# Hazard Identification of cranes and their control measures

Vinay Dubey<sup>1</sup> Rajiv Premi<sup>2</sup> M.Tech scholar<sup>1</sup> Assistant Professor<sup>2</sup> \*Department of Fire Technology and Safety Engineering, IES-IPS Academy, Indore, (MP), India

*Abstract* - lifting machineries are widely used in manufacturing industry and also associated with large number of hazards in their operation. Depending upon their nature of work it can further divided on their type of use that is bridge cranes, semi gantry cranes, gantry cranes. So that that it necessary to check the effectiveness of present safety and health program time to time to mitigate the hazards associated with crane a survey is performed in manufacturing industry with the help of questionnaire study and checklist method in questionnaire study the three levels are assigned to take response of them and a survey with the help of checklist method is performed to identified the hazardous condition on 46 cranes installed n industry and their control measures are given. Which is help to mitigate the hazards and hazardous conditions, from questionnaire study the response was taken showing with the help of graph which shows the effectiveness of present established safety and health program.

Index Terms - Crane safety, Safety examination, Hazard identification, Questionnaire Study, Checklist method.

### INTRODUCTION

The cranes are mostly used in manufacturing industries in assembly shop to transfer the job for one place to another, it is repetitive type of work for operators, there are number o cranes are installed in which electric overhead travelling, semi gantry and gantry crane are taken in this project work for identify their inherent hazards. Bridge crane having their cross travel, long travel and up and down motion which is control by pendent control or operators cabin installed when needed around the shop floor there are one to 5 numbers of cranes are moving in around one shop floor installed by different types of manufactures and only 2 or 3 operators are available to operates these crane so there is a chance of mistake is available which further converted into hazard and also lack of operators training, experience and qualification is the main reason of accidents. And also various conditions associated with hazards such as physical, operational and maintenance working conditions in which number of hazards are identified in this paper work. Depending upon their different types of design and operational features they have their advantages and also various hazards associated with the to eliminate these hazards associated with cranes various techniques are available in safety management with the use of questionnaire study and checklist methods hazards are identified and their control measures is recommended to prevent them and also their low cast preventive measures are provided. Ergonomically and psychologically condition are also be taken into account to avoid these. By questionnaire study positive response of all levels are taken and with the help of graph the effectiveness of present safety and health program is reviewed and also recommendations are given for further improvement in safety and health program.

# LITERATURE SUREVEY

Tor-Olav Nvestad Richard (2007) this paper gives an account of two typical ways of thinking drawn on by process operators and crane operators on a Norwegian offshore platform in the North Sea as they interpret, negotiate and define situations as hazardous. The discretion required for definitions of situations as dangerous is also discussed. It is concluded that the completely different work processes of the work groups seem to generate different hazard metaphors, ways of thinking and ideas to reduce hazards. (2001) He gives a evaluation of crane safety in industry in this paper reviews available information on crane-related injuries, currently safety devices, and commonly used crane safety procedures. Recommendations for improved crane injury prevention and future crane safety research are given. One of the first ideas for the ergonomic consideration of crane, controls varied widely in design, function and manipulation, leading to a large number of hazardous problems. Das & Sen (1999) conduct Ergonomics studies, on the machine control and the resultant movements of the cabins and the hooks in 51 electric overhead travelling cranes in a heavy engineering factory, showed that control-movement compatibility is absent in most of the cranes and also a number of low-cost ergonomics solutions have been recommended to minimize these problems.

# ANALYSIS AND METHODOLOGY

Methodology

- 1. Questionnaire study (based on lifting machinery)
- 2. Hazard identification with checklist method

There are numbers of employee involved in lifting machinery operation in manufacturing industry so that questionnaire survey performed to take appropriate respond regarding the safety issues and the analytical data of people collected by this study this help

504

to identify the hazards related to category. Questionnaire study is used to evaluate the safety and health programs are available to follow by organization. To identify the root causes of hazards and evaluate the effectiveness of current established safety and health program a questionnaire study conduct in manufacturing industry 44 bridge crane that is EOT, Semi Gantry and Gantry cranes. Employee are divided into three levels and questions are so design as if the response of employee is positive then we can say that the effectiveness of present safety and health program is better and effective.

