

HDL Coder Modeling Guidelines (R2015b)

0. Introduction
0.1 About this guide

This is a set of recommended guidelines for creating Simulink models, MATLAB function blocks, and Stateflow charts

for use with HDL Coder. Because HDL Coder generates code that will target hardware, some amount of hardware

architectural guidance must be provided as part of the design. There are additional guidelines for optimizing the

speed and area of the design implemented in hardware. Where noted, the guidelines also reflect industry-standard

HDL guidelines such as those from STARC.

0.1 Recommended HDL Coder design workflow

MATLAB /
Simulink

1. Reference model
design

Design and verify the floating-point functional algorithm.

2. Implementation
model creation

Add hardware awareness, being mindful of clocking, data
types, resource mapping. Use HDL-supported blocks.
Typically Simulink is the top-level and primary entry point
for this model, though MATLAB function blocks and
Stateflow charts may be needed.

Fixed-Point
Designer

3. Fixed-point
conversion

Convert floating point data to fixed-point for hardware
implementation. Fixed-Point Designer utilizes simulation to
provide feedback and guidance on error tolerance and
min/max values.

HDL Coder 4. HDL generation
properties and
preferences

Set optimization preferences such as pipelining or resource
sharing.

5. HDL generation
readiness check

Checks the model for compliance and consistency with
HDL code generation rules.

6. HDL generation Generates VHDL or Verilog.

HDL Verifier +
EDA verification

7. HDL simulation and
verification

Validate that the fully-timed bit-accurate HDL still meets
functional requirements.

EDA synthesis
and place & route

8. FPGA/ASIC
implementation

Implement the generated HDL on the target hardware.

0.2 Target language

HDL Coder generates synthesizable VHDL or Verilog. VHDL is the default. The target language can be set a number

of different ways, the most common being Simulink Configuration Parameters > HDL Code Generation pane or the

Simulink HDL Workflow Advisor as follows:

http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-general.html
http://www.mathworks.com/help/hdlcoder/gs/example-generating-hdl-code-from-a-simulink-model.html#btzatd4-1

0.3 Definition of terms

Subsystems: Atomic subsystem Variant subsystem Enabled Subsystem Triggered Subsystem Virtual subsystem

Non-virtual subsystem

Design concepts: Base rate DUT Registers/Flip-Flops Global reset type Local reset

Signals: Matrix signal Bus signal Vector signal Frame-based signal

Models: Model Variant Model referencing Validation model Generated Model Cosimulation model HDL model

parameters HDL block properties HDL-supported blocks Configuration parameter

Implementation: Floating-point to fixed-point conversion Floating-point mapping Sharing Streaming Pipelining DSP

slice/block

0.4 Guideline categories

The guidelines are categorized by level of compliance requirements:

 Mandatory Strongly Recommended Recommended Informative

Definition

Not following this rule

will result in an error

and code cannot be

generated.

Code can be generated

but it will likely map

inefficiently to hardware

or may not match the

high-level functionality.

Improves quality,

readability, or ease of

implementation.

Guideline to provide

additional

information.

Impact

Code generation or

logic synthesis cannot

be performed.

Poor quality of results

May impact efficiency

or ease-of-use

downstream.

None

http://www.mathworks.com/help/hdlcoder/ref/atomicsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/variantsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/enabledsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/triggeredsubsystem.html
http://www.mathworks.com/help/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/hdlcoder/ug/using-multiple-clocks-in-hdl-coder.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-56
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
http://www.mathworks.com/help/comm/ug/matrices-vectors-and-scalars.html
http://www.mathworks.com/help/simulink/ug/using-bus-objects.html
http://www.mathworks.com/help/comm/ug/matrices-vectors-and-scalars.html
http://www.mathworks.com/help/dsp/ug/sample-and-frame-based-concepts.html
http://www.mathworks.com/help/hdlcoder/ref/modelvariants.html
http://www.mathworks.com/help/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
http://www.mathworks.com/help/hdlcoder/ug/generated-model-and-validation-model.html#btlheow-1
http://www.mathworks.com/help/hdlcoder/ug/generated-model-and-validation-model.html#bujv9yw
http://www.mathworks.com/help/hdlcoder/ug/generating-a-simulink-model-for-cosimulation-with-an-hdl-simulator.html
http://www.mathworks.com/help/hdlcoder/ug/obtaining-hdl-related-block-and-model-parameter-information.html
http://www.mathworks.com/help/hdlcoder/ug/obtaining-hdl-related-block-and-model-parameter-information.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html
http://www.mathworks.com/help/hdlcoder/ug/adding-and-removing-the-hdl-configuration-component.html
http://www.mathworks.com/help/fixedpoint/ug/fixed-point-conversion-workflows.html
http://www.mathworks.com/help/hdlcoder/ug/fpga-target-specific-floating-point-library-mapping.html
http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html
http://www.mathworks.com/help/hdlcoder/ug/streaming.html
http://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining_btvea5o-1.html

Index of HDL Coder Modeling Guidelines

ID Title Level Hardware
STARC

ref

1. Architecture Design

1.1 Basic settings

1.1.1
Appropriate use of Simulink, Stateflow, MATLAB Function,

BlackBox, Model Reference and HDL Cosimulation block
Informative All

1.1.2
Use the hdlsetup command to set model configuration

parameters and HDL model properties
Recommended All

1.1.3 Avoid using double-byte characters Mandatory All

1.1.4 Consider resource sharing impact during model creation Recommended All

1.1.5
Document block name, block features, authors, etc., in

subsystem block properties
Recommended All

1.1.6
Terminate unconnected block outputs with Terminator

blocks
Mandatory All

1.1.7 Proper usage of commenting out blocks Mandatory All

1.1.8
Adjust sizes of constant and gain blocks so that

parameters can be identified
Recommended All

1.1.9 Display parameters that will affect HDL code generation Recommended All

1.1.10
Change block parameters by using find_system and

set_param
Informative All

1.2 Subsystem and Model Hierarchy

1.2.1
When the DUT is not at the top level of the model, set the

DUT as a non-virtual subsystem

Strongly

Recommended
All

1.2.2 Type of subsystem and hierarchical design for a DUT Recommended All

1.2.3
Do not connect constant blocks to ports directly crossing

subsystem boundaries
Recommended ASIC 1.1.4.6

1.2.4

For testbenches that use blocks in continuous solver

mode, make the DUT a model reference with a discrete

solver.

Strongly

Recommended
All

1.2.5 Generate re-usable HDL code from identical subsystems Recommended All

1.2.6
Generate parameterized HDL code for gain and constant

blocks
Recommended All

1.2.7
Insert handwritten code for a block into the generated

code for the DUT
Mandatory All

1.2.8
Only use numerical values and string data types for mask

parameters for user-defined subsystems

Strongly

Recommended
All

1.3 Signal types

1.3.1
Serialize 2D matrix signals into a 1D signal before it enters

an HDL subsystem, and vice versa for the output
Mandatory All

1.3.2 Using a signal bus to improve readability Recommended All

1.3.3 Design considerations for vector signals
Strongly

Recommended
All

1.3.4
One-dimensional vectors created by Delay, Mux, and

Constant blocks generate HDL with ascending bit order
Informative All 2.1.6.1

1.3.5 Manually write HDL control logic for bidirectional ports Mandatory All

1.4 Clock and Reset

1.4.1
Creating a frequency-divided clock from the Simulink

model’s base sample rate
Informative All

1.4.2
Use master-clock division or a clock multiple for proper

multi-rate modeling
Mandatory All

1.4.3
Use Dual Rate Dual Port RAM for non-integer multiple

sample times in a multi-rate model
Mandatory All

1.4.4 Use global reset type best suited for your target hardware
Strongly

Recommended

FPGA

(Altera/Xilinx)

2. Block Settings

2.1 Discontinuities

2.2 Discrete

2.2.1
Appropriate use of various types of delay blocks as

registers
Recommended All 1.3.1.3

2.2.2
Map large delays to FPGA block RAM instead of registers

to reduce area
Recommended

FPGA

(Altera/Xilinx)

2.3 HDL Operations

2.3.1
Use a Bit Concat block instead of a Mux block for bit

concatenation in VHDL
Mandatory All 2.1.6.1

2.3.2 Design considerations for RAM Block access Mandatory All

2.3.3 HDL FIFO block usage considerations Mandatory All

2.3.4 Parallel <--> Serial conversion Informative All

2.4 Logic and bit operations

2.4.1 Logical vs. arithmetic bit shift operations Informative All

2.4.2
Logical Operator, Bitwise Operator, and Bit Reduce for

logic operations
Informative All

2.4.3
Use Boolean data type for the output of the Compare to

Constant/Zero and the Relational Operator blocks

Strongly

Recommended
All

2.5 Lookup tables

2.5.1
Set the number of Lookup Table data entries to a power of

2 to avoid generation of a division operator (/)

Strongly

Recommended
All

2.5.2 Generating FPGA block RAM from a Lookup Table block
Strongly

Recommended

FPGA

(Altera/Xilinx)

2.6 Math operations

2.6.1
Input vector with Mux block to multi-input adder, multi-

input product, and multi-input Min/Max

Strongly

Recommended
All

2.6.2 Set ConstMultiplierOptimization to 'auto' for a Gain block
Strongly

Recommended
All

2.6.3
Use the Bit Shift block or the bitshift function for

computations of the power of 2 (ASIC)
Recommended ASIC

2.6.4 Use Gain block for computations of the power of 2 (FPGA) Recommended
FPGA

(Altera/Xilinx)

2.6.5
Use a Gain block for constant multiplication and constant

division

Strongly

Recommended
All

2.6.6 Efficient multiplier design for targeting Altera DSP block Recommended
FPGA

(Altera)

2.6.7 Efficient multiplier design for targeting Xilinx DSP48 slices Recommended FPGA (Xilinx)

2.6.8
Consider speed/area priority and DSP mapping when

modeling complex multiplication
Recommended All

2.6.9

Model the delay of blocks that will be auto-pipelined

(Divide, Sqrt, Trigonometric Function, Cascade

Add/Product, Viterbi Decoder)

Recommended All

2.6.10

Use Divide blocks in reciprocal mode with a RecipNewton

or RecipNewtonSingleRate architecture for more optimal

HDL

Strongly

Recommended
All

2.6.11

Consider the additional latency impact of different

implementation architectures for the Sqrt and

ReciprocalSqrt blocks

Informative All

2.6.12

Tradeoffs for Sin/Cos calculation using Trigonometric

Function, Lookup Table, Sine/Cosine, and NCO HDL

Optimized block

Informative All

2.6.13
Use only conj, hermitian, or transpose in a Math Function

block
Mandatory All

2.6.14
HDL code generation compatible Math Operations for

complex number computation
Informative All

2.7 Ports and subsystems

2.7.1
Block settings for Triggered Subsystems/Enabled

Subsystems
Mandatory All

2.7.2
Proper usage of a Unit Delay Enabled block versus an

enabled subsystem with a Delay block
Informative All

2.8 Signal attributes

2.8.1 Rate conversion blocks and usage Recommended All

2.9 Signal routing

2.9.1
Choosing the right block for extracting a portion of a vector

signal
Recommended All

2.9.2 Block parameter setting for the Multiport Switch Block Mandatory All

2.9.3
Add 1 to index signals when describing a selector circuit in

a MATLAB Function block
Recommended All

2.9.4
Use a MATLAB Function block to select indices when

extracting portions of a very large constant vector
Recommended All

2.9.5
Writing to individual elements of a vector signal using the

Assignment block
Mandatory All

2.9.6 Proper usage of Goto/From blocks Mandatory All

2.9.7
Ascending bit ordering for 1-D arrays may cause warnings

from HDL rule checkers
Informative All 2.1.6.1

2.10 Source blocks

2.10.1 Do not use a sample time of inf for a Constant block Mandatory All

2.11 MATLAB Function blocks

2.11.1 Proper usage of dsp.Delay as a register Recommended All

2.11.2
Update persistent variables at the end of a MATLAB

function

Strongly

Recommended
All

2.11.3
Explicitly define data types for constants used in

expressions
Mandatory All

2.11.4
Use Delay blocks to break feedback loops in MATLAB

Function blocks
Mandatory All

2.11.5
Do not use logical operators in conditional statements

when initializing persistent variables
Recommended All

2.11.6
Use X(:)=X+1; when input and output data types are the

same in MATLAB code expressions
Recommended All

2.11.7
Avoid unintended latch inference by performing arithmetic

operations outside of if/else branches

Strongly

Recommended
All 2.2.1.1

2.11.8
Avoid generating always @* Verilog code for Xilinx Virtex-

4 and 5
Mandatory FPGA (Xilinx)

2.11.9 Using MATLAB code for [M, N] matrix operations Informative All

2.11.10
Use a single for loop for element-by-element operations to

reduce area
Recommended All

2.12 Stateflow

2.12.1
Choosing Mealy vs Moore for Stateflow state machine

type

Strongly

Recommended
All 2.11.1.1

2.12.2 Stateflow Chart block configuration
Strongly

Recommended
All

2.12.3
Do not use absolute time for temporal logical logic (after,

before and every)
Mandatory All

2.12.4
Consider desired state order in generated HDL when

naming states
Recommended All

2.12.5 Using a chart output as an input via a feedback loop Recommended All

2.12.6
Insert an unconditional transition state to create an else

statement in the generated HDL

Strongly

Recommended
All 2.7.1.3

2.12.7
Avoid unintended latch inference by performing arithmetic

operations outside of truth tables

Strongly

Recommended
All 2.2.1.1

2.12.8 Hardware considerations when designing an FSM
Strongly

Recommended
All

2.13 DSP System Toolbox

2.13.1
Use the DSP System Toolbox Delay block if the number of

samples to delay might be 0
Recommended All

2.13.2 Changing the phase offset of a Downsample block Recommended All

2.13.3
Use the NCO HDL Optimized block for sine and cosine

computation and signal generation
Recommended All

2.13.4 Block settings for FIR filter blocks Informative All

2.13.5 IIR Filter blocks Informative All

2.14 Others

2.14.1
Use case restrictions when importing user-defined HDL

code with an HDL Cosimulation block
Mandatory All

2.14.2
Define clock and block name to match user-defined HDL

settings when using an HDL Cosimulation block
Mandatory All

3 Data type settings

3.1 Basic data type settings

3.1.1
Use fixed binary point scaling up to 128-bit for fixed-point

operations
Mandatory All

3.1.2 Trading off rounding error vs processing expense
Strongly

Recommended
All

3.1.3 Restrictions for data type override Informative All

3.2 Simulink data type setting

3.2.1
Use Boolean for logical data and use ufix1 for numerical

data
Mandatory All

3.2.2 Define the data type of a Gain block explicitly Recommended All

3.2.3 Restrictions for using enumerated values Mandatory All

3.3 Data type setting for MATLAB code

3.3.1 Using a fi object in a MATLAB Function block
Strongly

Recommended
All

3.3.2 Use like or cast to inherit data types in MATLAB code Recommended All

3.3.3 Use True/False instead of Boolean data in MATLAB code Mandatory All

3.4 Data type setting for Stateflow charts

3.4.1
Use a fi object when the Stateflow action language is

MATLAB
Mandatory All

4 Optimization of speed and area

4.1 Resource sharing

4.1.1 Resource sharing requirements Mandatory All

4.1.2
Use StreamingFactor for resource sharing of 1D vector

signal processing
Informative All

4.1.3 Resource sharing of Gain blocks Recommended All

4.1.4 Resource sharing of Product blocks Recommended All

4.1.5 Resource sharing of subsystems Recommended All

4.2 Pipeline insertion

4.2.1 Design considerations for pipelining and delay balancing Recommended All

4.2.2 Clock-rate pipelining Informative All

4.2.3 Recommended distributed pipelining settings Recommended All

4.2.4
Apply distributed pipelining to adders, products, min/max,

and dot products with vector inputs
Informative All

5 Appendix

5.1 Considerations in HDL code writing for ASIC/FPGA design

5.2 Synchronous circuit design overview and recommendations

5.3 Recommended use of registers at outputs of hierarchical structures

5.4 Follow naming conventions

5.5 HDL-supported blocks

5.6 Compatibility check for HDL code generation

5.7 Setting global clock and reset signals in for HDL code generation

5.8 Add comments for generating readable HDL code

1. Architecture Design
1.1 Basic settings

1.1.1 Appropriate use of Simulink, Stateflow, MATLAB Function, BlackBox, Model Reference and HDL Cosimulation

block

When creating a hardware implementation model, there are recommended applications for Simulink blocks, MATLAB

function blocks and Stateflow charts. These can be mixed within a single subsystem to create a complete model as

shown in the following figure:

The recommended application for each type of block is as follows:

 Simulink block: Arithmetic algorithm containing numerical processing or feedback loop.

 MATLAB Function block: Control logic, conditional branch (If/Else statement), simple state machine, and IP

written with MATLAB code.

 Stateflow:

o State chart (Chart, State Transition Table block): Mode logic or state machine which control an

output by logic of the past and the present

o Flow chart (Chart block): Multiple conditional branch (If/Else)

o Truth table (Truth Table block): Multiple conditional branch (If/Else)

The algorithm modeled by Stateflow uses logic as main elements, and when complicated operation is

included, describe that the calculated result of Simulink block is changed in the logic of Stateflow. Because

explicit pipeline processing cannot be described in Stateflow and change of the timing by pipelining insertion

is unclear.

 BlackBox: For subsystems that don’t need simulation, or that will use imported HDL code. This is an

architecture property that can be applied to a subsystem or a referenced model (for example, an interface

circuit for an A/D converter, an SDRAM controller, etc.) It is also possible to use the BlackBox property to

incorporate handwritten code into a cosimulation model.

 Model reference: For re-using models as sub-blocks in other models. This is useful for partitioning a design

to be worked on by multiple engineers in parallel. For more on HDL code generation from a referenced

model, see the documentation.

Note that since a referenced model is treated the same as an Atomic subsystem, an algebraic loop may

occur which will prevent HDL code generation. These can be fixed in the design, or possibly by setting the

Minimize algebraic loop occurrences in the Model Referencing pane of Configuration Parameters.

http://www.mathworks.com/help/hdlcoder/ug/black-box-implementation-for-subsystem-blocks.html
http://www.mathworks.com/help/hdlcoder/ug/generate-black-box-interface-for-referenced-model.html
http://www.mathworks.com/help/hdlverifier/examples/verify-the-combination-of-hand-written-and-generated-hdl-code.html
http://www.mathworks.com/help/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
http://www.mathworks.com/help/simulink/ug/algebraic-loops.html

 HDL Cosimulation: For simulating HDL code for the DUT in Mentor® Questa® or ModelSim®, or Cadence®

Incisive®, connected to the Simulink environment via HDL Verifier.

1.1.2 Use the hdlsetup command to set model configuration parameters and HDL model properties

hdlsetup('modelname') sets the parameters of the model specified by modelname to common default values for

HDL code generation.

Example: myhdlsetup.m

1.1.3 Avoid using double-byte characters

Double-byte characters, which are used for Japanese and Chinese characters, are typically not supported by

downstream logic synthesis and simulation tools. Therefore HDL code generation does not support them in model

and block names.

It is also recommended to avoid using double-byte characters in comments as well, since comments are propagated

into the generated code. It is good practice to use English for comments.

1.1.4 Consider resource sharing impact during model creation

See 4.1 Resource Sharing.

1.1.5 Document block name, block features, authors, etc., in subsystem block properties

To improve management of the generated HDL, it is good practice to document reference information in the

subsystem block properties since these will be generated as comment headers in the HDL. For example:

This generates code with a header that looks like this:

-- Simulink subsystem description for vector_fft_implementation_example/Vector_FFT:

--

-- Created by: John Simulink

-- Function: Vector FFT

-- This model shows...

-- Revision 1.0

-- Revision 1.1 added functionality to...

--

-- ---

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

ENTITY Vector_FFT IS

http://www.mathworks.com/products/hdl-verifier/
http://www.mathworks.com/help/hdlcoder/ref/hdlsetup.html

1.1.6 Terminate unconnected block outputs with Terminator blocks

HDL code generation will fail and generate an error when output ports of blocks are unconnected. For output blocks

that are intentionally not connected to downstream logic, connect them to a Terminator block. The following

illustrates:

Example: AD015_outTerminate.slx

1.1.7 Proper usage of commenting out blocks

Code generation will fail if a block has been tagged as a “comment through” pass-through.

Code can be generated for a block that is commented out. The generated code will assign a constant value of 0 to

the signal that would have been connected to its output. For instance the following example:

Generates the following HDL:

VHDL generated from the subsystem containing a
commented-out block

Verilog generated from the subsystem containing a
commented-out block

ENTITY Generated IS

 PORT(In1 : IN std_logic_vector(15 DOWNTO 0);

 Out1 : OUT std_logic_vector(15 DOWNTO 0)

);

 END Generated;

ARCHITECTURE rtl OF Generated IS

 SIGNAL TmpGroundAtDT_DupIn1_out1 : signed(15 DOWNTO

module Generated

 (

 In1,

 Out1

);

 input signed [15:0] In1;

 output signed [15:0] Out1;

http://www.mathworks.com/help/simulink/slref/terminator.html

0);

 BEGIN

 TmpGroundAtDT_DupIn1_out1 <= to_signed(16#0000#,

16);

 Out1 <=

std_logic_vector(TmpGroundAtDT_DupIn1_out1);

 END rtl;

 wire signed [15:0] TmpGroundAtDT_DupIn1_out1;

 assign TmpGroundAtDT_DupIn1_out1 =

16'sb0000000000000000;

 assign Out1 = TmpGroundAtDT_DupIn1_out1;

endmodule

1.1.8 Adjust sizes of constant and gain blocks so that parameters can be identified

For constant blocks and gain blocks that use parameter values, in order to increase readability it is good practice to

adjust the size of the block so that the parameter value can be displayed. For instance:

1.1.9 Display parameters that will affect HDL code generation

Certain block parameters such as pipelining and resource sharing can significantly affect HDL code generation.

Therefore if these parameters are set, it is good practice to display them in the Simulink diagram. It also helps to use

delimiters such as “--------“ to separate the annotation from the block name. For example:

Example: BS013_blockAnnotation.slx, showHdlBlockParams.m

The sample file showHdlBlockParams.m attaches a delimiter and annotation automatically to the block to which the

following HDL block properties are set:

 BalanceDelays

 DistributedPipelining

 ConstrainedOutputPipeline

 InputPipeline, OutputPipeline

 StreamingFactor

 SharingFactor

In order to attach an annotation of the above property via the command-line:

 >> showHdlBlockParams (<blockname> and 'on -- ')

To delete the annotation of the above property:

 >> showHdlBlockParams (<blockname>, 'off')

1.1.10 Change block parameters by using find_system and set_param

The functions find_system and set_param can be used together to batch modify the parameters of specific blocks.

The following is an example script that detects Constant blocks with a Sample time of inf and batch modifies it to -1:

modelname = ‘sfir_fixes’

% Detect all the Constant blocks in a model.
blockConstant = find_system(bdroot, 'blocktype', 'Constant')

% Sampling time detects the Constant block used as [inf],
% and changes sampling time into [-1].

for n = 1:numel(blockConstant)
 sTime = get_param(blockConstant{n}, 'SampleTime')
 if strcmp(lower(sTime), 'inf')
 set_param(blockConstant{n}, 'SampleTime', '-1')
 end
end

1.2 Subsystem and Model Hierarchy

1.2.1 When the DUT is not at the top level of the model, set the DUT as a non-virtual subsystem

When the DUT (the target subsystem for code generation) exists in a lower hierarchy from the top, HDL Coder

converts it to a model reference. Because the execution sequence of a referenced model is equivalent to an Atomic

subsystem, when the DUT is a virtual subsystem this conversion may change its operation.

