
HDL Synthesis
Guide

Release 4.2

Copyright

Copyright © 1991-1998 Exemplar Logic, Inc.

All Rights Reserved
rks
 next

c.
c.

tion,
 with
, or
Trademarks

Exemplar Logic® and its Logo are registered trademarks of Exemplar Logic, Inc.;
Galileo™, Galileo Extreme™, Leonardo™, Galileo FS™ and MODGEN™ are tradema
of Exemplar Logic, Inc.; Extreme Technology, FAST Synthesis and Synthesizing the
Millennium are servicemarks of Exemplar Logic, Inc.
V-System/VHDL™ and V-System/Verilog™ are trademarks of Model Technology, In
Verilog® and Verilog-XL® are registered trademarks of Cadence Design Systems, In
All other trademarks remain the property of their respective owners.

Disclaimer

Although Exemplar Logic, Inc. has tested the software and reviewed the documenta
Exemplar Logic, Inc. makes no warranty or representation, either express or implied,
respect to this software and documentation, its quality, performance, merchantability
fitness for a particular purpose.
Exemplar Logic, Inc.
6503 Dumbarton Circle
Fremont, CA 94555
Telephone: 800-632-3742
email: info@exemplar.com

Part No. 31315-R

Contents
1

1-1

1-2

1-3

1-4

-1

2-1

2-3

2-5

2-8

2-9

2-10

-10

2-11

2-17
1. Introduction to VHDL Synthesis . 1-

Overview. .

VHDL and Synthesis. .

In This Manual .

Customer Support .

2. VHDL Language Features . 2

Entities and Architectures .

Configuration .

Processes. .

Literals .

Types .

Enumeration Types .

Syntax and Semantics . 2

Synthesis Issues. .

Integer Types. .
iii

-17

2-18

-19

-19

2-19

2-20

-20

2-21

-21

-21

2-23

2-24

-24

2-25

2-25

2-27

2-28

2-28

2-30

2-30

2-30

2-31

2-31

2-32
Syntax and Semantics . 2

Synthesis issues .

Floating-point Types . 2

Syntax and Semantics . 2

Synthesis Issues. .

Physical Types .

Syntax and Semantics . 2

Synthesis Issues. .

Array Types. 2

Syntax and Semantics . 2

Synthesis Issues. .

Record Types .

Syntax and Semantics . 2

Synthesis Issues. .

Subtypes .

Type Conversions .

IEEE 1076 Predefined Types .

 IEEE 1164 Predefined Types .

Objects .

Signals. .

 Constants .

Variables .

Ports .

Generics .
iv HDL Synthesis Guide

-32

2-33

2-33

2-34

2-35

2-38

2-40

2-40

2-43

-43

2-44

-45

-45

-46

-46

2-48

2-49

2-52

2-52

2-53

2-55

2-58

2-64

2-65
Loop Variables . 2

Statements .

Conditional Statements .

Selection Statements .

Loop Statements and Generate Statements

Assignment Statements .

Operators. .

IEEE 1076 Predefined Operators .

 IEEE 1164 Predefined Operators .

Operator Overloading . 2

Attributes. .

VHDL Predefined Attributes . 2

Exemplar Predefined Attributes . 2

User-Defined Attributes . 2

Usage Of Attributes . 2

Blocks .

Functions And Procedures. .

Resolution Functions. .

Syntax and Semantics .

Synthesis Issues .

BUS and REGISTER .

Component Instantiation .

Packages .

Aliases. .
Contents v

-1

3-1

3-2

3-3

3-3

3-4

3-5

3-7

3-8

3-9

-10

10

-11

-11

-13

3-14

-17

3-18

3-18

-18

-20

3-22

3-22

22
3. The Art Of VHDL Synthesis. 3

Registers, Latches and Resets .

Level-Sensitive Latch .

Edge-Sensitive Flip-Flops .

The Event Attribute .

Synchronous Sets And Resets .

Asynchronous Sets And Resets .

Clock Enable .

 Wait Statements .

Variables .

Predefined Flip-flops and Latches. 3

Assigning I/O Buffers From VHDL . 3-

Automatic Assignment Using Chip Mode. 3

Manual Assignment Using The BUFFER_SIG Property 3

Buffer Assignment Using Component Instantiation 3

Three-state Buffers .

Bidirectional Buffers . 3

Busses .

State Machines .

General State Machine Description. 3

VHDL Coding Style For State Machines 3

Power-up And Reset .

State Encoding .

Arithmetic And Relational Logic . 3-
vi HDL Synthesis Guide

-25

3-25

3-27

-28

-29

3-31

-32

-1

4-1

4-1

4-2

4-3

4-3

4-5

-6

4-6

4-7

4-8

4-9

-11

4-11

4-12

-12

4-14
Module Generation . 3

Resource Sharing .

Ranged Integers .

Advanced Design Optimization . 3

Technology-Specific Macros. 3

Multiplexers and Selectors .

ROMs, PLAs And Decoders . 3

4. The VHDL Environment . 4

 Entity and Package Handling .

 Loading Entities and Packages (Galileo)

Loading Entities and Packages (Leonardo)

Entity Compiled as the Design Root .

Finding Definitions of Components .

How to Use Packages .

Interfacing With Other VHDL Tools . 4

VHDL Simulators .

Post-Synthesis Functional Simulation

Viewlogic .

Synopsys .

Mentor Graphics . 4

 The Exemplar Packages .

Predefined Types. .

Predefined Attributes . 4

Predefined Functions. .
Contents vii

4-20

-20

-21

-21

-22

-22

-22

4-22

-22

-23

-23

24

-24

25

-26

26

5-2

5-3

6-1

6-2

6-2

6-3
Predefined Procedures. .

Flip-flops . 4

Latches . 4

Tristate Busses. 4

pullup(busname) . 4

pulldn(busname) . 4

trstmem(busname) . 4

Syntax and Semantic Restrictions .

Synthesis Tool Restrictions . 4

VHDL Language Restrictions . 4

After Clause Ignored . 4

Restrictions on Initialization Values 4-

Ranges Of Loops Have To Evaluate To Constants During
Compile Time . 4

Restrictions On Edge-Detecting Attributes (’event) 4-

Restrictions on Wait Statements . 4

Restrictions on Multiple Drivers on One Signal 4-

5. Introduction to Verilog HDL Synthesis . 5-1

Verilog and Synthesis .

Synthesizing the Verilog Design .

6. Verilog Language Features .

Modules. .

’macromodule’ .

Numbers .
viii HDL Synthesis Guide

6-4

6-6

6-7

6-7

6-7

6-7

6-8

-8

-8

6-9

6-9

6-9

6-10

-11

-14

-15

6-15

-17

6-17

6-17

-20

-20

-20

-21
Data Types. .

Net Data Types .

wire and tri Nets .

Supply Nets .

wand and wor Net Types .

Register Data Type .

Parameter Data Type .

Declaration Local to Begin-End Block 6

Array of reg and integer Declaration (Memory Declaration) 6

Continuous Assignments .

Net Declaration Assignment .

Continuous Assignment Statement .

Procedural Assignments .

Always Blocks . 6

Module Instantiation . 6

Parameter Override During Instantiation of Module 6

Defparam Statement .

’unconnected_drive’ and ’nounconnected_drive’ 6

Operators. .

Operands .

Arithmetic Operators . 6

Relational and Equality Operators. 6

=== and !== Operators are Treated as == and != 6

Logical Operators . 6
Contents ix

-21

-22

-22

-22

-23

-23

6-24

6-24

6-24

6-26

6-28

-29

-30

6-31

6-31

-31

6-32

6-33

-34

6-36

6-36

6-38

-39

-40
Bit-Wise Operators . 6

Reduction Operators . 6

Shift Operators . 6

Conditional Operator . 6

Concatenation . 6

‘signed and ‘unsigned Attributes on Operators 6

Operator Precedence .

Statements .

If-Else Statements .

Case Statements .

Case Statement and Multiplexer Generation

Automatic Full Case Detection . 6

Automatic Parallel Case Detection 6

casex Statement .

casez Supported .

’case’ and ’default’ Statements . 6

for Statements .

Disable Statement .

forever, repeat, while and Generalized Form of for Loop 6

Functions and Tasks .

Functions. .

Tasks .

Inout Ports in Task . 6

Access of Global Variables from Functions and Tasks 6
x HDL Synthesis Guide

6-40

6-40

6-41

-41

-1

7-1

7-2

7-2

7-3

7-4

7-5

-5

7-6

7-7

7-7

7-8

-10

7-10

7-12

-14

-18

7-21

-21

-22
System Task Calls .

System Function Calls. .

Initial Statement .

Compiler Directives . 6

7. The Art of Verilog Synthesis. 7

Registers, Latches, and Resets .

 Level-Sensitive Latch .

Edge-Sensitive Flip-flops .

 Synchronous Sets and Resets .

Asynchronous Sets and Resets .

Clock Enable .

Assigning I/O Buffers from Verilog . 7

Automatic Assignment Using Chip Mode.

Manual Assignment Using the Control File

Buffer Assignment Using Component Instantiation

Tristate Buffers .

Bidirectional Buffers . 7

Buses .

State Machines .

Moore Machines . 7

Mealy Machines . 7

Issues in State Machine Design. .

State Encoding. 7

One-Hot Encoding. 7
Contents xi

24

-25

-27

7-27

7-28

-29

7-30

7-30

7-31

-31

-32

-1

8-1

8-2

8-3

8-3

8-4

8-4

1

0-1

10-1

10-2

10-3

0-5
Initialization and Power-Up Conditions 7-

Arithmetic and Relational Logic . 7

Module Generation . 7

Resource Sharing and Common Subexpression Elimination. . . .

Comparator Design .

Technology-Specific Macros. 7

Synthesis Directives .

parallel_case and full_case directives .

translate_off and translate_on directives

enum directive. 7

attribute directive . 7

8. Verilog and Synthesis of Logic . 8

Comparing With X and Z .

Variable Indexing of Bit Vectors .

Syntax and Semantic Restrictions .

Unsupported Verilog Features .

