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Agenda

• Overview
• Data Model
• Architecture
• Resources
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HBase

• Column-Oriented data store, known as 
“Hadoop Database”

• Supports random real-time CRUD 
operations (unlike HDFS)

• Distributed – designed to serve large tables
– Billions of rows and millions of columns

• Runs on a cluster of commodity hardware
– Server hardware, not laptop/desktops

• Open-source, written in Java
• Type of “NoSQL” DB

– Does not provide a SQL based access
– Does not adhere to Relational Model for storage
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HBase

• Horizontally scalable
– Automatic sharding

• Strongly consistent reads and writes
• Automatic fail-over
• Simple Java API
• Integration with Map/Reduce framework
• Thrift, Avro and REST-ful Web-services
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HBase

• Based on Google's Bigtable
– http://labs.google.com/papers/bigtable.html

• Just like BigTable is built on top of Google 
File System (GFS), HBase is implemented 
on top of HDFS

7



HBase History

8 Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

2006

BigTable paper

Hadoop’s contrib

Hadoop’s sub project

0.92 release

Apache top-level project

2007 2008 2010 2011

Who Uses HBase?

• Here is a very limited list of well known 
names
– Facebook
– Adobe
– Twitter
– Yahoo!
– Netflix
– Meetup
– Stumbleupon
– You????

9



When To Use HBase

• Not suitable for every problem
– Compared to RDBMs has VERY simple and limited API

• Good for large amounts of data
– 100s of millions or billions of rows
– If data is too small all the records will end up on a single 

node  leaving the rest of the cluster idle
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When To Use HBase

• Have to have enough hardware!!
– At the minimum 5 nodes

• There are multiple management daemon processes: 
Namenode, HBaseMaster, Zookeeper, etc....

• HDFS won't do well on anything under 5 nodes anyway; 
particularly with a block replication of 3

• HBase is memory and CPU intensive

• Carefully evaluate HBase for mixed work 
loads
– Client Request vs. Batch processing (Map/Reduce)

• SLAs on client requests would need evaluation

– HBase has intermittent but large IO access
• May affect response latency!!!
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When to Use HBase

• Two well-known use cases
– Lots and lots of data (already mentioned)
– Large amount of clients/requests (usually cause a lot of 

data)

• Great for single random selects and range 
scans by key

• Great for variable schema
– Rows may drastically differ
– If your schema has many columns and most of them are 

null
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When NOT to Use HBase

• Bad for traditional RDBMs retrieval
– Transactional applications
– Relational Analytics

• 'group by', 'join', and 'where column like', etc....

• Currently bad for text-based search access
– There is work being done in this arena

• HBasene: https://github.com/akkumar/hbasene/wiki
• HBASE-3529: 100% integration of HBase and Lucene 

based on HBase' coprocessors

– Some projects provide solution that use HBase
• Lily=HBase+Solr http://www.lilyproject.org
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HBase Data Model

• Data is stored in Tables
• Tables contain rows

– Rows are referenced by a unique key
• Key is an array of bytes – good news
• Anything can be a key: string, long and your own 

serialized data structures

• Rows made of columns which are grouped 
in column families

• Data is stored in cells
– Identified by row x column-family x column
– Cell's content is also an array of bytes
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HBase Families

• Rows are grouped into families
– Labeled as “family:column”

• Example “user:first_name”

– A way to organize your data
– Various features are applied to families

• Compression
• In-memory option
• Stored together - in a file called HFile/StoreFile

• Family definitions are static
– Created with table, should be rarely added and changed
– Limited to small number of families

• unlike columns that you can have millions of
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HBase Families

• Family name must be composed of printable 
characters
– Not bytes, unlike keys and values