Therefore set the DUT as a non-virtual subsystem before verification and code generation. Subsystem types to which

it can be set are: Atomic Subsystem; model reference; Variant Subsystem; and a variant model.

A conditionally-executed subsystem (Enabled Subsystem, Triggered Subsystem) cannot be specified as a DUT. In

order to use one as a top-level, create an Atomic Subsystem one level of hierarchy up from it.

If there is a feedback loop out of an atomic subsystem that results in an algebraic loop, it will result in a code

generation error. This can be fixed in the design by setting the Minimize algebraic loop occurrences in the Model

Referencing pane of Configuration Parameters.

1.2.2 Type of subsystem and hierarchical design for a DUT

Considerations for a DUT subsystem:

 Because a difference in simulation results may occur, it is good practice to make the DUT a non-virtual

subsystem, e.g. an Atomic subsystem, when it is not at the top level of the model.

 When generating code from a subsystem which is low in the design hierarchy, make the HDL block property

of the subsystem into the default configuration.

 If the DUT is lower in the design hierarchy, because it gets converted to a reference model, a new Simulink

model with references to the validation and co-simulation models will be generated in the target directory for

code generation.

 The subsystem which is at the top of the hierarchy for code generation cannot be set as a BlackBox.

 Connect outputs with no fanout to a Terminator block.

 Don't place a comment through and a comment out block into the DUT.

Guidelines for usage of various subsystems:

 Virtual subsystem

 A subsystem is virtual if the block is neither conditionally executed nor atomic.

 Don’t use it as a DUT. Use this type of subsystem in lower levels of the hierarchy where you want

to divide a generated file.

 Atomic Subsystem

 Make the DUT an Atomic Subsystem.

 Use Atomic Subsystems to generate a single HDL file for identical instances of subsystems in

lower levels of hierarchy.

http://www.mathworks.com/help/hdlcoder/ref/atomicsubsystem.html

 To enable resource sharing in a subsystem unit, make all target subsystems into Atomic

Subsystems.

 Variant Subsystem (Example : AD004_variantSubDivide.slx and AD020_variantChildOp.slx)

 Use this block to change the behavior of a subsystem by using a MATLAB variable without having

to modify the subsystem itself.

 The file name and instance name for the generated code will be unique to the active configuration

at the time of code generation.

 It cannot be set as the top hierarchy for a DUT.

 It cannot be a target of resource sharing.

 Model Referencing (Example: AD002_modelRefDivide.slx and AD019_modelRefChild.slx)

 Use this block to unify a model composed of smaller partitions. It also enables incremental code

generation.

 A reference model can be set as the DUT for code generation. A directory will be created using the

reference model name and the HDL code will be placed under it.

 When using a continuous block in a testbench, make the DUT into a reference model.

 The preference of the block parameter [Model argument values] (for this instance) of a reference

model is not equivalent to a Code Generation.

 Model Variants (Example: AD003_modelVariantDivide.slx and AD021_varianChildRecip.slx)

 This block is the same use-case as a reference model, except its behavior can be changed by

using a MATLAB variable.

 Because it becomes the model name set as the file name/instance name generated being effective,

if an effective subsystem is changed, it will be cautious of the file name/instance name generated

changing.

 Similar to a Variant Subsystem, it cannot be set as a code generation target subsystem.

1.2.3 Do not connect constant blocks to ports directly crossing subsystem boundaries

For an example such as the following, where a constant is directly connected to the output port of a subsystem:

Logic synthesis may optimize away the constant, resulted in an unconnected output port.

http://www.mathworks.com/help/hdlcoder/ref/variantsubsystem.html
http://www.mathworks.com/help/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
http://www.mathworks.com/help/hdlcoder/ref/modelvariants.html

1.2.4 For testbenches that use blocks in continuous solver mode, make the DUT a model reference with a discrete

solver.

Some testbenches may include parts that require continuous solvers, such as the Continuous library and Simscape.

Since the lower levels of hierarchy inherit the solver settings by default, convert the DUT subsystem to a referenced

model and that points to a model that uses a discrete solver.

You will need to insert sample time conversion blocks such as Rate Transition or Zero-Order Hold at the boundaries

of the DUT to convert the input and output signals.

Examples: AD005_continuous.slx, AD006_contBlock.slx

1.2.5 Generate re-usable HDL code from identical subsystems

When there are two or more subsystems (including library blocks) which perform the same function, by default an

HDL file for each of these virtual subsystems will be generated. In order to generate a single HDL file, convert this

subsystem to an Atomic Subsystem. This will make the generated files easier to manage. See Generate Reusable

Code from Atomic Subsystems in the product documentation for an example.

1.2.6 Generate parameterized HDL code for gain and constant blocks

When using several masked subsystems for which only the Constant or Gain parameters differ, you can reduce the

number of generated HDL files by setting Generate parameterized HDL code from masked subsystem to “on” in

the HDL Code Generation pane.

Example: AD012_HDLParameter.slx

1.2.7 Insert handwritten code for a block into the generated code for the DUT

Some cases, such as re-using pre-verified RTL IP, require insertion of existing code for a block into the DUT. In order

to ease this process, create the block in Simulink in order to be plug-in-compatible with the generated code. This

includes the following:

 Name the block the same name as the VHDL entity or Verilog module

 Define the same inputs and outputs, including the same types, sizes, and names

 Define the same clock, reset, and clock enable. Note that only one clock, reset, and clock enable per block

is allowed.

 The block can only be single-rate

Then set the block to be a Black Box in order to disable code generation. See the documentation for details.

1.2.8 Only use numerical values and string data types for mask parameters for user-defined subsystems

By using parameterized values for masked subsystems, you can generate parameterized HDL code. But code can

only be generated if the mask parameters are numerical values or strings. Using objects, types, or Simulink API

commands such as add_block, add_line, etc. will result in a code generation error.

http://www.mathworks.com/help/hdlcoder/ug/generating-reusable-code-for-atomic-subsystems.html
http://www.mathworks.com/help/hdlcoder/ug/generating-reusable-code-for-atomic-subsystems.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-215
http://www.mathworks.com/help/hdlcoder/ug/black-box-implementation-for-subsystem-blocks.html

1.3 Signal types

1.3.1 Serialize 2D matrix signals into a 1D signal before it enters an HDL subsystem, and vice versa for the output

Because hardware interfaces are one-dimensional, any multi-dimensional matrix must be serialized into a hardware-

friendly one-dimensional scalar or vector. For image/video signals, use the Frame-To-Pixels block in the Vision HDL

Toolbox product.

Example: AD001_matrix.slx

This example model performs serialization of two-dimensional data at the input, and then deserialization at the

output.

 Serialize: Converts the two-dimensional matrix data of size MxN into scalar data. It consists of two Unbuffer

blocks and a Transpose block. The first Unbuffer block divides data into a line writing direction, and divides

the 5x5 matrix data into four 1x5 vectors. Note that the sampling time is set to one-fourth since there will be

four output vectors for each input sample. The Transpose block that follows transposes the 1x5 vector into a

5x1 vector. The last Unbuffer block divides the 5x1 vector data into scalar data for input to the image

processing subsystem (filter2HDL).

 DeSerialize: Converts the scalar data output from the filter2HDL subsystem into a two-dimensional matrix. It

consists of two Buffers and one Transpose block. This converts the scalar data to lines then to the MxN

matrix, in an inverse operation from the Serialize block. Note that the output sample time ends up being the

same as the sample time on the input to the Serialize block.

In addition, two-dimensional processing is supported within the MATLAB code and the MATLAB Function block. For

details, refer to 2.11.10 Use MATLAB code for [M and N] matrix operation.

1.3.2 Using a signal bus to improve readability

When a DUT has many input or output signals, to improve readability, create a bus signal using a Bus Creator block

to create a single structure for the input or output

Example: AD022_bus.slx

The bus signal can be a structure of different data types or a vector signal of the same data types. However, since

the amount of blocks that support bus signals is limited, when performing signal conditioning, it is necessary to

extract the desired signal from a bus using a Bus Selector block. The HDL code corresponding to the signal line in a

bus signal serves as a signal name in an input or output port as the generated code shown below.

VHDL generated from the model containing a bus
signal

Verilog generated from the model containing a bus
signal

 ENTITY DUT IS

 PORT(clk : IN std_logic;

 reset : IN std_logic;

 clk_enable : IN std_logic;

 DataIn_data1_En : IN std_logic;

 DataIn_CounterForParam : IN

std_logic_vector(7 DOWNTO 0); -- ufix8

 DataIn_Param : IN

vector_of_std_logic_vector3(0 TO 7); -- ufix3 [8]

 DataIn_sin : IN

std_logic_vector(15 DOWNTO 0); -- sfix16_En14

 ce_out : OUT std_logic;

 DataValidOut : OUT std_logic;

-- ufix1

 DataOut : OUT

std_logic_vector(18 DOWNTO 0) -- sfix19_En14

);

 END DUT;

 .

 .

 .
 SIGNAL Bus_Creator2_out1_Param :

vector_of_std_logic_vector3(0 TO 7); -- ufix3 [8]

.

 .

 .
 -- <S1>/Enabled Subsystem

 u_Enabled_Subsystem : Enabled_Subsystem

 PORT MAP(clk => clk,

 reset => reset,

 enb => clk_enable,

 In1_CounterForParam =>

std_logic_vector(CounterForParam), -- uint8

 In1_Param => Bus_Creator2_out1_Param,

-- ufix3 [8]

 In1_sin => std_logic_vector(sin), --

sfix16_En14

 Enable => data1_En, -- ufix1

 Out1 => Enabled_Subsystem_out1 --

sfix19_En14

);

 -- <S1>/Bus Selector5

 DataValidOut <= Delay_out1_data1_En;

 DataOut <= Enabled_Subsystem_out1;

 .

 .

 .

 module DUT

 (

 clk,

 reset,

 clk_enable,

 DataIn_data1_En,

 DataIn_CounterForParam,

 DataIn_Param_0,

 DataIn_Param_1,

 DataIn_Param_2,

 DataIn_Param_3,

 DataIn_Param_4,

 DataIn_Param_5,

 DataIn_Param_6,

 DataIn_Param_7,

 DataIn_sin,

 ce_out,

 DataValidOut,

 DataOut

);

 .

 .

 .

wire [2:0] Param [0:7]; // ufix3 [8]

 .

 .

 .

 // <S1>/Enabled Subsystem

 Enabled_Subsystem u_Enabled_Subsystem

(.clk(clk),

 .reset(reset),

 .enb(clk_enable),

 .In1_CounterForParam(CounterF

orParam), // ufix8

 .In1_Param_0(Param[0]),

 .In1_Param_1(Param[1]),

 .In1_Param_2(Param[2]),

 .In1_Param_3(Param[3]),

 .In1_Param_4(Param[4]),

 .In1_Param_5(Param[5]),

 .In1_Param_6(Param[6]),

 .In1_Param_7(Param[7]),

 .In1_sin(sin), // sfix16_En14

 .Enable(data1_En), // ufix1

 .Out1(Enabled_Subsystem_out1)

// sfix19_En14

);

 assign DataOut = Enabled_Subsystem_out1;

 assign ce_out = clk_enable;

 .

 .

 .

The blocks that support the Input a bus signal property for HDL generation are:

 Bus Creator

 Bus Selector

 MATLAB Function

 Delay, Memory

 Zero-order Hold

 Rate Transition (both up and down)

 Signal Specification

 From/Goto

 Switch

 Multi-Port Switch

 Stateflow

 Model Reference

 Vision HDL toolbox blocks (accept a pixel control bus for their control input)

To extract and use a signal from a Simulink bus signal to a block other than those listed above, use a Bus Selector

block:

For more on HDL code generation support of bus structures, see Signal and Data Type Support in the

documentation.

1.3.3 Design considerations for vector signals

In order to process a group of signals with the same attributes as a vector signal, use a Mux block.

Example: AD014_vector.slx

http://www.mathworks.com/help/hdlcoder/ug/signal-and-data-type-support.html
http://www.mathworks.com/help/simulink/ug/virtual-signals.html#brp5v4k-1

The signals to combine into a vector can be different dimensions. However they must be of the same data type. If

they are not the same data type, use a Data Type Conversion block to avoid an error.

When separating and choosing the signal of a desired number of element from a vector signal, use a Demux block or

a Selector block. In the following figure, two branches separate the vector signal of the number of element 5 into the

vector signal of the number of elements 2 and 3 in the Demux block.

Methods for performing operations using vector signals are as follows:

 Various methods can be used for constant multiplication using a Gain block :

o 1 block of Gain(s): Multiplication for every element of a vector [A*a, B*b, C*c, and D*d]

o 2 blocks of Gain(s): Matrix multiplication A*a+B*b+C*c+D*d of a vector

o 3 blocks of Gain(s): Multiplication of a vector and a scalar [A*a, B*a, C*a, and D*a]

 Various methods can be used for performing constant addition/subtraction using either a constant and an

Add block, or a Bias block.

o Addition of a vector signal and a scalar [A+a, B+a, C+a, and D+a]

o Addition of a vector signal and a vector [A+a, B+b, C+c, and D+d]

 When addition and subtraction of the elements of a vector signal are performed, Refer to 2.6.1 Input vector

with Mux block to multi-input adder, multi-input product, and multi-input Min/Max.

1.3.4 One-dimensional vectors created by Delay, Mux, and Constant blocks generate HDL with ascending bit order

In order to assure compatibility with MATLAB vector signals, Simulink by default will create one-dimensional vectors

specified in ascending order from LSB to MSB when using Delay and Mux blocks. This goes against convention in

VHDL and Verilog and will trigger a warning from HDL rule checkers. You can either ignore the rule checker warning

and ensure that all of your vector connections match in their ordering, or make the following changes to make sure

that all vectors conform to the [MSB:LSB] convention.

Example: BS054_downto.slx

1. Delay block with delay value greater than 1 :

Generated VHDL:

 -- <S1>/Delay

 Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Delay_reg <= (OTHERS => '0');

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Delay_reg(0) <= In1;

 Delay_reg(1 TO 4) <= Delay_reg(0 TO 3);

 END IF;

 END IF;

 END PROCESS Delay_process;

This can be addressed by using single-delay blocks in series:

The resulting VHDL will use scalar signals instead of vector signals.

2. Mux block

Generated VHDL:

 SIGNAL Mux_out1 : std_logic_vector(0 TO 3); -- ufix1 [4]

 -- <S1>/Mux

 Mux_out1(0) <= In1;

 Mux_out1(1) <= In1;

 Mux_out1(2) <= In1;

 Mux_out1(3) <= In1;

This can be addressed by using the Bit Concat block from the HDL Coder > HDL Operations library:

Generated VHDL:

 Out2 : OUT std_logic_vector(3 DOWNTO 0); -- ufix4

matlab:coder.internal.code2model('BS054_downto:1')
matlab:coder.internal.code2model('BS054_downto:7')

 -- <S1>/Bit Concat

 Bit_Concat_out1 <= unsigned'(In1 & In1 & In1 & In1);

 Out2 <= std_logic_vector(Bit_Concat_out1);

3. Constant block

Generated VHDL:

 Out3 : OUT std_logic_vector(0 TO 3) -- boolean [4]

 -- <S1>/Constant

 Constant_out1(0) <= '0';

 Constant_out1(1) <= '1';

 Constant_out1(2) <= '0';

 Constant_out1(3) <= '1';

This can be addressed by using a Demux together with the Bit Concat block from the HDL Coder > HDL

Operations library:

Generated VHDL:

 Out3 : OUT std_logic_vector(3 DOWNTO 0) -- ufix4

 -- <S1>/Constant

 Constant_out1(0) <= '0';

 Constant_out1(1) <= '1';

 Constant_out1(2) <= '0';

 Constant_out1(3) <= '1';

 -- <S1>/Demux

 Constant_out1_0 <= Constant_out1(0);

 Constant_out1_1 <= Constant_out1(1);

 Constant_out1_2 <= Constant_out1(2);

 Constant_out1_3 <= Constant_out1(3);

 -- <S1>/Bit Concat1

 Bit_Concat1_out1 <= unsigned'(Constant_out1_0 & Constant_out1_1 & Constant_out1_2 &

Constant_out1_3);

 Out3 <= std_logic_vector(Bit_Concat1_out1);

1.3.5 Manually write HDL control logic for bidirectional ports

You can specify bidirectional ports for Subsystem blocks with black box implementation. In the generated code, the

bidirectional ports have the Verilog or VHDL inout keyword.

However since Simulink cannot simulate the behavior of bidirectional ports, you will need to manually write HDL

control logic in the black box in order to properly verify system-level behavior.

1.4 Clock and Reset

In Simulink, global signals such as clock, clock enable and reset are not explicitly modeled. Instead, they are created

during code generation. You represent clock cycles in a Simulink model using sample time.

For a single-rate model, 1 sample time in Simulink maps to 1 clock cycle in HDL. You can use a relative mapping

(e.g. 1 second in Simulink = 1 HDL clock) or an absolute mapping (e.g. 10e-9 second in Simulink = one 10 ns clock in

HDL), depending on your preference and design requirement.

matlab:coder.internal.code2model('BS054_downto:13')
matlab:coder.internal.code2model('BS054_downto:10')
matlab:coder.internal.code2model('BS054_downto:10')
matlab:coder.internal.code2model('BS054_downto:22')
matlab:coder.internal.code2model('BS054_downto:20')
http://www.mathworks.com/help/hdlcoder/ug/specify-bidirectional-ports.html

1.4.1 Creating a frequency-divided clock from the Simulink model’s base sample rate

You can assign a frequency-divided clock rate for HDL code generation to be a multiple of the Simulink base sample

rate. For instance in a case where the Simulink base rate is 1 MHz and your target hardware will run at 50 MHz, you

can assign a global oversampling factor of 50 in the HDL Code Generation > Global Settings pane in Configuration

Parameters.

1.4.2 Use master-clock division or a clock multiple for proper multi-rate model operation

For a multi-rate model, the fastest sample time maps to 1 clock cycle in HDL. Blocks operating at slower sample

times use the same clock in HDL, but are gated with clock enable signals that are active once every N clock cycles.

You can also specify HDL Coder to generate multiple synchronous clock signals. Each of the clock signals

corresponds to one rate in Simulink.

Note: Some optimization settings (e.g. sharing factor) and alternative block architecture (e.g. Newton-Raphson

square root) introduces additional sample rates not present in the original model. In those cases, the fastest

generated sample time is mapped to 1 HDL clock

In order to model multi-rate clocks in Simulink, use the following blocks:

 Simulink > Signal Attributes > Rate Transition

 DSP System Toolbox > Signal Operations > Upsample, Downsample, Repeat

 HDL Coder > HDL Operations > HDL FIFO

For a Rate Transition block, select the block parameters Ensure data integrity during data transfer and Ensure

deterministic data transfer (maximum delay). The output sample rate needs to be an integer multiple of the input –

for input sample time Ts1 = 4 and output sampling time Ts2 = 12 can be used, however Ts1 = 3 and Ts2 = 4 will

produce an error.

There are two ways to generate a clock signal for a DUT that has multiple sample rates:

Example: AD010_multiClock.slx

Single: use a single clock, and clock enables for lower rates. This preference is simpler because only a single clock

signal is needed for all registers, however this can result in more power dissipation since the fastest clock is

connected to every register in the design. To reduce power, map the clock enable to a gated clock in your HDL

design.

Multiple: generate clock ports for every sample rate in the DUT. This requires more work because you will need to

connect each of the clock, clock enable, and reset ports externally. But power can be reduced in registers connected

to the slower clock signals.

1.4.3 Use Dual Rate Dual Port RAM for non-integer multiple sample times in a multi-rate model

Using Rate Transition and Upsample/Downsample blocks to create multi-rate models requires that the clock rates be

integer multiples of the base rate. To create a multi-rate model with clocks that are non-integer multiples, a Dual Rate

http://www.mathworks.com/help/hdlcoder/ref/oversampling.html
http://www.mathworks.com/help/hdlcoder/ref/dualratedualportram.html

Dual Port RAM block can be used. Take care to manage address control as described in 2.3.2 Design considerations

for RAM block access.

Example: AD009_RTDRRAM.slx

1.4.4 Use global reset type best suited for your target hardware

While a synthesis tool can faithfully implement either synchronous or asynchronous reset logic, matching the reset

type to the underlying FPGA architecture will result in better resource utilization and performance.

 For Xilinx FPGA devices, use synchronous global reset.

 For Altera FPGA devices, use asynchronous global reset.

 The Reset type setting can be found in the Global Settings pane of the HDL Coder UI, or in HDL Workflow
Advisor 3.1.2 Set Advanced Options.

http://www.mathworks.com/help/hdlcoder/ref/dualratedualportram.html

2. Block Settings
2.1 Discontinuities

2.2 Discrete

2.2.1 Appropriate use of various types of delay blocks as registers

Example: BS005_delay.slx

1. The chart below shows the delay blocks that are usable for HDL code generation along with the parameters

that can be set

Block name
 Initial condition value

type
 ResetType

support
 Local reset port Local enable port

 Unit Delay Scalar only Supported Unsupported Unsupported

 Delay

Specify number

of samples to

delay

Possible to set each

value with a vector

value

 Supported Supported Supported

Unit Delay

Enabled
Scalar only Supported Unsupported Supported 2

Unit Delay

Resettable
Scalar only Unsupported Supported 1 2 Unsupported

Unit Delay

Enabled

Resettable

Scalar only Unsupported Supported 1 2 Supported 2

Tapped Delay

Possible to set each

value with vector

value. 3

 Supported Unsupported Supported

Footnotes:

1. Use the SoftReset block parameter to specify whether to generate hardware-friendly synchronous reset logic, or

local reset logic that matches the Simulink simulation behavior.

2. Input a Boolean signal into a Reset or an Enable port.

3. The number of elements in the Initial condition must match the Number of delays parameter, otherwise it will result

in an error during HDL code generation.

2. Setting parameters for the Delay and Unit Delay blocks:

 For Delay length, set Source to Dialog and enter a scalar integer greater than 0 in the Value field.

 For Initial Condition set Source to Dialog. When the delay length is greater than 1, you can use a vector

to set the initial value of each register.

 For External reset, set to Level to use a local reset port.

 Set Input processing to Elements as channels (sample based).

 Set Sample time to -1 (inherit). Changing sample time is not supported for code generation.

http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
http://www.mathworks.com/help/hdlcoder/ref/unitdelay.html
http://www.mathworks.com/help/hdlcoder/ref/delay.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabled.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabled.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayresettable.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayresettable.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabledresettable.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabledresettable.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabledresettable.html
http://www.mathworks.com/help/hdlcoder/ref/tappeddelay.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bue0s0d-1
http://www.mathworks.com/help/hdlcoder/ref/delay.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelay.html

3. Setting parameters for the Unit Delay Enabled block and Unit Delay Enabled Resettable block

 When the input to the Enable port is true (not 0), the output and state will be updated. When the input to the

R (Reset) port is true, the reset condition will be applied and the state initialized.

 When the input signal is a vector signal, the initial value to each channel can be set by setting vector value

for the Initial condition parameter.

 The E (Enable) port and the R (Reset) port require a Boolean signal as an input.

4. Setting parameters for the Tapped Delay block

 This block acts as a model that connects multiple delay blocks as a shift register. When Include current

input in output vector is un-checked and the Number of delays is set to 1, it will act as a Unit Delay

block. In that case, if the Initial condition is set to multiple elements (vector), HDL code generation is

unsupported.

5. Set up global default reset parameters

To set up global synchronous or asynchronous reset, go to the pulldown menu Code > HDL Code > Options…

and select Global Settings under HDL Code Generation. There you can set Reset type to Synchronous or

Asynchronous, and also specify Reset asserted level to Active-high or Active-low.