Supported Verilog Features (Limited in Usage)

Supported Verilog Features (Ignored by Exemplar Synthesis) . .

9. Introduction to Module Generation. 9-

10. Using Module Generation . 1

Supported Technologies .

Supported Operators .

Counters and RAMs .

Counter and RAM Inferencing and Module Generation 1
xii HDL Synthesis Guide

0-8

0-8

0-8

0-9

-10

0-10

-1

11-1

11-5

11-7
Using Module Generation With Exemplar Synthesis Tools. 1

Specifying Module Generation Library. 1

Area/Delay Trade-offs Attributes . 1

Disabling Module Generation . 1

Counter and RAM Extraction . 10

Verilog Usage . 1

11. User-Defined Module Generators . 11

The Module Generator Boundary .

Module Generator Contents .

Usage .
Contents xiii

xiv HDL Synthesis Guide

Introduction to VHDL Synthesis 1
age
ly
r,

vant.
s,
el

ed,
wn
Overview

VHDL is a high level description language for system and circuit design. The langu
supports various levels of abstraction. Whereas regular netlist formats support on
structural description, and a boolean entry system supports only dataflow behavio
VHDL supports a wide range of description styles. These include structural
descriptions, dataflow descriptions and behavioral descriptions.

The structural and dataflow descriptions show a concurrent behavior. That is, all
statements are executed concurrently, and the order of the statements is not rele
On the other hand, behavioral descriptions are executed sequentially in processe
procedures and functions in VHDL. The behavioral descriptions resemble high-lev
programming languages.

VHDL allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic need
resulting in a final netlist description in the technology of your choice. The Top-Do
Design Flow enabled by the use of the synthesis tools is shown in Figure 1-1.
1-1

1

L
s do,

e
Figure 1-1 Top-Down Design Flow with the Exemplar synthesis tools

VHDL and Synthesis

VHDL is fully simulatable, but not fully synthesizable. There are a number of VHD
constructs that do not have valid representation in a digital circuit. Other construct
in theory, have a representation in a digital circuit, but cannot be reproduced with
guaranteed accuracy. Delay time modeling in VHDL is an example.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL)
circuit descriptions and target a specific technology. Scheduling and allocation
algorithms, which perform circuit optimization at a very high and abstract level, ar
not yet robust enough for general circuit applications. Therefore, the result of

concept

LeoHDL 01

synthesize to gate

translate to behavior/simulate

optimize speed/area

technology map

physical implementation

CAE simulator

E
xe

m
pl

ar
 S

yn
th

es
is

 T
oo

ls
1-2 HDL Synthesis Manual

1

s of
is
uit

tion

t
t
oal
r the
 are

DL
t are

E.

ble

DL.
s
ues,
synthesizing a VHDL description depends on the style of VHDL that is used. User
the Exemplar synthesis tools should understand some of the concepts of synthes
specific to VHDL coding style at the RTL level in order to achieve the desired circ
implementation.

Synthesis tools are ideal for solving many of the cumbersome RTL logic optimiza
problems that occur during a typical top-down design project.

This manual is intended to give the VHDL designer guidelines to achieve a circui
implementation that satisfies the timing and area constraints set for a given targe
circuit, while still using a high level of abstraction in the VHDL source code. This g
will be discussed both in the general case for synthesis applications, as well as fo
Exemplar synthesis tools specifically. Examples are used extensively; VHDL rules
not emphasized.

Knowledge of the basic constructs of VHDL is assumed, although Chapter 2, VH
Language Features is dedicated to the discussion of all the constructs in VHDL tha
useful for synthesis. If you need more details about VHDL, a comprehensive
description of VHDL is given in the book “VHDL” by Douglas E. Perry
(McGraw-Hill, Inc.), and VHDL related to digital circuits is discussed by Randolph
Harr in “Applications of VHDL to Circuit Design” (Kluwer Academic Publishers). In
addition, training on the Exemplar synthesis tools and VHDL for synthesis is availa
from Exemplar Logic, and training on VHDL and top-down design in general is
available from a number of different sources.

In This Manual

The VHDL portion of this manual is organized as follows:

A basic description of the most relevant VHDL constructs is given in Chapter 2,
“VHDL Language Features.” Chapter 3, “The Art Of VHDL Synthesis,” discusses
VHDL for synthesis purposes. Within this chapter, a number of common digital
circuits are analyzed, with examples of how to properly code these designs in VH
Chapter 4, “The VHDL Environment,” deals with how the Exemplar synthesis tool
are used together with other VHDL and CAE software, and how non-standard iss
such as file handling, are implemented. The Exemplar VHDL package is also
presented in this chapter.
Introduction to VHDL Synthesis 1-3

1

ave
er
Customer Support

If you encounter problems using VHDL or the Exemplar synthesis tools, or if you h
any questions or remarks about this VHDL manual, contact the Exemplar Custom
Support Hot Line at (510) 337-3742, or send e-mail to support@exemplar.com .
1-4 HDL Synthesis Manual

VHDL Language Features 2
and
ls

ral
This chapter provides an introduction to the basic language constructs in VHDL:
defining logic blocks, structural, dataflow and behavioral descriptions, concurrent
sequential functionality, design partitioning and more. The Exemplar synthesis too
synthesize all levels of abstraction, and minimizes the amount of logic needed,
resulting in a final netlist description in the technology of your choice.

Entities and Architectures

The basic building blocks in VHDL are Entities and Architectures. An entity describes
the boundaries of the logic block. Its ports and its generics are declared here. An
architecture describes the contents of the block in structural, dataflow and behavio
constructs.
2-1

2

ase

e
ity.

L
 error
f type

f
This VHDL description shows the implementation of small_block , a block that
describes some simple logic functions.

The entity describes the boundary. The port list is given with a direction (in this c
in or out), and a type (bit) for each port. The entity’s name is small_block . The
architecture’s name is exemplar and it is linked to the entity via the name
small_block . There can be multiple architectures per entity, but always only on
architecture is executed. By default, the last defined architecture is linked to the ent

The architecture describes the contents of the small_block . The architecture starts
with a declarative region; in this case, the internal signal s is declared. It also has a
type (bit), just like the ports in the entity.

A signal is another form of an object in VHDL. All objects and expressions in VHD
are strongly typed. This means that all objects are of a defined type and issues an
message if there is a type mismatch. For example, you cannot assign an integer o
signal to a bit .

The architecture contents starts after the begin statement. This is called the dataflow
environment (please refer to the previous example). All statements in the dataflow
environment are executed concurrently, and thus the order of the statements is
irrelevant. This is why it is valid to use s before s is assigned anything. Assignment o
a value to a signal is done with the <= sign. In the first statement, o1 is assigned the
result value of s or c . or is a predefined operator.

entity small_block is
port (a, b, c : in bit ;

o1 : out bit ;
o2 : out bit

) ;
end small_block ;

architecture exemplar of small_block is

signal s : bit ;
begin

o1 <= s or c ;
s <= a and b ;
o2 <= s xor c ;

end exemplar ;
2-2 HDL Synthesis Manual

2

n the

 to be

ly
ure
red.

re of

Additional details about the various dataflow statements and operators are given i
following sections.

Configuration

In summary, a configuration declaration provides the mechanism for delayed
component binding specification. The entity name identifies the root entity to be
elaborated. The optional architecture name provides the name of the architecture
elaborated.

A configuration declaration can configure each component instantiation individual
with a different entity or architecture. The configuration declaration can also config
some lower level component instantiation of the current component being configu

With the help of the configuration declaration, you can try out different possible
bindings of the component instantiations by keeping the basic hierarchical structu
the top level design intact.

NOTE: If you use “con” for configuration and “ent” for entity then the name of the
hierarchy cell created is “con_ent ”.

library ieee;
library work;
use ieee.std_logic_1164.all;

package global_decl is
type log_arr is array(std_logic) std_logic;
constant std_to_bin : log_arr:=('X','X','0','1','X','X', '0','1','X');
function to_bin (from : std_logic) return std_logic;

end ;
package global_decl is

function to_bin (from : std_logic) return std_logic is
begin

return std_to_bin(from);
end ;

end ;
continued....
VHDL Language Features 2-3

2

....continued

library ieee;
library work;
use ieee.std_logic_1164.all;
use work.global_decl.all;

entity en1 is port
(a: in std_logic;
b: out std_logic);

end ;

architecture ar1 of en1 is
begin

b <= to _bin (a);
end ;

architecture ar2 of en1 is
begin

b <= not (to _bin (a));
end ;

library ieee;
library work;
use ieee.std_logic_1164.all;
use work.global_decl.all;

entity en2 is port
(a: in std_logic;
b, c: out std_logic);

end ;

architecture arc of en2 is
component en1 port

(a: in std_logic;
b: out std_logic);

end component ;
continued....
2-4 HDL Synthesis Manual

2

aflow
der of
 of

ses
 with
in the
....continued
begin

c1: en1 port map (a => a, b => b);
c2: en1 port map (a => a, b => c);

end ;

library work;
configuration binding of en2 is

for arc
for c1: en1 use entity work.en1 (ar1);
end for ;
for c2: en1 use entity work.en1 (ar2);
end for ;

end for ;
end binding ;

Processes

Processes are sections of sequentially executed statements, as opposed to the dat
environment, where all statements are executed concurrently. In a process, the or
the statements does matter. In fact, processes resemble the sequential coding style
high level programming languages. Also, processes offer a variety of powerful
statements and constructs that make them very suitable for high level behavioral
descriptions.

