© 2012 coreservlets.com and Dima May

HBase Overview

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/
Also see the customized Hadoop training courses (onsite or at public venues) — http://courses.coreservlets.com/hadoop-training.html

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 coreservlets.com and Dima May

more
SERVLETS ang
JAVASERVER PAGES

C-o?e IMp tDimoN
SERVLETS and
JAVASERVER PAGES

y

For live customized Hadoop training (including prep
for the Cloudera certification exam), please email
Info@coreservlets.com

Taught by recognized Hadoop expert who spoke on Hadoop
several times at JavaOne, and who uses Hadoop daily in
real-world apps. Available at public venues, or customized
versions can be held on-site at your organization.

Spring

s ource

 Courses developed and taught by Marty Hall
—JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
— Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.

pJS F Courses developed and taught by coreservlets.com experts (edited by Marty)

¢

— Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services
Contact info@coreservlets.com for details

Agenda

Overview
Data Model
Architecture
Resources

HBase

Column-Oriented data store, known as
“Hadoop Database”

Supports random real-time CRUD
operations (unlike HDFS)

Distributed — designed to serve large tables
— Billions of rows and millions of columns

Runs on a cluster of commodity hardware
— Server hardware, not laptop/desktops

Open-source, written in Java

Type of “NoSQL” DB

— Does not provide a SQL based access

— Does not adhere to Relational Model for storage

HBase

Horizontally scalable
— Automatic sharding

Strongly consistent reads and writes
Automatic fail-over

Simple Java API

Integration with Map/Reduce framework
Thrift, Avro and REST-ful Web-services

HBase

 Based on Google's Bigtable
— http://labs.google.com/papers/bigtable.html

« Just like BigTable is built on top of Google
File System (GFS), HBase is implemented
on top of HDFS

HBase History

{ 0.92 release]

{ Apache top-level project]

{ Hadoop’s sub project]

{ Hadoop’s contrib]

{ BigTable paper]

|
2006 2007 2008 2010 2011

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

Who Uses HBase?

 Hereis avery limited list of well known

names

— Facebook .f
— Adobe

— Twitter

— Yahoo! "‘
— Netflix Adobe
— Meetup

— Stumbleupon IH !|
~ You???? &

When To Use HBase

* Not suitable for every problem

— Compared to RDBMs has VERY simple and limited API
* Good for large amounts of data

— 100s of millions or billions of rows

— If data is too small all the records will end up on a single
node leaving the rest of the cluster idle

When To Use HBase

 Have to have enough hardware!!
— At the minimum 5 nodes

* There are multiple management daemon processes:
Namenode, HBaseMaster, Zookeeper, etc....

« HDFS won't do well on anything under 5 nodes anyway;
particularly with a block replication of 3

* HBase is memory and CPU intensive
o Carefully evaluate HBase for mixed work
loads
— Client Request vs. Batch processing (Map/Reduce)
« SLAs on client requests would need evaluation

— HBase has intermittent but large 10 access
* May affect response latency!!!

When to Use HBase

 Two well-known use cases
— Lots and lots of data (already mentioned)
— Large amount of clients/requests (usually cause a lot of
data)
» Great for single random selects and range
scans by key

e Great for variable schema
— Rows may drastically differ

— If your schema has many columns and most of them are
null

When NOT to Use HBase

« Bad for traditional RDBMs retrieval
— Transactional applications
— Relational Analytics
* 'group by', 'join', and 'where column like', etc....
e Currently bad for text-based search access

— There is work being done in this arena
« HBasene: https://github.com/akkumar/hbasene/wiki
« HBASE-3529: 100% integration of HBase and Lucene
based on HBase' coprocessors
— Some projects provide solution that use HBase
 Lily=HBase+Solr http://www.lilyproject.org

HBase Data Model

Data is stored in Tables

Tables contain rows

— Rows are referenced by a unique key
» Key is an array of bytes — good news

* Anything can be a key: string, long and your own
serialized data structures

Rows made of columns which are grouped
in column families

Data is stored in cells

— Identified by row x column-family x column

— Cell's content is also an array of bytes

HBase Families

 Rows are grouped into families
— Labeled as “family:column”
« Example “user:first_name”
— A way to organize your data

— Various features are applied to families
¢ Compression
 In-memory option
« Stored together - in a file called HFile/StoreFile

 Family definitions are static
— Created with table, should be rarely added and changed

— Limited to small number of families
 unlike columns that you can have millions of

HBase Families

 Family name must be composed of printable

characters

— Not bytes, unlike keys and values
e Think of family:column as a tag for a cell

value and NOT as a spreadsheet

e Columns on the other hand are NOT static

— Create new columns at run-time

— Can scale to millions for a family

Rows Composed Of Cells
Stored In Families:Columns

:/,_...