6. Generating registers with no reset

To specify register logic without reset, go into the block’s HDL Block Properties… and specify ResetType as

none. If there is no reset logic, mismatches between Simulink and the generated HDL can occur for a number of

samples at the beginning of simulation before the register is loaded.

7. Use the SoftReset block parameter to specify whether to generate hardware-friendly synchronous reset logic,

or local reset logic that matches the Simulink simulation behavior.

SoftReset setting Type of reset Matches Simulink simulation?

on Synchronous reset No

 off [default] Asynchronous reset Yes

http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabled.html
http://www.mathworks.com/help/hdlcoder/ref/unitdelayenabledresettable.html
http://www.mathworks.com/help/hdlcoder/ref/tappeddelay.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html?searchHighlight=hdl%20block%20property%20resettype#bsmj7ju-27
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html?#bue0s0d-1

This property is available for the Unit Delay Resettable block or Unit Delay Enabled Resettable block. It is

recommended practice to set this to off so that the generated HDL matches the Simulink simulation

behavior.

8. Using RAM-based mapping instead of a shift register (FPGA targets only)

To specify that a delay maps to RAM rather than a shift register, under the block’s HDL Block Properties…,

set UseRAM to on. For more information on when to use this setting, refer to 2.2.2 Map large delays to FPGA

block RAM instead of registers to reduce area.

Generated code examples:

 VHDL Verilog

Register with
no reset

-- <S1>/Delay_wtout_rst

Delay_wtout_rst_process : PROCESS (clk

BEGIN

 IF clk'EVENT AND clk = '1' THEN

 Delay_wtout_rst_out1 <= In1_signed;

 END IF;

END PROCESS Delay_wtout_rst_process;

// <S1>/Delay

always @(posedge clk)

 begin : Delay_process

 Delay_out1 <= In1;

 end

Register with
synchronous

reset

-- <S1>/Delay

Delay_process : PROCESS (clk)

BEGIN

 IF clk'EVENT AND clk = '1' THEN

 IF reset = '1' THEN

 Delay_out1 <= to_signed(16#0001#, 16);

 ELSE

 Delay_out1 <= In1_signed;

 END IF;

 END IF;

END PROCESS Delay_process;

// <S1>/Delay

always @(posedge clk)

 begin : Delay_process

 if (reset == 1'b1) begin

 Delay_out1 <= 16'sb0000000000000001;

 end

 else begin

 Delay_out1 <= In1;

 end

 end

Register with
asynchronous

reset

-- <S1>/Delay

Delay_process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 Delay_out1 <= to_signed(16#0001#, 16);

 ELSIF clk'EVENT AND clk = '1' THEN

 Delay_out1 <= In1_signed;

 END IF;

END PROCESS Delay_process;

// <S1>/Delay

always @(posedge clk or posedge reset)

 begin : Delay_process

 if (reset == 1'b1) begin

 Delay_out1 <= 16'sb0000000000000001;

 end

 else begin

 Delay_out1 <= In1;

 end

 end

2.2.2 Map large delays to FPGA block RAM instead of registers to reduce area

By default, Delay blocks map to registers. For large amounts of delay, this can be costly in terms of FPGA resources.

Often it is more efficient to map to the device’s block or distributed RAM instead. In order to specify that a Delay block

maps to RAM when it is larger than a specified threshold, under HDL Block Properties…, set UseRam to on. The

RAMMappingThreshold can be set under the pulldown menu Code > HDL Code > Options… as shown here:

http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bs04098

In this case, if the product DelayLength * WordLength * ComplexLength is greater than or equal to 256, it will be

mapped to RAM.

 DelayLength is the number of delays that the Delay block specifies.

 WordLength is the number of bits that represent the data type of the delay.

 ComplexLength is 2 for complex signals; 1 otherwise.

If the size of the RAM or ROM in your design is small, your synthesis tool may map the generated code to distributed

RAM resources in the FPGA fabric, instead of block RAMs for better hardware performance. The threshold is tool-

dependent, and can usually be configured within the synthesis tool.

Example: BS007_RAMFromDelay.slx

This example implements a 4096-sample delay in one Delay block with UseRam=off and one with UseRam=on. With

the input signal being 16 bits wide, it requires a RAM size of 65,536. The following table shows the difference in

resource usage when targeting an XC6vlx240t device:

2.3 HDL Operations

2.3.1 Use a Bit Concat block instead of a Mux block for bit concatenation in VHDL

A Mux block or a Bit Concat block can be used in Simulink to combine signals into a single vector. However when

combining scalar signals, a Mux block will create a VHDL declaration of std_logic_vector(0 to n). This will

result in violations or warnings from most HDL rule checkers since the typical bit order convention is (n downto 0).

Delay block
configuration

 Delay_RAM (UseRAM = on) Delay_FF (UseRAM = off)

 Slice FF Slice LUT RAMB36E1 Slice FF Slice LUT RAMB36E1

 16bit x 4096word 41 36 2 4127 3845 0

http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bs04098
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bs04098
http://www.mathworks.com/help/hdlcoder/ref/mux.html
http://www.mathworks.com/help/hdlcoder/ref/bitconcat.html

For this reason, it is recommended practice to use a Bit Concat block when creating a vector from Boolean or ufix1

signals.

The following figure shows the bit ordering for a Bit Concat block:

VHDL generated from the Bit Concat block (correct) VHDL generated from the Mux block (incorrect)

ENTITY DutBitconcat IS

 PORT(In1 : IN std_logic;

 In2 : IN std_logic;

 In3 : IN std_logic;

 In4 : IN std_logic;

 In5 : IN std_logic;

 Out1 : OUT std_logic_vector(4 DOWNTO 0)

);

 END DutBitconcat;

ARCHITECTURE rtl OF DutBitconcat IS

 -- Signals

 SIGNAL Bit_Concat_out1 : unsigned(4 DOWNTO 0); --

ufix5

 BEGIN

 -- <S2>/Bit Concat

 Bit_Concat_out1 <= unsigned'(In1 & In2 & In3 & In4 &

In5);

 Out1 <= std_logic_vector(Bit_Concat_out1);

 END rtl;

ENTITY DutMux IS

 PORT(In1 : IN std_logic;

 In2 : IN std_logic;

 In3 : IN std_logic;

 In4 : IN std_logic;

 In5 : IN std_logic;

 Out1 : OUT std_logic_vector(0 TO 4)

);

 END DutMux;

ARCHITECTURE rtl OF DutMux IS

 -- Signals

 SIGNAL Mux_out1 :

std_logic_vector(0 TO 4); -- boolean [5]

 BEGIN

 -- <S3>/Mux

 Mux_out1(0) <= In1;

 Mux_out1(1) <= In2;

 Mux_out1(2) <= In3;

 Mux_out1(3) <= In4;

 Mux_out1(4) <= In5;

 Out1 <= Mux_out1;

 END rtl;

2.3.2 Design considerations for RAM Block access

There are four different RAM blocks available for use:

Circuit

size

Smaller

Larger

Single-port RAM

Supports sequential read and write operations.

If you want to model RAM that supports

simultaneous read and write operations at different

addresses, use the Dual Port RAM or Simple Dual

Port RAM.

Simple Dual Port

RAM

Supports simultaneous read and write operations,

and has a single output port for read data. You can

use this block to generate HDL code that maps to

RAM in most FPGAs.

The Simple Dual Port RAM is similar to the Dual

Port RAM, but the Dual Port RAM has both a write

data output port and a read data output port.

Dual Port RAM

Supports simultaneous read and write operations,

and has both a read data output port and write data

output port. You can use this block to generate HDL

code that maps to RAM in most FPGAs.

If you do not need to use the write output data,

wr_dout, you can achieve better RAM inference with

synthesis tools by using the Simple Dual Port RAM

block.

Dual Rate Dual Port

RAM

Supports simultaneous read and write operations to

different addresses at two clock rates. Port A of the

RAM can run at one rate, and port B can run at a

different rate (set Clock Inputs to “Multiple”).

In high-performance hardware applications, you can

use this block to access the RAM twice per clock

cycle. If you generate HDL code, this block maps to

a dual-clock dual-port RAM in most FPGAs.

RAM design considerations:

 You can set global RAM configuration parameters as needed under HDL Code Generation > Global Settings

> Coding Style:

o Initialize all RAM blocks: when on (default), all RAM signal outputs will initialize to ‘0’ in

simulation, and HDL code generation will create the initialization logic to do the same in HDL

simulation. There are cases with FPGA synthesis tools where too large an initialization loop will

generate an error messages. In those cases, set this parameter to off or remove the loop

restriction in your FPGA synthesis tool.

o RAM Architecture: Select RAM with clock enable (default) to generate a RAM that is

connected to the global clock enable signal. Altera FPGA devices do not support RAM with clock

enable, so this setting can be turned off when targeting those.

 In a Dual Rate Dual Port RAM block, concurrent access to the same address is forbidden, so you must add

logic to prevent that from happening. See this implemented in Example BS048_DRDPRAM.slx. This

example design sets the address of port B to 255 when addresses coincide with each other, and disables

http://www.mathworks.com/help/simulink/slref/singleportram.html
http://www.mathworks.com/help/simulink/slref/simpledualportram.html
http://www.mathworks.com/help/simulink/slref/simpledualportram.html
http://www.mathworks.com/help/simulink/slref/dualportram.html
http://www.mathworks.com/help/simulink/slref/dualratedualportram.html
http://www.mathworks.com/help/simulink/slref/dualratedualportram.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-217
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-219

write enable signal of port B when both are in write mode, giving priority to port A. Also to change sample

rates in this example, adjust the parameters of the Repeat and Downsample blocks in the AddWeCheck

subsystem.

2.3.3 HDL FIFO block usage considerations

The HDL FIFO block stores a sequence of input samples in a first in, first out (FIFO) register.

 Inputs (In, Push) and outputs (Out, Pop) can run at different sample times. Enter the ratio of output sample

time to input sample time. Use a positive integer or 1/N, where N is a positive integer. The default is 1.

For example:

o If you enter 2, the output sample time is twice the input sample time, meaning the outputs run slower

o If you enter 1/2, the output sample time is half the input sample time, meaning the outputs run faster

The Full, Empty, and Num signals run at the faster rate.

In the following figure, when using the control output of FIFO in an input, perform a rate transition if needed.

The configuration of the rate transition in Example BS044_HDLFIFO.slx is shown in the following figure:

2.3.4 Parallel <--> Serial conversion

Starting with the 2014b release, the HDL Coder/HDL Operations library includes Serializer1D and Deserializer1D

blocks. These are the recommended method for performing parallel-to-serial and serial-to-parallel conversion.

Prior to R2014b, the following are manual methods for converting a signal between parallel and serial processing:

Example: BS027_serial2Parallel.slx

 Serial-to-parallel: Use a Rate Transition block followed by a Tapped Delay block as shown:

http://www.mathworks.com/help/simulink/slref/hdlfifo.html
http://www.mathworks.com/help/hdlcoder/ref/serializer1d.html
http://www.mathworks.com/help/hdlcoder/ref/deserializer1d.html
http://www.mathworks.com/help/hdlcoder/ref/ratetransition.html
http://www.mathworks.com/help/hdlcoder/ref/tappeddelay.html

Set the Tapped Delay block parameters as follows:

o Number of delays: set to be equal to the amount of parallel outputs

o Order output vector starting with: Oldest

o Include current input in output vector: not selected

Set the Rate Transition block parameters as follows:

o Output port sample time options: Multiple of input port sample time

o Sample time multiple(>0): set to be equal to the amount of parallel outputs

 Parallel-to-serial : Use a Repeat block followed by an Index Vector block as shown :

Set the Repeat block parameters as follows:

o Repetition count: set to be equal to the amount of parallel inputs

For more on trading off speed vs area when using a Repeat block, see 2.8.1 Rate conversion blocks

and usage

Set the Index Vector block parameters as follows:

o Data port order: Zero-based contiguous

2.4 Logic and bit operations

2.4.1 Logical vs. arithmetic bit shift operations

The shift operation provided in multiple Simulink blocks and MATLAB functions, the left logical shift is the same as left

arithmetic shift, however the right logical shift is different from the right arithmetic shift. The following table

summarizes the differences:

Block/function name Parameter/operation Verilog VHDL Explanation

HDL Operations/
 Bit Shift 1

Shift Left Logical/
logical left shift

 <<< 2

 sll

In the case of signed data and a
positive value, the input signal does

http://www.mathworks.com/help/hdlcoder/ref/repeat.html
http://www.mathworks.com/help/hdlcoder/ref/indexvector.html

not maintain a sign bit. 0 goes into
the empty bit on LSB side.

Shift Right Logical/
logical right shift

 >> srl

Don't maintain a sign bit. 0 goes into
the empty bit on MSB side. Because
the sign bit shifts to right-hand side,
a negative value turns into a positive
value.

Shift Right Arithmetic/
Arithmetic right shift

 >>> SHIFT_RIGHT

When an input is a signed data type,
a sign bit is maintained and other
bits shift to the right.

 Shift Arithmetic
 bitshift function

Positive value (shift
right) /
Arithmetic right shift

 >>> SHIFT_RIGHT

When an input is a signed data type,
a sign bit is maintained and other
bits shift to the right.

Negative value (shift
left) /
Arithmetic left shift

 <<< sll 3

0 goes into the empty bit on LSB
side. In the case of a positive value,
an input signal does not maintain a
sign bit for signed data. Don't check
overflow and underflow.

 bitsll function

 None/logical left shift
 <<< 2

 sll

In the case of a positive value, an
input signal does not maintain a sign
bit for signed data. Don't check
overflow and underflow.

 bitsrl function

None/logical right
shift

 >> srl Don't maintain a sign bit.

 bitsra function

None/arithmetic right
shift

 >>> SHIFT_RIGHT
Maintain a sign bit, when an input
signal is a signed data type.

Footnotes:

1. Because the Bit Shift block uses the bitsll, bitsrl, and bitsra functions inside, the code generated

from these functions is the same.

2. In MATLAB and Verilog, because the operation of an arithmetic left shift and a logical left shift is the

same, it is not an issue that a logical left shift model generates code that uses an arithmetic left shift.

3. In VHDL, an arithmetic left shift (SHIFT_LEFT) and logical shift (sll) are the same.

The difference between a logical right shift and an arithmetic right shift is whether it holds the sign bit or not. For

signed data types, this is the MSB. Although in a logical right shift, the sign bit is shifted to the right and a 0 goes into

the MSB, in an arithmetic right shift the MSB is maintained and also shifted to the right.

Example:

 >> A = fi([], 1, 4, 0, 'bin','1011');

 >> B = bitsrl(A, 2) % logic right shift

 B =

 2

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 4

 FractionLength: 0

 >> B.bin

 ans =

 0010

 >> C=bitsra(A, 2) % arithmetic right shift

 C =

 -2

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 4

 FractionLength: 0

 >> C.bin

 ans =

 1110

2.4.2 Logical Operator, Bitwise Operator, and Bit Reduce for logic operations

Example: BS017_logical.slx

 Single-bit logic operations

For single-bit logic operations using Boolean or ufix1 data types, use a Logical Operator block. Set the Icon

shape to distinctive to view it as a logical circuit symbol. Note that this block also supports vectors of

Boolean or ufix1.

 Bitwise operations on two or more bits

For bitwise operations using integer or ufix1 data types, use the Bitwise Operator block.

 Reduction operation

To perform a bit-by-bit reduction operation on a vector of Boolean or ufix1 that returns a 1-bit value, use

the Bit Reduce block. In the following example, the MATLAB function block uses a bitslice functions to

convert the 8-bit input to a vector of 8 1-bit ufix1 elements:

MATLAB Function block:

function vecData = fcn(binData)
%#codegen

nt = numerictype(binData);
vecData = fi(zeros([1 8]), 0,1,0);

% for n = 1:8 % Can't use for loop
% vecData(n) = bitsliceget(binData, n,n);
% end
vecData(1) = bitsliceget(binData, 1,1);
vecData(2) = bitsliceget(binData, 2,2);
vecData(3) = bitsliceget(binData, 3,3);
vecData(4) = bitsliceget(binData, 4,4);
vecData(5) = bitsliceget(binData, 5,5);
vecData(6) = bitsliceget(binData, 6,6);
vecData(7) = bitsliceget(binData, 7,7);
vecData(8) = bitsliceget(binData, 8,8);

2.4.3 Use Boolean data type for the output of the Compare to Constant/Zero and the Relational Operator blocks

The output of the Compare to Constant, Compare to Zero, and Relational Operator blocks can be set to either

boolean or uint8. Since the result of these operations will be 0 or 1, it is more efficient to output a boolean type

since only the LSB will be connected in the generated HDL.

For a Relational Operator block, it is good practice to make sure that both inputs are of the same data type to avoid

unintended truncation of bits (for instance a sign bit) that could cause simulation mismatches in the HDL:

2.5 Lookup tables

2.5.1 Set the number of Lookup Table data entries to a power of 2 to avoid generation of a division operator (/)

For the blocks in the Simulink HDL Coder library that use lookup tables:

 Set the number of data points (the Breakpoints parameter) in a Lookup Table block to be a power of 2. This

will prevent generation of a divide operator “/” in the HDL, which would require extra logic.

 Use a Data Type Conversion block with the Input and output to have equal parameter set to Stored

Integer to convert input data into an integer data type (e.g. fixdt(0, 10, 0)) and integer data (e.g. [0 : 1

: (2^10-1)]) for the Breakpoints parameter to avoid generating a divide operator.

Example: BS020_LUT.slx

2.5.2 Generating FPGA block RAM from a Lookup Table block

In order to target a Lookup Table block to the Block RAM of an FPGA, put in a Delay (Unit) block after the Lookup

Table, and set ResetType as none.

Example: BS021_LUTBRAM.slx

The following table illustrates the difference in resource utilization between mapping to Block RAM and not, using an

Altera Cyclone IV E, EP4CE115F23C7 device:

Lookup Table mapped to

Block RAM
Lookup Table mapped to

logic

Model input/output
data type

10-bit input
16-bit output

10-bit input
16-bit output

Circuit resources
 Logic elements : 19
 Memory bits : 12,288

 Logic elements : 589
 Total registers : 26
 Memory bits : 0

Fmax(1200mV 85C) 389.71 MHz 181.72 MHz

2.6 Math operations

2.6.1 Input vector with Mux block to multi-input adder, multi-input product, and multi-input Min/Max

When using a multi-input adder, multi-input product, or multi-input min/max with 3 or more inputs, use a mux block to

create a vector for the input to the operation.

Example: AD011_multinAddProd.slx

Correct: Adding a vector signal input Incorrect: -- Adding scalar signal inputs

You can still change the Architecture in HDL Block Properties… as shown:

 Linear Tree Cascade

 Features
 Large circuit

 Requires one operator per
input

 Smaller circuit than Linear

 Pipeline insertion is possible
between adders (see 4.2.3)

 Requires one operator per
input

 Resources can be shared to
reduce area

 Requires faster clock speed
(see table below)

Example
generated
circuit

7 paths with 8-input adders

3 paths with 8-input adders

Number of resources and over-clocking required for Linear/Tree/Cascade adder / product:

 Number of
inputs

 Number of
operators in
Linear/Tree

 Cascade

 Over-
clock

 Number of operators
 (Multiplication or

addition)

 For control
 Number of

adders

 3 2 3 1 1

 4 3 3 2 1

 5 4 4 2 1

 6 5 4 2 2

 7 6 4 3 2

 8 7 5 3 2

 9 8 5 3 2

 10 9 5 3 3

 11 10 5 4 3

 12 11 6 4 3

 13 12 6 4 3

 14 13 6 4 3

 15 14 6 4 4

 16 15 6 5 4

 17 16 7 5 4

 18 17 7 5 4

 19 18 7 5 4

 20 19 7 5 4

Because one sample of latency will be added, it is good practice to add a Delay (Unit) to the output of the original

model as described in 2.6.9 Model the delay of blocks that will be auto-pipelined (Divide, Sqrt, Trigonometric

Function, Cascade Add/Product, Viterbi Decoder).

2.6.2 Set ConstMultiplierOptimization to 'auto' for a Gain block

For most optimal resource usage when using a Gain block, in the blocks HDL Block Properties…, set

ConstMultiplierOptimization to ‘auto’. This will allow HDL Coder to choose between the best optimization

techniques for the number of adders required by the multiplication operation. This setting tries to avoid using

multipliers since they tend to be resource-intensive on the device. The following example highlights the differences:

Example: BS004_gainProperty.slx

HDL block
property

 Implementation method Generated code example

 csd

Resize the input data in parallel, then

subtract and add the result.

-- <S1>/Gain

-- CSD Encoding(231): 1001'01001'; Cost (Adders) = 3

 Gain_mul_temp <= ((resize(Delay_out1 & '0' & '0' &

'0' & '0' & '0' & '0' & '0' & '0', 21) -

resize(Delay_out1 & '0' & '0' & '0' & '0' & '0',

21)) + resize(Delay_out1 & '0' & '0' & '0', 21)) -

resize(Delay_out1, 21);

 Gain_out1 <= Gain_mul_temp(19 DOWNTO 0);

// CSD Encoding (231):1001'01001'; Cost (Adders) = 3

assign Gain_mul_temp = (($signed({Delay_out1,

8'b00000000}) - $signed({Delay_out1, 5'b00000})) +

$signed({Delay_out1, 3'b000})) - Delay_out1;

 assign Gain_out1 = Gain_mul_temp[19:0];

 fcsd

Multiple cascaded additions of the input

data together with its resized data.

 -- <S1>/Gain1

 -- FCSD for 231 = 33 X 7; Total Cost = 2

 -- CSD Encoding (33) : 0100001; Cost (Adders) = 1

 Gain1_factor <= resize(Delay_out1 & '0' & '0' & '0'

& '0' & '0', 21) + resize(Delay_out1, 21);

 -- CSD Encoding (7) : 1001'; Cost (Adders) = 1

 Gain1_mul_temp <= resize(Gain1_factor & '0' & '0' &

'0', 21) - Gain1_factor;

 Gain1_out1 <= Gain1_mul_temp(19 DOWNTO 0);

 // FCSD for 231 = 33 X 7; Total Cost = 2

 // CSD Encoding (33) : 0100001; Cost (Adders) = 1

 assign Gain1_factor = $signed({Delay_out1,

5'b00000}) + Delay_out1;

 // CSD Encoding (7) : 1001'; Cost (Adders) = 1

 assign Gain1_mul_temp = $signed({Gain1_factor,

3'b000}) - Gain1_factor;

 assign Gain1_out1 = Gain1_mul_temp[19:0];

 auto

Auto-select csd or fcsd, depending on

which uses the fewest adders.
 Same as csd or fcsd

 none
Operator (*)

 -- <S1>/Gain3

 Gain3_mul_temp <= to_signed(2#011100111#, 9) *

Delay_out1;

 Gain3_out1 <= Gain3_mul_temp(19 DOWNTO 0);

 assign Gain3_mul_temp = 231 * Delay_out1;

 assign Gain3_out1 = Gain3_mul_temp[19:0];

2.6.3 Use the Bit Shift block or the bitshift function for computations of the power of 2 (ASIC)

When performing a constant multiplication of the power of 2, it is more efficient in ASIC hardware to use a bit shift

operation instead of performing a multiplication (there is little difference in FPGA hardware). Therefore in Simulink, it

is best to utilize the Bit Shift block rather than a Gain or Product block. In MATLAB you can use the bitshift

function.