A process can be called from the dataflow area. Each process is a sequentially
executed program, but all processes run concurrently. In a sense, multiple proces
resemble multiple programs that can run simultaneously. Processes communicate
each other via signals that are declared in the architecture. Also the ports defined
entity can be used in the processes.
VHDL Language Features 2-5

2

entity experiment is
port (source : in bit_vector(0 to 3) ;

ce : in bit ;
wrclk : in bit ;
selector : in bit_vector(0 to 1) ;
result : out bit

);
end experiment;

architecture exemplar of experiment is

signal intreg : bit_vector(0 to 3) ;

begin -- dataflow environment

writer : process -- process statement
-- declarative region (empty here)

begin -- sequential environment
-- sequential (clocked) statements

 wait until wrclk’event and wrclk = ’1’ ;
if (ce=’1’) then

intreg <= source ;
end if ;

end process writer;

reader : process (intreg, selector) -- process statement
-- with sensitivity list

-- declarative region (empty here)
begin

-- sequential (not-clocked) statements
case selector is

when "00" => result <= intreg(0) ;
when "01" => result <= intreg(1) ;
when "10" => result <= intreg(2) ;
when "11" => result <= intreg(3) ;

end case ;
end process reader;

end exemplar ;
2-6 HDL Synthesis Manual

2

ge of

l
value

he
 in
 the

alue of

 etc.
ocess

t can
er to
This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk), store the value internally in a register (intreg) if a chip
enable (ce) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signals of two bits.

The description consists of two processes, one to write the value into the interna
register, and one to read from it. The two processes communicate via the register
intreg.

The first process (writer) includes a wait statement. The wait statement causes t
process to execute only if its condition is true (a further explanation is given later
the chapter). In this case, the wait statement waits until a positive edge occurs on
signal wrclk (expression wrclk’event and wrclk=’1’). Each time the edge
occurs, the statements below the wait statements are executed. In this case, the v
the input signal source is loaded into the internal signal intreg only if ce is’1’ . If
ce is’0’ , intreg retains its value. In synthesis terms, this translates into a
D-flipflop, clocked on wrclk , and enabled by ce .

The second process (reader) does not have a wait statement. Instead, it has a
sensitivity list, with the signals intreg and selector there. This construct defines
that the whole process is executed each time either intreg or selector changes. If
the process is executed, the output signal result gets updated with depending on the
values of intreg and selector . Note that this leads to combinational behavior,
since result depends on only intreg and selector , and each time either of
these signals changes, result gets updated.

A process has an optional name (in this case writer and reader), a sensitivity list
OR a wait statement, and a declarative region where signals, variables, functions
can be declared which are used only within the process. The next section of the pr
is the sequential environment where all statements are made. Each statement is
executed sequentially, as in a programming language.

Not all constructs, or combinations of constructs, in a process lead to behavior tha
be implemented as logic. For more information about synthesizable constructs, ref
“Syntax and Semantic Restrictions” on page 22.
VHDL Language Features 2-7

2

r

r

the bit
 and
11",

r

.
lue
er.

e
Literals

Constant values in VHDL are given in literals. Literals are lexical elements. Below is
an overview, with examples given for each type of literal.

Literals are used to define types and as constant values in expressions. This list
provides a brief description of their function in VHDL which will be more clear afte
the descriptions of types and expressions.

The ’_’ in bit string literals, decimal literals and based literals helps to order you
literal, but does not represent a value.

Character literals contain only a single character, and are single quoted.

String literals contain an array of characters, and are double quoted.

Bit String Literals are a special form of string literals. They contain an array of the
characters 0 and 1, and are preceded by one of three representation forms. B is
representation (0 or 1 allowed), X the hexadecimal representation (0 to F allowed)
O the octal representation (0 to 7 allowed). X"5F" is exactly the same as B"010111
which is again the same as the string literal "01011111".

Bit string literals can contain underscores, which are ignored and only inserted fo
readability.

Decimal literals are integer or real values.

Based literals are also integer or real values, but they are written in a based form
8#75# is the same as decimal 61. However it is not the same as the bit literal va
O"75" since the bit literal value is an array (of bits) and the based literal is a integ

Physical literals are sometimes required for simulation. As they are not used in th
synthesized part of the design, we do not go into detail about them.

Character Literals: ’0’ ’X’ ’a’ ’%’#

String Literals: “1110100” “XXX” “try me!” “$^&@!”

Bit String Literals: B“0010_0001” X”5F’ O“63_07”

Decimal Literals: 27 -5 4E3 76_562 4.25

Based Literals: 2#1001# 8#65_07" 14#C5#E+2

Physical Literals: 2 ns 5.0 V 15 pF

Identifiers: Idle TeSTing a true_story
2-8 HDL Synthesis Manual

2

s in

trate

s the
oids
er to
nd

 to

ire
e

calar
Identifiers can be enumeration literals. They are case-insensitive, like all identifier
VHDL. Their use becomes more clear with the discussion of VHDL types.

Types

A type is a set of values. VHDL supports a large set of types, but here we concen
on types that are useful for synthesis.

VHDL is a strongly typed language: every object (see “Objects” on page 30) in a
VHDL source needs to be declared and needs to be of a specific type. This allow
VHDL compiler to check that each object stores a value that is in its type. This av
confusion about the intended behavior of the object, and in general allows the us
catch errors early in the design process. It also allows overloading of operators a
subprograms (“User-Defined Attributes” on page 46 and “Resolution Functions” on
page 52). It also make coding in VHDL a look more difficult at first sight, but tends
produce cleaner, better maintainable code in the end.

VHDL defines four classes of types:

• Scalar types

• Composite types

• Access types

• File types

Access types and File type cannot be applied for logic synthesis, since they requ
dynamic resource allocation, which is not possible in a synthesized hardware (se
“VHDL Language Restrictions” on page 23). Therefore, we will not discuss these.

Instead, only scalar types and composite types will be discussed. These are all s
types in VHDL:

• Enumeration types.

• Integer types

• Floating-point types

• Physical types

VHDL has two forms of composite types:

• Array types

• Record types.
VHDL Language Features 2-9

2

, and

e
sis

f
tion

ect.

e

three
This section will discuss the syntax and semantics of scalar and composite types
comment about the synthesizability of objects of these types.

Finally, this section will discuss some of the built-in standard types of the languag
(IEEE 1076), and a standardized set of types that are often used for logic synthe
purposes (IEEE 1164).

Enumeration Types

Syntax and Semantics

An enumeration type consists of a set of literals (values). It indicates that objects o
that type cannot contain any other values than the ones specified in the enumera
type.

An example of an enumeration type is the pre-defined type bit . This is how the type
bit is declared:

Any object of type bit can only contain the (literal) values ’0’ and ’1’ . The VHDL
compiler will error out (type error) if a different value could be assigned to the obj

Enumeration types are also often used to declare the (possible) states of a state
machine. Here is an example of the declaration of the states of an imaginary stat
machine are declared:

Once an object of this type is declared, the object can contain only one of these
‘state’ values.

 type bit is (’0’,’1’) ;

 type states is (IDLE, RECEIVE, SEND) ;
2-10 HDL Synthesis Manual

2

 any
st

 in

n

e
ugh
Synthesis Issues

It is important to understand a logic synthesis tool needs to do state encoding on
enumeration type. For example, the states type in the previous section needs at lea
two bits to represent the three possible values. This section mainly deals with the
various forms of controlling the enumeration encoding for each enumeration type
your design.

By default, the synthesis tools perform onehot encoding on an enumeration type.
With Galileo, any other encoding can be achieved with a global switch (-encoding).
With Leonardo, other encodings can be achieved by using the encoding variable. In
addition both tools support alternate encodings by using any of the following
attributes:

• TYPE_ENCODING_STYLE (define the encoding style for state machine type
encoding)

• TYPE_ENCODING (define the bit-to-bit encoding for state machine type values
manually)

• LOGIC_TYPE_ENCODING (define that the type needs to be synthesized into a
single binary value)

These three attributes are declared in the exemplar_1164 package. So you do not
need to declare them if you use a use exemplar.exemplar_1164.all
statement in your design unit. For more information, see “The Exemplar Packages” o
page 11.)

The LOGIC_TYPE_ENCODING attribute on an enumeration type will give a hint to th
compiler that any object of the type should be encoded with a single bit, even tho
there might be more than two value in the type. An example of a type where
LOGIC_TYPE_ENCODING is helpful, is the type std_ulogic in the IEEE 1164
VHDL Language Features 2-11

2

ine

s in
ed
lues

is
hesis

-state

s
 is
package (see “IEEE 1076 Predefined Types” on page 28). The type consists of n
values, but the synthesis tools should encode any object of std_ulogic as a single
bit value. Here is how the synthesis tools encode std_ulogic as a single-bit value:

LOGIC_TYPE_ENCODING takes an array of characters, as many as there are value
the type, and each character states how the synthesis tools should treat the relat
value. There are four values that the synthesis tools accepts as legal single bit va
for the LOGIC_TYPE_ENCODING attribute: ’0’,’1’,’X’,’Z’ .

’0’ : Treat the value as a logic zero.

’1’ : Treat the value as a logic one.

’X’ : Treat the value as either a logic one or a logic zero. The Exemplar synthes
tools can decide which one, depending on the context it is used in. The synt
tools will use this freedom to optimize the circuit as much as it can.

’Z’ : Treat the value as a high-Z values. The synthesis tools will generate a three
driver if this value is used in an assignment.

The synthesis tools can work with all values of a type with a
LOGIC_TYPE_ENCODING attribute. Only comparisons of a NON-STATIC value
with ’X’ or ’Z’ will return FALSE.

The TYPE_ENCODING and TYPE_ENCODING_STYLE attributes on an enumeration
type are used to control state-encoding for state-machine descriptions. Normally,
state-machines in VHDL are described by giving a enumeration type that identifie
each possible state of the state machine. The encoding for this enumeration type
done by the synthesis tools. By default, they use BINARY encoding.

-- Declare the LOGIC_TYPE_ENCODING attribute :
attribute LOGIC_TYPE_ENCODING : string ;

-- Declare the std_ulogic type :
type std_ulogic is (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;

-- Set the LOGIC_TYPE_ENCODING attribute on the std_ulogic type :
attribute LOGIC_TYPE_ENCODING of std_ulogic:type is
 (’X’,’X’,’0’,’1’,’Z’,’X’,’0’,’1’,’X’) ;
2-12 HDL Synthesis Manual

2

s of
e

tate

to be

e,
The TYPE_ENCODING_STYLE gives a hint to the compiler as to what kind of
encoding style to choose. There are four different styles to choose from: BINARY,
GRAY, ONEHOT, RANDOM. Here is an example of how to use the
TYPE_ENCODING_STYLE attribute on a (imaginary) state enumeration type:

In the above example, the synthesis tools will use one-hot encoding for the value
my_state_type . More specifically, the synthesis tools will use five bits for the typ
and will encode the states as follows:

The ’-’ value will allow the synthesis tools to only compare a single bit when a s
value is tested for. When a state value is assigned, ’-’ means a 0. This scheme allows
the synthesis tools to eliminate almost all logic when testing for the state machine
in a particular state. On the other hand, since ONEHOT encoding requires more bits
than other encoding styles, the number of flip-flops will increase. ONEHOT encoding
can therefore be very beneficial for technologies where flip-flops are not expensiv
but combinational logic is (like in the Xilinx architectures).