Following are the criteria recordkeeping, operational, psychological, ergonomically and emergency preparedness in which three questions are asked in each level. Levels are lower level in which riggers, middle level in which operators and top level in which supervisors are came and the response of each question is taken and then the average response of all level based upon all criteria is shown with the help of graph.

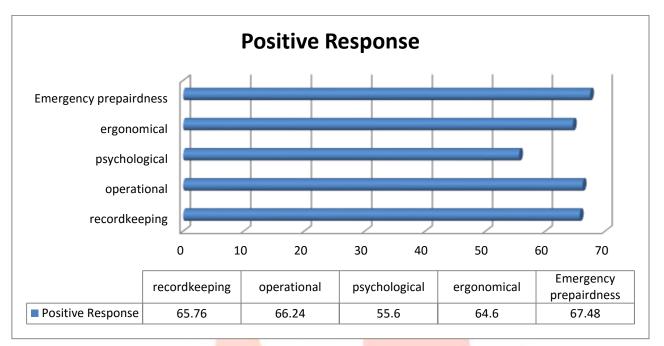



Fig. 1 Average positive response of all levels in each criteria.

# Hazard identification with checklist method

In manufacturing industry where the industrial training was done there are 46 no's of lifting machinery are installed in which (28 crane are control lever operated and 18 operated by pendent control) electric overhead traveler cranes, semi gantry and gantry cranes are present. The survey is performed on 46 lifting machinery based upon following checkpoints this methodology is used to take physical interaction with lifting machinery in which condition, operation, maintenance and other general observation are taken into account by one by one, and then find the hazards which can be present in lifting machinery. Results are note down from following term that is Satisfactory/Not satisfactory, Working/Provided, provided but not working, Not provided /Not working.

| Table1:- Hazard Identification Checklist |              |                  |                      |                             |                              |         |
|------------------------------------------|--------------|------------------|----------------------|-----------------------------|------------------------------|---------|
| Check points                             | Satisfactory | Not satisfactory | Provided/<br>Working | Provided but<br>Not working | Not provided/<br>Not working | Remarks |
| HOOK BLOCKS                              |              |                  |                      |                             |                              |         |
| 1.1 Identification Mark                  | 18           | 14               |                      |                             | 14                           |         |
| 1.2 Capacity of Hook (Marked)            | 22           | 11               |                      |                             | 13                           |         |
| 1.3 Condition of Hook                    | 31           | 15               |                      |                             |                              |         |
| 1.4 Condition of Swivel                  | 35           | 11               |                      |                             |                              |         |
| 1.5 Throat Opening                       | 38           | 8                |                      |                             |                              |         |
| 1.6 Shank Dia.                           | 44           | 2                |                      |                             |                              |         |
| 1.7 Condition of Hook Block              | 32           | 14               |                      |                             |                              |         |
| 1.8 Condition of Centre Pin              | 37           | 9                |                      |                             |                              |         |
| 1.9 Safety Latches                       |              |                  | 25                   | 8                           | 16                           |         |
| 1.10 Oil greasing                        | 29           | 17               |                      |                             |                              |         |