Take care to pay attention to right-shift functionality when dividing by a power of 2, as described in section 2.4.1.

http://www.mathworks.com/help/hdlcoder/ref/gain.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3
http://www.mathworks.com/help/hdlcoder/ref/bitshift.html

Examples: BS010_MLFGain.slx, BS053_gainShift.slx

Gain block Bit Shift block

 VHDL generated from a Gain block VHDL generated from a Bit Shift block
 SIGNAL in1 : signed(7 DOWNTO 0); -- int8

 SIGNAL gcast : signed(15 DOWNTO 0); -- sfix16_En4

 SIGNAL out1 : signed(7 DOWNTO 0); -- int8

 gcast <= resize(in1 & '0' & '0' & '0' & '0' & '0' & '0',

16);

 out1 <= gcast(11 DOWNTO 4);

 SIGNAL in1 : signed(7 DOWNTO 0); -- int8

 SIGNAL out1 : signed(7 DOWNTO 0); -- int8

 out1 <= in1 sll 2;

 Verilog generated from a Gain block Verilog generated from a Bit Shift block
 wire signed [7:0] in; // int8

 wire signed [15:0] gcast; // sfix16_En4

 wire signed [7:0] out1; // int8

 assign gcast = {{2{in1[7]}}, {in1, 6'b000000}};

 assign out1 = gcast[11:4];

 wire signed [7:0] in; // int8

 wire signed [7:0] out1; // int8

 assign out1 = in1 <<< 2;

2.6.4 Use Gain block for computations of the power of 2 (FPGA)

When performing a constant multiplication of the power of 2 on an FPGA, since the hardware utilizations are similar,

it is safer to use a Gain block in Simulink or the * operator in MATLAB due to the bit shift differences described in

section 2.4.1.

For best results, set Output data type to Inherit to avoid bit truncation and set the Parameter data type to be the

minimum bit width required for a gain operation. For example if the Gain parameter is 2, set the Parameter data type

to fixdt(0,1,-1).

Examples: BS010_MLFGain.slx, BS053_gainShift.slx

 Gain block Bit Shift block

 VHDL generated from a Gain block VHDL generated from a Bit Shift block

 SIGNAL in1 : signed(7 DOWNTO 0); -- int8

 SIGNAL gcast : signed(15 DOWNTO 0); -- sfix16_En4

 SIGNAL out1 : signed(7 DOWNTO 0); -- int8

 gcast <= resize(in1 & '0' & '0' & '0' & '0' & '0' & '0',

16);

 out1 <= gcast(11 DOWNTO 4);

 SIGNAL in1 : signed(7 DOWNTO 0); -- int8

 SIGNAL out1 : signed(7 DOWNTO 0); -- int8

 out1 <= in1 sll 2;

 Verilog generated from a Gain block Verilog generated from a Bit Shift block
 wire signed [7:0] in; // int8

 wire signed [15:0] gcast; // sfix16_En4

 wire signed [7:0] out1; // int8

 assign gcast = {{2{in1[7]}}, {in1, 6'b000000}};

 assign out1 = gcast[11:4];

 wire signed [7:0] in; // int8

 wire signed [7:0] out1; // int8

 assign out1 = in1 <<< 2;

2.6.5 Use a Gain block for constant multiplication and constant division

When a one of the factors in a multiplication operation is a constant, it is more efficient in hardware to use a Gain

block instead of a Product block.

http://www.mathworks.com/help/hdlcoder/ref/gain.html
http://www.mathworks.com/help/hdlcoder/ref/gain.html

Similarly when the divisor is a constant in a division operation, it is more efficient in hardware to use a Gain block with

the Gain parameter being the reciprocal of the divisor.

Example: BS025_prodConst.slx

And for optimal hardware resource usage with a Gain block, refer to the settings described in section 2.6.2.

When using the Gain block for division, because the Gain parameter is an inverse ratio of the original divisor, be sure

to properly set the fixed-point setting in Parameter data type. If the following MATLAB commands are executed,

optimization of fixed-point scaling is performed automatically and accuracy can be checked:

 >> format long
 >> A=1/3;
 >> B=fi(A, 0, 10)
 B =
 0.333496093750000

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned
 WordLength: 10
 FractionLength: 11
 >> err = (A-double(B))/A
 err =
 -4.882812500000555e-04

2.6.6 Efficient multiplier design for targeting Altera DSP block

Altera’s Cyclone IV series offers an Embedded Multiplier, which is a configuration of Register->Product->Register.

This can be used as an 18-bit output for the product of two 9-bit inputs, or a 36-bit output for the product of two 18-bit

inputs. Consult Altera’s web site for more information on the Embedded Multipliers in Cyclone IV Devices.

The DSP block on the Stratix series (- IV) and Arria series (- II) devices is composed of two Half DSP blocks. Each of

these Half DSP blocks contain a register bank before and after four 18x18-bit products, three adder stages, and a

compute element. Consult Altera’s web site for more information on the Arria II DSP architecture and the Stratix IV

DSP architecture.

The internal resources of this Half DSP block can be used in various modes. The number of multipliers which can be

used per compute mode is shown in the following table.

 Arithmetic
contents

Bit width of product inputs
/ output

 Arithmetic
operations per

block

 1st
addition/subtraction

step

 2nd
addition/subtraction

step

 A*B

 9x9 / 18
 12x12 / 24
 18x18 / 36
 36x36 / 72
 54x54 floating point / 108

 8
 6
 4
 2
 2

 -
 -
 -
 -
 -

 -
 -
 -
 -
 -

 A*B+C*D 18x18 / 36 4 Addition/subtraction -

 (A*C-B*D)
+(A*D-B*C)j

 18x18 / 36 2 Addition/subtraction

 (A*B+C*D)
 +(E*F+G*H)

 18x18 / 36 2 Addition/subtraction Addition

 A*B+C*D 18x36 / 55 2 - Addition

The DSP block configuration changed in the Stratix V, Arria V, and Cyclone V series devices.

2.6.7 Efficient multiplier design for targeting Xilinx DSP48 slices

 Circuit architecture and input/output data type of a DSP slice

The Xilinx DSP48 and DSP48E slices are composed of a register bankproductregister bankadder. The

DSP48A and DSP48E1 have a pre-adder and are composed of register bankadderregister

bankproductregister bankadderregister bank. So for designs that require a register before and after a

multiplier and subsequent adder, only one DSP slice is required. The configurations with the pre-adder are useful

for algorithms such as a symmetrical FIR filter.

Implementation with minimal resources and maximum accuracy can be attained by ensuring that the input/output

bit width matches a DSP slice configuration. For example inputs that are 9x9 or 18x18 can map to one DSP

slice, whereas larger bit width inputs would require two or more slices, depending on the device and synthesis

options.

The following table summarizes the features of the various 7 Series DSP48 slices with links to their user guides:

DSP Slice
name

Typical
Device

 Input bit
width

 Multiplication
output

Pre-adder (bit width)

 DSP48 Virtex-4 18x18 48 None

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_51004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51004.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51004.pdf
https://www.altera.com/products/fpga/features/dsp/stratix-v-dsp-block.html
https://www.altera.com/products/fpga/features/dsp/arria-v-cyclone-v-dsp-block.html
https://www.altera.com/products/fpga/features/dsp/arria-v-cyclone-v-dsp-block.html
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf

 DSP48A Spartan6 18x18 48 Yes (18x18)

 DSP48E Virtex-5 25x18 48 None

 DSP48E1

Virtex-6

Virtex-7

 25x18 48 Yes (25x25)

For more information on the DSP48 architecture, see the Xilinx XtremeDSP 48 Slice data sheet.

Additionally, because saturate and round are arithmetic operations, performing those outside of the multiplier will

help ensure mapping to a DSP48 slice.

 Reset type preferences

In order to map the registers before and after a multiplier to the registers in a DSP48 slice, set HDL Code

Generation>Global Settings>Reset type to Synchronous. If asynchronous reset it used, it will not be able

to utilize the registers inside the DSP slices, resulting in inefficient hardware as shown in the following

comparison:

Reset type Synchronous Asynchronous

 Synthesized result

Efficient and high-speed, because

registers inside the DSP slice are used

Because registers inside the DSP slice

are not used, it is slow and inefficient

 Post-mapping
number of resources

Registers = 0

 DSP48 = 1

 Registers = 72 (18+18+36)

 DSP48 = 1

 Results in the Xilinx
ISE Technology

Map Viewer

 Example BS057_multAdd2DSP48E1.slx demonstrates how to configure the inputs and outputs of a pre-

addproductadd with Delay blocks so that it will map to one DSP48E1 slice.

2.6.8 Consider speed/area priority and DSP mapping when modeling complex multiplication

A complex multiply is a series of multiply and multiply-add operations:

(A + Bj)*(C+Dj) = (A*C - B*D) + (A*D + B*C)j

Instead of using the Simulink product block, consider elaborating the real and imaginary components in order to

accommodate the bit growth from the adder, and to pipeline the multiply-add operations, as shown in the figure

http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/technology/dsp/xtremedsp.htm

below.

 Pipelining guidelines:

o Xilinx ISE and Vivado can map up to 2 input registers, 1 multiplier output register and 1 adder
output register into the DSP48 block. You may get better speed performance by using 2 multiplier
output registers, and let the synthesis tool re-time the extra level as appropriate.

o Altera Quartus II can map 1-2 input register and 1 adder output register into the DSP block,
depending on the device family. Most families do not have pipeline register between the multiplier
and the adder; if you use one in your design, Quartus II may re-time it to the adder output in order
to map the adder inside the DSP block.

The following table compares the approach of manual register distribution versus using input/output pipelining or

Delay blocks and using automated distributed pipelining. For details, refer to section 4.2.1.

Optimization
priority

 Configure registers manually Use distributed pipelining with inserted
Delay block or input/output pipelining

Number of
multiplications

HDL_complex_Multiplier_01 block
(three multiplications)

 None

Speed HDL_complex_Multiplier_02 block
(four multiplications)

HDL_Complex_Multiplier_03 block
(one Product block, four multiplications)

Example: BS056_complexMultiplier.slx

The following table compares synthesis results for 18-bit inputs:

Target device Block configuration Synthesis result

 Xilinx Virtex-6
 XC6VLX240T-1FFG1156

 HDL_complex_Multiplier_01
 (Three multiplications)

 Slice Registers: 331
 Slice LUTs: 202
 DSP48E1: 3
 Fmax: 163MHz

 HDL_complex_Multiplier_02
 HDL_complex_Multiplier_03
 (Four multiplications)

 DSP48E1: 4
 Fmax: 263 MHz

 Altera Stratix IV
 EP4SGX230KF40C2

 HDL_complex_Multiplier_01
 (Three multiplications)

 Registers: 365
 Combinational ALUTs: 260
 DSP block 18bit: 8
 Fmax: 254 MHz

 HDL_complex_Multiplier_02
 HDL_complex_Multiplier_03
 (Four multiplications)

 Registers: 290
 Combinational ALUTs: 75
 DSP block 18bit: 8
 Fmax: 329 MHz

2.6.9 Model the delay of blocks that will be auto-pipelined (Divide, Sqrt, Trigonometric Function, Cascade

Add/Product, Viterbi Decoder)

Delay differences have a large effect on system operation, especially for algorithms that iterate through feedback

loops. For the Divide, Sqrt, and Trigonometric Function blocks, the correct amount of registers will be automatically

inserted during code generation. Thus it is best practice to estimate these delays when creating the model in Simulink

so that the model has the proper output latency when used in the system.

When using these blocks, insert the delay immediately after the block so that HDL Coder will incorporate it into the

generated module for that block. Refer to the product documentation for predicting the amount of delay to insert:

 Divide (when HDL Block Properties > Architecture is RecipNewton or RecipNewtonSingleRate)

 Sqrt (when HDL Block Properties > Architecture is RecipNewton or RecipNewtonSingleRate)

 Trigonometric Function (when Block Parameters (Trigonometry) > Approximation method is
CORDIC)

Example: BS0014_Latency.slx

Simulink model which uses a Divide block The generated verification model

The pre-inserted delay of 20 is incorporated inside
the generated divider.

Inserted delay amounts based on each block’s setting are shown in the following table.

 Block name HDL block property/Architecture Number of additional latency

 Divide

RecipNewtonSingleRate
 4*Iteration+8 (an input is a signed)
 4*Iteration+6 (an input is a unsigned)

RecipNewton
 Iteration+5 (an input is a signed)
 Iteration+3 (an input is a unsigned)

 Sqrt
SqrtNewtonSingleRate Iteration+3

SqrtNewton 4*Iteration+6

 ReciprocalSqrt
RecipSqrtNewtonSingleRate 17

RecipSqrtNewton 5

 Trigonometric Function SinCosCordic, Trigonometric Number of occurrence+1

 Add, Product Cascade 1

 Communications
System toolbox / Error
Detection and
Correction / Convolution
/ Viterbi Decoder

In the case of Register-based
Traceback
TracebackStagesPerPipeline

Tracebackdepth/TracebackStagesPerPipeli
ne+12 (when Register-based Traceback is
chosen)
 Tracebackdepth*3+14 (when RAM-based
Traceback is chosen)

2.6.10 Use Divide blocks in reciprocal mode with a RecipNewton or RecipNewtonSingleRate architecture for more

optimal HDL

When generating HDL from the Divide block, it is best to use it in reciprocal mode with a Product block, and to specify

the architecture for more accurate system simulation

http://www.mathworks.com/help/hdlcoder/ref/divide.html
http://www.mathworks.com/help/hdlcoder/ref/sqrt.html
http://www.mathworks.com/help/hdlcoder/ref/trigonometricfunction.html

For best results out of your synthesis tool, use the Divide block in reciprocal mode and connect it to a Product block.

The divide operator in HDL (/) will require manual intervention downstream in synthesis in order to specify an

implementation architecture and pipelining parameters. It is best to specify this during algorithm design so that the

number of iterations and latency is modeled during system simulation.

Set the following parameters on the Divide block:

Parameter Setting

Block Parameters > Main > Number of inputs /
Block Parameters > Signal attributes > Integer
rounding mode

Zero

Block Parameters > Signal attributes >
Saturate on integer overflow

<Selected>

HDL Block Properties > Architecture

ReciprocalRsqrtBasedNewton for smaller area

ReciprocalRsqrtBasedNewtonSingleRate for

higher frequency

For RecipNewton and RecipNewtonSingleRate architectures, the amount of delay (number of registers) that will be

added automatically according to the following rules (where “n” is the number of iterations):

ReciprocalRsqrtBasedNewtonSingleRate Signed input: Latency = 4*n + 8

Un-signed input: Latency = 4*n + 6

ReciprocalRsqrtBasedNewton Signed input: Latency = n + 5

Un-signed input: Latency = n + 3

Example: BS0003_Divide.slx

Modeling a signed RecipNewtonSingleRate reciprocal function with 3 iterations, which results in a latency of 20:

Original model

The delay of 20 is inserted explicitly into the model so that its output latency is correctly modeled for system

simulation.

Generated model

The 20 pipeline stages are included inside in the HDL code for the Divide block so they are not visible at this level.

During downstream synthesis the registers will be distributed throughout the Divide block.

2.6.11 Consider the additional latency impact of different implementation architectures for the Sqrt and

ReciprocalSqrt blocks

Example: BS039_sqrt.slx

Note that the inputs to the Sqrt and ReciprocalSqrt blocks need to be unsigned fixed point integer data types. You

can choose different implementation architectures under HDL Block Properties…>Architecture. The following table

compares the additional latency inserted for the architecture choices:

Block Architecture Other settings Implementation
Additional latency

(number of samples)

 Sqrt

SqrtFunction None

 Multiply/Add 3

 0

SqrtBitset
UseMultiplier

= on/off 1
 0

SqrtNewton
Iterations = 2
2

 Newton method 4 Iterations+3 = 5

SqrtNewton
SingleRate

Iterations = 2
2

 Newton method 5 4*Iterations+6 = 14

Reciprocal
Sqrt

RecipSqrtNewton None Newton method 4 5

RecipSqrtNewton
SingleRate

 None Newton method 5 17

Footnotes:

1. The UseMultiplier setting does not affect the implementation.

2. Setting Iterations to more than 2 does not improve accuracy, so set to 2.

3. For UseMultiplier=on, it uses a multiply/add for both SqrtFunction and SqrtBitset.

UseMultiplier=off requires extra processing for SqrtBitset.

4. When SqrtNewton is chosen, it uses the Newton approximate calculation method, which uses 3x over-

clocking

5. When SqrtNewtonSingleRate is chosen, it uses the Newton approximate calculation method in a

single clock cycle

2.6.12 Tradeoffs for Sin/Cos calculation using Trigonometric Function, Lookup Table, Sine/Cosine, and NCO HDL

Optimized block

There are four methods of performing Sin/Cos calculation. The logic area and pipeline depth will differ depending on

the frequency.

Trigonometric
Function block

Lookup Table block
Sine / Cosine block

(Lookup Tables
library)

DSP System
Toolbox>Signal

Operations>NCO HDL
Optimized

Feature
Uses CORDIC
approximation. A

The memory for one
period is consumed.

The memory for 1/4
period is consumed.

Although it is a block
for generating a signal,

pipeline delay is
added. This is
recommended if delay
is permitted.

No additional delay is
generated.

No additional delay is
generated.

it can also be used for
Sin/Cos calculation.

Calculation
technique

sin, cos, cos+jsin,
sincos

Dependent on formula
entered in Table data

field
sin, cos, exp(j), sincos sin, cos, exp(j), sincos

Limitations

Approximation

method set to CORDIC
1. Delay of the number

of occurrences+1 is
added.

Same as general HDL
restrictions for a
Lookup Table block.

Either Speed or

Precision are valid
settings for Internal
rule priority for
lookup table

Delay of six samples is
added.
Set Phase increment

to 0 and Phase offset

source to Input
port.

Latency
(delay)

Number-of-
occurrences +1
sample

0 0 Six samples

Post-
synthesis
Frequency
(Cyclone
IV target)

About 200 MHz for 12
bit outputs

At least 250 MHz for
12 bit outputs

About 60 MHz for 12
bit outputs.

About 260 MHz for 12
bit outputs

Post-
synthesis
Area

For large bit widths, it
is relatively small
compared to other
techniques

Inefficient because all
table data must be
defined for one period

Efficient because table
data for 1/4 period is
defined and chosen
with a switch.

Efficient because table
data for 1/4 period is
used. 2

Footnotes:

1. CORDIC is an algorithm of an approximate calculation, and because it calculates by repetitive

operations referencing small Lookup Table, adding/subtracting, and shifting, operation is possible at few

circuit resources.

2. By selecting the block parameter Enable look up table compression method, the Lookup Table data

for 1/4 cycle is further compressible. Refer to the documentation for this block for details.

Example: BS0035_SinCos.slx

2.6.13 Use only conj, hermitian, or transpose in a Math Function block

Only the following Function parameters are supported for HDL code generation from a Math Function block:

 conj : calculate a complex conjugate

 hermitian : because two-dimensional vectors are not supported by HDL code generation, use this function

for row vector <=> column vector conversion

 transpose : calculate a complex conjugate transpose

Note: reciprocal also supports HDL code generation, however it is best practice to use the Divide block for a

reciprocal function since it is easier to set up code generation parameters.

Example: BS050_mathFunc.slx

2.6.14 HDL code generation compatible Math Operations for complex number computation

The following table summarizes both simulation as well as HDL code generation support for blocks in the Math

Operations library

Block name
 Simulation with a complex

input
 HDL code generation with a

complex input

Abs Unsupported Unsupported

Add

Assignment Unsupported

Bias Unsupported

http://www.mathworks.com/help/dsp/ref/ncohdloptimized.html

Complex to Real-Image

Decrement Real World

Decrement Stored Integer

Divide Unsupported Unsupported

Dot Product

Gain
 (real number coefficient
and complex modulus)

Increment Real World

Increment Stored Integer

Magnitude-Angle to Complex Only Real for input Only Real for input

Math Function - conj 1

Math Function - transpose 1

Math Function - hermitian 1

Matrix Concatenate Vector only

MinMax Unsupported Unsupported

Product

Product of Elements Only 2 inputs supported Only 2 inputs supported

Real-Imag to Complex Only Real for input Only Real for input

Reciprocal Unsupported Unsupported

Reciprocal Sqrt Unsupported Unsupported

Reshape Scalar and vector only

Sign Unsupported Unsupported

Sqrt Unsupported Unsupported

Subtract

Sum

Sum of Elements

Trigonometric Function Unsupported Unsupported

Unary Minus Signed data only

Vector Concatenate Supported

Footnotes:

1. In HDL Block Properties… use the default value Math for Architecture.

2.7 Ports and subsystems

2.7.1 Block settings for Triggered Subsystems/Enabled Subsystems

A triggered subsystem is a subsystem that receives a control signal via a Trigger block. The triggered subsystem

executes for one cycle each time a trigger event occur. In order to generate HDL code from a triggered subsystem,

the block must be set with the preferences as detailed in Restrictions for HDL code generation from a triggered

subsystem.

An enabled subsystem is a subsystem that receives a control signal via an Enable block. The enabled subsystem

executes at each simulation step where the control signal has a positive value. In order to generate HDL code from

an enabled subsystem, the block must be set with the preferences as detailed in Restrictions for HDL code

generation from an enabled subsystem.

Example: BS028_triggeredEnabled.slx

2.7.2 Proper usage of a Unit Delay Enabled block versus an enabled subsystem with a Delay block

In the Simulink/Discrete library there is a Unit Delay Enabled block, which has the same behavior as a Unit Delay

block, with the addition of an enable input. When the enable input is active (high), the signal input will be propagated

to the output after a 1 sample delay.

Similar behavior can be modeled by using a Unit Delay block inside an enabled subsystem. This could be useful in

modeling multi-sample delays. However the behavior between these two modeling methods differs slightly. In the

following example, both are modeled with the same input signal and enable:

http://www.mathworks.com/help/hdlcoder/ref/triggeredsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/triggeredsubsystem.html#zmw57dd0e37130
http://www.mathworks.com/help/hdlcoder/ref/triggeredsubsystem.html#zmw57dd0e37130
http://www.mathworks.com/help/hdlcoder/ref/enabledsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/enabledsubsystem.html#zmw57dd0e20597
http://www.mathworks.com/help/hdlcoder/ref/enabledsubsystem.html#zmw57dd0e20597
http://www.mathworks.com/help/simulink/slref/unitdelayenabled.html

Example: BS049_diffEnable.slx

The resulting waveforms illustrate the difference in behavior with both modeling a 1 sample delay. “En Sub” is the

output from the enabled subsystem and “Delay En” is the output from the Unit Delay Enabled block:

Whereas the enabled subsystem shuts down when enable becomes inactive (low), the Unit Delay Enabled block

stops sampling the input when enable becomes inactive, but it still outputs the delayed input that was in its queue.

Therefore take care to use the modeling semantic that is best suited for your application.

2.8 Signal attributes

2.8.1 Rate conversion blocks and usage

There are multiple methods for modeling rate transitions, which can impact your design’s final timing and resource

requirements in hardware. It is important to understand the impact of different techniques, including when to add a

register for synchronous designs.

Raising the sample rate

There are a few blocks that can be used to raise the sample rate, depending on the needs of your design:

Block
Generates bypass

register?
Generates zero-

padding?
Parameters

Repeat No No

Rate Transition Yes No

Ensure data integrity during data transfer = true

Ensure deterministic data transfer (maximum

delay) = true

Upsample Yes Yes

Input processing = Elements as channels

(sample based)

Rate options = Allow multirate processing

Rate Transition and Upsample each generate a register, and Upsample also generates logic to insert zero-padding

logic, so be aware of these hardware impacts when using them.

A Delay block should be added to the design after each if the input and output clocks are not synchronous to each

other. This will add an extra 1-sample delay at the output rate to ensure synchronization of the signal.

Lowering the sample rate

Either a Rate Transition or a Downsample block can be used to lower the sample rate. Since they both generate the

same HDL code, it is easier to use a Rate Transition block since its parameters for HDL code generation are more

easily set.