-- Declare the TYPE_ENCODING_STYLE attribute
-- (not needed if the exemplar_1164 package is used) :
type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM) ;
attribute TYPE_ENCODING_STYLE : encoding style ;

-- Declare the (state-machine) enumeration type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the TYPE_ENCODING_STYLE of the state type :
attribute TYPE_ENCODING_STYLE of my_state_type:type is ONEHOT ;

 bit4 bit3 bit2 bit1 bit0
 SEND - - - - 1
 RECEIVE - - - 1 -
 IGNORE - - 1 - -
 HOLD - 1 - - -
 IDLE 1 - - - -
VHDL Language Features 2-13

2

ed

sis
bove

s

t the
Naming: For ONEHOT encoding, the synthesized bits of a state machine will be nam
after the bit number in the above table. Here is an example:

The signal state will be synthesized with one-hot encoding style, and the synthe
tools will generate five bits for it, where each one gets the state number from the a
table:

state(4) corresponds to bit4 in the state table

state(3) corresponds to bit3 in the state table

state(2) corresponds to bit2 in the state table

state(1) corresponds to bit1 in the state table

state(0) corresponds to bit0 in the state table

For BINARY encoding (the default) the synthesis tools will use the following state
table:

BINARY encoding (as GRAY and RANDOM encoding) uses the minimum number of bit
needed to encode all values. In the above case (five values), BINARY encoding needs
three bits. The last value (for IDLE) in the above table indicates several ’-’ s. The
’-’ (just as the ’-’) value is used to reduce the size of comparators needed to tes
state.

signal state : my_state_type ;

 bit2 bit1 bit0
 SEND 0 0 0
 RECEIVE 0 0 1
 IGNORE 0 1 0
 HOLD 0 1 1
 IDLE 1 - -
2-14 HDL Synthesis Manual

2

 the

 be
Naming: For BINARY encoding, as well as for GRAY and RANDOM encoding, the
synthesis tools will generate the minimum number of bits needed for an object of
type. The signal state will now generate three bits, each with the following name:

state(2) corresponds to bit2 in the state table

state(1) corresponds to bit1 in the state table

state(0) corresponds to bit0 in the state table

GRAY encoding lets the synthesis tools build a Gray-code encoding. Gray-code
encoding assures that in each successive value, only one single bit changes:

Gray encoding does not use the optimization possible with the ’-’ value. Gray
encoding reduces glitches in the combinational logic when moving from one value
(state) to its successor. It can be helpful in designs that require very clean logic
switching and state machines that do not perform many jumps to different states.

RANDOM encoding will create a random encoding scheme. The state table cannot
predicted, nor is there any way to let the synthesis tools produce it for you. RANDOM
encoding is interesting if you would like to see whether or not the circuit size of
performance depends heavily on the state encoding.

 bit2 bit1 bit0
 SEND 0 0 0
 RECEIVE 0 0 1
 IGNORE 0 1 1
 HOLD 0 1 0
 IDLE 1 1 0
VHDL Language Features 2-15

2

le:

any
e
is the
uit.
To fully control the state encoding, use the TYPE_ENCODING attribute. With the
TYPE_ENCODING attribute you can define the state table used. Here is an examp

The TYPE_ENCODING attribute takes an array of equal-length strings, where each
string defines a row in the state table. The TYPE_ENCODING attribute is declared in
the exemplar_1164 package, so if you use that, you do not have to enter the
declaration for it.

This attribute setting will let the synthesis tools to use the following state table:

Note – The number of bits used in the TYPE_ENCODING attribute value does not have
to be the smallest possible number of bits. Just make sure that you specify as m
strings as there are values in the enumeration type. Also note that you can use th’-’
value to let the Exemplar synthesis tools know to not use these bits when testing
state machine is in the given state. You can use this to reduce the size of the circ

-- Declare the TYPE_ENCODING attribute :
type exemplar_string_array is array (natural range <>, natural range <>)
 of character ;
attribute array_pin_number : exemplar_string_array ;
attribute TYPE_ENCODING : exemplar_string_array ;

-- Declare the (state-machine) enumeration type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the type-encoding attribute :
attribute TYPE_ENCODING of my_state_type:type is
 ("0001","01--","0000","11--","0010") ;

 bit3 bit2 bit1 bit0
 SEND 0 0 0 1
 RECEIVE 0 1 - -
 IGNORE 0 0 0 0
 HOLD 1 1 - -
 IDLE 0 0 1 0
2-16 HDL Synthesis Manual

2

ding

state

each

ove

ools

ge

An
pe is

:

Right now, the synthesis tools do not have an algorithm to find a good state enco
for any enumeration type. Still, the various forms of manual state table control
explained in this section should allow you to find a good state encoding for each
machine in your design.

The attributes described in this section allow you to encode each state machine (
state-type) individually. Galileo also provides a command line switch (-encoding)
that sets the default encoding (BINARY) to either BINARY, ONEHOT, GRAY or
RANDOM. This command-line switch is useful to quickly switch from one state
encoding style to another on a design with a single state machine. Any of the ab
encoding attributes overwrite any default setting. For Leonardo, set the encoding
variable to BINARY (default), ONEHOT, GRAY or RANDOM before reading in a design
to use a different encoding style for the state machines in the design.

An interesting effect of this way of handling encoding for enumeration types in
synthesis of the predefined type character in VHDL. The character type is
defined in the package standard , as an enumeration of all characters in the 8-bit
ASCII set. When BINARY encoding (default) is chosen, each character will be
synthesized into seven bits, with exactly its 8-bit ASCII value. So, the synthesis t
can synthesize characters (and strings) representing them as ASCII values. If a
different default encoding is chosen, the encoding of the character type will chan
accordingly.

Integer Types

Syntax and Semantics

When designing arithmetic behavior, it is very helpful to work with integer types.
integer type defines the set of integer values in its range. This is how an integer ty
defined:

Any object of type my_integer can only contain integer values in the range
specified. VHDL pre-defines an integer type called integer , that at least covers a
range of integer values that can be represented in two’s complement with 32 bits

type my_integer is range 0 to 15 ;

type integer is range -2147483647 to 2147483647;
VHDL Language Features 2-17

2

this

no
thesis

 than
ent
since
s.

n

 an

list:

ent
pe
bit.
Actually, VHDL 1076 does not define the maximum bounds of the predefined type
integer nor of any other integer type, it just states that it should at least include
range.

Synthesis issues

The Exemplar synthesis tools can synthesize with any integer type that contains
values outside the range -2147483648 to 2147483647. The reason is that the syn
tools store integer values (constant ones) using (32 bit) integers internally. If more
32 bits are needed for a particular circuit design, you should use arrays to repres
them. It is not wise to use integer types that exceed the above range in general,
many other VHDL tools have the same restriction as the Exemplar synthesis tool

The synthesis tools need to do encoding for integer types, since an integer range
requires multiple bits to represent. The synthesis tools will analyze the range of a
integer type and calculate the number of bits needed to represent it.

If there are no negative values in the integer range, the synthesis tools will create
unsigned representation. For example, consider the following object of the type
my_integer from the previous section:

The signal count will be represented as unsigned, consisting of four bits. When
synthesized, the four bits will be named as elements of a bus in the resulting net

If the range includes negative numbers, the synthesis tools will use two’s-complem
representation of the integer values. For example, any object of the predefined ty
integer will be represented with 32 bits where the MSB bit represents the sign

Example:

 signal count : my_integer ;

count(0) the LSB bit
count(1)
count(2)
count(3) the MSB bit

signal big_value : integer ;
2-18 HDL Synthesis Manual

2

the

ge,
 a
bits,
Now, the synthesis tools will represent the signal big_value as 32 bits:

Floating-point Types

Syntax and Semantics

As any high-level programming language, VHDL defines floating-point types.
Floating-point types approximate the real numbers.

Here is an example of the declaration of a floating-point type:

VHDL pre-defines a very general floating-point type called real.

Just as with the integer types, maximum bounds of any floating-point type is not
defined by the language. Still, any floating-point type should but should at least
include -1.0E38 to 1.0E38.

Nothing in the language defines anything about the accuracy of the resolution of
floating-point type values.

Synthesis Issues

In general, since the resolution of floating-point types is not defined by the langua
it is difficult to come up with a good rule for encoding floating-point types. While in
regular (software) compilers floating-point types are represented in 32, 64 or 128
the floating-point operations just require time. In hardware compilers like a logic

big_value(0) the LSB bit
big_value(1)
 :
 :
big_value(30) the MSB bit
big_value(31) the sign bit

 type my_real is range 0.0 to 1.0 ;

type real is range -1.0E38 to 1.0E38 ;
VHDL Language Features 2-19

2

 are

thesis

sion,
e on

n

 the
synthesis tool, floating-point operations would require massive amounts of actual
synthesized hardware, unless the resolution and bounds of the floating-point type
kept under very close control.

For the above reasons, the Exemplar synthesis tools do not currently support syn
of floating point objects.

Floating-point types and objects can however be used in constant expression.

For example, an attribute could get a (compile time constant) floating-point expres
and the synthesis tools will calculate the expression and set the floating-point valu
the attribute.

Physical Types

Syntax and Semantics

VHDL allows the definition of physical types. Physical types represent relations betwee
quantities. A good example of a physical type is the predefined type time :

Objects of physical types can contain physical values of the quantities specified in
type, as long as the values do not exceed the type’s range. Type time is often used in
VHDL designs to model delay.

type time is range -2147483647 to 2147483647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;
2-20 HDL Synthesis Manual

2

s.

hin

e

ts (the

rray)
Synthesis Issues

Physical types, objects and values are normally only used for simulation purpose
Objects and values of type time are used in after clauses to model delay.