| 2.0 HOIST                                                                               |          |         |          |     |         |   |  |
|-----------------------------------------------------------------------------------------|----------|---------|----------|-----|---------|---|--|
| 2.1 Wire Rope Diameter                                                                  | 26       | 20      |          |     |         |   |  |
| 2.2 Construction Of Wire Rope                                                           | 28       | 18      |          |     |         |   |  |
| 2.3 Original Test Certificate of                                                        | 41       | 5       |          |     |         |   |  |
| 2.4 Nut and bolt condition                                                              | 29       | 17      |          |     |         |   |  |
| 2.5 Condition Of Wire Rope                                                              | 38       | 8       |          |     |         |   |  |
| 2.6 Wire Rope Drum Condition                                                            | 44       | 2       |          |     |         |   |  |
| 2.7 Groove Condition                                                                    | 36       | 10      |          |     |         |   |  |
| 2.8 Wire Rope End Fitting                                                               | 29       | 17      |          |     |         |   |  |
| 2.9 Riving of wire ropes                                                                | 43       | 3       |          |     |         |   |  |
| 2.10 Pulley Condition                                                                   | 37       | 9       |          |     |         |   |  |
| 2.11 Outer Pulley Cover                                                                 | 29       | 10      |          |     | 7       |   |  |
| 3.0 LIMIT SWITCH                                                                        |          |         |          |     |         |   |  |
| 3.1 Transverse Travel Limit Switch                                                      |          |         | 22       | 11  | 13      |   |  |
| 3.2 Long Travel Limit Switch                                                            |          |         | 27       | 9   | 10      |   |  |
| 3.3 Upper Travel Limit Switch                                                           |          |         | 32       | 6   | 8       |   |  |
| 3.4 Lower Travel Limit Switch                                                           |          |         | 21       | 14  | 11      |   |  |
| 3.5 Gravity Limit Switch                                                                |          |         | 13       | 23  | 10      |   |  |
| 3.6 Anti Collision Limit Switch (If                                                     |          |         | 19       | 5   | 4       |   |  |
| Applicable)                                                                             |          |         |          |     |         |   |  |
| 4.0 CONTROL LEVER / PENDENT                                                             |          | 1       | 1        | 1   |         |   |  |
| 4.1 Emergency Stop                                                                      | 1        |         | 23       | 16  | 7       |   |  |
| 4.2 Auto Off Released System                                                            | 0        |         | 22       | 6   | 18      |   |  |
| 4.3 Key for On/Off and Mode                                                             |          |         | 24       | 7   | 15      |   |  |
| Selection                                                                               | 26       | 12      | 100      |     | 0       |   |  |
| 4.4 Direction Marking Of Motion<br>5.0 TROLLEY, RAIL AND BEAM                           | 26       | 12      |          |     | 8       |   |  |
| 5.1 Beam Condition                                                                      |          |         | 15       |     |         |   |  |
| a) Structure                                                                            | 39       | 7       | -        |     |         |   |  |
| b) Weld Joints Beams/Angles                                                             | 41       | 5       |          |     |         |   |  |
| 5.2 Rail Condition                                                                      | 29       | 17      |          |     |         |   |  |
| 5.3 Alignment of LT & CT Rail                                                           | 38       | 8       |          |     |         | / |  |
| 5.4 Corrosion on component                                                              | 35       | 11      |          |     |         |   |  |
| 5.5 Cross Trolley Platform and Trolley                                                  | 28       | 18      |          | -   |         |   |  |
| Wheel Condition                                                                         |          |         | /        | -   | 0       |   |  |
| 5.6 Long Travel End Truck and Truck                                                     | 30       | 16      |          |     |         |   |  |
| Wheel Condition                                                                         |          | 1       |          |     | 010     |   |  |
| 5.7 Buffers Of the End Truck                                                            | 7        | 1       | 26       | 8   | 5       |   |  |
| 5.8 Condition of Gantry Crane Leg                                                       | 36       | 10      | 1 1      | r v |         |   |  |
| 6.0 POWER TRANSMISSION                                                                  | 2.2      |         |          |     | 1       |   |  |
| 6.1 Gear Box Condition                                                                  | 35       | 11      |          |     |         |   |  |
| 6.2 Axle & Coupling Alignment                                                           | 38       | 8       | - F      |     |         |   |  |
| 7.0 WALKWAY/FLOORS                                                                      | 10       | 10      | 12       | 1   | C       |   |  |
| 7.1 Ladder to Walk way                                                                  | 18       | 10<br>8 | 12<br>26 |     | 6<br>12 |   |  |
| <ul><li>7.2 Railing on Ladder</li><li>7.3 Splinters or sharp edges on ladders</li></ul> |          | 8       | 26<br>29 |     | 12      |   |  |
| 7.4 Walk Way on The Crane                                                               |          |         | 29<br>37 |     | 9       |   |  |
| 7.5 Railing on Walk Way                                                                 |          | 8       | 31       |     | 9<br>7  |   |  |
| 7.6 Toe Guard on all platforms                                                          |          | 13      | 24       |     | ,<br>9  |   |  |
| 7.7 Walkway cleanness                                                                   | 26       | 20      | 24       |     | /       |   |  |
| 7.8 Walkway condition                                                                   | 20<br>22 | 20      |          |     |         |   |  |
| -                                                                                       |          |         |          |     |         |   |  |
| 7.9 Height of risers                                                                    | 30       | 16      |          |     |         |   |  |
| 8.0 ELECTRICALS                                                                         |          |         |          |     |         |   |  |
|                                                                                         | 25       | 21      | 1        | 1   | 1       |   |  |
| 8.1 Motor Condition                                                                     | 25       | 21      |          |     |         |   |  |
| 8.2 Ear thing to All Electrical Equipments                                              |          |         | 37       |     | 9       |   |  |
| 8.3 Main Switch Condition                                                               | 41       | 5       |          |     |         |   |  |
|                                                                                         |          | •       | •        |     | •       |   |  |

