
fromList " HW"

Since the sets have an order, it is possible to split sets at a certain elem. Note that the splitting
element is not required to be a member of the set.

sp = Set.split 'm' s3
Set.elems § fst sp
Set.elems 9§ snd sp

"abcdefghijkl"

"nopqrstuvwxyz"

Set.split 32 § Set.fromList [0,10..60]

(fromList [0,10,20,30],fromList [40,50,60])

Many higher order funtions like map, filter and various folds are implemented for sets as well.
Set.map (succ) [§ Set.fromList [1..10]
fromList [2,3,4,5,6,7,8,9,10,11]

Set.filter even {§ Set.fromList [1..10]

fromList [2,4,6,8,10]

[13]: Set.foldr (+) O ﬁ Set.fromList [1..10]
Set.foldr (:) [1 § Set.fromList [1..10]
Set.foldl (flip (:)) [] Set.fromList [1..10]

55
[1’2’3’4’5’6’7’8’9)101
(10,9,8,7,6,5,4,3,2,1]

1.1 Internals

Sets are internally represented as balanced ordered binary trees. It is possible to look at the internal
representation by using the showTree function. Note that there may be leaf nodes without a value.

[14]: putStrLn $ Set.showTree s3

e
+o-'q"
| +--'b'
[+--'a!
I +--"c'
| 4ot
I +--'e!
I +--'g'
+——‘p'
o1
| +--'3
[+--'i
N
| +--'n'
I +--'m'
I +--'o'
o't
+--'r!
| +--'q'
| +--'s'
+--"'x!
+--"'y!
| +--'u'
| +--'w'
+--'y!
+-—|
+--'z!

[1]:

[2]:

[3]:

[4] :

[5]:

Haskell Tutorial: Maps

Jiirgen Schonwélder

April 9, 2022

:opt no-lint

0.1 Maps

Haskell has support for maps that map a key to a value. Mathematically, you may think of a map as
a binary relation mapping keys to values. To use the map functions, you have to import Data.Map.
There are actually two different kinds of maps in the Haskell library: Data.Map.Strict provides
finite maps (sometimes called dictonaries) for situations where all values will be forced to exist.
If laziness is required, i.e., you want to store something potentially infinite in a map, you should
use Data.Map.Lazy. Haskell maps are pretty powerful. This document only provides a very basic
overview. For a full description, see the official documentation.

import qualified Data.Map as Map

A common way to create maps is to create them from a list of tuples. But there are also convenient
ways to create an empty map or a map that has a single member, called a singleton.

m0 = Map.empty
ml = Map.singleton "Eve" 42
m2 = Map.fromList [§| zip ["hello", "world"] [1..]

The null function can be used to test whether a map is empty while the size function returns the
number of elements of a map.

map Map.null [m0, ml, m2]
map Map.size [m0, ml, m2]
[True,False,Falsel

(0,1,2]

Maps can be converted back to lists using the toList, toAscList, and toDescList functions. The
toAscList, and toDescList functions return the map tuples ordered by the keys.

Map.toList m2
Map.toAsclList m2
Map.toDescList m2

[("hello",1), ("world",2)]

[("hello",1), ("world",2)]

[("world",2), ("hello",1)]

The elems function returns the list of all values while the keys function returns the list of keys.

[6]: Map.elems m2
Map.keys m2

[1,2]
["hello","world"]

There are many ways to lookup values for keys. First, you can use the member function to test
whether a certain key exists in the map. The ! operator returns the value of a key that exists
in a map or it throws an error. There are other functions that avoid throwing an error. A simple
solution is findWithDefault, which returns the value of a key in a map or a default value.

[7]: Map.member "hello" m2
m2 Map.! "hello"
Map.findWithDefault O "hello" m2
Map.findWithDefault O "hello" ml

True
1
1
0

0.1.1 TODO

e explain insert, delete, update
e explain unions, intersection, difference
e explain map, mapWithKey, filter, mapKeys

[8]:

[1]:

Haskell Tutorial: Tips and Tricks

Jiirgen Schonwélder

April 9, 2022

1 Tips and Tricks

This is a somewhat unstructured collection of notes that may be useful. Consider this more a
scratch space instead of a well thought out sequence of thoughts. If you thing more tips and tricks
should be included, drop me a note and I will see whether I can add additional material.

1.1 Debugging

Most of the following is true for any programming language. So take the tricks and the advise
serious and try to follow them.

Step #0 Compile your code. Code that has never seen a compiler in most cases does not work.
There are even online Haskell interpreter that do not require any installation, simply google. There
is no excuse for submitting code that has not seen a compiler.

Step #1 Turn on warnings (-Wall in ghci) and pay attention to all warnings and errors. Fix
things. Iterate until the compiler is happy. And no, the compiler is not broken. The chances that
a beginner finds a serious compiler bug is low.

Step #2 Write test cases (if not done yet). Automate your tests so you can re-run them easily
after each and every change. Yes, automate, re-run all tests after each and every change. Ad-hoc
testing is a waste of your time. So automate testing, stop wasting time.

Step #3 If your code does not pass your collection of test cases (your test suite) and it is not
immediately clear what is wrong, you may need to go and figure what your code actually does:

1. If multiple functions are involved, test them separately. Go back to step 0 for each of them.

2. If you have a toy around, explain your code to the toy. (If no toy is available, use a student
instead.) Explaining your code to someone (even to a toy) often reveals the bug. I am serious,
try it, it often works.

