
© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

HBase Overview

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/
Also see the customized Hadoop training courses (onsite or at public venues) – http://courses.coreservlets.com/hadoop-training.html

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live customized Hadoop training (including prep
for the Cloudera certification exam), please email

info@coreservlets.com
Taught by recognized Hadoop expert who spoke on Hadoop

several times at JavaOne, and who uses Hadoop daily in
real-world apps. Available at public venues, or customized

versions can be held on-site at your organization.
• Courses developed and taught by Marty Hall

– JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
– Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services

Contact info@coreservlets.com for details

Agenda

• Overview
• Data Model
• Architecture
• Resources

4

HBase

• Column-Oriented data store, known as
“Hadoop Database”

• Supports random real-time CRUD
operations (unlike HDFS)

• Distributed – designed to serve large tables
– Billions of rows and millions of columns

• Runs on a cluster of commodity hardware
– Server hardware, not laptop/desktops

• Open-source, written in Java
• Type of “NoSQL” DB

– Does not provide a SQL based access
– Does not adhere to Relational Model for storage

5

HBase

• Horizontally scalable
– Automatic sharding

• Strongly consistent reads and writes
• Automatic fail-over
• Simple Java API
• Integration with Map/Reduce framework
• Thrift, Avro and REST-ful Web-services

6

HBase

• Based on Google's Bigtable
– http://labs.google.com/papers/bigtable.html

• Just like BigTable is built on top of Google
File System (GFS), HBase is implemented
on top of HDFS

7

HBase History

8 Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

2006

BigTable paper

Hadoop’s contrib

Hadoop’s sub project

0.92 release

Apache top-level project

2007 2008 2010 2011

Who Uses HBase?

• Here is a very limited list of well known
names
– Facebook
– Adobe
– Twitter
– Yahoo!
– Netflix
– Meetup
– Stumbleupon
– You????

9

When To Use HBase

• Not suitable for every problem
– Compared to RDBMs has VERY simple and limited API

• Good for large amounts of data
– 100s of millions or billions of rows
– If data is too small all the records will end up on a single

node leaving the rest of the cluster idle

10

When To Use HBase

• Have to have enough hardware!!
– At the minimum 5 nodes

• There are multiple management daemon processes:
Namenode, HBaseMaster, Zookeeper, etc....

• HDFS won't do well on anything under 5 nodes anyway;
particularly with a block replication of 3

• HBase is memory and CPU intensive

• Carefully evaluate HBase for mixed work
loads
– Client Request vs. Batch processing (Map/Reduce)

• SLAs on client requests would need evaluation

– HBase has intermittent but large IO access
• May affect response latency!!!

11

When to Use HBase

• Two well-known use cases
– Lots and lots of data (already mentioned)
– Large amount of clients/requests (usually cause a lot of

data)

• Great for single random selects and range
scans by key

• Great for variable schema
– Rows may drastically differ
– If your schema has many columns and most of them are

null

12

When NOT to Use HBase

• Bad for traditional RDBMs retrieval
– Transactional applications
– Relational Analytics

• 'group by', 'join', and 'where column like', etc....

• Currently bad for text-based search access
– There is work being done in this arena

• HBasene: https://github.com/akkumar/hbasene/wiki
• HBASE-3529: 100% integration of HBase and Lucene

based on HBase' coprocessors

– Some projects provide solution that use HBase
• Lily=HBase+Solr http://www.lilyproject.org

13

HBase Data Model

• Data is stored in Tables
• Tables contain rows

– Rows are referenced by a unique key
• Key is an array of bytes – good news
• Anything can be a key: string, long and your own

serialized data structures

• Rows made of columns which are grouped
in column families

• Data is stored in cells
– Identified by row x column-family x column
– Cell's content is also an array of bytes

14

HBase Families

• Rows are grouped into families
– Labeled as “family:column”

• Example “user:first_name”

– A way to organize your data
– Various features are applied to families

• Compression
• In-memory option
• Stored together - in a file called HFile/StoreFile

• Family definitions are static
– Created with table, should be rarely added and changed
– Limited to small number of families

• unlike columns that you can have millions of

15

HBase Families

• Family name must be composed of printable
characters
– Not bytes, unlike keys and values

• Think of family:column as a tag for a cell
value and NOT as a spreadsheet

• Columns on the other hand are NOT static
– Create new columns at run-time
– Can scale to millions for a family

16

Rows Composed Of Cells
Stored In Families:Columns

17

col1->val1

col1->val1

col1->val1

col1->val1

Family1 Family2

Row 1

Row 10

Row 2

HBase Timestamps

• Cells' values are versioned
– For each cell multiple versions are kept

• 3 by default

– Another dimension to identify your data
– Either explicitly timestamped by region server or

provided by the client
• Versions are stored in decreasing timestamp order
• Read the latest first – optimization to read the current

value

• You can specify how many versions are
kept
– More on this later....

