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ABSTRACT. Let X be a curve in positive characteristic. The Hasse–Witt matrix represents the action of
the Frobenius operator on the cohomology group H1(X,OX). The Cartier–Manin matrix represents
the action of the Cartier operator on the space of holomorphic differentials of X. The operators that
these matrices represent are dual to one another, so the Hasse–Witt matrix and the Cartier–Manin
matrix are related to one another, but they should not be viewed as being identical. There seems to
be a fair amount of confusion in the literature about terminology, about whether matrices act on the
left or the right, and about the proper formulæ for iterating semi-linear operators. Unfortunately, this
confusion has led to the publication of incorrect results. In this paper we present the issues involved
as clearly as we can, and we look through the literature to see where there may be problems. We
encourage future authors to clearly distinguish between the Hasse–Witt and Cartier–Manin matrices,
in the hope that further errors can be avoided.

PROLOGUE

An example. Consider the genus-2 hyperelliptic curve X over F125 with affine model

(1) y2 = f (x) = x5 + x4 + α92x3 + α18x2 + α56x ,

where α ∈ F125 satisfies α3 + 3α + 3 = 0.
On one hand, following Yui [13] we let cm be the coefficient of xm in f (x)(5−1)/2 and construct

the matrix

A =

(
c5·1−1 c5·1−2
c5·2−1 c5·2−2

)
=

(
α41 α105

2 α95

)
,

as well as its image under the Frobenius automorphism σ of F125,

Aσ =

(
cσ

5·1−1 cσ
5·1−2

cσ
5·2−1 cσ

5·2−2

)
=

(
α81 α29

2 α103

)
,

and compute

A · Aσ =

(
α32 α104

α22 α94

)
.

Since this last matrix has rank one, according to Yui’s Lemma E [13, p. 387] we should be able to
conclude that X has 5-rank one.
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On the other hand, X is actually supersingular; indeed, its L-polynomial is (1 + 125T)2, and
thus the only slope of its (normalized, 5-adic) Newton polygon is 1/2. In particular, X has 5-rank
zero.

Our aim in this note is to tease out the source of this dissonance.

Genesis of this note. We noticed this discrepancy while attempting to obtain numerical data in
support of some earlier work [1]. Moreover, we found that one of us invoked an erroneous formula
in a separate project [60] (see Section 5.2).

Works such as Yui’s 1978 paper [13], as well as its antecedents (including works by Manin [6,
7]) and consequents, rely on the construction and analysis of certain semilinear operators. Since
the work of Hasse and Witt [4], it has been understood that there is such an operator, acting on
some subquotient of the de Rham cohomology of a given curve X in characteristic p, that encodes
information about the p-torsion group scheme of the Jacobian of X. The ideas of Hasse and Witt are
beautifully clear, but one must navigate around several potential sources of error in order to arrive
at a correct formula. Indeed, one must decide whether to work with the summand H0(X, Ω1

X)
or the quotient H1(X,OX) of H1

dR(X); this choice, in turn, determines whether the operator in
question is σ-linear or σ−1-linear, where σ is the p-th powering map on the base field. One is given
a further opportunity to make a “sign error” when one chooses bases for these vector spaces and
then decides whether the semilinear operator acts on the right or on the left.1 Given these multiple
opportunities for mistake, it is hardly surprising that there are occasional misstatements in the
literature.

Conversations with others suggest to us that the community has an interest in (re)documenting
these semilinear methods, especially in view of the continuing expansion of the role of computing
in arithmetic geometry. With this backdrop, we offer the following survey of Cartier–Manin and
Hasse–Witt matrices.