 Rate Transition block

Set Ensure data integrity during data transfer and Ensure deterministic data transfer (maximum

delay) to true. The Initial condition parameter is not used when raising the sample rate. This block does

not insert a register, so when the input and output clocks are not synchronous to each other you will need to

insert a Delay block for synchronization.

Example: BS029_upDownSample.slx

2.9 Signal routing

2.9.1 Choosing the right block for extracting a portion of a vector signal

The following blocks are available for extracting a scalar or a portion of a vector signal from a vector signal:

 HDL Coder/Signal Routing/Selector

 HDL Coder /Signal Routing/Index Vector

 HDL Coder /Signal Routing/Multiport Switch

 DSP System Toolbox/Signal Management/Indexing/Multiport Selector

 DSP System Toolbox/Signal Management/Indexing/Variable Selector

Select blocks appropriately considering whether the extraction ranges are fixed or variable. The following table lists

supported blocks and recommended blocks according to types of extraction ranges.

Extraction
ranges

Available blocks
(bold=recommended)

Recommended Parameters

 Fixed
Selector 1 Yes Index mode = Zero-based

Multiport Selector 2

 Variable

Multiport Switch
Yes for multiple
scalar inputs

Number of data ports = <# of scalar inputs>

Data port order = Zero-based contiguous

for zero-based indexing

Index Vector Yes for vector input Number of data ports = 1

Selector 3

Variable Selector 3

Footnotes

http://www.mathworks.com/help/hdlcoder/ref/repeat.html
http://www.mathworks.com/help/hdlcoder/ref/ratetransition.html
http://www.mathworks.com/help/hdlcoder/ref/upsample.html
http://www.mathworks.com/help/hdlcoder/ref/ratetransition.html
http://www.mathworks.com/help/hdlcoder/ref/selector.html
http://www.mathworks.com/help/hdlcoder/ref/multiportselector.html
http://www.mathworks.com/help/hdlcoder/ref/multiportswitch.html
http://www.mathworks.com/help/hdlcoder/ref/indexvector.html
http://www.mathworks.com/help/hdlcoder/ref/selector.html
http://www.mathworks.com/help/hdlcoder/ref/variableselector.html

1. Zero-based indexing is supported. A vector signal is output from one port when multiple elements are

selected. Although the generated HDL for a Selector and a Multiport Selector are the same with zero-

based indexing, the Selector block offers better traceability between the model and the generated code.

2. The generated HDL code uses zero-based indexing even though MATLAB code supports only one-

based indexing. In the use case of extracting multiple elements, these can be output from multiple

separate output ports.

3. The use of Variable Selector is not recommended, because it needs as input built-in data types such as

uint8 for the index port (Idx), causing bit redundancy.

Example: BS008_selector.slx

2.9.2 Block parameter setting for the Multiport Switch Block

As described in section 2.9.1 Choosing the right block for extracting a portion of a vector signal, there are multiple

options for switch blocks depending on your needs. The control input signal for these blocks is typically a numeric

data type. However the Multiport Switch and Index Vector blocks also support enumerated data types for control

input, which helps with debugging. For each approach, set the following Function Block Parameters:

When the control signal input is a numeric type:

Example: BS032_switch.slx

 Data port order = Zero-based contiguous

 Data port for default case = Last data port

When the control input signal is an enumerated type, you will need to define a MATLAB enumeration type

class:

Example: BasicColors.m

Then you can set Data port indices as follows:

Example: BS031_enum.slx

http://www.mathworks.com/help/hdlcoder/ref/multiportswitch.html
http://www.mathworks.com/help/hdlcoder/ref/indexvector.html

2.9.3 Add 1 to index signals when describing a selector circuit in a MATLAB Function block

In addition to the Multiport Switch and Index Vector blocks, selector circuit can be described using a MATLAB

Function block. When doing so, add 1 to the value of the index since MATLAB uses 1-based indexing while Simulink

uses 0-based indexing for HDL code generation. Additionally, add 1 to an index variable before selecting the index in

MATLAB in order to prevent additional logic from being generated.

The following generated Verilog code snippets illustrates the difference:

Example: BS041_MLFSelector.slx

Correct Incorrect

assign index = Idx;

assign Do_rsvd_1 = Di[index];

assign add_temp = Delay1_out1 + 1;
assign Do_rsvd_1 = Delay_out1[$signed({1'b0, add_temp}) - 1];

When using this technique, in MATLAB under Edit Data>Ports and Data Manager make sure that Saturate on

integer overflow is not selected.

2.9.4 Use a MATLAB Function block to select indices when extracting portions of a very large constant vector

When extracting a portion of a very large constant vector, using a MATLAB Function block with the indexing

technique described in 2.9.3 Add 1 to index signals when describing a selector circuit in a MATLAB Function block

will generate more optimal hardware than using a Selector block. The following example illustrates:

Example OP004_largeVector.slx

 Using a Selector block:

http://www.mathworks.com/help/hdlcoder/ref/selector.html

This approach will generate HDL code with large assign statements that represent 1792-to-1 multiplexors, for

each of the 64 elements of the output vector, similar to the following:

 Selector_out1_0 <= Constant_out1_0 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0000#, 16) ELSE

 Constant_out1_1 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0001#, 16) ELSE

 Constant_out1_2 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0002#, 16) ELSE

 Constant_out1_3 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0003#, 16) ELSE

 .

 .

 .

 Constant_out1_1790 WHEN Data_Type_Conversion_out1 = to_unsigned(16#06BF#, 16) ELSE

 Constant_out1_1791;

 .

 .

 .

 Selector_out1_63 <= Constant_out1_63 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0000#, 16) ELSE

 Constant_out1_64 WHEN Data_Type_Conversion_out1 = to_unsigned(16#0001#, 16) ELSE

The optimization of these multiplexors will depend on your RTL synthesis tool, but such an inefficient input to

synthesis can be avoided by using a MATLAB Function block.

 Using a MATLAB Function block:

Example code MATLAB Function block code

 function Do = mfb_select(Di,Idx)
 %#codegen
 index = int32(Idx)+1;
 Do = Di(index);

This approach will generate HDL code similar to the following:

 -- <S4>/ML_Sel_opt_Fcn

 --

 --index is assigned the output from the adder

 index <= signed(resize(Data_Type_Conversion_out1, 32));

 -- index is used as an offset in a generate statement to select the output

 Do_gen: FOR t_0 IN 0 TO 63 GENERATE

 Do(t_0) <= Constant_out1(to_integer(to_signed(t_0, 32) + index));

 END GENERATE Do_gen;

 outputgen: FOR k IN 0 TO 63 GENERATE

 coeff(k) <= std_logic_vector(Do(k));

 END GENERATE;

2.9.5 Writing to individual elements of a vector signal using the Assignment block

The Assignment block enables you to write to selected elements of an n-D matrix. In order to target this block to

hardware, use the following settings:

 Number of output dimensions: 1

 Index mode: Zero-based

 Index Option: Index vector (port)

http://www.mathworks.com/help/hdlcoder/ref/matlabfunction.html
http://www.mathworks.com/help/simulink/slref/assignment.html

 Initialize output (Y): Initialize using input port (Y0)

This block is useful for writing to register banks or RAM, as illustrated in Example BS055_assignment.slx.

2.9.6 Proper usage of Goto/From blocks

There are a few guidelines that must be followed when using Goto/From blocks in subsystems from which you plan to

generate HDL:

When using a Goto/From block for an HDL generation target subsystem, it is following restriction within the limits, and

use it.

1. Don’t use a Goto/From combination that crosses the boundary of the HDL generation target subsystem. To

interface outside of the HDL target subsystem, use an Inport or Output.

2. When using a Goto/From combination, try to keep its scope local to a given hierarchy, and set its Tag

visibility to local. If you have to use a Goto/From across hierarchies within a subsystem, set its Tag

visibility to global.

3. Even though there is a Goto Tag Visibility block available, this cannot be used in an HDL generation target

subsystem. For this reason, don’t set a Goto block’s Tag visibility to scoped.

For proper usage examples, see:

Example: BS019_gotoFrom.slx

2.9.7 Ascending bit ordering for 1-D arrays may cause warnings from HDL rule checkers

Because the default ordering of arrays in MATLAB is ascending (LSBMSB), HDL will also be generated using

ascending order (VHDL: to, Verilog: [LSB:MSB]) for one-dimensional arrays of 1-bit values. This will typically

generate a warning from HDL code rule checkers. This is illustrated in the following example:

Example: BS054_downto.slx

1. Delay block with a delay value greater than 1 will generate a buffer in HDL with ascending bit ordering:

Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Delay_reg <= (OTHERS => '0');

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Delay_reg(0) <= In1;

 Delay_reg(1 TO 4) <= Delay_reg(0 TO 3);

 END IF;

 END IF;

 END PROCESS Delay_process;

2. Mux block with a vector signal of 1-bit data:

SIGNAL Mux_out1 : std_logic_vector(0 TO 3); -- ufix1 [4]

3. Constant:

SIGNAL Constant_out1 : std_logic_vector(0 TO 3); -- boolean [4]

2.10 Source blocks

2.10.1 Do not use a sample time of inf for a Constant block

The default sample time for a Constant block is inf. However connecting a Constant block with sample time inf to

an input port of an HDL target subsystem will prevent optimizations such as pipelining, retiming, sharing, and

streaming. This is because these optimizations rely on an understanding of the clock rate.

When using the Constant block, set the sample time to -1 to inherit.

http://www.mathworks.com/help/hdlcoder/ref/goto.html
http://www.mathworks.com/help/hdlcoder/ref/from.html
http://www.mathworks.com/help/hdlcoder/ref/constant.html

To quickly find all Constant blocks with a sample time of inf, turn on Display>Sample Time>Colors. After running

simulation, you will see these blocks highlighted as follows:

Example: BS023_constantInf.slx, constSampleTimeSet.m

The constSampleTimeSet.m script will iterate through these blocks and set the sample times properly for HDL code

generation and optimization.

2.11 MATLAB Function blocks

2.11.1 Proper usage of dsp.Delay as a register

In MATLAB code, there are two ways to describe registers:

 Defining a persistent variable

 Using the dsp.Delay System object (in DSP System Toolbox)

Using the dsp.Delay System object results in better readability – it is easier to see where the registers will be.

However using System objects in MATLAB code may inhibit certain optimizations. For example there can be code

generation limitations related to partitioning or recognition of System objects. Additionally, dsp.Delay cannot be used

in cases where its previous value needs to be accessed, such as a FIR filter or a counter. For such cases, a

persistent variable can be used to model a register. The following MATLAB code illustrates:

Example: BS012_MLFSequential.slx

Persistent variable dsp.Delay System object

 function [yp0,yp1] = fcn(u0)
 %#codegen
 persistent FFp0 FFp1
 if isempty(FFp0) % initialize
 FFp0 = fi(0, 1, 9, -2);
 FFp1 = fi([0 0 0 0] , 1, 9, -2);
 end

 % Output
 yp0 = FFp0;
 yp1 = FFp1(4);

 % Update FF after output
FFp0 = u0*fi(4, 0, 1, -2); %
FFp1(:) = [u0*fi(4, 0, 1, -2),
FFp1(1:3)];
 % new data and shift register value

 function [yd0,yd1] = fcn(u0)
 %#codegen
 persistent FFd0 FFd1
 if isempty(FFd0) % initialize
 FFd0 = dsp.Delay(1); % 1sample
delay
 FFd1 = dsp.Delay(4); % 4sample
delay
 end

 tmp0 = u0*fi(4, 0, 1, -2);
 % Output
 yd0 = step(FFd0, tmp0);
 yd1 = step(FFd1, tmp0);

http://www.mathworks.com/help/matlab/ref/persistent.html
http://www.mathworks.com/help/dsp/ref/dsp.delay-class.html

As shown in the following, when using vector and matrix data with dsp.Delay, Units should be set to Frames, and

FrameBasedProcessing set to false.

 FFin0 = dsp.Delay(1, 'Units', 'Frames', 'FrameBasedProcessing', false);

2.11.2 Update persistent variables at the end of a MATLAB function

In order to map to a register, a persistent variable cannot be updated before its value is read or used by the function.

The following table illustrates:

Correct Incorrect
 function FF_out0 = fcn(FF_in)

 %#codegen

 persistent FF0

 if isempty(FF0)

 FF0 = zeros(1, 'like', FF_in);

 end

 % Output FF0

 FF_out0 = FF0;

 % Write FF update at the end of the code

 FF0 = FF_in

 function FF_out0 = fcn(FF_in)

 %#codegen

 persistent FF0

 if isempty(FF0)

 FF0 = zeros(1, 'like', FF_in);

 end

 % Incorrect Order for FF update

 FF0 = FF_in

 % Output FF0

 FF_out0 = FF0;

 % FF_out0 is NOT delayed

Example: BS016_MLFPersistentOrder.slx

2.11.3 Explicitly define data types for constants used in expressions

When performing an operation in a MATLAB Function block that will cast the data type of the result, be sure to define

the datatype for constant operands using the fi object. Otherwise the generated HDL code could contain non-

synthesizable constructs such as $rtoi or real().

Example: BS024_MLFConstOpp.slx

Incorrect: The constant’s datatype is not explicitly defined.

 out0 = in0 / 4;
 out1 = in0 * 4;
 out2 = fi(in0 / 4, 1, 11, 1);
 out3 = fi(in0 * 4, 1, 11, 1);

Correct: Define the constant’s data type immediately where it’s used in an operation.

 out0 = in0 / fi(4, 0, 3, 0);
 out1 = in0 * fi(4, 0, 3, 0);
 out2 = fi(in0 / fi(4, 0, 3, 0), 1, 11, 1);
 out3 = fi(in0 * fi(4, 0, 3, 0), 1, 11, 1);

Correct: Define a constant as a variable with an explicit data type and use the variable in an operation.

 ConstDiv = fi(4, 0, 3, 0);
 ConstProd = fi(3, 0, 2, 0);
 out0 = in0 / ConstDiv;
 out1 = in0 * ConstProd;
 out2 = fi(in0 / ConstDiv, 1, 11, 1);
 out3 = fi(in0 * ConstProd, 1, 11, 1);

http://www.mathworks.com/help/fixedpoint/ref/fi.html

2.11.4 Use Delay blocks to break feedback loops in MATLAB Function blocks

If your MATLAB function block has a feedback loop, break the loop with a Simulink Delay block instead of using a

persistent variable in MATLAB. Using only a persistent variable in a feedback loop will result in an algebraic loop

violation during HDL code generation from Simulink.

The following example illustrates how to properly break a feedback loop with a Delay block:

Example: AD017_MLFFeedback.slx

2.11.5 Do not use logical operators in conditional statements when initializing persistent variables

Typically a conditional statement such as “if isempty(var)” is used to check whether a persistent variable needs to

be initialized. When multiple variables are checked, try to avoid using logical operators since this will generate HDL

code with intermediate variables, making it less readable. Consider the following example:

Example: BS0015_MLF_persistent_vars.slx

Correct Incorrect

persistent FF0 FF1
if isempty(FF0)
 FF0 = fi(0, 0, 8, 0);
end
if isempty(FF1)
 FF1 = fi(0, 0, 8, 0);
end

persistent FF0 FF1
if isempty(FF0)&&isempty(FF1)
 FF0 = fi(0, 0, 8, 0);
 FF1 = fi(0, 0, 8, 0);
end

 always @(posedge clk or posedge

reset)

 begin : MLF_good_1_process

 if (reset == 1'b1) begin

 FF0 <= 8'b00000000;

 FF1 <= 8'b00000000;

 end

 else begin

 if (enb) begin

 FF0 <= FF0_next;

 FF1 <= FF1_next;

 end

 end

 end

 always @(FF_in, FF0, FF1) begin

 FF0_next = FF0;

 FF1_next = FF1;

 FF_out0_1 = FF0;

 FF_out1_1 = FF1;

 if (FF_in > 17'sb00000000000000000)

begin

 FF0_next = FF0 + 1;

 end

 if (FF_in < 17'sb00000000000000000)

begin

 FF1_next = FF1 + 1;

 end

 always @(posedge clk or posedge reset)

 begin : MLF_bad_1_process

 if (reset == 1'b1) begin

 FF0_not_empty <= 1'b0;

 FF1_not_empty <= 1'b0;

 end

 else begin

 if (enb) begin

 FF0 <= FF0_next;

 FF0_not_empty <= FF0_not_empty_next;

 FF1 <= FF1_next;

 FF1_not_empty <= FF1_not_empty_next;

 end

 end

 end

 always @(FF_in, FF0, FF0_not_empty, FF1, FF1_not_empty)

 begin

 FF0_temp_1 = FF0;

 FF1_temp_1 = FF1;

 FF0_not_empty_next = FF0_not_empty;

 FF1_not_empty_next = FF1_not_empty;

 if ((! FF0_not_empty) && (! FF1_not_empty)) begin

 FF0_temp_1 = 8'b00000000;

 FF0_not_empty_next = 1'b1;

 FF1_temp_1 = 8'b00000000;

 FF1_not_empty_next = 1'b1;

 end

http://www.mathworks.com/help/hdlcoder/ref/delay.html

 end FF_out0_1 = FF0_temp_1;

 FF_out1_1 = FF1_temp_1;

 if (FF_in > 17'sb00000000000000000) begin

 FF0_temp_1 = FF0_temp_1 + 1;

 end

 if (FF_in < 17'sb00000000000000000) begin

 FF1_temp_1 = FF1_temp_1 + 1;

 end

 FF0_next = FF0_temp_1;

 FF1_next = FF1_temp_1;

 end

2.11.6 Use X(:)=X+1; when input and output data types are the same in MATLAB code expressions

When the datatype of the output variable of an expression is the same as an input, you can re-use the variable to

avoid having to define a temporary variable and its associated data type. Take care to use subscripted assignment to

avoid bit growth. For example:

Example: BS011_MLFSameData.slx

>> X(:) = X+1;
>> X(:) = X+Y;
>> Y(:) = Y*5;
>> Y(:) = X*Y;

In contrast, the following would result in non-synthesizable HDL because the new variable would be cast by default to

a double data type due to the use of the constant:

>> tmp = Y*5;

So in this case you would have to explicitly define the data type for the new variable:

>> tmp = Y*fi(5, 0, 3, -1);
>> tmp = fi(Y*5, 1, 16, 8);

2.11.7 Avoid unintended latch inference by performing arithmetic operations outside of if/else branches

Example: BS040_MLFLatch.slx

1. When the branches of an if/else statement perform different arithmetic operations, HDL code generation

creates intermediate variables for the different operations. Since these intermediate variables are only

assigned in the branches of the if/else statement where they are used, this will result in latch inference by

RTL synthesis.

MATLAB code that will not cause latch inference MATLAB code that will cause latch inference

 function cOut = fcn(a_in, c_in)

 ntype = numerictype(1,32,0);
 c_o_1 = fi(c_in, ntype);
 c_o_2 = fi(c_in*2, ntype);
 c_o_4 = fi(c_in*4, ntype);

 if a_in == 0
 cOut = c_o_2;
 elseif a_in == 1
 cOut = c_o_4;
 else % Default
 cOut = c_o_1;
 end

 function cOut = fcn(a_in, c_in)

 ntype = numerictype(1,32,0);
 c_o_1 = fi(c_in, ntype);
 c_o_2 = fi(c_in*2, ntype);
 c_o_4 = fi(c_in*4, ntype);

 if a_in == 0
 cOut = fi(c_in*2, ntype);
 elseif a_in == 1
 cOut = fi(c_in*4, ntype);
 else % Default
 cOut = fi(c_in, ntype);
 end

http://www.mathworks.com/help/fixedpoint/gs/fixed-point-arithmetic_bt25flf-1.html#bt25flf-6

Generated VHDL
cast and cast_0 written to outside of the if/else

statement

Generated VHDL
cast and cast_0 written to inside only one branch

of the if/else statement

IfElse_OK_1_output : PROCESS (a_in_unsigned,

c_in_signed)

 VARIABLE c_o_2 : signed(5 DOWNTO 0);

 VARIABLE cast : signed(11 DOWNTO 0);

 VARIABLE cast_0 : signed(11 DOWNTO 0);

 BEGIN

 cast := resize(c_in_signed & '0' & '0' & '0' &

'0', 12);

 IF ((cast(11) = '0') AND (cast(10 DOWNTO 8) /=

"000")) OR ((cast(11) = '0') AND (cast(8 DOWNTO 3)

= "011111")) THEN

 c_o_2 := "011111";

 ELSIF (cast(11) = '1') AND (cast(10 DOWNTO 8)

/= "111") THEN

 c_o_2 := "100000";

 ELSE

 c_o_2 := cast(8 DOWNTO 3) + ('0' & cast(2));

 END IF;

 cast_0 := resize(c_in_signed & '0' & '0' & '0'

& '0', 12);

 IF ((cast_0(11) = '0') AND (cast_0(10 DOWNTO 7)

/= "0000")) OR ((cast_0(11) = '0') AND (cast_0(7

DOWNTO 2) = "011111")) THEN

 cOut_tmp <= "011111";

 ELSIF (cast_0(11) = '1') AND (cast_0(10 DOWNTO

7) /= "1111") THEN

 cOut_tmp <= "100000";

 ELSE

 cOut_tmp <= cast_0(7 DOWNTO 2) + ('0' &

cast_0(1));

 END IF;

 IF a_in_unsigned = 0 THEN

 cOut_tmp <= c_o_2;

 ELSIF a_in_unsigned = 1 THEN

 ELSE

 cOut_tmp <= c_in_signed;

 END IF;

 END PROCESS IfElse_OK_1_output;

IfElse_Bad_1_output : PROCESS (a_in_unsigned,

c_in_signed

 VARIABLE cast : signed(11 DOWNTO 0);

 VARIABLE cast_0 : signed(11 DOWNTO 0);

 BEGIN

 IF a_in_unsigned = 0 THEN

 cast := resize(c_in_signed & '0' & '0' &

'0' & '0', 12);

 IF ((cast(11) = '0') AND (cast(10 DOWNTO 8)

/= "000")) OR ((cast(11) = '0') AND (cast(8 DOWNTO

3) = "011111")) THEN

 cOut_tmp <= "011111";

 ELSIF (cast(11) = '1') AND (cast(10 DOWNTO

8) /= "111") THEN

 cOut_tmp <= "100000";

 ELSE

 cOut_tmp <= cast(8 DOWNTO 3) + ('0' &

cast(2));

 END IF;

 ELSIF a_in_unsigned = 1 THEN

 cast_0 := resize(c_in_signed & '0' & '0' &

'0' & '0', 12);

 IF ((cast_0(11) = '0') AND (cast_0(10 DOWNTO

7) /= "0000")) OR ((cast_0(11) = '0') AND

(cast_0(7 DOWNTO 2) = "011111")) THEN

 cOut_tmp <= "011111";

 ELSIF (cast_0(11) = '1') AND (cast_0(10

DOWNTO 7) /= "1111") THEN

 cOut_tmp <= "100000";

 ELSE

 cOut_tmp <= cast_0(7 DOWNTO 2) + ('0' &

cast_0(1));

 END IF;

 ELSE

 cOut_tmp <= c_in_signed;

 END IF;

 END PROCESS IfElse_Bad_1_output;

2. When the condition in the if/else branch contains an operation, HDL code generation creates intermediate

variables for the different conditional checks. Since these intermediate variables are only assigned in the

branches of the if/else statement where they are used, this will result in latch inference by RTL synthesis.