| 8.4 Emergency Stop                            |       |       | 11    | 19  | 16      |   |
|-----------------------------------------------|-------|-------|-------|-----|---------|---|
| 8.5 Weather protection                        | 11    |       | 24    | 17  | 10      |   |
| 8.6 Condition of switch boxes                 | 29    | 17    | 27    |     |         |   |
| 8.7 Cable trays condition                     | 29    | 17    |       |     | 13      |   |
| 8.8 Corner Switches                           | 21    |       | 27    | 11  | 8       |   |
|                                               |       | 9     | 13    | 11  | o<br>24 |   |
| 8.9 Rubber Mats Near Control panel            |       | 9     |       | 12  |         |   |
| 8.10 Crane warning lights                     |       |       | 14    | 13  | 19      |   |
| 8.11 Crane Under Bridge Lights                | 20    | 10    | 10    | 32  | 4       |   |
| 8.12 Canopy of all motors.                    | 28    | 18    |       |     |         |   |
| 8.13 Condition of wires and cables            | 29    | 17    |       |     |         |   |
| 8.14 Electrical Cable Handling Trolley        |       |       | 19    | 22  | 5       |   |
| 8.15 Festoon Cable Handling Trolley           |       |       | 18    | 12  |         |   |
| 9.0 OPERATOR'S CABIN                          |       |       | -     |     |         |   |
| 9.1 Operator's cabin Condition                | 21    | 7     |       |     |         |   |
| 9.2 Sitting arrangement                       | 13    | 15    |       |     |         |   |
| 9.3 Access Walkway to cabin                   |       | 5     | 23    |     |         |   |
| 9.4 Condition of window Glass                 | 18    | 10    |       |     |         |   |
| 9.5 Fan condition                             |       |       | 7     | 13  | 8       |   |
|                                               | 19    | 9     |       |     |         |   |
| from glass                                    |       |       |       |     |         |   |
| 10.0 OPERATIONAL                              | 20    | 1.5   | -     |     |         | Γ |
| 10.1 Long Travel Motion                       | 29    | 17    |       |     |         |   |
| 10.2 Cross Travel Motion                      | 37    | 9     | 100   |     |         |   |
| 10.3 Noise or Unusual sounds                  | 25    | 21    | -     |     |         |   |
| 10.4 Vibration                                | 13    | 33    |       |     |         |   |
| 10.5 Siren                                    |       |       | 22    | 11  | 15      |   |
| 10.6 Visibility condition                     | 26    | 20    | _     |     | 1       |   |
| 10.7 Brake Condition                          |       |       | 12    | 26  | 8       |   |
| 10.8 Emergency stop                           |       |       |       |     | 0       |   |
| 10.9 Rail Alignment                           | 27    | 19    |       | 6   | N.V.    |   |
| 10.10 Buffers condition                       |       | 15    | 11    | 9   | 11      |   |
| 10.11 Mechanical Stopper                      | 12    | 27    | 1 .   | - 1 | 7       |   |
| 10.12 Stopping distances with stopper.        | 29    | 17    | 11    | -   |         |   |
| 10.13 Rail track clearance                    | 39    | 7     |       |     |         |   |
| 11.0 FIRST AID, FIRE AND EMERG                | GENCY | PREPA | REDNE | SS  | 1       | 1 |
| 11.1 First aid kid                            |       | 7     | 14    |     | 25      |   |
| 11.2 Emergency phone numbers chart            |       | 32    | 5     |     | 9       |   |
| 11.3 Condition of Emergency Exists            | 29    | 17    |       |     |         |   |
| 11.4 Fire Extinguisher at vulnerable location |       |       | 23    | 12  | 11      |   |
| 12.0 OTHER GENERAL CONDITIO                   | ONS   | I     | 1     | 1   | 1       | 1 |
| 12.1 Housekeeping nearby crane                | 11    | 35    |       |     |         |   |
| 12.2 Guards to all moving equipments          | 8     | 22    |       |     | 16      |   |
|                                               | 36    | 4     |       | 6   |         |   |
| equipment                                     |       |       |       |     |         |   |
| 12.4 Rated Capacity marked                    |       |       | 27    |     | 19      |   |
| 12.5 Safe load indicator                      |       |       | 13    | 7   | 8       |   |
| 12.6 Warning and safety levels                |       |       | 24    |     | 22      |   |
| Name of Surveyor :                            |       |       |       |     |         |   |
| <u>Signature :</u>                            |       |       |       |     |         |   |