3. If still no clue, it may help to obtain trace information. The Debug.Trace.trace :: String
-> a -> a function may help. Consider this example:

sum' :: [Integer] -> Integer
sum' [J =0

sum' (x:xs) = x + sum' (tail xs)

sum' [1..10] == 55

[2]:

[3]:

False

Assuming you do not spot the error immediately, you can add the following import and another
definition of sum’ to generate nice traces.

import Debug.Trace

sum [Integer] -> Integer

sum' xs | trace ("trace: sum' " ++ show xs) False = undefined
sum' [] =0

sum' (x:xs) = x + sum' (tail xs)

sum' [1..10] == 55

False
This will show on the error output the following trace:

trace: sum' [1,2,3,4,5,6,7,8,9,10]
trace: sum' [3,4,5,6,7,8,9,10]
trace: sum' [5,6,7,8,9,10]

trace: sum' [7,8,9,10]

trace: sum' [9,10]

trace: sum' []

Now it should be easy to spot why the function returns wrong results.

1.2 Unit Testing

Unit testing is a software testing method by which individual units (colletions functions or modules)
are tested to determine whether they are working properly for the test cases. Unit tests are extremely
valuable since they automate ad-hoc testing and they can be executed again after each code change.
There are unit testing frameworks for almost any programming language. For Haskell, there is
HUnit. It is best explained by an example.

import Test.HUnit
fib = 0 : 1 : zipWith (+) fib (tail fib)

tests = TestList
[TestCase ([0,1,1,2,3] 0= take 5 fib)
, TestCase (354224848179261915075 @=7 fib !! 100)
]

runTestTT tests

Counts {cases = 2, tried = 2, errors = 0, failures = 0}

To use HUnit, you have to import Test.HUnit. The function we want to test is the really fancy
version of the function producing Fibonacci numbers. To do this, we create a TestList, which
contains a collection of test cases. Our first test case intents to check the start of the sequence.

[4] :

[5]:

The @=7 operator has the expected value on the left side and the code we want to test on the
right side. In other words, we compare the result of take 5 fib against the known expected result
[0,1,1,2,3]. In the second test case, we check whether the 100th fibonacci number is calculated
correctly. To run our tests, we can use the runTestTT function, which produces a test-based report
in the terminal.

The code above is an example. In practice, you will likely put your test cases into a separate file. If
you use a build system like Cabal, you can declare that you have test cases and then cabal test
will run the tests.

1.3 Property Testing

Unit testing uses test cases that have been carefully defined during the different phases of a software
project. It is always recommended to create examples while trying to understand a problem and
before searching for an algorithm and finally writing a programm. These examples are natural test
cases. Likewise, when bugs are found, it is good practice to write tests that trigger the buggy
behaviour before fixing the bug.

Property based testing follows a different idea: Instead of working out specific test cases, the pro-
grammer defines properties that should generally hold for the functions that have been implemented.
A test engine is then going to generate random test cases and verfiying that the properties hold for
these test cases. Haskell has a QuickCheck package that does this very nicely. Lets again look at an
example. We are trying to reimplement the take function and we want to ensure it does the same
as the take function provided by Haskell.

import Test.QuickCheck

take' :: Int -> [a] -> [a]
take' 0 _ = []
take' n (x:xs) = x : take' (n-1) xs

prop_takeapp :: Int -> [Int] -> Bool
prop_takeapp n xs = take' n xs == take n xs

quickCheck prop_takeapp

*xx Failed! (after 1 test):
Exception:
<interactive>:(2,1)-(3,35): Non-exhaustive patterns in function take'
1
(]

We define the property prop_takeapp that compares the output produced by our take' function
with the output of Haskell’s take function. We then pass our property to QuickCheck and quickly
finds a test case where things break (tail' 1 [1). Obviously, we are not handling the case where
the list is shorter than the first argument.

import Test.QuickCheck

take' :: Int -> [a] -> [a]

take' 0 _ = []
take' 0=10

take' n (x:xs) = x : take' (n-1) xs

prop_takeapp :: Int -> [Int] -> Bool
prop_takeapp n xs = take' n xs == take n xs

quickCheck prop_takeapp

**x*x Failed! Falsifiable (after 6 tests and 5 shrinks):
-1
(0]

Apparently we have another problem. If the first argument is negative, it makes sense to return an
empty list. Our code, however, interprets a negative number pretty much as positive number. This
is simple to fix now that we know about it.

[6]: import Test.QuickCheck

take' :: Int -> [a] -> [a]
take' n _
| n <=0 =[]
take' _ [1 = []
take' n (x:xs) = x : take' (n-1) xs

prop_takeapp :: Int -> [Int] -> Bool
prop_takeapp n xs = take' n xs == take n xs

quickCheck prop_takeapp

+++ 0K, passed 100 tests.

Our tail' definition now handles negative numbers like the original tail definition and QuickCheck
does not find any test cases where the two functions produce different results. Of course, this does
not prove that our definition of take is correct, but we know at least that it is correct for 100 test
cases.

	Introduction
	Expressions
	Lists
	Characters and Strings
	Tuples
	Types
	Functions

	Functions
	Pattern Matching
	Recursion
	Guards
	Where Bindings
	Let Bindings
	Case Expressions
	Function Composition
	Lambda Functions
	Partial Functions and Currying

	Higher Order Functions
	Mapping with map
	Filtering with filter
	Zipping with zip and zipWith
	Reducing with foldl and foldr
	Example: Sorting using quicksort

	Datatypes
	Employee
	Maybe
	Employee (continued)
	Binary Tree

	Typeclasses
	Monads
	Maybe Monad
	IO Monad

	Functors
	Applicative
	Monads
	Summary
	Ordered Sets
	Internals

	Maps
	TODO

	Tips and Tricks
	Debugging
	Unit Testing
	Property Testing