In Section 1 we review basic facts about the representation of semilinear operators by matrices.
In Section 2 we define the Cartier operator on the space of holomorphic differentials of a curve X
and the Frobenius operator on the cohomology group H1(X,OX), in its guise as a quotient group
of the space of répartitions of X. The Cartier–Manin and Hasse–Witt matrices represent these two
operators. In Section 3 we follow the work of Manin [8, 9] and Yui [13] to explicitly calculate the
Cartier–Manin matrix of a hyperelliptic curve, and we resolve the problem posed by the example
in our Prologue. In Section 4 we review the papers of Manin and Yui, keeping a watchful eye out
for sign errors. We close in Section 5 with a review of the literature that cites Manin and Yui, to see
whether any sign errors have propagated. Fortunately, there are only a few papers that contain
results or examples that are in error.

Of course, it is unpleasant to find any errors at all in published papers. We have a suggestion
for the community, which we hope will help prevent this type of sign error in the future: Please
be careful with terminology. If you are working with the Cartier operator on differentials, refer
to the matrix representation as the Cartier–Manin matrix; if you are working with the Frobenius
operator on H1(X,OX), refer to the matrix representation as the Hasse–Witt matrix. These matrices
are related to one another, but they are not equal to one another, and they represent semilinear
operators with different properties.

Acknowledgments. We thank Yuri Manin, Noriko Yui, Arsen Elkin, Pierrick Gaudry, Takehiro
Hasegawa, Rachel Pries, Saeed Tafazolian, and Yuri Zarhin for their comments on draft versions
of this paper.

1Of course, there is no literal “sign” to get wrong in any of the formulæ we discuss, but the terminology is suggestive
of the fact that two such errors will typically cancel one another out. We will continue to use the the term “sign error”
throughout the paper.
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1. MATRICES AND SEMILINEAR ALGEBRA

We start with some notation concerning the use of matrices to represent semilinear algebra.
Let K be a field; we work exclusively with finite-dimensional K-vector spaces.

1.1. Bases, matrices, and linear operators. Let W be a vector space with basis C = {w1, · · · , wn}.
Any w ∈W is expressible as w = ∑ ciwi; let [w]C denote the corresponding column vector

[w]C =


c1
c2
...

cn

 .

Now let V be an m-dimensional vector space with chosen basis B, and let f : W → V be a linear
transformation. Define numbers aij by

f (wj) =
m

∑
i=1

aijvi .

The matrix of f , relative to the chosen bases C and B is

[ f ]B←C = (aij) ∈ Matm×n(K) .

Matrix multiplication is defined so that, with this notation,

[ f (w)]B = [ f ]B←C · [w]C .

Change of basis works as follows. Let f : V → V be an endomorphism, and let B and D be two
different bases for V. Then

[ f ]D←D = [id]D←B [ f ]B←B [id]B←D ;

if S = [id]B←D, then

[ f ]D←D = S−1 [ f ]B←B S .

(Of course, if one prefers that matrices act on the right, then one consistently writes elements of
the vector space as row vectors, and the matrix that represents the action of a linear operator is the
transpose of the matrix described above.)

1.2. Semilinear algebra. Let ε be an automorphism of K. Now suppose that f : V → V is ε-linear,
in the sense that for a ∈ K and v ∈ V,

f (av) = aε f (v) .

Naturally, f is determined by its effect on a basis, but the use of the matrices changes a little bit.
Let B = {v1, · · · , vn} be a basis, and again define numbers aij by

f (vj) = ∑
i

aijvi .

If v = ∑j cjvj then

f (v) = ∑
j

f (cjvj) = ∑
j

cε
j f (vj) = ∑

j

(
∑

i
aijvi

)
cε

j

and so
[ f (v)]B = [ f ]B←B · [v]

ε
B ,

where Bε is the matrix obtained by applying ε to each entry of B.
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Similarly, change of basis is accomplished with ε-twisted conjugacy:

[ f ]D←D = [id]D←B [ f ]B←B [id]
ε
B←D

= S−1 [ f ]B←B Sε.