• Think of family:column as a tag for a cell 
value and NOT as a spreadsheet

• Columns on the other hand are NOT static
– Create new columns at run-time
– Can scale to millions for a family
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Rows Composed Of Cells 
Stored In Families:Columns
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col1->val1

col1->val1

col1->val1

col1->val1

Family1 Family2

Row 1

Row 10

Row 2



HBase Timestamps

• Cells' values are versioned
– For each cell multiple versions are kept

• 3 by default

– Another dimension to identify your data
– Either explicitly timestamped by region server or 

provided by the client
• Versions are stored in decreasing timestamp order
• Read the latest first – optimization to read the current 

value

• You can specify how many versions are 
kept
– More on this later....
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HBase Cells

• Value = 
Table+RowKey+Family+Column+Timestamp

• Programming language style:
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SortedMap<
RowKey, List<

SortedMap<
Column, List<

Value, Timestamp
>

>
>

>

Table

Family

Cells



HBase Row Keys

• Rows are sorted lexicographically by key
– Compared on a binary level from left to right
– For example keys 1,2,3,10,15 will get sorted as

• 1, 10, 15, 2, 3

• Somewhat similar to Relational DB primary 
index
– Always unique
– Some but minimal secondary indexes support
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HBase Cells
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An example - Logical representation of how values are stored

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

Row Key Time stamp Name Family Address Family

first_name last_name number address

row1 t1 Bob Smith

t5 10 First Lane

t10 30 Other Lane

t15 7 Last Street

row2 t20 Mary Tompson

t22 77 One Street

t30 Thompson



HBase Cells

• Can ask for
– Most recent value (default)
– Specific timestamp
– Multiple values such as range of timestamps
– More on this later....
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HBase Architecture
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• Table is made of regions
• Region – a range of rows stored together

– Single shard, used for scaling
– Dynamically split as they become too big and merged if too 

small

• Region Server- serves one or more regions
– A region is served by only 1 Region Server

• Master Server – daemon responsible for 
managing HBase cluster, aka Region Servers

• HBase stores its data into HDFS
– relies on HDFS's high availability and fault-tolerance features

• HBase utilizes Zookeeper for distributed 
coordination



HBase Components
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Zookeeper

/hbase/region1
/hbase/region2

…
…

/hbase/region

HDFS                                                          

Master

Region
Servers

Region
ServersRegion

Servers

HFile WAL

memstore

Rows Distribution Between 
Region Servers
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Rows

A1
A2
a22
A3
...
…
K4
…
…

O90
…
…
…

Z30
z55 Region Server

Region
null-> A3

Region Server

Region
A3-> F34

Region Server

Region
F34-> K80

Region
K80-> O95

Region
095-> null

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011
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HBase Regions
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• Region is a range of keys
– start key → stop key (ex. k3cod → odiekd)
– start key inclusive and stop key exclusive

• Addition of data
– At first there is only 1 region
– Addition of data will eventually exceed the configured maximum 
→ the region is split

• Default is 256MB

– The region is split into 2 regions at the middle key

• Regions per server depend on hardware specs, 
with today's hardware it's common to have:
– 10 to 1000 regions per Region Server
– Managing as much as 1GB to 2 GB per region

HBase Regions

• Splitting data into regions allows
– Fast recovery when a region fails
– Load balancing when a server is overloaded

• May be moved between servers

– Splitting is fast
• Reads from an original file while asynchronous process 

performs a split  

– All of these happen automatically without user's 
involvement
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Data Storage
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• Data is stored in files called HFiles/StoreFiles
– Usually saved in HDFS

• HFile is basically a key-value map
– Keys are sorted lexicographically

• When data is added it's written to a log called 
Write Ahead Log (WAL) and is also stored in 
memory (memstore)

• Flush: when in-memory data exceeds maximum 
value it is flushed to an HFile
– Data persisted to HFile can then be removed from WAL
– Region Server continues serving read-writes during the flush 

operations, writing values to the WAL and memstore

Data Storage

• Recall that HDFS doesn't support updates to 
an existing file therefore HFiles are 
immutable
– Cannot remove key-values out of HFile(s)
– Over time more and more HFiles are created