18

HBase Cells

• Value =
Table+RowKey+Family+Column+Timestamp

• Programming language style:

19

SortedMap<
RowKey, List<

SortedMap<
Column, List<

Value, Timestamp
>

>
>

>

Table

Family

Cells

HBase Row Keys

• Rows are sorted lexicographically by key
– Compared on a binary level from left to right
– For example keys 1,2,3,10,15 will get sorted as

• 1, 10, 15, 2, 3

• Somewhat similar to Relational DB primary
index
– Always unique
– Some but minimal secondary indexes support

20

HBase Cells

21

An example - Logical representation of how values are stored

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

Row Key Time stamp Name Family Address Family

first_name last_name number address

row1 t1 Bob Smith

t5 10 First Lane

t10 30 Other Lane

t15 7 Last Street

row2 t20 Mary Tompson

t22 77 One Street

t30 Thompson

HBase Cells

• Can ask for
– Most recent value (default)
– Specific timestamp
– Multiple values such as range of timestamps
– More on this later....

22

HBase Architecture

23

• Table is made of regions
• Region – a range of rows stored together

– Single shard, used for scaling
– Dynamically split as they become too big and merged if too

small

• Region Server- serves one or more regions
– A region is served by only 1 Region Server

• Master Server – daemon responsible for
managing HBase cluster, aka Region Servers

• HBase stores its data into HDFS
– relies on HDFS's high availability and fault-tolerance features

• HBase utilizes Zookeeper for distributed
coordination

HBase Components

24

Zookeeper

/hbase/region1
/hbase/region2

…
…

/hbase/region

HDFS

Master

Region
Servers

Region
ServersRegion

Servers

HFile WAL

memstore

Rows Distribution Between
Region Servers

25

Rows

A1
A2
a22
A3
...
…
K4
…
…

O90
…
…
…

Z30
z55 Region Server

Region
null-> A3

Region Server

Region
A3-> F34

Region Server

Region
F34-> K80

Region
K80-> O95

Region
095-> null

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

Lo
gi

ca
l V

ie
w

 –
A

ll
ro

w
s

in
 a

 ta
bl

e

HBase Regions

26

• Region is a range of keys
– start key → stop key (ex. k3cod → odiekd)
– start key inclusive and stop key exclusive

• Addition of data
– At first there is only 1 region
– Addition of data will eventually exceed the configured maximum
→ the region is split

• Default is 256MB

– The region is split into 2 regions at the middle key

• Regions per server depend on hardware specs,
with today's hardware it's common to have:
– 10 to 1000 regions per Region Server
– Managing as much as 1GB to 2 GB per region

HBase Regions

• Splitting data into regions allows
– Fast recovery when a region fails
– Load balancing when a server is overloaded

• May be moved between servers

– Splitting is fast
• Reads from an original file while asynchronous process

performs a split

– All of these happen automatically without user's
involvement

27

Data Storage

28

• Data is stored in files called HFiles/StoreFiles
– Usually saved in HDFS

• HFile is basically a key-value map
– Keys are sorted lexicographically

• When data is added it's written to a log called
Write Ahead Log (WAL) and is also stored in
memory (memstore)

• Flush: when in-memory data exceeds maximum
value it is flushed to an HFile
– Data persisted to HFile can then be removed from WAL
– Region Server continues serving read-writes during the flush

operations, writing values to the WAL and memstore

Data Storage

• Recall that HDFS doesn't support updates to
an existing file therefore HFiles are
immutable
– Cannot remove key-values out of HFile(s)
– Over time more and more HFiles are created

• Delete marker is saved to indicate that a
record was removed
– These markers are used to filter the data - to “hide” the

deleted records
– At runtime, data is merged between the content of the

HFile and WAL

29

Data Storage

• To control the number of HFiles and to keep
cluster well balanced HBase periodically
performs data compactions
– Minor Compaction: Smaller HFiles are merged into

larger HFiles (n-way merge)
• Fast - Data is already sorted within files
• Delete markers are not applied