If we suppress our subscripts for a moment, then the iterates of f are represented by

[ f ◦ f ] = [ f ] [ f ]ε

[ f ◦r] = [ f ] [ f ]ε [ f ]ε
2
· · · [ f ]ε

r−1
.

(Again, if one wants matrices to act on the right, then the highest iterate of ε is applied to the
leftmost factor in the r-fold product.)

2. HASSE–WITT AND CARTIER–MANIN MATRICES

We record here some properties of the Frobenius and Cartier operators and their representa-
tions by Hasse–Witt and Cartier–Manin matrices, deferring a complete exposition to, for example,
Serre [12]. Let k be a perfect field of characteristic p > 0. Let σ : k → k be the Frobenius automor-
phism, and let τ be its inverse. Finally, let X/k be a smooth, projective curve of genus g > 0.

2.1. Cohomology groups. The Hodge to de Rham spectral sequence gives a canonical exact se-
quence

0 // H0(X, Ω1
X)

// H1
dR(X) // H1(X,OX) // 0 .

There is a canonical duality between the g-dimensional k-vector spaces H0(X, Ω1
X) and H1(X,OX).

This duality is realized by cup product and the trace map:

H0(X, Ω1
X)× H1(X,OX) // H1(X, Ω1

X)
∼ // k .

If k is algebraically closed, Serre [12, § 8] gives the following explicit description of this pairing.
LetR = R(X) be the ring of répartitions on X; it is the subring of ⊕P∈X(k)k(X) consisting of those
elements {rP} for which, for all but finitely many P, rP is regular at P. Let R(0) be the subring
consisting of those répartitions such that each rP is regular at P. Then there is an isomorphism

H1(X,OX) ∼=
R

R(0) + k(X)
.

The duality between this space and H0(X, Ω1
X) then admits the description

H0(X, Ω1
X)× H1(X,OX) // k

(ω, r) � // ∑P∈X(k) resP(rPω) .

2.2. The Cartier operator and the Cartier–Manin matrix. Cartier [2] (see also Katz [5, §7]) defined
an operator on differential forms for varieties X of arbitrary dimension:

Ω•
k(X)/k

C // Ω•
k(X)/k .

For our purposes, we are only concerned with the case where X is a curve; an explicit description
for this case of the Cartier operator is given by Serre [12, §10], whose exposition we follow here.
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Let P be a closed point on the curve X and let t be a uniformizing parameter at P. Then the
functions 1, t, · · · , tp−1 form a p-basis for the local ringOX,P. Any 1-form holomorphic at P admits
an expression

ω =

(
p−1

∑
j=0

f p
j tj

)
dt

for certain f j ∈ OX,P, and one declares that

C(ω) = fp−1 dt .

The value of C(ω) does not depend on the choice of uniformizer t, and the map C can be extended
to give a map Ω1

k(X)/k → Ω1
k(X)/k .

It is not hard to see that, for ω, ω1 and ω2 in Ω1
k(X)/k and for f ∈ k(X), one has

C(ω1 + ω2) = C(ω1) + C(ω2)

C( f pω) = fC(ω) .

In particular, the Cartier operator restricts to give a τ-linear operator

H0(X, Ω1
X)

C // H0(X, Ω1
X) .

(Yui [13] refers to this as the modified Cartier operator.) A matrix associated to C and a choice of
basis for H0(X, Ω1

X) is called a Cartier, or Cartier–Manin, matrix for X.

2.3. The Frobenius operator and the Hasse–Witt matrix. There is also a Frobenius operator

H1(X,OX)
F // H1(X,OX)

which, under the isomorphism H1(X,OX) ∼= R/(R(0) + k(X)), takes the class of a répartition
r = {rP} to the class of

{
rp

P
}

. In particular, F is a σ-linear operator.
Following Serre, we call any matrix associated to F and a choice of basis a Hasse–Witt matrix

for X.

2.4. Duality. Serre goes on to show [12, Prop. 9, p. 40] that F and C are dual, in the sense that

(2) (ω,F r) = (Cω, r)σ.