The Exemplar synthesis tools attempt to synthesize any physical value that is wit
the range of the type. The encoding follows the encoding for integer types, and
expresses the value with respect to the base quantity (fs in the type time). It is not
common practice however to synthesize logic circuitry to model physical values.

The synthesis tools handles constant expressions of physical values without any
problems. For example, attributes of type time can receive constant values of type
time . This is often used to model arrival time and required time properties in the
design. (For more information, see “The Exemplar Packages” on page 11.)

Array Types

Syntax and Semantics

An array type in VHDL specifies a collection of values of the same type. There ar
constrained and unconstrained array types.

For an constrained array type, the number of elements and the name of the elemen
index) is defined and fixed.

Example:

In this example, type byte defines an array of 8 element, each of type bit . The
elements are named with indexes ranging from 7 (for the left most element in the a
downto 0 (for the right most element in the array). Example of an array object:

type byte is array (7 downto 0) of bit ;

constant seven : byte := "00000111" ;
VHDL Language Features 2-21

2

ents in

till,
t the

cing

ricted
can

ords
Individual elements of the array object can now be referred to using indexing:

seven(0) is the name of the right most element in array seven . Its value is the
bit literal ’1’ .

seven(7) is the name of the left most element in array seven . Its value is the bit
literal ’0’ .

Parts of the array can be retrieved using slicing:

seven(3 downto 0) is the name of the right most four elements in array
seven . The value is an array of four bits: "0111" . The indexes of this array range
from 3 down to 0.

For an unconstrained array type, the number of elements and the name of the elem
not yet defined. An example is the pre-defined type bit_vector :

Here, the array type defines that the element type is bit , and that the index type is
type natural . Type natural is a integer subtype that include all non-negative
integer. The meaning of this is that the index value for any object of type
bit_vector can never be negative.

By defining an unconstrained array type, you defer specifying a size for the array. S
in order to define a valid object of an unconstrained array type, we need to constrain
index range. This is normally done on the object declaration:

Unconstrained array types are very important, since they allow to declare many
different-size objects to be declared and used through each other, without introdu
type conflicts.

The type of the element of an (constrained or unconstrained) array type is not rest
to enumerated type bit as in the examples above. Actually, an array element type
be any type but an unconstrained array type.

So you could define an array of integers, an array of 6-bit arrays, an array of rec
etc. But you cannot declare an array of (the unconstrained array type) bit_vector .

type bit_vector is array (natural range <>) of bit ;

constant eight : bit_vector (7 downto 0) := "00001000" ;
2-22 HDL Synthesis Manual

2

s”
eed to

t can

. The

xes

for
he

hat
mple
and
he

re
MSB

the
If you want an unconstrained array type where you need more indexes to remain
unconstrained, you need a multi-dimensional array type:

Multi-dimensional (constrained and unconstrained) array type are handy when
modeling RAMs, ROMs and PLAs in VHDL. The section “Edge-Sensitive Flip-Flop
on page 3 gives some examples. Indexes and slices of multi-dimensional arrays n
specify all index dimensions, separated by a comma. Again, “Edge-Sensitive
Flip-Flops” on page 3 gives examples.

Finally, the index type of an array type does not have to be an integer (sub)type. I
also be an enumeration type.

Synthesis Issues

There are no synthesis restrictions in the Exemplar synthesis tools on using arrays
synthesis tools support arrays of anything (within the language rules),
multi-dimensional arrays, array types with enumeration index type. Negative inde
are also allowed.

Naming of array objects is straightforward. The synthesis tools append the index
each element after the array name. If the element type consists of multiple bits, t
synthesis tools append the element indexes to the array name with its index.

It is important to understand that there is no Most Significant Bit (MSB) or Least
Significant Bit (LSB) defined in an array type or array object. The semantics of w
is interpreted as MSB or LSB is defined by the operations on the array. In the exa
of object seven above, the user probably meant the left most bit to be the MSB,
the right most bit the LSB. However, this is not defined by the language, just by t
user.

Additions, subtractions, and multiplications have to be defined by the user. Most
synthesis tool vendors define (arithmetic) operations on arrays in packages that a
shipped with the product. Most of these packages assume that leftmost bit is the
and the rightmost bit is the LSB. As an example of this, the packages exemplar and
exemplar_1164 (see “The Exemplar Packages” on page 11) define arithmetic
operators the bit_vector and the IEEE 1164 array equivalent
std_logic_vector type. In these packages, the leftmost bit is assumed to be
MSB.

type matrix is array (natural range <>, natural range <>) of bit ;
VHDL Language Features 2-23

2

ll

rained

ed in

name:
Record Types

Syntax and Semantics

A record type defines a collection of values, just like the array type.

All elements of an array must be of the same type. Elements of a record can be of
different types:

The element type month_name in this example could be an enumeration type with a
names of the months as literals.

The elements of a record type can again be of any type, but cannot be an unconst
array.

Consider the following object of type date :

Note – An aggregate is used here to initialize the constant. Aggregates are discuss
the section “IEEE 1076 Predefined Operators” on page 40.

Individual elements of a record object can be accessed with a selected name. A
selected name consists of the object name, followed by a dot (.) and the element

my_birthday.year selects the year field out of my_birthday and returns
the integer value 1993 .

type date is
record

day : integer range 1 to 31 ;
month : month_name ;
year : integer range 0 to 4000 ;

end record ;

constant my_birthday : date := (29, june, 1963) ;
2-24 HDL Synthesis Manual

2

s) on

he
ame

ually
do a
uld
Synthesis Issues

The Exemplar synthesis tools impose no restrictions (apart from the language rule
record types and record objects.

Naming of the individual bits that result after synthesizing a record object follow t
selected naming rule of the language: Each bit in a record object get the record n
followed by a dot, followed by the element name. If the element synthesizes into
multiple bits, the index of the bits in each element are appended to that. As an
example, the five bits that represent the day field in my_birthday will be named as
follows:

Subtypes

A subtype is a type with a constraint.

A subtype allows you to restrict the values that can be used for an object without act
declaring a new type. This speeds up the debugging cycle, since the simulator will
run-time check on values being out of the declared range. Declaring a new type wo
cause type conflicts. Here is an example:

my_birthday.day(0) LSB in my_birthday.day
my_birthday.day(1)
my_birthday.day(2)
my_birthday.day(3)
my_birthday.day(4) MSB in my_birthday.day

subtype <subtype_name> is <base_type> [<constraint>] ;

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7 ;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ; <- type error occurs because
 big_integer and small_integer are
 NOT the same type
VHDL Language Features 2-25

2

ne to

e as

trained
rray

 in
pes
With a type-conversion (see next section), you can ’cast’ one integer into another o
avoid the above error. Still, it is cleaner to use a subtype declaration for the (more
constrained) small_integer type:

Subtypes can be used to constraint integer types (as in the above example),
floating-point type, and unconstrained arrays.

Declaring a subtype that constraints an unconstrained array type is exactly the sam
declaring a constrained array type:

has the same effect as:

Just as in the integer type example above, subtypes of one and the same uncons
base-type are compatible (will not cause type errors), but when two constrained a
types are used, they will cause type errors if objects of both types are intermixed
expressions. Type conversion is then the only possibility to let objects of the two ty
be used together in expressions without type errors (see next section).

There are no synthesis restrictions on the use of subtypes.

type big_integer is range 0 to 1000 ;
subtype small_integer is big_integer range 0 to 7 ;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ;<- NO type error occurs ! because
big_integer and small_integer
have the same base-type
(big_integer).

type bit_vector is array (natural range <>) of bit ;
subtype eight_bit_vector is bit_vector (0 to 7) ;

type eight_bit_vector is array (0 to 7) of bit ;
2-26 HDL Synthesis Manual

2

o

pe,

s of
all
 the

s
Type Conversions

In cases where it is not possible to declare one type and one subtype instead of tw
separate types, VHDL has the concept of type conversion. Type conversion is similar to
type ’casting’ in high level programming languages. To cast an expression into a ty
use the following syntax:

Type conversion is allowed between ’related’ types. There is a long and detailed
discussion in the VHDL LRM about what related types are, but in general, if it is
obvious to you that the compiler should be able to figure out how to translate value
one type to values of another type, the types are probably related. For example,
integer types are related, all floating-point types are related and all array types of
same element type are related.

So, the problem of type error between two different types in example of the previou
section could be solved with a type conversion:

<type>(<expression>)

type big_integer is range 0 to 1000 ;
type small_integer is range 0 to 7 ;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= big_integer(intermediate * 5) ;<- NO type error occurs now,
since the compiler knows how to
translate ’small_integer’ into
big_integer with the type
conversion.
VHDL Language Features 2-27

2

ones

s” on

c
he
port
esis.
” on

w.
IEEE 1076 Predefined Types

The VHDL IEEE 1076 standard predefines a number of types. Listed below are the
which are most important for synthesis:

The Exemplar synthesis tools also understand the predefined types CHARACTER,
STRING, SEVERITY_LEVEL, TIME, REAL and FILE . For more information on
synthesis restrictions for these object types, see “Syntax and Semantic Restriction
page 22.

 IEEE 1164 Predefined Types

A problem with the 1076 standard is that it does not specify any multi-valued logi
types for simulation purposes, but rather left this to the user and/or tool vendor. T
IEEE 1164 Standard specifies a 9-valued logic. The Exemplar synthesis tools sup
these types, although some restrictions apply to the values you can use for synth
These restrictions are discussed in the section “Syntax and Semantic Restrictions
page 22.

The meaning of the different type values of the IEEE 1164 standard are given belo

 ’U’ Uninitialized

 ’X’ Forcing Unknown

 ’0’ Forcing Low

 ’1’ Forcing High

 ’Z’ High Impedance

 ’W’ Weak Unknown

 ’L’ Weak Low

type bit is (’0’,’1’) ;
type bit_vector is array (integer range <>) of bit ;
type integer is range MININT to MAXINT ;
subtype positive is integer range 1 to MAXINT ;
subtype natural is integer range 0 to MAXINT ;
type boolean is (TRUE,FALSE) ;
2-28 HDL Synthesis Manual

2

gh

ns

ils

is is
g as
ntic

on
 ’H’ Weak High

 ’-’ Dont Care

The weak values on a node can always be overwritten by a forcing value. The hi
impedance state can be overwritten by all other values.