MATLAB code that will not cause latch inference MATLAB code that will cause latch inference
function cOut = fcn(a_in)

 ntype = numerictype(1,6,0);

 nt_ain = numerictype(a_in);

 a_in2 = fi(a_in+2, nt_ain);

 a_in3 = fi(a_in-3, nt_ain);

 if a_in2 > 6

 cOut = fi(1, ntype);

 elseif a_in3 > 5

 cOut = fi(2, ntype);

 else % Default

 cOut = fi(0, ntype);

 end

function cOut = fcn(a_in)

 ntype = numerictype(1,6,0);

 if a_in+2 > 6

 cOut = fi(1, ntype);

 elseif a_in-3 > 5

 cOut = fi(2, ntype);

 else % Default

 cOut = fi(0, ntype);

 end

Generated Verilog

add_temp_1 and sub_temp_1 written to outside of

the if/else statement

Generated Verilog

sub_temp_1 and cast_1 written to inside only one

branch of the if/else statement

always @(a_in) begin

 add_temp_1 = a_in + 2;

 if (add_temp_1[4] != 1'b0) begin

 a_in2_1 = 4'b1111;

 end

 else begin

always @(a_in) begin

 if ((a_in + 5'b00010) > 5'b00110) begin

 cOut_1 = 6'sb000001;

 end

 else begin

a_in2_1 = add_temp_1[3:0];

 end

 sub_temp_1 = $signed({1'b0, a_in}) - 3;

 if ((sub_temp_1[5] == 1'b0) && (sub_temp_1[4] !=

1'b0)) begin

a_in3_1 = 4'b1111;

 end

 else if (sub_temp_1[5] == 1'b1) begin

a_in3_1 = 4'b0000;

 end

 else begin

a_in3_1 = sub_temp_1[3:0];

 end

 if (a_in2_1 > 4'b0110) begin

cOut_1 = 6'sb000001;

 end

 else if (a_in3_1 > 4'b0101) begin

cOut_1 = 6'sb000010;

 end

 else begin

cOut_1 = 6'sb000000;

 end

end

assign cOut = cOut_1;

sub_temp_1 = $signed({1'b0, a_in}) - 3;

if (sub_temp_1[5] == 1'b1) begin

cast_1 = 5'b00000;

end

else begin

cast_1 = sub_temp_1[4:0];

end

if (cast_1 > 5'b00101) begin

cOut_1 = 6'sb000010;

end

else begin

cOut_1 = 6'sb000000;

end

 end

end

assign cOut = cOut_1;

3. When the MATLAB Function block performs a For loop and matrix operation and HDL Block

Properties…>StreamingFactor is set to a value greater than 0 (which turns on the streaming optimization), a

latch will be created for the For loop variable.

2.11.8 Avoid generating always @* Verilog code for Xilinx Virtex-4 and 5

In certain cases, Verilog code generated from MATLAB function blocks will generate Verilog code that utilizes the

always @* construct. This will result in the following error when targeting Xilinx Virtex-4 and 5 devices:

"ERROR:Xst:1468 - "file.v" line xx : Unexpected event in always block sensitivity list"

This issue is fixed for Virtex-6 and Spartan-6 devices.

The following MATLAB code constructs will generate Verilog with the always @* construct:

 for loop

 Shift register that uses vector data

 Pipeline insertion set via the VariablesToPipeline parameter

2.11.9 Using MATLAB code for [M, N] matrix operations

Matrix operations in a MATLAB Function block are supported for HDL code generation, however the input port cannot

be matrix data. Therefore use a vector data type for the input port, and convert to an MxN matrix using the reshape

function. Resource sharing can be applied to save area, using the SharingFactor in HDL Block Properties…

Example: BS001_MLFMatrix.slx

2.11.10 Use a single for loop for element-by-element operations to reduce area

When performing element-by-element operations on matrix data, it is more area-efficient to use a single for loop

than it is to use nested for loops that iterate row-by-column. The following table illustrates the difference:

Nested for loop Single for loop

persistent m1;
 if isempty(m1)
 m1 = ones(3,3);
 end
 for ix = 1:3
 for iy = 1:3

persistent m1;
 if isempty(m1)
 m1 = ones(3,3);
 end
 for ix = 1:numel(m1

 m1(ix) = m1(ix) * u;
 end

http://www.mathworks.com/help/hdlcoder/ug/streaming.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bubbbgb-1
http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html

m1(ix,iy)=m1(ix,iy)*u;
 end
 end
 y = sum(sum(m1));

 y = sum(sum(m1));

Multipliers: 11

Adders: 10

Registers: 19

Multipliers: 9

Adders: 8

Registers: 19

2.12 Stateflow

2.12.1 Choosing Mealy vs Moore for Stateflow state machine type

When using Stateflow charts, it is important to keep in mind how Stateflow semantics are realized in hardware.

Therefore the two types of Stateflow charts supported for HDL code generation are Mealy and Moore. The high-level

differences between Mealy and Moore state machines are as follows:

 Mealy: outputs are a function of the current state and the inputs. This allows for more flexible usage, but are

more difficult to read.

 Moore: outputs are a function of the current state only. These charts are typically easier to read, but restrict

flexibility in defining state transitions. Beginning in R2015b, Moore state machines produce more efficient

HDL.

2.12.2 Stateflow Chart block configuration

Bring up the Model Explorer to specify model-wide settings:

See the product documentation for Chart block implementations, properties, and restrictions for HDL code

generation.

http://www.mathworks.com/help/hdlcoder/ug/mapping-chart-semantics-to-hdl.html
http://www.mathworks.com/help/hdlcoder/ref/chart.html

2.12.3 Do not use absolute time for temporal logical logic (after, before and every)

Temporal logic is useful in Stateflow charts to implement counter functions, such as a timeout counter. However for

HDL code generation, do not use absolute time such as seconds; instead use the tick construct for relative time.

Example: BS051_SFAfter.slx

Relative time (correct) Absolute time (incorrect)

2.12.4 Consider desired state order in generated HDL when naming states

The HDL code generated from a Stateflow chart lists the conditional branches in alphabetical order (A, B, C, -- a, b, c,

-- 1, 2, 3, --) according to the name of each state. Therefore it is important to take this into consideration when

naming the states in Stateflow. In particular, since the Others (VHDL) default (Verilog) state is listed last in

generated code, it should also be the last alphabetically named state in the chart. The following table illustrates the

behavior:

Stateflow chart Generated VHDL (state order is same as the model)

 CASE is_chart IS

 WHEN IN_A0 =>

 --During 'A0': '<S2>:1'

 IF start = '1' THEN

 --Transition: '<S2>:11'

 is_chart_next <= IN_B0;

 END IF;

 WHEN IN_B0 =>

 --During 'B0': '<S2>:4'

 --Transition: '<S2>:68'

 is_chart_next <= IN_C0;

 WHEN IN_C0 =>

 --During 'C0': '<S2>:71'

 --Transition: '<S2>:65'

 is_chart_next <= IN_Others;

 WHEN OTHERS =>

 --During 'Others': '<S2>:72'

 --Transition: '<S2>:31'

 is_chart_next <= IN_A0;

 END CASE;

Stateflow chart Generated VHDL (state order is different from the model)

http://www.mathworks.com/help/hdlcoder/ug/design-patterns-using-advanced-chart-features.html#bqvgkgn

 CASE is_chart IS

 WHEN IN_B0 =>

 --During 'B0': '<S2>:71'

 --Transition: '<S2>:65'

 is_chart_next <= IN_Others;

 WHEN IN_Others =>

 --During 'Others': '<S2>:72'

 --Transition: '<S2>:31'

 is_chart_next <= IN_a0;

 WHEN IN_a0 =>

 --During 'a0': '<S2>:1'

 IF start = '1' THEN

 --Transition: '<S2>:11'

 is_chart_next <= IN_c0;

 END IF;

 WHEN OTHERS =>

 --During 'c0': '<S2>:4'

 --Transition: '<S2>:68'

 is_chart_next <= IN_B0;

 END CASE;

 Stateflow chart Generated Verilog (state order is same as the model)

 case (is_chart)

 IN_A0 :

 begin

 //During 'A0': '<S2>:1'

 if (start == 1'b1) begin

 //Transition: '<S2>:11'

 is_chart_next = IN_B0;

 end

 end

 IN_B0 :

 begin

 //During 'B0': '<S2>:4'

 //Transition: '<S2>:68'

 is_chart_next = IN_C0;

 end

 IN_C0 :

 begin

 //During 'C0': '<S2>:71'

 //Transition: '<S2>:65'

 is_chart_next = IN_default;

 end

 default :

 begin

 //During 'default': '<S2>:72'

 //Transition: '<S2>:31'

 is_chart_next = IN_A0;

 end

 endcase

 Stateflow chart Generated Verilog (state order is different from the model)

 case (is_chart)

 IN_a0 :

 begin

 //During 'a0': '<S2>:1'

 if (start == 1'b1) begin

 //Transition: '<S2>:11'

 is_chart_next = IN_f0;

 end

 end

 IN_c0 :

 begin

 //During 'c0': '<S2>:71'

 //Transition: '<S2>:65'

 is_chart_next = IN_default;

 end

 IN_default :

 begin

 //During 'default': '<S2>:72'

 //Transition: '<S2>:31'

 is_chart_next = IN_a0;

 end

 default :

 begin

 //During 'f0': '<S2>:4'

 //Transition: '<S2>:68'

 is_chart_next = IN_c0;

 end

 endcase

2.12.5 Using a chart output as an input via a feedback loop

To avoid algebraic feedback loop errors when feeding back the output of a Stateflow chart to be used in the input,

insert a Delay (Unit) block outside the Stateflow chart. Note that beginning with R2015b, this is no longer an issue for

Moore state machines.

Example: AD018_SFFeedback.slx

2.12.6 Insert an unconditional transition state to create an else statement in the generated HDL

In general it is good practice to insert an unconditional transition in a Stateflow chart. When generating HDL code,

unconditional transitions ensure that an Others (VHDL) or default (Verilog) branch will be inserted into case

statements, which prevents unintended latch creation during logic synthesis. The following example demonstrates

correct and incorrect usage:

Example: BS033_ifElse.slx

Correct Incorrect Incorrect

http://www.mathworks.com/help/stateflow/ug/best-practices-for-creating-flow-graphs.html

2.12.7 Avoid unintended latch inference by performing arithmetic operations outside of truth tables

Similar to 2.11.7 Avoid unintended latch inference by performing arithmetic operations outside of if/else branches,

move operation expressions outside the truth table in order to avoid inferring latches during logic synthesis. The

following example illustrates:

Example: BS042_truthTableLatch.slx

Operations performed outside truth table:

Operations performed in branches of truth table, which will result in latch creation during logic synthesis:

2.12.8 Hardware considerations when designing an FSM

The most important thing to remember is that code in the Stateflow chart will consume hardware resources. Here are

some tips to consider when making tradeoffs to improve timing and reduce resource usage:

 Minimizing amount of redundant code, such as unnecessary transition conditions, will keep overall resource
usage down

 Using a default transition will generate HDL with an “else” clause for an if/else statement or a “default”
clause for a case statement, which ensures that unintended latches will not be created for undefined state
transitions

 To improve timing, sometimes it helps to keep comparators for large numbers outside of the Stateflow chart,
instead using their Boolean outputs as input to the Stateflow

 Sometimes having redundancy can help with meeting timing and reducing resource usage too.

 Pipelined operations are best done outside of Stateflow

2.13 DSP System Toolbox

2.13.1 Use the DSP System Toolbox Delay block if the number of samples to delay might be 0

When adjusting the amount of samples to delay during the trial-and-error phase of setting your pipelining

preferences, you may have the need to set the number of samples to 0. This will result in an error if you use the

Simulink/Discrete/Delay (Unit) block. However you can set the DSP System Toolbox/Signal Operations/Delay

(Unit) block’s number of samples to 0, so use this block in this situation.

2.13.2 Changing the phase offset of a Downsample block

The Downsample block which is used in multi-rate design does not have the ability to change its phase offset

dynamically. This is controlled by the Sample offset block parameter, which is a static value. However you can

change the downsample factor dynamically by changing the amount of delay of the input using a counter or shift

register. Example BS037_downSamplePhase.slx demonstrates how to do this.

http://www.mathworks.com/help/dsp/ref/delay.html
http://www.mathworks.com/help/dsp/ref/delay.html
http://www.mathworks.com/help/hdlcoder/ref/downsample.html

Alternatively, a MATLAB Function block can be used as follows:

function [y, testCount, testPhase] = fcn(u, rstPhase, rstCount, dsFactor)
 %#codegen

 ntReg = numerictype(u);
 ntCt = numerictype(0, ceil(log2(dsFactor)), 0);
 persistent shiftReg count dsPhase
 if isempty(shiftReg
 shiftReg = fi(zeros(1,dsFactor), ntReg);
 count = fi(0, ntCt);
 dsPhase = fi(0, ntCt);
 end

 if rstPhase
 dsPhase = count;
 end
 y = shiftReg(dsPhase+1);
 % y = shiftReg(1);
 testCount = count;
 testPhase = dsPhase;

 %% update routine
 if (count >= dsFactor-1)||rstCount
 count = fi(0, ntCt);
 else
 count = fi(count + 1, ntCt);
 end

 shiftReg = [shiftReg([2:end]) u];

2.13.3 Use the NCO HDL Optimized block for sine and cosine computation and signal generation

 When planning to generate HDL from a design, use the NCO HDL Optimized block for sine and cosine

computations and as a numerically controlled oscillator (NCO).

 Select the parameter Enable look up table compression method when using the NCO HDL Optimized

block to compress the table size. When this is not selected, it uses table data for a quarter-cycle for

sine/cosine.

 In order to map to a ROM Lookup Table when targeting Altera or Xilinx FPGAs, set the HDL Block

Properties…>LUTRegisterResetType to none.

2.13.4 Block settings for FIR filter blocks

The following table summarizes the settings differences for designing a filter using building blocks versus using the

Discrete FIR Filter block from the Simulink/Discrete or DSP System Toolbox/Filtering/Filter Implementations

library.

 Built using building blocks Discrete FIR Filter

Filter structure

Full customization is possible Direct type, direct form transposed,

direct type symmetry, direct type

antisymmetric

Initial conditions
Can set using a Delay (Unit) block Must be set to 0

 Data type support

Anything is possible Uses a common parameter, so

individual arithmetic unit setting is

not possible

Unsigned fixed-point data input is

not possible.

Changing the
structure

Difficult – requires manual effort Easy – select from a drop-down list

Support for complex
numbers

Data/coefficient support Data/coefficient support

HDL Block
Properties

InputPipeline, OutputPipeline,

SharingFactor, and StreamingFactor for the

subsystem

InputPipeline, OutputPipeline,

SharingFactor, and

StreamingFactor for the

subsystem (must specify at the

block level pre-R2015b).

Select the block’s Architecture

using a pulldown menu.

 Programmable filter

Use

realizemdl(d,'MapCoeffsToPorts','on');

exports the filter coefficients to the MATLAB

workspace where they can be tuned.

In Function Block Parameters, set

Coefficient source to input port

(direct form transposed structure

not supported)

 Multichannel filter

For the Delay (Unit) block set the parameter

Input Processing to Elements as Channels

(sample based)

Set the block parameter Input

Processing to Elements as

Channels (sample based)

http://www.mathworks.com/help/dsp/ref/ncohdloptimized.html
http://www.mathworks.com/help/hdlcoder/ref/discretefirfilter.html

 Resource sharing

Set SharingFactor, and StreamingFactor for

the subsystem

Set Architecture as Cascade

Serial, Partly Serial, or Fully

Serial, and also set Serial

Partition & ResuseAccum. See

the Discrete FIR Filter HDL Coder

page for more info on deciding

when to use subsystem vs. block-

level optimizations.

Example: BS045_FIRFilter.slx

This example demonstrates filter modeling using the Discrete FIR Filter as well as using building blocks. The

PrimitiveFilter model generated by FDATool uses discrete Delay (Unit) blocks:

While the Tapped_Delay model improves readability and tune-ability by using a single Tapped Delay block:

Considerations for speed vs. area:

 When speed (minimal critical path) is the priority:

o In Function Block Parameters, set Filter structure: to Direct Form Transposed

o Insert pipeline registers at the input and output of a Product

http://www.mathworks.com/help/hdlfilter/serialpartition.html
http://www.mathworks.com/help/hdlfilter/serialpartition.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#buaslrc-1
http://www.mathworks.com/help/hdlcoder/ref/discretefirfilter.html
http://www.mathworks.com/help/hdlcoder/ref/discretefirfilter.html

o For a custom filter designed with building blocks, insert Delay (Unit) blocks at the input and output

of a Gain block

o For a Discrete FIR Filter block, set the HDL Block Properties… MultiplierInputPipeline and

MultiplierOutputPipeline

 When area (resource usage) reduction is the priority:

o In Function Block Parameters, set Filter structure: to Direct Form Transposed Symmetric

when the number of taps is even and to Direct Form Transposed Asymmetric when the number

of taps is odd

o If the implementation meets your timing goals, don’t insert any extra pipeline registers

o Perform resource sharing

 For a custom filter designed with building blocks, set SharingFactor and

StreamingFactor

 For a Discrete FIR Filter block, in HDL Block Properties… set Architecture to Fully

Serial, Partly Serial, or Cascade Serial

The Architecture for a Discrete FIR Filter block can be set in HDL Block Properties… but settings under

Implementation Parameters can change how it is built. This will be summarized in the report generated after HDL

code generation. The following table summarizes the differences between the various Architecture options:

 Fully Parallel Fully Serial Partly Serial

 Cascade
Serial

 Distributed
Arithmetic

 Clock frequency High Lowest Low (depending
on preferences)

Low (depending
on preferences)

High

 Over clock Not needed Number of taps Size of largest
partition set by
SerialPartition

Size of largest
partition set by
SerialPartition

 Not needed

 Circuit area Large Small Small
(depending on
preferences)

Small
(depending on
preferences)

 Large

 DSP block count Many Few Depends on
SerialPartition

setting

 Depends on
SerialPartition

setting

Not utilized

 Filter structure All Direct form
transposed is
unsupported

Direct form
transposed is
unsupported

 Direct form
transposed is
unsupported

 Direct form
transposed is
unsupported

2.13.5 IIR Filter blocks

There are two ways to implement an IIR filter:

Building one manually by combining Add, Product, and Delay (Unit) blocks, or generated by FDATool and

Filterbuilder with Realize Model selected

Using the Biquad Filter block from the DSP System Toolbox/Filtering/Filter Implementations library

These two approaches are compared in the following table:

 Built using building blocks Biquad Filter

 Filter structure
Full customization is possible Direct form I, Direct form I transposed,

Direct form II, Direct form II transposed

Initial conditions
Can set using a Delay (Unit) block Must be set to 0

http://www.mathworks.com/help/hdlfilter/multiplierinputpipeline.html
http://www.mathworks.com/help/hdlfilter/multiplieroutputpipeline.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#buai1s7-1
http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#buai1s7-1
http://www.mathworks.com/help/dsp/ref/fdatool.html
http://www.mathworks.com/help/dsp/ref/filterbuilder.html
http://www.mathworks.com/help/hdlcoder/ref/biquadfilter.html

 Data type support

Anything is possible Uses a common parameter, so individual

arithmetic unit setting is not possible

Unsigned fixed-point data input is not

possible

Changing the
structure

Difficult – requires manual effort Easy – select from a drop-down list

Support for complex
numbers

Data/coefficient support Data/coefficient support

HDL Block Properties

InputPipeline, OutputPipeline,

SharingFactor, and StreamingFactor

for the subsystem

InputPipeline, OutputPipeline,

SharingFactor, and StreamingFactor

for the block

Select the block’s Architecture using a

pulldown menu

 Programmable filter
Change a Gain block into a Product
block

Connect the source of a coefficient to an
input terminal

 Multichannel filter

For the Delay (Unit) block set the

parameter Input Processing to

Elements as Channels (sample

based)

Set the block parameter Input

Processing to Elements as Channels

(sample based)

 Resource sharing

Set SharingFactor, and
StreamingFactor for the subsystem

Set Architecture to Partly Serial or
Fully Serial

Set NumMultipliers or FoldingFactor

Example: BS047_IIRfilter.slx, designIIR.m

In order to perform resource sharing of the product of a Biquad Filter block, set HDL Block Properties>Architecture

to either Partly Serial or Fully Serial. When Partly Serial is selected, the number of resources used can be set. For

serial architectures, you can either set the number of multipliers to use with the NumMultipliers property, or specify

the amount of sharing by using the FoldingFactor property. The following table compares the implementation

tradeoffs of the Architecture settings:

 Fully Parallel Fully Serial Partly Serial

 Clock frequency
High Minimal Low, depending on

settings

 Over clock
 Not needed Number of taps Size of largest partition

set by SerialPartition

 Circuit area
Large Small Small, depending on

settings

 DSP block count
Many Few Few, depending on

settings

 Filter structure All Direct form I, II Direct form I, II

2.14 Others

2.14.1 Use case restrictions when importing user-defined HDL code with an HDL Cosimulation block

The HDL Cosimulation block is designed to import handwritten HDL code for cosimulation with the Simulink model.

You can also utilize this block to import a handwritten HDL block as part of an HDL generation subsystem. In this use

case it will generate the port interfaces necessary to connect the generated HDL to it.

http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#bueoafc-1
http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#bueoaab-1
http://www.mathworks.com/help/hdlfilter/nummultipliers.html
http://www.mathworks.com/help/hdlfilter/foldingfactor.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-filter-block-properties.html#buai1s7-1
http://www.mathworks.com/help/hdlcoder/ref/hdlcosimulation.html

In order to do this, set the following preferences for the HDL Cosimulation block:

 Explicitly specify Sample Time for the output ports

 Only select Enable direct feedthrough for a purely combinational circuit

 Avoid using double data types in the HDL Cosimulation block

Finally, for this use case, follow the guidelines in 1.2.7 Disable code generation to insert handwritten code for a block

into the generated code for the DUT.

2.14.2 Define clock and block name to match user-defined HDL settings when using an HDL Cosimulation block

When generating HDL for a subsystem that includes an HDL Cosimulation block representing imported HDL code,

define the block name the same as the VHDL entity or Verilog module name, and define the clock to match the clock

signal name (with full hierarchical path) in the imported HDL. Failure to define a clock signal for this block will result in

a code generation error. Note that the period should be an even-numbered integer so Simulink can create a 50% duty

cycle. For more information, consult the product documentation Creating Optional Clocks with the Clocks Pane of the

HDL Cosimulation Block.

Finally, in the Connection pane, set Connection Mode to Full Simulation. Code generation supports all three

settings for this parameter, however using the No Connection setting will not allow Simulink to inherit the data types

from the cosimulation block, so the block’s output will default to a double type.

http://www.mathworks.com/help/hdlcoder/ref/hdlcosimulation.html
http://www.mathworks.com/help/hdlverifier/ug/clock-reset-and-enable-signals.html#bt9u4xl-91
http://www.mathworks.com/help/hdlverifier/ug/clock-reset-and-enable-signals.html#bt9u4xl-91

3. Data type settings
3.1 Basic data type settings

3.1.1 Use fixed binary point scaling up to 128-bit for fixed-point operations

The dynamic range of fixed-point numbers is much less than floating-point numbers with equivalent word sizes. To

avoid overflow conditions and minimize quantization errors, fixed-point numbers must be scaled according to the

guidelines described in the Fixed Point Designer product documentation.

For operations that result in more than 128 bits, the intermediate value of the operation can be scaled.

3.1.2 Trading off rounding error vs processing expense

Rounding
mode

 Function

 Equivalent
MATLAB

 Property value

Ceiling

Rounds both positive and negative numbers toward positive infinity. Note that
this approach will lead to a cumulative bias toward positive numbers. ceil

Convergent

Rounds number to the nearest representable value. If a tie occurs, rounds to
the nearest even integer. This can generate an overflow but no bias. convergent

Floor

Rounds both positive and negative numbers toward negative infinity. Note that
this approach will lead to a cumulative bias toward negative numbers. floor

Nearest
Rounds number to the nearest representable value. If a tie occurs, rounds
toward positive infinity. nearest

Round

Rounds number to the nearest representable value. If a tie occurs, rounds
positive numbers toward positive infinity and rounds negative numbers toward
negative infinity.

 round

Simplest

Automatically chooses between round toward floor and round toward zero to
generate rounding code that is as efficient as possible. None

Zero Rounds both positive and negative numbers toward zero. fix

The Fixed Point Designer documentation compares the processing cost of each method of rounding.