Happily, it is easy to see that the dual of a σ-linear operator is necessarily τ-linear.

3. CARTIER–MANIN MATRICES FOR HYPERELLIPTIC CURVES

We use the methods of Manin [8, 9] and Yui [13] to give a formula for the Cartier–Manin matrix
of a hyperelliptic curve.

Let k be a perfect field of odd characteristic p, and let X/k be a hyperelliptic curve of genus g
with affine equation

y2 = f (x) ,

where f (x) ∈ k[x] is square-free of degree 2g + 1 or 2g + 2.
As a basis for H0(X, Ω1

X) we choose

B =

{
ωi = xi−1 dx

y
: 1 ≤ i ≤ g

}
.
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If we write f (x)
p−1

2 = ∑ cmxm, we obtain the following equalities of differentials on X:

dx
y

=
(y2)

p−1
2

yp dx

=
f (x)

p−1
2

yp dx

= y−p
(

∑
m≥0

cmxm
)

dx .

We find that

ωj = xj−1 dx
y

= y−p
(

∑
m≥0

cmxm+j−1
)

dx .

If we apply the Cartier operator to ωj, the only terms that will make a contribution are the terms
where m + j − 1 ≡ p − 1 mod p. In particular, we only need consider m of the form ip − j, for
i = 1, . . . , g. We find that

C(ωj) = C
(

y−p
( g

∑
i=1

cip−jxip−p
)

xp−1 dx
)

=
g

∑
i=1
C
((

cτ
ip−jx

i−1/y
)p

xp−1 dx
)

=
g

∑
i=1

cτ
ip−jx

i−1/y dx

= ∑
i≥1

cτ
ip−jωi .

If we let B ∈ Matg(k) be the matrix with entries Bij = cτ
ip−j, then left-multiplication by B calculates

the effect of C in the basis B.

The example, revisited. We reconsider the curve (1). Then

B = Aτ =

(
α33 α21

2 α19

)
.

We compute the effect of the second iterate of the Cartier operator as

[C◦2]B←B = [C][C]τ = BBτ =

(
0 0
0 0

)
;

this reflects the supersingularity of our original curve.

A generalization. Garcia and Tafazolian generalize Manin and Yui’s computation, and calculate
a matrix [3, p. 212] such that left-multiplication by this matrix gives the effect of the n-th iterate
of the Cartier operator in terms of the basis B; the (i, j) entry of their matrix is the pn-th root of
the coefficient of xipn−j in the polynomial f (x)(pn−1)/2. The penultimate displayed equation on
page 212 shows this matrix acting on the right, but the formulæ presented in the paper make it
clear that it acts on the left.
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4. HASSE–WITT MATRICES THROUGH THE AGES

As noted in the introduction, Hasse and Witt [4] showed that various properties of a curve X
can be read off from the action of Frobenius on H1(X,OX), the equivalence classes of répartitions
of the curve, and they associated a matrix to this semilinear operator. In the paper in which he
defined his operator on differential forms, Cartier [2] already noted a connection to the Hasse–Witt
matrix of the curve; Serre [12, § 10] explains this well. Over the years, different authors have made
this connection more and more computationally explicit. In this section, we focus on the work
of Manin and of Yui, because their papers are the ones referred to most often when present-day
authors write about computational aspects of the Cartier operator.