– Major Compaction:
• For each region merges all the files within a column-family

into a single file
• Scan all the entries and apply all the deletes as necessary

30

HBase Master

• Responsible for managing regions and their
locations
– Assigns regions to region servers
– Re-balanced to accommodate workloads
– Recovers if a region server becomes unavailable
– Uses Zookeeper – distributed coordination service

• Doesn't actually store or read data
– Clients communicate directly with Region Servers
– Usually lightly loaded

• Responsible for schema management and
changes
– Adding/Removing tables and column families

31

HBase and Zookeeper

• HBase uses Zookeeper extensively for
region assignment

• HBase can manage Zookeeper daemons for
you or you can install/manage them
separately

• Learn More at http://zookeeper.apache.org
32

“Zookeeper is a centralized service for maintaining
configuration information, naming, providing

distributed synchronization, and providing group
services” - zookeeper.apache.org

HBase and Zookeeper

• Zookeeper crash course
– Very simple file-like API, written in Java
– Operations on directories and files (called Znodes)
– CRUD ZNodes and register for updates

• Supports PERSISTENT and EPHERMAL Znodes

– Clients connect with a session to Zookeeper
• Session is maintained via heartbeat, if client fails to report

then the session is expired and all the EPHERMAL nodes
are deleted

• Clients listening for updates will be notified of the deleted
nodes as well as new nodes

33

HBase and Zookeeper

• Each Region Server creates an ephemeral
node
– Master monitors these nodes to discover available region

servers
– Master also tracks these nodes for server failures

• Uses Zookeeper to make sure that only 1
master is registered

• HBase cannot exist without Zookeeper

34

HBase Components

35

Zookeeper

/hbase/region1
/hbase/region2

…
…

/hbase/region

HDFS

Master

Region
Servers

Region
ServersRegion

Servers

HFile WAL

memstore

HBase Deployment

36

Management
Node

Zookeeper

HBase
Master

Management
Node

Zookeeper

HDFS
Namenode

Management
Node

Zookeeper

Data Node

HDFS
DataNode

HBase
Region Server

HDFS
Secondary
Namenode

Data Node

HDFS
DataNode

HBase
Region Server

...

Data Node

HDFS
DataNode

HBase
Region Server

...

Scale Horizontally
N Machines

HBase Access

• HBase Shell
• Native Java API

– Fastest and very capable options

• Avro Server
– Apache Avro is also a cross-language schema compiler
– http://avro.apache.org
– Requires running Avro Server

• HBql
– SQL like syntax for HBase
– http://www.hbql.com

37

HBase Access

• PyHBase
– python client for HBase Avro interface
– https://github.com/hammer/pyhbase

• AsyncHBase
– asynchronous, non-blocking, thread-safe, HBase client
– https://github.com/stumbleupon/asynchbase

• JPA/JPO access to HBase via DataNucleous
– http://www.datanucleus.org

• HBase-DSL
– Java Library that helps you build queries
– https://github.com/nearinfinity/hbase-dsl

38

HBase Access

• Native API is not the only option
– REST Server

• Complete client and admin APIs
• Requires a REST gateway server
• Supports many formats: text, xml, json, protocol buffers,

raw binary

– Thrift
• Apache Thrift is a cross-language schema compiler
• http://thrift.apache.org
• Requires running Thrift Server

39

Resources: Books

40

• HBase: The Definitive Guide by Lars
George
– Publication Date: September 20, 2011

• Apache HBase Reference Guide
– Comes packaged with HBase
– http://hbase.apache.org/book/book.html

• Hadoop: The Definitive Guide by
Tom White
– Publication Date: May 22, 2012
– Chapter about HBase

Resources

• Home Page
– http://hbase.apache.org

• Mailing Lists
– http://hbase.apache.org/mail-lists.html
– Subscribe to User List

• Wiki
– http://wiki.apache.org/hadoop/Hbase

• Videos and Presentations
– http://hbase.apache.org/book.html#other.info

41

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

Summary

• Presented
– HBase Overview
– HBase Architecture

• Learned about
– Data Model
– Available Resources

43

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?
More info:

http://www.coreservlets.com/hadoop-tutorial/ – Hadoop programming tutorial
http://courses.coreservlets.com/hadoop-training.html – Customized Hadoop training courses, at public venues or onsite at your organization

http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial
http://www.coreservlets.com/java-8-tutorial/ – Java 8 tutorial

http://www.coreservlets.com/JSF-Tutorial/jsf2/ – JSF 2.2 tutorial
http://www.coreservlets.com/JSF-Tutorial/primefaces/ – PrimeFaces tutorial

http://coreservlets.com/ – JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training