The following table illustrates how the various rounding modes generate VHDL and Verilog:

Rounding
mode

 Generated code for 16-bit input and 14-bit output
(upper row VHDL, lower row Verilog)

 Ceiling
 (Ceiling)

 ceil_out1 <= In1_signed(15 DOWNTO 2) + ('0' & (In1_signed(1) OR In1_signed(0)));

 assign ceil_out1 = In1[15:2] + $signed({1'b0, (|In1[1:0])});

 Convergent
 (Convergent)

 convergent_out1 <= In1_signed(15 DOWNTO 2) + ('0' & (In1_signed(1) AND (In1_signed(2) OR

In1_signed(0))));

 assign convergent_out1 = In1[15:2] + $signed({1'b0, In1[1] & (In1[2] | In1[0])});

Floor

 floor_out1 <= In1_signed(15 DOWNTO 2);

 assign floor_out1 = In1[15:2];

Nearest

 nearest_out1 <= In1_signed(15 DOWNTO 2) + ('0' & In1_signed(1));

 assign nearest_out1 = In1[15:2] + $signed({1'b0, In1[1]});

Round

 round_out1 <= In1_signed(15 DOWNTO 2) + ('0' & (In1_signed(1) AND ((NOT In1_signed(15)) OR

In1_signed(0))));

 assign round_out1 = In1[15:2] + $signed({1'b0, In1[1] & ((~ In1[15]) | In1[0])});

Simplest Chooses from one of the others

Zero
 zero_out1 <= In1_signed(15 DOWNTO 2) + ('0' & (In1_signed(15) AND (In1_signed(1) OR

In1_signed(0))));

http://www.mathworks.com/help/fixedpoint/ug/scaling_f20784.html
http://www.mathworks.com/help/fixedpoint/ug/precision-and-range.html#f6481

 assign zero_out1 = In1[15:2] + $signed({1'b0, In1[15] & (|In1[1:0])});

Here are examples of HDL code generated when Saturate on integer overflow is selected:

 VHDL Verilog
 out1 <= "01111111111111" WHEN (In1(15) = '0') AND

(In1(14 DOWNTO 13) /= "00") ELSE

 "10000000000000" WHEN (In1(15) = '1') AND

(In1(14 DOWNTO 13) /= "11") ELSE

 In1(13 DOWNTO 0);

 assign out1 = ((In1[15] == 1'b0) && (In1[14:13] !=

2'b00) ? 14'sb01111111111111 :

 ((In1[15] == 1'b1) && (In1[14:13] !=

2'b11) ? 14'sb10000000000000 :

 $signed(In1[13:0])));

3.1.3 Restrictions for data type override

The Fixed-Point Tool can override the output data types of each block in the system. The only blocks that are never

affected by data type override are blocks with boolean or enumerated output data types, or blocks that are untouched

by it by design (for example, lookup table blocks).

 Blocks not affected by data type override
Blocks not supported for automatic derivation of

min/max values

HDL Counter

HDL FIFO

Dual Port RAM

Dual Rate Dual Port RAM

Simple Dual Port RAM

Single Port RAM

Bit Concat

Bit Reduce

Bit Rotate

Bit Shift

Bit Slice

System Object

Serializer1D

Deserializer1D

Integer-Input RS Encoder HDL Optimized

Integer-Output RS Decoder HDL Optimized

CRC Generator HDL Optimized

CRC Detector HDL Optimized

DC Blocker

Complex to Magnitude-Angle HDL Optimized

NCO HDL Optimized

FFT HDL Optimized

IFFT HDL Optimized

Vision HDL Toolbox Chroma Resampler

Vision HDL Toolbox Edge Detector

Vision HDL Toolbox Image Filter

FIR Rate Conversion HDL Optimized

3.2 Simulink data type setting

3.2.1 Use Boolean for logical data and use ufix1 for numerical data

Even though both Boolean and the fixed-point ufix1 are both 1-bit data types in MATLAB and Simulink, they are

treated differently

 Use boolean for control logic signals, e.g. enable and local reset. If a Boolean signal needs to be used in a

calculation with a fixed-point data type, it can be converted to a fixdt(0, 1)

 Use fixdt(0, 1) for calculations. Because it has a numerictype property, it can be set to Inherit:

Inherit via internal rule in operations where the output may need to grow to a larger bit width than

the input.

3.2.2 Define the data type of a Gain block explicitly

Explicitly specify a Simulink.NumericType object (e.g. fixdt (1, 16, 8)) for the Parameter data type of a Gain

block. Leaving it as Inherit: Inherit via internal rule could result in a data type being assigned that results in an HDL

code generation error.

http://www.mathworks.com/help/hdlcoder/ref/gain.html
http://www.mathworks.com/help/simulink/slref/gain.html#zmw57dd0e49924

3.2.3 Restrictions for using enumerated values

Note that many optimizations do not work seamlessly in the presence of enumerated types, so it is recommended to

use them sparingly. When generating HDL using an enumerated data type, there are a few modeling restrictions:

 An enumerated data type cannot be used for the input or output port of the top-level DUT

 As shown below, enumerated values must be monotonically increasing

classdef BasicColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 end
 methods (Static)
 function retVal = getDefaultValue()
 retVal = BasicColors.Blue;
 end
 end
 end

 An enumerated value cannot be used for arithmetic operation (*, /, -, +).

 An enumerated value cannot be used for a comparison operation (> -- < -- >=, <=, ==, and -=). However it

can be used by for a <> operation or a conditional branch (if, switch).

3.3 Data type setting for MATLAB code

3.3.1 Using a fi object in a MATLAB Function block

In the MATLAB Function block go to Edit Data>Ports and Data Manager and set Treat these inherited Simulink

signal types as fi objects to Fixed-point & Integer. For MATLAB Function fimath, choose Specify Other

and specify hdlfimath.

Using an hdlfimath consumes fewer circuit resources since it uses the following parameters:

 RoundingMethod: Floor

 OverflowAction: Wrap

 ProductMode: FullPrecision

 SumMode: FullPrecision

Choosing Same as MATLAB above will generate a fimath with the following parameters, which consumes more

circuit area:

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

For operations that require different rounding than what is set by hdlfimath, define the functionality explicitly in the

MATLAB Function block code.

 >> B = fi(4.9, 1, 8)

 B =

 4.8750

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 8

 FractionLength: 4

 >> A = fi(2.3, 1, 10)

 A =

 2.2969

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 10

 FractionLength: 7

 >> C = fi(A+B, 'RoundingMethod', 'Nearest', 'OverflowAction', 'Saturate')

 C =

 7.1719

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 12

 FractionLength: 7

 RoundingMethod: Nearest

 OverflowAction: Saturate

 ProductMode: FullPrecision

 SumMode: FullPrecision

Example: DT004_MLFDataType.slx, DT007_MLFBuiltInData.slx

3.3.2 Use like or cast to inherit data types in MATLAB code

Don’t use the numerictype construct to inherit a data type from a fi object in MATLAB code. Instead use the

cast() or zeros() function because they support inheritance of built-in data types u/int8, u/int16, u/int32,

u/int64, double, single, boolean.

Example: DT005_MLFLike.slx

>> A=fi(2.55, 1, 17, 4)

 A =

 2.5625

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 17
 FractionLength: 4
 >> B = cast(1.22, 'like', A)

 B =

 1.25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 17
 FractionLength: 4

 >> C = zeros(1,4, 'like', A)

 C =

 0 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 17
 FractionLength: 4

3.3.3 Use True/False instead of Boolean data in MATLAB code

Since the Boolean data type cannot be used in MATLAB code, when performing operations that require binary 0 or 1

representation, use True/False. For example:

if in > 3
 out = true;
else
 out = false;
end

3.4 Data type setting for Stateflow charts

3.4.1 Use a fi object when the Stateflow action language is MATLAB

When setting properties for a Stateflow chart, if the execution language is MATLAB, select Treat inherited Simulink

signal types as fi objects in order to prevent errors during simulation execution.

http://www.mathworks.com/help/stateflow/ug/specifying-chart-properties.html

4. Optimization of speed and area
4.1 Resource sharing

Resource sharing uses time division multiplexing to perform multiple operations on a shared hardware resource in

order to reduce circuit area. In order to share resources, the input data must be serialized and the output data must

then be deserialized.

4.1.1 Resource sharing requirements

There are two important parameters to control resource sharing: SharingFactor and StreamingFactor. These

parameters have different restrictions, modeling methods and resulting circuit configurations, which all depend on the

blocks or models to be shared. The following table summarizes the differences.

 StreamingFactor SharingFactor

 Supported
blocks

Blocks That Support Streaming Shareable resources

Requirements
and limitations

Checks and Requirements for Streaming
Subsystems

Requirements and Limitations for
Resource Sharing

Circuit
configuration

If Delay blocks exist in front of/behind
certain block, the resulting delay blocks
are added between a Serializer and a
Deserializer. This configuration achieves
a higher clock speed with Product and
Gain blocks.

 For Product and the Gain blocks, Delay
blocks in front of/behind the blocks are
placed outside the Serializer and
Deserializer. This results in lower clock
speeds compared to StreamingFactor.

 For an Atomic subsystem,
SharingFactor achieves comparable
clock speed to that of StreamingFactor
since the resulting delay blocks
including those inserted by
Input/OutputPipeline are added
between the Serializer and a
Deserializer.

Circuit
configuration

with
delay block in
front of/behind

target block
(e.g., Product)

Serializer=>Delay=>Product
=>Delay=>Deserializer

Number of delay samples =
StreamingFactor

The Deserializer introduces 1 cycle of
latency at the data (slow) rate

Delay=>Serializer=>Product=>Deserializ
er=>Delay

The Deserializer introduces 1 cycle of
latency at the data (slow) rate

Performance
when sharing 8
Product blocks

on an Altera
CycloneV

5CGTFD9E5F3
5C

With RAM mapping:
Logic: 525
Register: 1044
Block RAM: 512
DSP block: 1
Fmax: 179.76 MHz

 Logic: 986
 Register: 1254
 Block RAM: 0
 DSP block: 1
 Fmax: 127.94 MHz

With register mapping:
Logic: 638
Reg: 1221
Block RAM: 0
DSP block: 1
Fmax: 181.49MHz

 Related
guidelines

4.1.2 Use StreamingFactor for resource
sharing of 1D vector signal processing

4.1.3 Resource sharing of Gain blocks
4.1.4 Resource sharing of Product blocks
4.1.5 Resource sharing of subsystems

The blocks that support SharingFactor are as follows. Note that all parameters including data type and rounding

mode must be same between the blocks to be shared.

Target block Product block Gain block Other blocks

http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html
http://www.mathworks.com/help/hdlcoder/ug/streaming.html#bsok0jc-1
http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html#bubcumn
http://www.mathworks.com/help/hdlcoder/ug/streaming.html#bsn6y6h-6
http://www.mathworks.com/help/hdlcoder/ug/streaming.html#bsn6y6h-6
http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html#btg_5ht-1
http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html#btg_5ht-1

 Modeling

Put Product blocks to be
shared and Delay blocks for
pipelining in a Subsystem. It
is better to exclude other
blocks to avoid unexpected
resource sharing failures.

Gain blocks whose gain is a
power of 2 will not be shared
so that they can map to shift
operations, which are more
resource-efficient.

Put blocks to be shared
into an Atomic
Subsystem.

 Block
settings

Use the same parameters
including rounding mode and
saturated mode settings
(note: this will be relaxed in
R2016a)

Use the same gain
parameter and input/output
data types (note: this will be
relaxed in R2016a)

Use identical Atomic
subsystems with the
same input/output data
types

Related
guidelines

4.1.4 Resource sharing of
Product blocks

4.1.3 Resource sharing of
Gain blocks

4.1.5 Resource sharing
of subsystems

In addition to the description above the following requirements must be satisfied to share resources:

 In the subsystem’s Configuration Parameters>Diagnostics>Sample Time, if Multitask rate transition

and Single task rate transition are not set to Error it prevents resource sharing. This is taken care of

automatically by hdlsetup

 The block to be shared must be a shareable resource.

 More than one (Unit) Delay block must be connected to its output port if the target subsystem is part of a

feedback loop. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is active.

 Neither an Enabled subsystem nor a Triggered subsystem can be included in an Atomic subsystem.

 An Atomic subsystem must use (Unit) Delay blocks as state elements, and cannot use other state elements

such as Discrete Filter.

 When applying single-rate sharing, which is done by going into HDL Code Generation>Global

Settings>Optimization and setting Max oversampling to 1, ensure that the target subsystem to be shared

is not part of a feedback loop. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is

active.

 Do not use a MATLAB Function that has persistent variables, loop streaming, or output pipelining

 Do not insert Scope blocks with empty input ports, which generate a sample time of inf.

Pay attention to the following:

 If possible, avoid mixing in the same subsystem arithmetic logic other than a Product block to be shared

along with the Delay (Unit) blocks for pipelining

 Note the number of multiples of the generated over-clock for multiple subsystems. For instance, when

SharingFactor is set to 5 and 7 for two subsystems, the resulting over-clock factor is 35 (least common

multiple). In such a case, it would be better to set their SharingFactor for both to be the same – 7 in this

case. Note: beginning with R2015b, if both subsystems are operating at the slow rate and clock-rate

pipelining is active, this is not necessary.

 The Serializer and Deserializer blocks are available in HDL Operations library starting with R2014b.

Alternatively, you can manually create models for this functionality.

4.1.2 Use StreamingFactor for resource sharing of 1D vector signal processing

When you want reduce circuit area for a subsystem with a vector input/output that computes each N elements of the

vector the same way, you can set the HDL Block Properties StreamingFactor to N. This will time-share the

computation resources to reduce area. Note that the clock frequency for that logic will need to be over-clocked by N

times.

To apply StreamingFactor to a subsystem, the following points need to be considered:

http://www.mathworks.com/help/hdlcoder/ug/resource-sharing.html#bubcumn

 The vector data needs to be serialized, which adds logic to the circuit as shown in the following figure. If the

amount of resources saved by streaming ends up being small as compared to the overhead of serialization,

circuit area could actually increase

Example: OP008_vectorStream.slx

 The region of logic that is streamed will need to run at a clock frequency of N times the parallel input in order

to not increase the subsystem’s latency. Thus it is important to consider the inherent delays of the

FPGA/ASIC hardware and balance the maximum achievable frequency with the amount of resource

savings. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is active.

 When there are two or more vector signals that you want to stream, ensure that they both have the same

number of elements to stream. Otherwise the clock frequency will have to be multiplies by the least common

multiple of the two, possibly resulting in a target frequency that is not achievable.

 When the required frequency for streaming is not achievable, but additional delays of N cycles are

acceptable, resource sharing may be an option. To apply this, in set the configuration parameter HDL Code

Generation>Global Settings>Optimization>Max oversampling to 1, and in the same window set Max

computation latency to an integer value greater than N. This will hold the frequency constant while

increasing the latency to whatever is necessary to enable streaming. Note: beginning with R2015b, this is

not necessary if clock-rate pipelining is active.

4.1.3 Resource sharing of Gain blocks

The following guidelines are best practices for sharing multiple Gain blocks:

1. Determine how the Gain block will be implemented. If the Gain: parameter is 0 or 1, then no logic is

necessary. If the gain is 2, then a cast operation will be used to shift the logic, rather than a multiplication

resource.

2. Since serialization and deserialization logic needs to be added in order to share resources, do not apply

resource sharing to subsystems with a small amount of Gain blocks.

3. Determine whether resource sharing can be performed using the existing clock rate or whether

oversampling is required. Using the existing clock rate requires additional latency – to do this, set the

configuration parameter HDL Code Generation>Global Settings>Optimization>Max oversampling to 1,

and in the same window set Max computation latency to an integer value greater than the

SharingFactor. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is active.

4. When there are two or more subsystems where resource sharing is applied requiring over-clocking, follow

the guidelines in 4.1.1 Resource sharing requirements to determine appropriate settings for SharingFactor

and StreamingFactor.

http://www.mathworks.com/help/hdlcoder/ref/gain.html

5. Apply the StreamingFactor optimization to Gain blocks with vector input/output.

6. Apply the SharingFactor optimization to Gain blocks with scalar input/output. Make sure that the Gain

blocks’ Signal Attributes>Output data type and Parameter Attributes>Parameter data type are explicitly

set to be the same fixdt type. It is good practice to display the block’s data type in the Simulink diagram as

shown in 1.1.10 Display parameters that will affect HDL code generation.

Example: OP001_gainResourceShare.slx

In the example, you can see that the Gain4 block has a different data type from the other three Gain blocks, so in the

generated model it is not shared.

All of the data type parameters for a subsystem can be seen together in View>Model Explorer>Model Explorer as

shown:

Here (the HDL_StreamOK subsystem in the example), the vector-based Gain block has StreamingFactor set to 4

so it is transformed to one Product block in the generated model:

In the HDL_Gain_Stream_SharingOK subsystem in the example, SharingFactor and StreamingFactor are both

set to 2:

You can check the success or failure of streaming and resource sharing optimizations with the Code Generation

Report. You can see the resulting circuit structure in the generated model.

4.1.4 Resource sharing of Product blocks

The following guidelines are best practices for sharing multiple Product blocks:

1. Set the Multiplier partitioning threshold to 18 for Xilinx targets or 25 for Altera targets. This will create more

resource sharing opportunities for wide-bitwidth multiplier, reducing the use of DSPs on the FPGA.

2. When one of the inputs to a Product block is a constant, switch to a Gain block.

3. Follow the guidelines in 4.1.5 Resource sharing settings of subsystems to group two or more kinds of blocks

(for example Product, Delay, and Add) to share implementation resources. The effectiveness of this

approach will depend on the configuration of the DSP slices on your target device, but typically a series of

Delay, Add and Product can be compiled to one DSP slice. Beginning with R2015b, you can use the

Multiply-Add block to enable this.

4. Determine whether resource sharing can be performed using the existing clock rate or whether

oversampling is required. Using the existing clock rate requires additional latency – to do this, set the

configuration parameter HDL Code Generation>Global Settings>Optimization>Max oversampling to 1,

and in the same window set Max computation latency to an integer value greater than the

SharingFactor. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is active.

5. When there are two or more subsystems where resource sharing is applied requiring over-clocking, follow

the guidelines in 4.1.1 Resource sharing requirements to determine appropriate settings for SharingFactor

and StreamingFactor.

6. Apply the StreamingFactor optimization to Product blocks with vector input/output.

7. Apply the SharingFactor optimization to Product blocks with scalar input/output. Make sure that the

Product blocks’ Signal Attributes>Output data type, Integer rounding mode and Saturate on overflow

parameters are set consistently so that they can be shared. It is good practice to follow the guidelines in

1.1.10 Display parameters that will affect HDL code generation.

Example: OP002_productResourceShare.slx

http://www.mathworks.com/help/hdlcoder/ref/product.html
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#bumlupo-1
http://www.mathworks.com/help/hdlcoder/ref/gain.html

4.1.5 Resource sharing of subsystems

To share resources for identical subsystems, such as when grouping Product, Add and Delay blocks to map to one

DSP slice, you need to set the subsystems to be shared as one of the following types:

 Atomic subsystem

 MATLAB Function block (without persistent variables)

The following guidelines are best practices for sharing multiple subsystems:

1. Determine whether resource sharing can be performed using the existing clock rate or whether

oversampling is required. Using the existing clock rate requires additional latency – to do this, set the

configuration parameter HDL Code Generation>Global Settings>Optimization>Max oversampling to 1,

and in the same window set Max computation latency to an integer value greater than the

SharingFactor. Note: beginning with R2015b, this is not necessary if clock-rate pipelining is active.

2. The SharingFactor for subsystems cannot be set to be less than the number of Subsystems that are

grouped together. For example, if you have 10 instances of an Atomic subsystem and you set the

SharingFactor to 5, HDL Coder cannot implement resource sharing to 2 instances of the subsystem.

There are two alternative ways to accomplish this:

a. Divide the subsystem further, and share all the instances of each of the smaller subsystems

b. Change the block names of the Atomic subsystems to be unique per your desired grouping.

Note: this limitation is removed beginning with R2015b

3. Note the number of multiples of the generated over-clock for multiple subsystems. For instance, when

SharingFactors are set to 5 and 7 for two subsystems, the resulting over-clock factor is 35 (least common

multiple). In such a case, it would be better to set their SharingFactors to both be the same – 7 in this case.

Example: OP003_subsysShare.slx

The following table compares the results without and with resource sharing applied to the subsystems in the example:

Compute element
 SharingFactor = 0

 (No resource-
sharing)

 SharingFactor = 6

 Multipliers 6 1

 Adders/Subtractors 7 2

 Registers 28 87

 RAMs 0 0

 Multiplexers 2 17

4.2 Pipeline insertion

Inserting extra registers as pipeline stages enables you to more easily meet your target frequency, at the cost of extra

cycles of latency and extra resource requirements.

HDL Coder offers the following automated techniques with their associated parameter names:

Function HDL block property name

Pipelining design

InputPipeline: Set for each block/subsystem

OutputPipeline: Set for each block/subsystem

ConstrainedOutputPipeline: Set for each block/subsystem

Distributed pipelining DistributedPipelining: Set on a subsystem

Delay Balancing

BalanceDelays: Set on a subsystem. For best results, leave

this ‘on’ (which is the default setting) unless you do not want

delays inserted in a particular subsystem.

Clock-rate pipelining
ClockRatePipelining: Set globally, default is ‘on’

http://www.mathworks.com/help/hdlcoder/ref/atomicsubsystem.html
http://www.mathworks.com/help/hdlcoder/ref/matlabfunction.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-25
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-26
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#btp8gmp
http://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining_btonpii.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-20
http://www.mathworks.com/help/hdlcoder/ug/delay-balancing.html
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#btudq9e
http://www.mathworks.com/help/hdlcoder/ug/clock-rate-pipelining.html
http://www.mathworks.com/help/hdlcoder/ref/clockratepipelining.html

4.2.1 Design considerations for pipelining and delay balancing

The HDL Coder workflow provides the flexibility to insert and distribute pipeline registers automatically or manually.

The following table compares and contrasts the approaches:

Technique Pros Cons

Manually-inserted
and distributed
Delay blocks

 Latency between the original model
and the generated model does not
change.

 You have full control

 You need to manually balance
delays for parallel paths

Delay inserted by
the
InputPipeline or

OutputPipeline

parameters

 Registers can be inserted inside
multi-input Adder and Product
blocks

 Automatic delay balancing can be
performed for parallel paths
automatically

 Manually-inserted Delay block
distribution can also be used in
conjunction with InputPipeline or

OutputPipeline by turning off

PreserveDesignDelays

 The design may be difficult to
analyze because the original model
does not contain the inserted
Delays

 The latency of the generated model
would be different from that of the
original model

 InputPipeline or

OutputPipeline cannot be used in

a subsystem with a feedback loop

The following flow chart outlines a recommended approach to pipeline insertion and distribution:

1. If the region of your design where the implementation will insert pipeline registers is running at a slower rate

than the clock rate, determine whether clock-rate pipelining will be automatically applied as outlined in 4.2.2

Clock-rate pipelining. If so, pipeline registers can be inserted with no or minimal effect on overall design

latency.