4.1. The work of Manin. Manin published three works relevant to our discussion here. We treat
them each in turn.

In the first of these works [6] (available also in an English translation [7]), Manin develops
explicit formulæ for computing the action of F on H1(X,OX). On one hand, the definition of the
matrix A in the second displayed equation on page 153 assumes a right action.2 This is further
emphasized in the first displayed equation on page 154.3 On the other hand, the change of basis
formula in the last displayed formula on page 153, and the formula for the g-fold iterate of F on
page 154, are valid provided matrices act on the left.4

The main result of this work ([6, Theorem 1, p. 155], [7, Theorem 1, p. 247]) considers a curve
X over a field with q = pe elements, and relates the characteristic polynomial of the Frobenius
endomorphism of Jac(X) to the characteristic polynomial of a matrix representing the linear, e-
fold iterate F e. The theorem as stated is correct — if we take A to be the matrix representing the
Frobenius endomorphism of H1(X,OX) acting on the left. However, since the matrix A as defined
in the text before the theorem is taken to act on the right, the theorem is incorrect if it is taken in
the larger context of the paper.

In the second paper we would like to discuss, Manin [8, 9] reconsiders some of these operators.
He works with the Cartier operator C, observes that it is τ-linear, and that it acts on the space
H0(X, Ω1

X). He explicitly calculates a basis for the space of differentials on a particular hyperel-
liptic curve and computes the action of the Cartier operator in terms of this basis, using the same
techniques that we reproduce here in Section 3. No matrices are written down, so there are no
obvious sign errors in this paper. Note, however, that in this paper Manin considers the Cartier
operator on H0(X, Ω1

X), while in the preceding paper he considered the Frobenius operator on
H1(X,OX).

In Section IV.5.2 of his paper on formal groups [10, 11], Manin computes an operator that he
calls the Hasse–Witt matrix — and thus, in theory, should represent the action of F on H1(X,OX)
— but which actually represents the action of C on H0(X, Ω1

X), as in the paper discussed in the
preceding paragraph. The formula Manin uses for iterates of this operator implicitly (and incor-
rectly) assumes that it is σ-linear. This leads to errors in Section IV.5.2; there are several problems
with the displayed group of equations that deduce conditions on the formal group of a curve’s
Jacobian from conditions on the equation of the curve ([10, p. 86], [11, p. 79]). It seems to us that
this paper may be the original source of a recurrent conflation in the literature of “Hasse–Witt”
and “Cartier–Manin” matrices.

2The second displayed equation on page 245 of the English translation.
3The final displayed equation on page 245 of the English translation.
4The third displayed formula on page 245, and the g-fold iterate formula on the top of page 246, of the English

translation.



8 JEFFREY D. ACHTER AND EVERETT W. HOWE

4.2. The work of Yui. Yui [13] analyzes hyperelliptic curves with affine model y2 = f (x), and
computes the Cartier operator C on H0(X, Ω1

X). (We remind the reader that Yui refers to the ob-
ject we call the Cartier operator as the modified Cartier operator, and that she denotes it by C ′.) In
Theorem 2.1 (p. 382) and Theorem 2.2 (p. 384), the formula for iterates is appropriate for a σ-linear
operator, but C is τ-linear. Moreover, Lemma D (p. 386) exploits the semilinear duality (2) between
C and F , but overlooks the transpose necessary for such matrix calculations. Because of sign er-
rors like these, Theorem 2.2 (p. 384) and Lemma E (p. 387) are incorrect; the curve we discussed in
the Prologue gives a counterexample to both.

Although several explicit examples are worked out in Yui’s paper, none of them can detect these
inconsistencies. Indeed, in Example 3.3 (p. 391) both C andF are diagonalized by the natural basis.
Moreover, both this example and Example 5.4 (p. 400) are worked out for curves over Fp, in which
case σ- and τ-linear operators are simply linear.

Yui writes at the end of the paper’s introduction that the article stemmed from her working
through Manin’s papers [8, 9, 10, 11], so some of the sign errors in Yui’s paper are reflections
of Manin’s earlier ambiguities between left actions and right actions and between σ-linear and
τ-linear operators. This paper also encourages the unfortunate conflation of the concepts of the
Hasse–Witt matrix and the Cartier–Manin matrix that began with Manin; we have already noted
Lemma D [13, p. 386], which says that the two matrices are “identified” with one another.