‘ Row 1 Hi —> | coll->vall
[Row10 | \ —T*
- ™ col1->val1
"- Row2 | —
Familyl
Q Y |«

coll->vall

coll->vall

Family2

HBase Timestamps

e Cells' values are versioned
— For each cell multiple versions are kept
» 3 by default
— Another dimension to identify your data

— Either explicitly timestamped by region server or
provided by the client
» Versions are stored in decreasing timestamp order

* Read the latest first — optimization to read the current
value

* You can specify how many versions are
kept
— More on this later....

HBase Cells

e Value =
Table+tRowKey+Family+Column+Timestamp

 Programming language style:

Table SortedMap< .
RowKey, List<
Family ——— SortedMap<
amily .
Column, List<
Value, Timestamp

Cells

>

HBase Row Keys

 Rows are sorted lexicographically by key
— Compared on a binary level from left to right
— For example keys 1,2,3,10,15 will get sorted as
« 1,10,15,2,3
« Somewhat similar to Relational DB primary
index
— Always unique
— Some but minimal secondary indexes support

HBase Cells

An example - Logical representation of how values are stored

rowl t1 Bo Smith

t10 30 Other Lane

row2 t20 Mary Tompson

t30 Thompson

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

HBase Cells

e Can ask for
— Most recent value (default)
— Specific timestamp
— Multiple values such as range of timestamps
— More on this later....

HBase Architecture

Table is made of regions

Region — arange of rows stored together
— Single shard, used for scaling

— Dynamically split as they become too big and merged if too
small

Region Server- serves one or more regions

— A region is served by only 1 Region Server

Master Server —daemon responsible for
managing HBase cluster, aka Region Servers
HBase stores its data into HDFS

— relies on HDFS's high availability and fault-tolerance features

HBase utilizes Zookeeper for distributed
coordination

HBase Components

5 1 Zookeeper
Master

/hbase/regionl
/hbase/region2

Region e

Servers /hbasé./.region

memstore

1Ll
HDES HFile ‘ WAL

Rows Distribution Between

Region Servers

Rows

Al
A2
a2?2
A3

K4

|

090

Z30
z55

Logical View — All rows in a table

Region
null-> A3

Region
K80-> 095

Region Server

Region
A3-> F34

Region
F34-> K80

Region
095-> null

Region Server

Region Server

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

HBase Regions

 Region is arange of keys
— start key — stop key (ex. k3cod — odiekd)
— start key inclusive and stop key exclusive

» Addition of data

— At first there is only 1 region

— Addition of data will eventually exceed the configured maximum
— the region is split
 Default is 256MB
— The region is split into 2 regions at the middle key

* Regions per server depend on hardware specs,
with today's hardware it's common to have:
— 10 to 1000 regions per Region Server
— Managing as much as 1GB to 2 GB per region

HBase Regions

« Splitting data into regions allows
— Fast recovery when a region fails
— Load balancing when a server is overloaded
« May be moved between servers
— Splitting is fast

* Reads from an original file while asynchronous process
performs a split

— All of these happen automatically without user's
involvement

Data Storage

Data is stored in files called HFiles/StoreFiles

— Usually saved in HDFS

HFile is basically a key-value map

— Keys are sorted lexicographically

When data is added it's written to a log called
Write Ahead Log (WAL) and is also stored in
memory (memstore)

Flush: when in-memory data exceeds maximum
value it is flushed to an HFile

— Data persisted to HFile can then be removed from WAL

— Region Server continues serving read-writes during the flush
operations, writing values to the WAL and memstore

Data Storage

* Recall that HDFS doesn't support updates to
an existing file therefore HFiles are
immutable
— Cannot remove key-values out of HFile(s)

— Over time more and more HFiles are created

 Delete marker is saved to indicate that a
record was removed

— These markers are used to filter the data - to “hide” the
deleted records

— At runtime, data is merged between the content of the
HFile and WAL

Data Storage

 To control the number of HFiles and to keep
cluster well balanced HBase periodically
performs data compactions

— Minor Compaction: Smaller HFiles are merged into
larger HFiles (n-way merge)
» Fast - Data is already sorted within files
» Delete markers are not applied

— Major Compaction:

« For each region merges all the files within a column-family
into a single file

« Scan all the entries and apply all the deletes as necessary

HBase Master

* Responsible for managing regions and their
locations
— Assigns regions to region servers
— Re-balanced to accommodate workloads
— Recovers if a region server becomes unavailable
— Uses Zookeeper — distributed coordination service
 Doesn't actually store or read data
— Clients communicate directly with Region Servers
— Usually lightly loaded
* Responsible for schema management and
changes
— Adding/Removing tables and column families

HBase and Zookeeper

« HBase uses Zookeeper extensively for
region assignment

(15

Zookeeper is a centralized service for maintaining
configuration information, naming, providing

distributed synchronization, and providing group
services” - zookeeper.apache.org

« HBase can manage Zookeeper daemons for
you or you can install/manage them
separately

e Learn More at http://zookeeper.apache.org

HBase and Zookeeper

o Zookeeper crash course
— Very simple file-like API, written in Java
— Operations on directories and files (called Znodes)

— CRUD ZNodes and register for updates
» Supports PERSISTENT and EPHERMAL Znodes

— Clients connect with a session to Zookeeper
« Session is maintained via heartbeat, if client fails to report
then the session is expired and all the EPHERMAL nodes
are deleted
* Clients listening for updates will be notified of the deleted
nodes as well as new nodes

HBase and Zookeeper

 Each Region Server creates an ephemeral

node

— Master monitors these nodes to discover available region

SCTvers

— Master also tracks these nodes for server failures

* Uses Zookeeper to make sure that only 1
master is registered

« HBase cannot exist without Zookeeper

HBase Components

Master

Zookeeper

A

Region
Servers

memstore

v

/hbase/regionl
/hbase/region2

>

/hbasé./.region

HDFS

HFile

I
\

WAL

HBase Deployment

HBase HDFS HDFS
Master Namenode Secondary
Namenode
Management Management Management
Node Node Node
HDES HDES Scale Horiz_ontally
DataNode DataNode N Machines
HBase HBase
Region Server Region Server
Data Node Data Node

HDFS
DataNode

HBase
Region Server

Data Node

HBase Access

HBase Shell
Native Java API

— Fastest and very capable options
Avro Server
— Apache Avro is also a cross-language schema compiler
— http://avro.apache.org

— Requires running Avro Server

HB(q|

— SQL like syntax for HBase
— http://www.hbgl.com

HBase Access

PyHBase

— python client for HBase Avro interface

— https://github.com/hammer/pyhbase

AsyncHBase

— asynchronous, non-blocking, thread-safe, HBase client
— https://github.com/stumbleupon/asynchbase

JPA/JPO access to HBase via DataNucleous
— http://www.datanucleus.org

HBase-DSL

— Java Library that helps you build queries
— https://github.com/nearinfinity/hbase-dsl

HBase Access

* Native APl is not the only option

— REST Server
« Complete client and admin APIs
* Requires a REST gateway server

« Supports many formats: text, xml, json, protocol buffers,
raw binary

— Thrift
« Apache Thrift is a cross-language schema compiler
* http://thrift.apache.org
* Requires running Thrift Server

Resources: Books

« HBase: The Definitive Guide by Lars
George
— Publication Date: September 20, 2011

 Apache HBase Reference Guide
— Comes packaged with HBase — ==
— http://hbase.apache.org/book/book.htm] §

 Hadoop: The Definitive Guide by
Tom White - N

— Publication Date: May 22, 2012 -
— Chapter about HBase . . ¢

Resources

Home Page

— http://hbase.apache.org

Mailing Lists

— http://hbase.apache.org/mail-lists.html

— Subscribe to User List

Wiki

— http://wiki.apache.org/hadoop/Hbase
Videos and Presentations

— http://hbase.apache.org/book.html#other.info

© 2012 coreservlets.com and Dima May

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

* Presented

— HBase Overview

— HBase Architecture
 Learned about

— Data Model

— Available Resources

© 2012 coreservlets.com and Dima May

Questions?

More info:
htp://www.coreservlets.com/hadoop-tutoriall — Hadoop programming tutorial
http://courses.coreservlets.com/hadoop-training.html — Customized Hadoop training courses, at public venues or onsite at your organization
http://courses.coreservlets.com/Course-Materials/java.html — General Java programming tutorial
http://www.coreservlets.com/java-8-tutoriall — Java 8 tutorial
http://www.coreservlets.com/JSF-Tutorial/isf2/ — JSF 2.2 tutorial
http://www.coreservlets.com/JSF-Tutorial/primefaces/ — PrimeFaces tutorial
http://coreservlets.com/ — JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE trainin

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