2. Designing with estimated additional pipeline registers: This applies especially to models where it is good

practice to manually insert Delay blocks into the original model to balance those that will be inserted during

HDL code generation, as outlined in 2.6.9 Model the delay of blocks that will be auto-pipelined (Divide, Sqrt,

Trigonometric Function, Cascade Add/Product, Viterbi Decoder)

3. Feedback loop: in subsystems with feedback loops and where clock-rate pipelining cannot be applied, you

will have to manually insert any desired pipeline stages.

4. Choose whether to insert pipeline registers automatically or manually using Delay blocks.

5. Delay balancing is used to keep parallel paths at the same latency when pipeline registers are inserted into

one of them. If delay balancing is applied to the subsystem, the generated model will have matching delays

on both paths.

This even works in multi-rate designs. Consider the following example, where the logic in path D1 (red) has

a sample time of 1 while the logic in path D2 (green) has a sample time of 4. OutputPipeline is set to

insert 2 Delays on D2. Therefore D1 needs 4*2=8 Delays inserted, which is performed automatically with

delay balancing:

Original model

(Sample times:
D1=1, D2 = 4)

Generated model with
delay balancing

Generated model
without delay balancing

Delay balancing works hierarchically, so applying it to a subsystem will also apply it to all of the subsystems below in

the hierarchy. In cases where you wish to turn it off for a particular subsystem, see Disable Delay Balancing for a

Subsystem in the HDL Coder User Guide.

For the most up-to-date list of blocks not supported for delay balancing, refer to Delay Balancing Limitations in the

HDL Coder User Guide.

http://www.mathworks.com/help/hdlcoder/ug/delay-balancing.html#bt1wf3p-3
http://www.mathworks.com/help/hdlcoder/ug/delay-balancing.html#bt1wf3p-3
http://www.mathworks.com/help/hdlcoder/ug/delay-balancing.html

4.2.2 Clock-rate pipelining

As described in sections 2.6.9, 2.6.11, and 4.2.1, HDL Coder will insert registers during implementation for a variety

of reasons. In many cases, these registers will be inserted into regions at the design that run at a slower rate than the

base clock rate. Introduced in R2014b, clock-rate pipelining will insert registers that run at the fast clock rate so as to

avoid or minimize extra latency.

Clock-rate pipelining, which is on by default, works in conjunction with the following optimizations:

 Input and output pipelining

 Multi-cycle block implementations, such as complex math operations like sqrt and reciprocal.

 Floating-point library mapping

 Delay balancing

 Resource sharing and streaming (beginning with R2015b)

For best results, enable hierarchy flattening and take note of the blocks which inhibit clock-rate pipelining.

4.2.3 Recommended distributed pipelining settings

The following distributed pipelining settings are available in HDL Coder Properties > HDL Code Generation >

Global Settings > Optimization:

 Hierarchical distributed pipelining: specify whether to apply distributed pipelining across hierarchical

boundaries

 Clock-rate pipelining: specify whether to insert registers at the clock-rate instead of the data rate for multi-

cycle paths

 Allow clock-rate pipelining of DUT output ports: specify whether to insert registers at the clock-rate instead of

the data rate at the DUT output ports

 Preserve design delays: specify whether to prevent already-inserted delay blocks from being moved

 Distributed pipelining priority: specify whether the priority should be Numerical Integrity or Performance

To apply distributed pipelining to a subsystem, in HDL Block Properties set DistributedPipelining to on. The

subsystem must meet the following requirements:

 Remove feedback loops from the target subsystem unless they are in a slow-rate region

 Avoid using unsupported blocks. The following workarounds can be applied for the specified unsupported

blocks :

o Tapped Delay, Dot Product: Build a subsystem to place them in and disable Hierarchical

distributed pipelining. Note: Tapped Delay is supported for distributed pipelining beginning with

R2015b.

o Enabled subsystem: Change Distributed pipelining priority to Performance if possible

o Unit Delay Resettable: Change Distributed pipelining priority to Performance if possible

 There should be no blocks with Sample Time of inf. Set blocks’ sample times explicitly or to inherit (-1)

 Remove any empty input ports on Scope blocks since Sample Time is assumed to be inf.

The following blocks support pipelining insertion within their generated blocks. For example, in a three-or-more

vector-input adder (Sum of Elements), registers can be inserted between the multiple tree-based blocks. See how to

set this in 4.2.3 Apply distributed pipelining to adders, products, min/max, and dot products with vector inputs.

Block name Requirements

 MATLAB Function Set DistributedPipelining to on in HDL Block Properties

 Sum (of Elements)
For a greater-than-3 vector input:
Set Architecture to Tree in HDL Block Properties

 Product (of Elements)

 MinMax

http://www.mathworks.com/help/hdlcoder/ug/clock-rate-pipelining.html
http://www.mathworks.com/help/hdlcoder/ug/hierararchy-flattening.html
http://www.mathworks.com/help/hdlcoder/ug/clock-rate-pipelining.html#buktpvi-1
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-166
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buogan5-1
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-170
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-168
http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-164
http://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining_btonpii.html#bsmj7ju-23
http://www.mathworks.com/help/simulink/slref/scope.html

 Dot Product
For a greater-than-3 vector input:
Set Architecture to Linear in HDL Block Properties

Other considerations when using distributed pipelining:

 When using manually-inserted registers, turn on Preserve Design Delays

 Be aware of the individual block settings for DistributedPipelining when using hierarchical distributed

pipelining. If a subsystem does not have it turned on, it can limit the flexibility to move registers as needed.

 If the upper level of hierarchy does not have DistributedPipelining turned on, it will limit the flexibility to

move registers from one subsystem that has it turned on to another. If DistributedPipelining cannot be

turned on at the upper level, consider using FlattenHierarchy to enable broader pipelining.

 If Distributed pipelining priority is set to Performance, registers could be inserted into blocks with initial

values such as Constant blocks, which would affect simulation results until values propagate through the

system.

 Delay block setting values may be initialized automatically, so Delay blocks that have Initial condition

explicitly set may be changed

o The HDL Block Properties settings for Delay blocks inserted into the generated model by

distributed pipelining will set ResetType to default and UseRam to off.

o In the generated and validation models, the Delay blocks inserted by distributed pipelining have the

naming convention rd_index#. Therefore you can check whether they are replaced or not.

o If you want to prevent specific Delay blocks from being moved, turn on Preserve Design Delays.

 The results of ConstrainedOutputPipeline, which inserts registers as specified at the block outputs,

should be confirmed.

o The total delay samples including those inserted by InputPipeline/OutputPipeline in an

original model should not be less than the value set by ConstrainedOutputPipeline, since

ConstrainedOutputPipeline specifies the required number of delays samples at the output.

o The results of ConstrainedOutputPipeline can be checked in the Distributed Pipelining results in the

code generation report. When the number of registers inserted in the generated model equals this

setting, the report will show that the block’s status as “Passed”.

4.2.4 Apply distributed pipelining to adders, products, min/max, and dot products with vector inputs

To distribute pipelining within the following blocks with inputs of vector size >3:

 Adders (Add, Sum, Subtract, Sum of Elements)

 Products (Product, Product of Elements)

 Min/Max (Simulink/Math Operations/MinMax, DSP System Toolbox/Statistics/Minimum, Maximum)

 Dot Product (real input)

1. Set Architecture in HDL Block Properties as follows:

 For adders, product, and min/max, set to Tree. Pipeline registers will not be inserted if this is set to

Linear or Cascade.

 For Dot Product, set to Linear. Pipeline registers will not be inserted if this is set to Tree.

2. Set the number of pipeline stages, either via InputPipeline/OutputPipeline or by manually inserting

Delay blocks.

 Example OP005_addProdPipe.slx shows 3 delays that were manually inserted into the design that

will be distributed within the generated model for the Add block

http://www.mathworks.com/help/hdlcoder/ug/hdl-code-generation-pane-global-settings.html#buiuh3k-164
http://www.mathworks.com/help/hdlcoder/ug/block-implementation-parameters.html#btp8gmp

3. Turn on the DistributedPipelining in HDL Block Properties.

4. Check the results by examining the generated model, which is created in the HDL source output directory

and linked from the Distributed Pipelining section of the code generation report. For the example design, the

generated model looks like this:

5. Appendix
5.1 Considerations in HDL code writing for ASIC/FPGA design

Many ASIC and FPGA design projects follow a set of coding style rules for the following reasons:

 Readability and re-usability

 Avoidance of non-deterministic behavior that can lead to bugs

 Area savings and speed improvements in logic synthesis

 Easier debugging

 Prevention of potential manufacturability workflow issues

Many companies follow the HDL coding style rules provided by the Japan Semiconductor Technology Academic

Research Center (STARC). This guide annotates STARC rules to its guidelines where applicable.

Since HDL Coder automatically generates HDL from a Simulink design, the guidelines for this workflow are focused

mainly on design style and structure, along with naming conventions.

5.2 Synchronous circuit design overview and recommendations

A synchronous circuit in digital design uses a clock signal to synchronize the movement of data through the logic

paths. Without a clock signal it would be tremendously difficult to coordinate the arrival timing at logic blocks for every

signal in a design as it moves through logic and wires that contain delay. This is why manual asynchronous design is

used only in special cases. Logic synthesis tools require synchronous design, which is why it is the recommended

design style for digital designs.

The following concepts apply to synchronous design:

 Registers and clock signals. Registers store data until the active edge of the clock triggers them to pass the

data through to the output. This is how logic is synchronized and coordinated throughout the circuit. Note

that clock (and register reset) signals do not appear in Simulink – these are created during HDL code

generation.

 Timing analysis. All logic, registers and wires contain delay. Timing analysis checks whether data signals

are able to travel from register-to-register through combinational logic within one clock cycle (unless

specified as a multi-cycle path exception). Furthermore the data signal must abide by the registers’ setup

and hold requirements.

 Setup and hold time. In order to prevent non-deterministic behavior of the data signal changing at the same

time as an active clock edge, timing analysis checks whether data signals arrive with enough early margin

(setup time), and maintain their value for enough margin after the active edge (hold time).

 Critical path. This is the path in the design that has the most amount of delay. Sometimes this longest path

is still shorter than the clock period so there is no violation (it has “positive slack”), and sometimes this

longest path arrives late, causing setup violations (it has “negative slack”). The critical path determines the

maximum frequency at which the circuit can operate – Fmax = 1 / Tdly

For a design that does not meet your target frequency (the critical path is too long), if it is too much for the hardware

design team to fix during logic synthesis, you may consider breaking the path by adding a Delay:

An easy way to accomplish this with minimal manual input is to use Automatic Iterative Optimization. If you want

more control over pipelining, see section 4.2 Pipeline insertion.

5.3 Recommended use of registers at outputs of hierarchical structures

In large designs, often logic synthesis and timing analysis is performed at a certain level of hierarchy, and the results

are integrated into the top-level design. Since synthesis and timing analysis is not aware of how much delay might

exist after the output ports since that is outside the hierarchy, it is good practice to insert registers just before the

outputs of these hierarchical boundaries. For example:

Some design teams register both the inputs and the outputs, since timing analysis runs register-to-register. However

if they know that every subsystem’s outputs are registered and that there will be no logic between the subsystems,

then they can just register the outputs.

5.4 Follow naming conventions

In an HDL description, a naming convention specifies how modules, instances, signals, and ports are named in order

to increase readability, re-usability, debugging efficiency, etc. Example naming conventions often include:

 Use of only alphanumeric characters and the “_” character

http://www.mathworks.com/help/hdlcoder/ug/automatic-iterative-optimization.html

 Avoid using Verilog/VHDL/SystemVerilog reserved words

 Avoid names starting with “VDD”, VSS”, “GND”, etc.

 Don’t rely on capitalization to distinguish between names (“Data” vs “data”, etc.)

 Use meaningful names as much as possible, for instance a RAM address signal might be “ram_addr” rather

than “ra”

HDL Coder will generate HDL with names that correspond to your Simulink input/output ports, signals, blocks, and

subsystems, so it is important to understand if your hardware team follows certain naming conventions

5.5 HDL-supported blocks

In the Simulink Library Browser > HDL Coder library, you can find Simulink blocks that are compatible with HDL

code generation. In many cases, the blocks are also pre-configured with HDL-friendly settings, compared to the same

blocks in the regular Simulink library.

 The sub-library HDL Coder > HDL Operations contains blocks specific to HDL applications such as RAMs,

bit operations and a counter with common controls.

 The HDL Coder library blocks come with Simulink, so you can share your models and collaborate with
colleagues who may not have access to HDL Coder.

In R2015a:

Additional blocks for signal processing, communications and computer vision are available in the library browser if

you have the optional toolboxes installed. These can be found in:

 DSP System Toolbox HDL Support

 Communications System Toolbox HDL Support

 Vision HDL Toolbox

In R2014b or before:

 Use the hdllib utility to create a library of all blocks that are currently supported for HDL code generation,

including blocks provided with DSP or Communications System Toolboxes.

5.6 Compatibility check for HDL code generation

When creating a new model, you can quickly configure its parameter settings with the command

hdlsetup(‘<your_model_name>’). Some of these settings are necessary for HDL code generation, such as using a

discrete, fixed-step solver, and setting hardware target device to ASIC/FPGA, which changes the fixed-point

inheritance rules for the model. Other settings help you create and debug your designs, such as turning on sample

time color and signal data type display.

You can examine all the settings applied using the command edit hdlsetup.m.

In R2015a, you can get started by using templates pre-configured for HDL code generation. Go to New > From

Template and scroll down to the HDL Coder to choose from a variety of starting points:

5.7 Setting global clock and reset signals in for HDL code generation

Registers are generated from Simulink Delay blocks and MATLAB persistent variables. The clock and reset signals

for registers do not appear in Simulink or MATLAB, they are generated by HDL Coder. The global names for these

signals can be set before code generation in HDL Code Generation > Global Settings:

5.8 Add comments for generating readable HDL code

You can set comments on Simulink blocks that will be generated as comments in the HDL code for better readability,

debugging, and re-usability. The following set of comments illustrate a good documentation practice:

 [Explanation] of [block property] of a block

 [Explanation] of [block property] of a subsystem

 Block Annotation (double-click the Block property token you wish to set)

 DocBlock

 Model information

For information on how to do this, see 1.1.6 Document block name, block features, authors, etc., in subsystem block

properties.

http://www.mathworks.com/help/hdlcoder/ref/docblock.html

	HDL Coder Modeling Guidelines (R2015b)
	0. Introduction
	0.1 About this guide
	0.1 Recommended HDL Coder design workflow
	0.2 Target language
	0.3 Definition of terms
	0.4 Guideline categories
	Index of HDL Coder Modeling Guidelines

	1. Architecture Design
	1.1 Basic settings
	1.1.1 Appropriate use of Simulink, Stateflow, MATLAB Function, BlackBox, Model Reference and HDL Cosimulation block
	1.1.2 Use the hdlsetup command to set model configuration parameters and HDL model properties
	1.1.3 Avoid using double-byte characters
	1.1.4 Consider resource sharing impact during model creation
	1.1.5 Document block name, block features, authors, etc., in subsystem block properties
	1.1.6 Terminate unconnected block outputs with Terminator blocks
	1.1.7 Proper usage of commenting out blocks
	1.1.8 Adjust sizes of constant and gain blocks so that parameters can be identified
	1.1.9 Display parameters that will affect HDL code generation
	1.1.10 Change block parameters by using find_system and set_param

	1.2 Subsystem and Model Hierarchy
	1.2.1 When the DUT is not at the top level of the model, set the DUT as a non-virtual subsystem
	1.2.2 Type of subsystem and hierarchical design for a DUT
	1.2.3 Do not connect constant blocks to ports directly crossing subsystem boundaries
	1.2.4 For testbenches that use blocks in continuous solver mode, make the DUT a model reference with a discrete solver.
	1.2.5 Generate re-usable HDL code from identical subsystems
	1.2.6 Generate parameterized HDL code for gain and constant blocks
	1.2.7 Insert handwritten code for a block into the generated code for the DUT
	1.2.8 Only use numerical values and string data types for mask parameters for user-defined subsystems

	1.3 Signal types
	1.3.1 Serialize 2D matrix signals into a 1D signal before it enters an HDL subsystem, and vice versa for the output
	1.3.2 Using a signal bus to improve readability
	1.3.3 Design considerations for vector signals
	1.3.4 One-dimensional vectors created by Delay, Mux, and Constant blocks generate HDL with ascending bit order
	1.3.5 Manually write HDL control logic for bidirectional ports

	1.4 Clock and Reset
	1.4.1 Creating a frequency-divided clock from the Simulink model’s base sample rate
	1.4.2 Use master-clock division or a clock multiple for proper multi-rate model operation
	1.4.3 Use Dual Rate Dual Port RAM for non-integer multiple sample times in a multi-rate model
	1.4.4 Use global reset type best suited for your target hardware

	2. Block Settings
	2.1 Discontinuities
	2.2 Discrete
	2.2.1 Appropriate use of various types of delay blocks as registers
	2.2.2 Map large delays to FPGA block RAM instead of registers to reduce area

	2.3 HDL Operations
	2.3.1 Use a Bit Concat block instead of a Mux block for bit concatenation in VHDL
	2.3.2 Design considerations for RAM Block access
	2.3.3 HDL FIFO block usage considerations
	2.3.4 Parallel <--> Serial conversion

	2.4 Logic and bit operations
	2.4.1 Logical vs. arithmetic bit shift operations
	2.4.2 Logical Operator, Bitwise Operator, and Bit Reduce for logic operations
	2.4.3 Use Boolean data type for the output of the Compare to Constant/Zero and the Relational Operator blocks

	2.5 Lookup tables
	2.5.1 Set the number of Lookup Table data entries to a power of 2 to avoid generation of a division operator (/)
	2.5.2 Generating FPGA block RAM from a Lookup Table block

	2.6 Math operations
	2.6.1 Input vector with Mux block to multi-input adder, multi-input product, and multi-input Min/Max
	2.6.2 Set ConstMultiplierOptimization to 'auto' for a Gain block
	2.6.3 Use the Bit Shift block or the bitshift function for computations of the power of 2 (ASIC)
	2.6.4 Use Gain block for computations of the power of 2 (FPGA)
	2.6.5 Use a Gain block for constant multiplication and constant division
	2.6.6 Efficient multiplier design for targeting Altera DSP block
	2.6.7 Efficient multiplier design for targeting Xilinx DSP48 slices
	2.6.8 Consider speed/area priority and DSP mapping when modeling complex multiplication
	2.6.9 Model the delay of blocks that will be auto-pipelined (Divide, Sqrt, Trigonometric Function, Cascade Add/Product, Viterbi Decoder)
	2.6.10 Use Divide blocks in reciprocal mode with a RecipNewton or RecipNewtonSingleRate architecture for more optimal HDL
	2.6.11 Consider the additional latency impact of different implementation architectures for the Sqrt and ReciprocalSqrt blocks
	2.6.12 Tradeoffs for Sin/Cos calculation using Trigonometric Function, Lookup Table, Sine/Cosine, and NCO HDL Optimized block
	2.6.13 Use only conj, hermitian, or transpose in a Math Function block
	2.6.14 HDL code generation compatible Math Operations for complex number computation

	2.7 Ports and subsystems
	2.7.1 Block settings for Triggered Subsystems/Enabled Subsystems
	2.7.2 Proper usage of a Unit Delay Enabled block versus an enabled subsystem with a Delay block

	2.8 Signal attributes
	2.8.1 Rate conversion blocks and usage

	2.9 Signal routing
	2.9.1 Choosing the right block for extracting a portion of a vector signal
	2.9.2 Block parameter setting for the Multiport Switch Block
	2.9.3 Add 1 to index signals when describing a selector circuit in a MATLAB Function block
	2.9.4 Use a MATLAB Function block to select indices when extracting portions of a very large constant vector
	2.9.5 Writing to individual elements of a vector signal using the Assignment block
	2.9.6 Proper usage of Goto/From blocks
	2.9.7 Ascending bit ordering for 1-D arrays may cause warnings from HDL rule checkers

	2.10 Source blocks
	2.10.1 Do not use a sample time of inf for a Constant block

	2.11 MATLAB Function blocks
	2.11.1 Proper usage of dsp.Delay as a register
	2.11.2 Update persistent variables at the end of a MATLAB function
	2.11.3 Explicitly define data types for constants used in expressions
	2.11.4 Use Delay blocks to break feedback loops in MATLAB Function blocks
	2.11.5 Do not use logical operators in conditional statements when initializing persistent variables
	2.11.6 Use X(:)=X+1; when input and output data types are the same in MATLAB code expressions
	2.11.7 Avoid unintended latch inference by performing arithmetic operations outside of if/else branches
	2.11.8 Avoid generating always @* Verilog code for Xilinx Virtex-4 and 5
	2.11.9 Using MALTAB code for [M, N] matrix operations
	2.11.10 Use a single for loop for element-by-element operations to reduce area

	2.12 Stateflow
	2.12.1 Choosing Mealy vs Moore for Stateflow state machine type
	2.12.2 Stateflow Chart block configuration
	2.12.3 Do not use absolute time for temporal logical logic (after, before and every)
	2.12.4 Consider desired state order in generated HDL when naming states
	2.12.5 Using a chart output as an input via a feedback loop
	2.12.6 Insert an unconditional transition state to create an else statement in the generated HDL
	2.12.7 Avoid unintended latch inference by performing arithmetic operations outside of truth tables
	2.12.8 Hardware considerations when designing an FSM

	2.13 DSP System Toolbox
	2.13.1 Use the DSP System Toolbox Delay block if the number of samples to delay might be 0
	2.13.2 Changing the phase offset of a Downsample block
	2.13.3 Use the NCO HDL Optimized block for sine and cosine computation and signal generation
	2.13.4 Block settings for FIR filter blocks
	2.13.5 IIR Filter blocks

	2.14 Others
	2.14.1 Use case restrictions when importing user-defined HDL code with an HDL Cosimulation block
	2.14.2 Define clock and block name to match user-defined HDL settings when using an HDL Cosimulation block

	3. Data type settings
	3.1 Basic data type settings
	3.1.1 Use fixed binary point scaling up to 128-bit for fixed-point operations
	3.1.2 Trading off rounding error vs processing expense
	3.1.3 Restrictions for data type override

	3.2 Simulink data type setting
	3.2.1 Use Boolean for logical data and use ufix1 for numerical data
	3.2.2 Define the data type of a Gain block explicitly
	3.2.3 Restrictions for using enumerated values

	3.3 Data type setting for MATLAB code
	3.3.1 Using a fi object in a MATLAB Function block
	3.3.2 Use like or cast to inherit data types in MATLAB code
	3.3.3 Use True/False instead of Boolean data in MATLAB code

	3.4 Data type setting for Stateflow charts
	3.4.1 Use a fi object when the Stateflow action language is MATLAB

	4. Optimization of speed and area
	4.1 Resource sharing
	4.1.1 Resource sharing requirements
	4.1.2 Use StreamingFactor for resource sharing of 1D vector signal processing
	4.1.3 Resource sharing of Gain blocks
	4.1.4 Resource sharing of Product blocks
	4.1.5 Resource sharing of subsystems

	4.2 Pipeline insertion
	4.2.1 Design considerations for pipelining and delay balancing
	4.2.2 Clock-rate pipelining
	4.2.3 Recommended distributed pipelining settings
	4.2.4 Apply distributed pipelining to adders, products, min/max, and dot products with vector inputs

	5. Appendix
	5.1 Considerations in HDL code writing for ASIC/FPGA design
	5.2 Synchronous circuit design overview and recommendations
	5.3 Recommended use of registers at outputs of hierarchical structures
	5.4 Follow naming conventions
	5.5 HDL-supported blocks
	5.6 Compatibility check for HDL code generation
	5.7 Setting global clock and reset signals in for HDL code generation
	5.8 Add comments for generating readable HDL code