5. SUBSEQUENT DEVELOPMENTS

Explicit computational methods are becoming increasingly useful in arithmetic geometry, and
this utility is reflected in the large number of citations of the articles of Manin and Yui that we
discussed in the preceding section. Indeed, by consulting MathSciNet and the Web of Science, we
found 90 works that refer to Yui’s paper [13] or Manin’s paper on Hasse–Witt matrices [6, 7], and
by personal knowledge we found one more. These works are listed below in a separate section of
our bibliography.

It is somewhat worrisome to see so many citations, because — as we have noted above — these
papers of Manin and Yui contain sign errors that invalidate some of their results. To determine
whether these sign errors have propagated to other papers, we went through the 91 articles we
found to see how they applied the results of Manin and Yui. Of course, we could not go through
all of these articles with great care; for the most part, we limited ourselves to looking at how
they made use of the work of Manin and Yui described above, and it is possible we missed some
subtleties.

In the vast majority of these works, we did not find any obvious errors stemming from the
citation of the papers of Manin and Yui. For example:

• Sometimes the papers of Manin and Yui were given as general references (for the com-
putation of Hasse–Witt matrices or for something else), and no particular results from the
papers were used.
• In some cases, specific results from Manin or Yui were quoted, but either they were not

applied, or they did not contain any sign errors, or the sign errors were silently corrected.
• In some cases, statements containing sign errors (quoted from Manin or Yui or elsewhere,

or derived independently) were applied to specific examples, but in these examples the sign
errors in the general formulæ did not lead to errors in the specific cases. Incorrect formulæ
might not lead to errors, for example,

– if the genus of the curve is 1;
– or, more generally, if the Hasse–Witt matrix is diagonal;
– or if the base field is Fp, so that no iteration is necessary;
– or if the base field is Fp2 , so that A · Aσ = A · Aτ;
– or in a number of other situations.

http://www.ams.org/mathscinet/index.html
http://webofknowledge.com
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But in eight of these papers, incorrect results were used in ways that we felt required further
investigation. We look at these papers here.

5.1. Combining a theorem of Manin with a formula of Yui. The paper of Gaudry and Harley [48],
as well as the papers of Bostan, Gaudry, and Schost [25, 26], all quote a result of Manin ([6, Theo-
rem 1, p. 155], [7, Theorem 1, p. 247]) that relates the mod-p reduction of the Weil polynomial of a
curve over Fpe to the characteristic polynomial of a matrix

Hπ = HH(p) · · ·H(pe−1),

where H is the Hasse–Witt matrix for the curve. As we noted earlier, Manin’s theorem is only
correct as written if we take our matrices to act on the left. However, the papers of Bostan, Gaudry,
Harley, and Schost under discussion take H to be the matrix computed by Yui [13, p. 381]. Yui does
intend for this matrix to act on the left, but it represents the Cartier operator on differentials, not
the Frobenius operator on répartitions, so Yui’s matrix must be transposed to give the Hasse–
Witt matrix. In other words, the naïve combination of Yui’s matrix with Manin’s theorem gives
incorrect results.

This can be seen very concretely. Consider the genus-2 curve C over F27 defined by y2 =
x5 + a2x2 + ax, where a3 − a + 1 = 0. On one hand, the matrices H and Hπ from the cited papers
are

H =

[
a2 a
1 0

]
and Hπ = HH(3)H(9) =

[
a12 a14

a15 a15

]
,

and the characteristic polynomial κ(t) of Hπ is t2 + t + 1. On the other hand, the characteristic
polynomial of Frobenius for C is χ(t) = t4 + 6t3 + 52t2 + 162t + 729, and it is visibly not the case
that χ(t) ≡ (−1)2t2κ(t) mod 3, as the cited theorems claim.

However, we suspect that Bostan, Gaudry, and Schost must have implemented the computa-
tion of Hπ with the matrices in the opposite order (or they transposed H, or something similar),
because the example they present [25, §5] satisfies the basic sanity check that several randomly-
chosen points on the Jacobian are annihilated by the integer they give as the order of the Jacobian.