Most of these values are meaningful for simulation purposes only. Some restrictio
apply if you want to use these values for synthesis. Only the values
’0’ ,’1’ ,’X’ ,’-’ and ’Z’ have a well-described meaning for synthesis. For deta
see “Syntax and Semantic Restrictions” on page 22.

Some examples of IEEE 1164 type statements are:

The identifier resolution_func is a function that defines which value should be
generated in case multiple values are assigned to an object of the same type. Th
called the resolution function of the type. Resolution functions are supported as lon
they do not return any metalogical values. For details, refer to “Syntax and Sema
Restrictions” on page 22.

To use the IEEE 1164 types you must load the IEEE package into your VHDL
description. This is done with the following statements:

Details about how the synthesis tools handle packages are explained in the secti
“Entity and Package Handling” on page 1.

type std_ulogic is (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;
type std_ulogic_vector is array (natural range <>) of std_ulogic ;
subtype std_logic is resolution_func std_ulogic ;
type std_logic_vector is (natural range <>) of std_logic ;
subtype X01Z is resolution_func std_ulogic range ’X’ to ’Z’ ;

-- includes X,0,1,Z

library ieee ;
use ieee.std_logic_1164.all ;
VHDL Language Features 2-29

2

n

ept
he

ions:

d

ion,

delta
 is

e
g a
Objects

Objects in VHDL (signals, variables, constants, ports, loop variables, generics) ca
contain values. Values can be assigned to objects, and these values can be used
elsewhere in the description by using the object in an expression. All objects exc
loop variables have to be declared before they are used. This section describes t
various objects in VHDL and their semantics.

Signals

Signals represent wires in a logic circuit. Here are a few examples of signal declarat

Signals can be declared in all declarative regions in VHDL except for functions an
procedures. The declaration assigns a name to the signal (foo); a type, with or without
a range restriction (bit_vector(0 to 5)); and optionally an initial (constant)
value. Initial values on signals are usually ignored by synthesis (For details, see
“Restrictions on Initialization Values” on page 24.)

Signals can be assigned values using an assignment statement
(e.g., aux <= ’0’ ;). If the signal is of an array type, elements of the signal’s
array can be accessed and assigned using indexing or slicing. For more informat
see “Statements” on page 33.

Assignments to signals are not immediate, but scheduled to be executed after a
delay. (This effect is an essential difference between variables and signals.) This
discussed in detail in “Usage Of Attributes” on page 46.

 Constants

Constants can not be assigned a value after their declaration. Their only value is th
initial constant value. Initialization of a constant is required. An example of declarin
constant is:

signal foo : bit_vector (0 to 5) := B"000000" ;
signal aux : bit ;
signal max_value : integer ;

constant ZEE_8 : std_logic_vector (0 to 7) := "ZZZZZZZZ" ;
2-30 HDL Synthesis Manual

2

 in

ween
46.

e in
s on

tlist
l
ible

a
h
Variables

Variables can not be declared or used in the dataflow areas or in packages, only
processes, functions and procedures.

An example of declaring a variable is:

Assignments to a variable are immediate. This effect is an essential difference bet
variables and signals. This is discussed in detail in “Usage Of Attributes” on page

The initial assignment to a variable is optional. The initial assignment to a variabl
a process is usually ignored by synthesis. (For more information, see “Restriction
Initialization Values” on page 24.)

Ports

A port is an interface terminal of an entity. A port represents an ordinary port in a ne
description. Ports in VHDL are, just like other objects, typed and can have an initia
value. In addition, a port has a “direction.” This is a property that indicates the poss
information flow through the port. Possible directions are in , out , inout and
buffer , where inout and buffer indicate bidirectional functionality.

After declaration, a port can be used in the architecture of the entity as if it were
normal signal, with the following restrictions: first, you cannot assign to a port wit
direction in, and second, you cannot use a port of direction out in an expression.

variable temp : integer range 0 to 10 := 5 ;

entity adder is
port (

input_vector : in bit_vector (0 to 7) ;
output_vector : out bit_vector (0 to 7)

) ;
end adder ;
VHDL Language Features 2-31

2

the

 in

neric

and

s or

. The
e.
Generics

A generic is a property of an entity. A good example of a generic is the definition of
size of the interface of the entity. Generics are declared in a generic list.

The generic size can be used inside the entity (e.g., to define the size of ports) and
the architecture that matches the entity. In this example, the generic size is defined as
an integer with an initial value 8. The sizes of the input and output ports of the entity
increment are set to be 8 bits unless the value of the generic is overwritten by a ge
map statement in the component instantiation of the entity.

Here, a 16-bit incrementer is instantiated, and connected to the signals invec and
outvec . “Component Instantiation” on page 58 explains more about how to use
generics when instantiating components.

The Exemplar synthesis tools fully support generics and generic map constructs
imposes no restriction on the type of the generic. Generics are very useful in
generalizing your VHDL description for essential properties like sizes of interface
for passing timing information for simulation to instantiated components.

Loop Variables

A loop variable is a special object in the sense that it does not have to be declared
loop variable gets its type and value from the specified range in the iteration schem

entity increment is
generic (size : integer := 8) ;
port (ivec : in bit_vector (0 to size-1) ;

ovec : out bit_vector (0 to size-1)) ;
end increment ;

inst_1 : increment generic map (size=>16)
port map (ivec=>invec, ovec=>outvec) ;

for i in 0 to 5 loop
a(i) <= b(i) and ena ;

end loop ;
2-32 HDL Synthesis Manual

2

n
e the
nge

else
 a
In this code fragment, i becomes an integer with values 0,1,2...5 respectively, whe
the loop statements are executed 6 times. A loop variable can only be used insid
loop, and there can be no assignments to the loop variable. For synthesis, the ra
specified for the loop variable must be a compile-time constant, otherwise the
construct is not synthesizable.

Statements

This section briefly discusses the basic statements that can be used in VHDL
descriptions.

Conditional Statements

This code fragment describes a multiplexer function, implemented with an if-then-
statement. This statement can only be used in a sequential environment, such as
process, procedure or a function.

signal a : integer ;
signal output_signal, x, y, z : bit_vector (0 to 3) ;
....
if a = 1 then

output_signal <= x ;
elsif a = 2 then

output_signal <= y ;
elsif a = 3 then

output_signal <= z ;
else

output_signal <= "0000" ;
end if ;
VHDL Language Features 2-33

2

f the

ase

oices
The same functionality in the dataflow environment is accomplished with the use o
conditional signal assignment statement:

Selection Statements

If many conditional clauses have to be performed on the same selection signal, a c
statement is a better solution than the if -then -else construct:

The “|” sign indicates that particular case has to be entered if any of the given ch
is true (or functionality). Each case can contain a sequence of statements.

signal a : integer ;
signal output_signal, x, y, z : bit_vector (0 to 3) ;
....
output_signal <= x when a=1 else
y when a=2 else
z when a=3 else
"0000" ;

signal output_signal, sel, x, y, z : bit_vector (0 to 3) ;
....
case sel is

when "0010" => output_signal <= x ;
when "0100" => output_signal <= y ;
when "1000" => output_signal <= z ;
when "1010" | ”1100" | "0110" => output_signal <= x and y and z ;
when others => output_signal <= "0000" ;

end case ;
2-34 HDL Synthesis Manual

2

r:

ut
.

The case statement can only be used in a sequential environment. In the dataflow
environment, the selected signal assignment statement has the equivalent behavio

Loop Statements and Generate Statements

In many cases, especially with operations on arrays, many statements look alike, b
differ only on minor points. In that case, you might consider using a loop statement

In this code fragment, each bit of a input signal is “anded” with a single bit enable
signal, to produce an output array signal. The loop variable i does not have to be
declared. It holds an integer value since the loop range is an integer range.

The previous example showed a for loop. VHDL also has a while loop. Here is an
example:

signal output_signal, sel, x, y, z : bit_vector (0 to 3) ;
....
with sel select

output_signal <= x when "0010",
y when "0100",
z when "1000",
x and y and z when "1010" | "1100"
|"0110", "0000" when others ;

signal result, input_signal : bit_vector (0 to 5) ;
signal ena : bit ;
....
for i in 0 to 5 loop

result(i) <= ena and input_signal(i) ;
end loop ;

variable i : integer ;

i := 0 ;
while (i < 6) loop

result(i) <= ena AND input_signal(i) ;
i := i + 1 ;

end loop ;
VHDL Language Features 2-35

2

en
 thus
loop.

ls
The Exemplar synthesis tools can synthesize any for loop. A while loop, however,
can be synthesized only if the while condition evaluates to a constant (as in the
example above). If the while condition does not evaluate to a run-time constant, th
the synthesis tools do not know how many times the loop should be executed, and
cannot define how must hardware to generate for the statements inside the while
A while loop with a non-constant condition could be synthesized if there were a
wait statement inside the loop. However, this implies multiple wait statements in a
process, which is not supported by the synthesis tools.

Both a for-loop and a while-loop support EXIT or NEXT statements. An EXIT
statement tells the synthesis tools to leave the loop, and a NEXT statement tells it to go
to the next iteration.

For example, we could write the above while loop as follows:

This example is just to indicate how the EXIT and NEXT statements work. We do not
want to advise you to use the exit and next statement like this. The synthesis too
however, do synthesize this description into the same logic as the original for or
while loop. The synthesis tools are extremely good in analyzing constant
expressions, and that is why this example works.

i := -1 ;
while (TRUE) loop

i := i + 1 ;

exit if (i > 5) ;
if (input_signal(i) = ’0’) then

result(i) <= ’0’ ;
next ;

end if ;
result(i) <= ena ;

end loop ;
2-36 HDL Synthesis Manual

2

t

re

nt.