• Delete marker is saved to indicate that a 
record was removed
– These markers are used to filter the data - to “hide” the 

deleted records
– At runtime, data is merged between the content of the 

HFile and WAL
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Data Storage

• To control the number of HFiles and to keep 
cluster well balanced HBase periodically 
performs data compactions
– Minor Compaction: Smaller HFiles are merged into 

larger HFiles (n-way merge)
• Fast - Data is already sorted within files
• Delete markers are not applied

– Major Compaction:
• For each region merges all the files within a column-family 

into a single file
• Scan all the entries and apply all the deletes as necessary
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HBase Master

• Responsible for managing regions and their 
locations
– Assigns regions to region servers
– Re-balanced to accommodate workloads
– Recovers if a region server becomes unavailable
– Uses Zookeeper – distributed coordination service

• Doesn't actually store or read data
– Clients communicate directly with Region Servers
– Usually lightly loaded

• Responsible for schema management and 
changes
– Adding/Removing tables and column families
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HBase and Zookeeper

• HBase uses Zookeeper extensively for 
region assignment

• HBase can manage Zookeeper daemons for 
you or you can install/manage them 
separately

• Learn More at http://zookeeper.apache.org
32

“Zookeeper is a centralized service for maintaining 
configuration information, naming, providing 

distributed synchronization, and providing group 
services” - zookeeper.apache.org

HBase and Zookeeper

• Zookeeper crash course
– Very simple file-like API, written in Java
– Operations on directories and files (called Znodes)
– CRUD ZNodes and register for updates

• Supports PERSISTENT and EPHERMAL Znodes

– Clients connect with a session to Zookeeper
• Session is maintained via heartbeat, if client fails to report 

then the session is expired and all the EPHERMAL nodes 
are deleted

• Clients listening for updates will be notified of the deleted 
nodes as well as new nodes
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HBase and Zookeeper

• Each Region Server creates an ephemeral 
node
– Master monitors these nodes to discover available region 

servers
– Master also tracks these nodes for server failures

• Uses Zookeeper to make sure that only 1 
master is registered

• HBase cannot exist without Zookeeper
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HBase Components
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HBase Deployment
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HBase Access

• HBase Shell
• Native Java API

– Fastest and very capable options

• Avro Server
– Apache Avro is also a cross-language schema compiler
– http://avro.apache.org
– Requires running Avro Server

• HBql
– SQL like syntax for HBase
– http://www.hbql.com
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HBase Access

• PyHBase
– python client for HBase Avro interface
– https://github.com/hammer/pyhbase

• AsyncHBase
– asynchronous, non-blocking, thread-safe,  HBase client
– https://github.com/stumbleupon/asynchbase

• JPA/JPO access to HBase via DataNucleous
– http://www.datanucleus.org

• HBase-DSL
– Java Library that helps you build queries
– https://github.com/nearinfinity/hbase-dsl
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HBase Access

• Native API is not the only option
– REST Server

• Complete client and admin APIs
• Requires a REST gateway server
• Supports many formats: text, xml, json, protocol buffers, 

raw binary

– Thrift
• Apache Thrift is a cross-language schema compiler
• http://thrift.apache.org
• Requires running Thrift Server
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Resources: Books
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• HBase: The Definitive Guide by Lars 
George
– Publication Date: September 20, 2011

• Apache HBase Reference Guide
– Comes packaged with HBase
– http://hbase.apache.org/book/book.html

• Hadoop: The Definitive Guide by 
Tom White
– Publication Date: May 22, 2012
– Chapter about HBase

Resources

• Home Page
– http://hbase.apache.org

• Mailing Lists
– http://hbase.apache.org/mail-lists.html
– Subscribe to User List

• Wiki
– http://wiki.apache.org/hadoop/Hbase

• Videos and Presentations
– http://hbase.apache.org/book.html#other.info
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Wrap-Up

Summary

• Presented
– HBase Overview
– HBase Architecture

• Learned about
– Data Model
– Available Resources
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