# RECOMMENDATIONS

On the basis of the results and discussions, a number of very low-cost, easily implementable, Ergonomics solutions of the existing problems were recommended to the factory management for implementation to improve the working conditions, work methods, efficiency, productivity, occupational safety and health of the crane operators. Hazards identification of lifting machinery have been performed with the help of questionnaire study and checklist inspection and control measure on the basis of these two methodology have been given.

Hazard cannot be completely eliminated until we are not able to take continuously review the work environment and work practices to control or prevent workplace hazards.

Some efficient ways to prevent and control hazards are

- 1. Regularly and thoroughly maintain of electrical, mechanical equipments.
- 2. Ensure that hazard correction procedures are in place and thoroughly inspections are performed periodically
- 3. Ensure that everyone knows how to use and maintain personal protective equipment, lifting gears, and emergency related equipments.
- 4. Make sure that everyone understands and follows safe work procedures
- 5. Ensure that, when needed, there is a medical program tailored to your organization to help prevent workplace hazards and exposures
- 6. Workers should be educated, and training should be provided time to time regarding the particular work and if there is any modification take place.
- 7. In future when new lifting machinery are installed in industry lever should be ergonomically designed and effectiveness of safety devices to be improved.
- 8. One more consideration also taken in to account that is the length of the pendent wire should be appropriate level of height of the operator which helps to improve the ergonomically conditions.
- 9. Periodically inspection as well as the load testing must be carried out of lifting machinery to check the stability and physical conditions of lifting machinery.
- 10. Changing of operator from one crane to another should be avoided as much as possible.
- 11. Proper direction marking to be maintained by permanent marking or painting on pendent or remote once in a week by which difficulty is reduced.
- 12. Daily checklist to be filled by operator's which helps to other shift operator's to assist the crane problem if any. Preventive maintenance to be carried out once in 15 days interval in which limit switches and brakes are must be operationally checked.
- 13. The position of the wire of pendent also adjusts it usually front at the chest of the operator's.
- 14. Other means of safety devices which are not electrical are recommended likes buffer and stoppers at the end of the Cross Travel and Long Travel motion and wheel guards for anti two blocking marking to be done by some means by which the last position of hoist is marked so that the operator's knows about the limitations.
- 15. Load testing must be carried out once in a year of crane, welded joints of crane structure must be checked by NDT methods.
- 16. Change the position of operator's from one crane to another must be avoided, simplify control buttons of remotes related to another by which the machinery is easily operate To overcome this, it was recommended that the crane operators should be placed into Three different groups (A, B, C) must always be operated by the associated group of operators and they must not be interchanged.