The loop statement can only be used inside sequential environments. Its equivalen
statement in the dataflow environment is the generate statement:

Note – The generate statement is preceded by a label (G1). A label is required in
the generate statement but is optional in the loop statement.

The generate statement does not allow EXIT and NEXT statements. The reason is
that the statements inside the generate statement are executed concurrently. So the
is no way to know when to exit. The generate statement has no while equivalent,
for the same reason. Instead however, there is a if equivalent in the generate
statement:

The condition must evaluate to a run-time constant. That is a language requireme

Note – There is no else part possible in a generate statement. We consider this a
flaw in the language, but the Exemplar synthesis tools has to comply with it.

The synthesis tools have no synthesis restrictions for the generate statement.

signal result, input_signal : bit_vector (0 to 5) ;
signal ena : bit ;
....
G1 : for i in 0 to 5 generate

result(i) <= ena and input_signal(i) ;
end generate ;

i := -1 ;
while (TRUE) loop

i := i + 1 ;

exit if (i > 5) ;
if (input_signal(i) = ’0’) then

result(i) <= ’0’ ;
next ;

end if ;
result(i) <= ena ;

end loop ;
VHDL Language Features 2-37

2

uld
nal
nts.

 and

ts to

 a
elta
on
r
rently
e
Assignment Statements

Assignments can be done to signals, ports and variables in VHDL. Assignments to
signals and ports are done with the <= operator.

In this code fragment o gets assigned the value of the vector-XOR (bit by bit) of
vectors a and b. The type of the object on the left hand side of the assignment sho
always match the type of the value on the right hand side of the assignment. Sig
assignments can be used both in dataflow environment and sequential environme

Assignments to variables are done with the “:= ” sign.

Variable assignments can only be used in sequential environments. Types on left
right hand side of the “:= ” sign should match.

There is one important difference between assignments to signals and assignmen
variables: when the values are updated. The value of a variable in a variable
assignment is updated immediately after the assignment. The value of a signal in
signal assignment is not updated immediately, but gets “scheduled” until after a d
(delay) time. This delay time is not related to actual time, but is merely a simulati
characteristic. This behavior of the signal assignment does not have any effect fo
signal assignments in a dataflow environment, since assignments are done concur
there. However, in a process, the actual value of the signal changes only after th
complete execution of the process.

signal o, a, b : std_logic_vector (0 to 5) ;
....
o <= a xor b ;

variable o : std_logic_vector (0 to 5) ;
signal a, b : std_logic_vector (0 to 5) ;
....
o := a AND NOT b ;
2-38 HDL Synthesis Manual

2

r

 the

ector.
The following example illustrates this effect. It shows the description of a multiplexe
that can select one bit out of a four bit vector using two select signals.

This description does not behave as intended. The problem is because muxval is a
signal; the value of muxval is not immediately set to the value defined by bits a and
b. Instead, muxval still has the same value it had when the process started when
if statement is executed. All assignments to muxval are scheduled until after the
process finishes. This means that muxval still has the value it got from the last time
the process was executed, and that value is used to select the bit from the input v

entity mux is
port (s1, s2 : in bit ;

inputs : in bit_vector (0 to 3) ;
result : out bit

) ;
end mux ;

architecture wrong of mux is
begin

process (s1,s2,inp)
signal muxval : integer range 0 to 3 ;
begin

muxval <= 0 ;
if (s1 = ’1’) then muxval <= muxval+1 ;
if (s2 = ’1’) then muxval <= muxval+2 ;
-- use muxval as index of array ’inputs’
result <= inputs (muxval) ;

end process ;
end wrong ;
VHDL Language Features 2-39

2

s

ue of
he

s
The solution to this problem is to make muxval a variable. In that case, all assignment
done to muxval are immediate, and the process works as intended.

As a general rule, if you use signal assignments in processes, do not use the val
the signal after the assignment, unless you explicitly need the previous value of t
signal. Alternatively, you can use a variable instead.

Operators

IEEE 1076 Predefined Operators

VHDL predefines a large number of operators for operations on objects of variou
types. The following is an overview:

Relational operators on ALL types (predefined or not):

 = <=

/= >

< >=

entity mux is
port (s1, s2 : in bit ;

inputs : in bit_vector (0 to 3) ;
result : out bit) ;

end mux ;

architecture right of mux is
begin

process (s1,s2,inp)
variable muxval : integer range 0 to 3 ;
begin

muxval := 0 ;
if (s1 = ’1’) then muxval := muxval+1 ;
if (s2 = ’1’) then muxval := muxval+2 ;
-- Use muxval as index of array ’inputs’
result <= inputs (muxval) ;

end process ;
end right ;
2-40 HDL Synthesis Manual

2

rived

f the

tions

f the
 Logical operators on pre-defined types BIT and BOOLEAN:

 AND NOR

OR XOR

NAND NOT

Arithmetic operators on all integer types:

 + mod

 - rem

* abs

/

**

Concatenation of elements into an array of elements:

 & (,,,,)

Relational operators operate on any type. The basis of comparing two values is de
from the order of definition. For example in the std_logic type the value ’U’ is
smaller than the value ’1’ because ’U’ is defined first in the order of values in the
type. The comparison of two arrays is accomplished by comparing each element o
array. The left most element is the most significant one for comparisons.

In this example, a(7) is the most significant bit for comparisons with vector a, and
b(5) is the most significant bit for comparisons with vector b.

Logical operators work in a straightforward manner and do the appropriate opera
on types BIT and BOOLEAN, and also for one-dimensional arrays of BIT and
BOOLEAN. In the latter case, the logical operation is executed on each element o
array. The result is a array with the same size and type as the operands.

signal a : bit_vector (7 downto 0) ;
signal b : bit_vector (5 to 9) ;
VHDL Language Features 2-41

2

e
bout

t type.

Arithmetic operators work on integers and on all types derived from integers. The
Exemplar synthesis tools support arithmetic operators on vectors, described in th
exemplar package. “The Exemplar Packages” on page 11 presents more details a
operations on vectors.

Concatenation operators can group elements of the same type into an array of tha
Consider the following examples:

This description is the same as the following one:

The aggregate operator in VHDL is especially useful when assigning to a vector of
unknown or large size:

signal a, b, c : bit ;
signal x : bit_vector (5 downto 0) ;
signal y : bit_vector (0 to 3) ;
....
-- using concatenation operator

x <= a & b & c & B"00" & ’0’ ;
-- using an aggregate

y <= (’1’, ’0’, b, c) ;

signal a, b, c : bit ;
signal x : bit_vector (5 downto 0) ;
signal y : bit_vector (0 to 3) ;
....

x(5) <= a ;
x(4) <= b ;
x(3) <= c ;
x(2 downto 0) <= "000" ;
y(0) <= ’1’ ;
y(1) <= ’0’ ;
y(2) <= b ;
y(3) <= c ;

signal o : bit_vector (0 to 255) ;
....

o <= (0=>’1’, others =>’0’) ;
2-42 HDL Synthesis Manual

2

ues.
d

c type

int

, use
want
e “+”

he
he

2).
In this example, o(0) is assigned ’1’ and all other elements of o (independent of its
size) get value ’0’ .

 IEEE 1164 Predefined Operators

The IEEE 1164 standard logic package describes a set of new types for logic val
However, the binary operators that are predefined in VHDL only operate on bit an
boolean types, and arrays of bits and booleans. Therefore, the IEEE standard logi
package redefines the logical operators (and, or, not, etc.) for the types std_logic ,
std_ulogic and the array types std_logic_vector and
std_ulogic_vector .

Operator Overloading

The operators +, -, *, mod, abs, < ,>, etc. are predefined for integer and floating-po
types, and the operators and, or, not etc. are predefined on the type bit and boolean .
If you want to use an operator that is not pre-defined for the types you want to use
operator overloading in VHDL to define what the operator should do. Suppose you
to add an integer and a bit according to your own semantics, and you want to use th
operator:

The first “+ ” in the assignment to t is the pre-defined “+” operator on integers. T
second “+” is the user defined overloaded operator that adds a bit to an integer. T“
character around the “+” operator definition is needed to distinguish the operator
definition from a regular function definition (see “Resolution Functions” on page 5

function “+” (a: integer; b: bit) return integer is
begin

 if (b=’1’) then
return a+1 ;

else
return a ;

end if ;
end “+” ;
signal o, t: integer range 0 to 255 ;
signal b : bit ;
...
t <= o + 5 + b ;
VHDL Language Features 2-43

2

uld

11.

the

les,

ing
n
Operator overloading is also necessary if you defined your own logic type and wo
like to use any operator on it.

If you want to do arithmetic operations (+, -, etc.) on the array types bit_vector or
std_logic_vector , it will be more efficient for synthesis to use the pre-defined
operators from the exemplar and the exemplar_1164 packages. For details of
these packages operations and their use, see “The Exemplar Packages” on page

The Exemplar synthesis tools fully support operator overloading as described by
language.

Attributes

In VHDL, attributes can be set on a variety of objects, such as signals and variab
and many other identifiers, like types, functions, labels etc.

An attribute indicates a specific property of the signal, and is of a defined type. Us
attributes at the right places creates a very flexible style of writing VHDL code. A
example of this is given at the end of this section.
2-44 HDL Synthesis Manual

2

 the
.

d
ing
VHDL Predefined Attributes

VHDL pre-defines a large set of attributes for signals. The following example shows
definition of two vectors and the values of the VHDL predefined attributes for them

The attributes do not have to be written in capitals; VHDL is case-insensitive for
identifiers.

An important predefined attribute for synthesis is the EVENT attribute. Its value
reveals edges of signals. For more information about the EVENT attribute, see
“Edge-Sensitive Flip-Flops” on page 3.