Likewise, Gaudry and Harley present an example [48, §7.2] of a computation over Fp4 in which
they explicitly mention the order of the Jacobian modulo p computed by Manin’s result, and the
numerical value they get shows that their computation must have involved either transposing H
or computing Hπ with the factors reversed.

5.2. Supersingular genus-2 curves. We found three papers that use Yui’s computation of the it-
erated Cartier operator to determine when a genus-2 curve is supersingular.

Elkin [39] gives a characterization of supersingular genus-2 curves in his Section 9 that includes
a sign error. This incorrect characterization does not affect the main part of his work (for example,
Theorems 1.1, 1.6, and 1.7), but we have not checked to see whether it affects the validity of the
examples in Section 9.

Howe [60] uses Yui’s Lemma E [13, p. 387] in the proof of his Theorem 2.1 (p. 51), which claims
that all supersingular genus-2 curves over a field of characteristic 3 can be put into a certain stan-
dard form. The proof as written is invalid, because the criterion for supersingularity has a sign
error; however, the proof can easily be repaired by using the correct criterion, and one can check
that the theorem as stated is true.

Zarhin [105] also studies supersingular genus-2 curves in characteristic 3. In the proof of his
Lemma 6.1 (p. 629) he correctly characterizes when a genus-2 curve is supersingular in terms
of a matrix that specifies the action of the Cartier operator. Unfortunately, in a later paper [14,
§5, p. 213] he provides a “correction” to this proof that replaces the correct characterization with
an incorrect one. Fortunately, this did not require changing the statement of the result he was
proving; the statement of his Lemma 6.1 is correct.
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5.3. Genus-3 curves of p-rank 0. We found one paper, by Elkin and Pries [41], that uses Yui’s
results to compute the moduli space of hyperelliptic genus-3 curves of p-rank 0 in characteristic 3
and characteristic 5. The notation in their Lemma 2.2 (p. 246) is ambiguous, but when they apply
Lemma 2.2 in the proofs of Lemma 3.3 (p. 248) and Lemma 3.6 (p. 250) they multiply the matrices
in the wrong order. This invalidates their calculations of the defining equations of the moduli
spaces. Pries reports that Theorem 4.2 (p. 251) still holds.

5.4. Supersingularity versus superspeciality. Yui’s 1986 paper [102] cites her 1978 paper [13], as
well as a paper of Nygaard [77], in the course of the proof of Theorem 2.5 (p. 113). In particular,
Yui cites these papers to show that a curve over Fp has supersingular Jacobian (that is, its Jaco-
bian is isogenous to a power of a supersingular elliptic curve) if and only if the Cartier operator
on its differentials is zero. In fact, Nygaard shows that the vanishing of the Cartier operator is
equivalent to the Jacobian being superspecial (that is, isomorphic to a power of a supersingular ellip-
tic curve) [77, Theorem 4.1, p. 388]. Furthermore, Yui herself gives examples showing that while
the vanishing of the Cartier operator implies that the curve is supersingular, the converse is not
true [13, Example 5.4, p. 400]. Thus, Theorem 2.5 [102, p. 113] is incorrect.

6. CONCLUSION

As we noted, most of the 91 papers that cite Manin [6, 7] or Yui [13] do not seem to have
inherited any errors in their main results. However, it might be prudent for authors who have
used results from these 91 papers to double check that the results they quoted are indeed free of
sign errors.

We conclude by repeating our supplication from the introduction: Please be careful with termi-
nology, and make a clear distinction between the Cartier operator on differentials (represented by
the Cartier–Manin matrix) and the Frobenius operator on H1(X,OX) (represented by the Hasse–
Witt matrix). We hope that if such care is taken, there will be no need in the future for another
paper like this one.
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