# CONCLUSION

The questionnaire study is the best way to take the response of personals in any organization regarding any type of condition by which it is easy to assess the present influence of the particular program. It is the only way to eliminate the accidents is Identify the Hazards to assess the associated controls with the cranes and to bring the hazard to tolerable level. Lifting activity because of the very nature of the operation, complexity of the systems, procedures and methods always involves some amount of hazards. Hazard identification is carried out with the help of checklist methodology it is the point to point throughout survey of particular task which is design first and then performed easily by any non experienced person of the for identification of undesirable events that can leads to a hazard, the analysis of hazard mechanism by which this undesirable event could occur and usually the estimation of extent, magnitude and likelihood of harmful effects. It is widely accepted within industry in general that the various techniques of Hazard Identification contribute greatly toward improvements in the safety of complex operations and cranes.

# REFERENCES

- [1] Vinay Dubey and Praveen Patel "Hazard identification and their control in lifting machinery" (IJESM), Vol. 5, Issue 2: April-June: 1-4,2015.
- [2] Neitzel, R. L., Seixas, N. S., and Ren, K. K. 2001. "A review of crane safety in the construction industry." Applied Occupational and Environmental Hygiene Volume 16(12): 1106–1117, 2001.
- [3] Rabindra Nath Sen, Subir Das. An ergonomics study on compatibility of controls of overhead cranes in a heavy engineering factory in West Bengal, Applied Ergonomics 31 (2000) 179}184 1999.
- [4] J. E. Beavers, "Crane-Related Fatalities in the Construction Industry" Journal of Construction Engineering and Management September 2006.
- [5] O.N. Aneziris at-el, "Risk Assessment for crane activities", Safety Science 46 872–884 2008.
- [6] Tor-Olav Nvestad, Safety understandings among crane operators and process operators on a Norwegian offshore platform, Safety Science 46, 520–534 2008.

508

- [7] Aviad Shapira, F.ASCE1; and Beny Lyachin2, Accidents; Construction sites; Cranes; Hazards; Human factors; Safety, 10.1061/ASCE0733-9364, 135:124,2009.
- [8] Juan M. Massone, Roberto E. Boeri, "Failure of forklift forks", Engineering Failure Analysis 17 1062–1068,2010.
- [9] Jimmie W. Hinze a,1, Jochen Teizer b, "Visibility-related fatalities related to construction equipment", Safety Science 49, 709–718,2011.
- [10] Daryoush Safarzadeh," The design process of a self-propelled floor crane", Journal of Terramechanics 48, 157–168, 2011.
- [11] Chijoo Lee, Ghang Lee, Suyeul Park, Joonbeom Cho, Analysis of field applicability of the rotation-controllable tower-crane hook block, Automation in Construction 21, 81–88, 2012.
- [12] J.D. Koustellis," Contact of heavy vehicles with overhead power lines", Safety Science 49 -951-955, 2011.
- [13] Hung-Lin Chi, Yi-Chen Chen," Development of user interface for tele-operated cranes" Advanced Engineering Informatics 26 -641-652, 2012.
- [14] Cheng Zhang, Amin Hammad1," Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency", Advanced Engineering Informatics 26 -396–410, 2012.
- [15] Bureau of Indian standards, "Code of practice for Electric Overhead Travelling Cranes and Gantry Cranes other than steel work cranes" (IS 3177: 1999) Edition (2003-07), New Delhi.
- [16] The American Society of Mechanical Engineers,"Mobile and Locomotive Cranes, ASMEB30.5-2004, New York.
- [17] Bureau of Indian standards, "Code of Practice for Heavy Duty Electric Overhead Travelling Cranes" including special service machines for use in steel work [MED 14: Cranes, Lifting Chains and Related Equipment], IS 4137: (1985), New Delhi.
- [18] Bureau of Indian standards, "Specification for Power Driven Mobile Cranes", IS 4573 (1982), New Delhi.