Exemplar Predefined Attributes

Apart from the VHDL predefined types, Exemplar also supplies a set of predefine
attributes that are specifically helpful for guiding the synthesis process or controll
down-stream tools. For details of these attributes, see “Predefined Attributes” on
page 12.

signal vector_up : bit_vector (4 to 9) ;
signal vector_dwn : bit_vector (25 downto 0) ;
....
vector_up’LEFT-- returns integer 4
vector_dwn’LEFT-- returns integer 25
vector_up’RIGHT-- returns integer 9
vector_dwn’RIGHT-- returns integer 0
vector_up’HIGH-- returns integer 9
vector_dwn’HIGH-- returns integer 25
vector_up’LOW-- returns integer 4
vector_dwn’LOW-- returns integer 0
vector_up’LENGTH-- returns integer 6
vector_dwn’LENGTH-- returns integer 26
vector_up’RANGE -- returns range 4 to 9
vector_dwn’RANGE-- returns range 25 to 0
vector_up’REVERSE_RANGE-- returns range 9 to 4
vector_dwn’REVERSE_RANGE-- returns range 0 to 25
VHDL Language Features 2-45

2

, with
n be

g
User-Defined Attributes

Attributes can also be user defined. In this case, the attribute first has to be declared
a type, and then its value can be set on a signal or other object. This value can the
used with the “ ’ ” construct. The following is an example:

Usage Of Attributes

To indicate where attributes in a VHDL description are useful, consider the followin
example.

signal my_vector : bit_vector (0 to 4) ;
attribute MIDDLE : integer ;
attribute MIDDLE of my_vector : signal is my_vector’LENGTH/2 ;
....

my_vector’MIDDLE -- returns integer 2

entity masked_parity is
port (source : in bit_vector (0 to 5) ;

mask : in bit_vector (0 to 5) ;
result : out bit

) ;
end masked_parity ;

architecture soso of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (0 to 5) ;

begin
masked_source := source and mask ;
tmp := masked_source(0) ;
for i in 1 to 5 loop

tmp := tmp XOR masked_source(i) ;
end loop ;
result <= tmp ;

end process ;
end soso ;
2-46 HDL Synthesis Manual

2

an be

any
y

iption
This example calculates the parity of the bits of a source vector, where each bit c
masked. This VHDL description is correct, but is not very flexible. Suppose the
application changes slightly and requires a different size input. Then the VHDL
description has to be modified significantly, since the range of the vector affects m
places in the description. The information is not concentrated, and there are man
dependencies. Attributes can resolve these dependencies.

Here is an improved version of the same example, where attributes LEFT, RIGHT, and
RANGE define the dependencies on the size of the vector.

If the application requires a different size parity checker, this time we only have to
modify the source vector range, and the attributes ensure that the rest of the descr
gets adjusted accordingly. Now the information is concentrated.

entity masked_parity is
generic (size : integer := 5) ;
port (source : in bit_vector (0 to size) ;

mask : in bit_vector (source’RANGE) ;
result : out bit

) ;
end masked_parity ;

architecture better of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (source’RANGE) ;

begin
masked_source := source and mask ;
tmp := masked_source(source’LEFT) ;
for i in source’LEFT+1 to source’RIGHT loop

tmp := tmp xor masked_source(i) ;
end loop ;
result <= tmp ;

end process ;
end better ;
VHDL Language Features 2-47

2

igh
more
le.

is

es),

rams,
. All
ment.

ck,

t is a

Blocks

When using processes and dataflow statements it is possible to use VHDL as a h
level hardware description language. However, as the descriptions get more and
complicated, some form of design partitioning, or hierarchy, is required or desirab

VHDL offers a variety of methods for design partitioning. One form of partitioning
to divide a description into various processes. In the following sections four more
forms of partitioning are discussed: blocks, subprograms (functions and procedur
components and packages.

A block is a method to cluster a set of related dataflow statements. Signals, subprog
attributes, etc. that are local to the block can be defined in a block declarative region
statements in a block are executed concurrently, and thus define a dataflow environ

Blocks can be nested, as in the example above.

Signals, ports and generics declared outside the block can be used inside the blo
either directly (as global_sig is used in block B2), or via a port map (as g1 is
connected to o1 in block B2) or generic maps (for generics). There is no real
difference between the two methods, except that the port (generic) map construc
cleaner coding style which could reduce errors when using or assigning to global
objects.

architecture xxx of yyy is
signal global_sig ,g1,g2,c bit ;

begin
B1 : block -- block declarative region

signal local_sig : bit ;
begin -- block concurrent statements

local_sig <= global_sig ;
-- Block in a block

B2 : block (c=’1’) -- Block has “GUARD” expression
port (o1,o2 : out bit) -- Block port declarations
port map (o1=>g1,o2=>g2) ;

begin
o1 <= guarded local_sig ;
o2 <= global_sig ;

end block ;
end block ;

end xxx ;
2-48 HDL Synthesis Manual

2

s,

lity
he
e
ugh
lly, as
the

efine
A block can also have a GUARD expression (c=’1’ in block B2). In that case, an
assignment inside the block that contains the keyword GUARDED will only be executed
when the GUARD expression is TRUE. In the example above, o1 only gets the value of
local_sig when c=’1’ . GUARDED blocks and assignments provide a interesting
alternative to construct latches or flip-flops in the synthesized circuit. For example
refer to “Registers, Latches and Resets” on page 1.

The Exemplar synthesis tools fully support blocks, with port/generic lists and
port/generic maps and the GUARD options of blocks.

Functions And Procedures

Subprograms (function and procedures) are powerful tools to implement functiona
that is repeatedly used. Functions take a number of arguments that are all inputs to t
function, and return a single value. Procedures take a number of arguments that can b
inputs, outputs or inouts, depending on the direction of the flow of information thro
the argument. All statements in functions and procedures are executed sequentia
in a process. Also, variables that are local to the subprogram can be declared in
subprogram. Local signals are not allowed.

As an example, suppose you would like to add two vectors. In this case, you could d
a function that performs the addition. The following code fragment shows how an
addition of two 6-bit vectors is done.

function vector_adder (x : bit_vector(0 to 5); y : bit_vector(0 to 5))
return bit_vector(0 to 5) is
 -- declarative region

variable carry : bit ;
variable result : bit_vector(0 to 5) ;

begin
-- sequential statements

carry := ’0’ ;
for i in 0 to 5 loop

result (i) := x(i) xor y(i) xor carry ;
carry := carry AND (x(i) OR y(i)) OR x(i) AND y(i) ;

end loop ;
return result ;

end vector_adder ;
VHDL Language Features 2-49

2

is.

plar

 if an

 to the

 the

und.
s for
nd
Note – That vector addition, implemented this way, is not very efficient for synthes
The packages exemplar and exemplar_1164 provide vector additions that can
implement efficient/fast adders more easily. For more information, see “The Exem
Packages” on page 11.

An example of a procedure is shown below. The procedure increments a vector only
enable signal is high.

This incrementer procedure shows the behavior of an inout port. The parameter vect
is both set and used in this procedure. Also, the procedure statements use a call
previously defined vector_adder function. If an input of a function or a procedure
is not connected when it is used, that input will get the initial value as declared on
interface list.

For example, input ena will get (initial) value ’1’ if it is not connected in a
procedure call to the procedure increment . It is an error if an input is not connected
and also does not have an initial value specified.

One important feature of subprograms in VHDL is that the arguments can be unbo
The given examples operate on vectors of 6 bits. If you want to use the subprogram
arbitrary length vectors, you could specify the length-dependencies with attributes a

procedure increment (vect : inout bit_vector(0 to 5); ena : in bit :=’1’)
is
begin

if (ena=’1’) then
vect := vector_adder (vect, "000001") ;

end if ;
end increment ;
2-50 HDL Synthesis Manual

2

 of

ter list

eters

ial
is a
 a

h the
tools
not specify a range on the parameters (leave them unbound). Here is a redefinition
both the vector addition function and the incrementer procedure for arbitrary length
vectors.

In the procedure increment example, name association was added in the parame
of the vector_adder call. The name association (e.g., x=>vect) is an alternative
way to connect a formal parameter (x) to its actual parameter (vect). Name
associations (as well as positional associations) are helpful if the number of param
is large.

Subprograms can be called from the dataflow environment and from any sequent
environment (processes and other sub-programs). If a procedure output or inout
signal, the corresponding parameter of the procedure should also be declared as
signal.

Subprograms can be overloaded. That is, there could be multiple subprograms wit
same name, but with different parameter list types or return types. The synthesis
perform the overlaod resolution.

function vector_adder (x : bit_vector; y : bit_vector) return bit_vector
is

variable carry : bit := ’0’ ;
variable result : bit_vector(x’RANGE) ;

begin
for i in x’RANGE loop

result (i) := x(i) XOR y(i) XOR carry ;
carry := carry AND (x(i) OR y(i)) OR x(i) AND y(i) ;

end loop ;
return result ;

end vector_adder ;

procedure increment (vect : inout bit_vector; ena : in bit :=’1’) is
begin

if (ena=’1’) then
vect := vector_adder (x=>vect, "000001") ;

end if ;
end increment ;
VHDL Language Features 2-51

2

is is

stant

s

1),
to one

L,
al is

a
In the last example, the variable carry was initialized in when it was declared. Th
a more compact way of setting the starting value of a variable in a function or
procedure. The initial value does not have to be a constant. It could be a noncon
value also (like the value of one of the parameters).

The Exemplar synthesis tools fully support all VHDL language features of function
and procedures.

Resolution Functions

Syntax and Semantics

In a concurrent area in VHDL (see the section “Entities and Architectures” on page
all statements happen concurrently. That means that if there are two assignments
and the same signal, that the final value of the signal needs to be resolved. In VHD
you can only have multiple concurrent assignments to a signal if the type of the sign
resolved . A resolved type is a type with a resolution function. A good example of
resolved type is the type std_logic from the IEEE 1164 package:

The word resolved in this declaration refers to a resolution function called
resolved . Here is how it is specified in the std_logic_1164 package:

subtype std_logic is resolved std_ulogic ;

function resolved (s : std_ulogic_vector) return std_ulogic is
variable result : std_ulogic := ’Z’; -- weakest state default
attribute synthesis_return of result: variable is “WIRED_THREE_STATE” ;
begin

-- the test for a single driver is essential otherwise the
-- loop would return ’X’ for a single driver of ’-’ and that
-- would conflict with the value of a single driver unresolved
-- signal.
if (s’LENGTH = 1) then return s(s’LOW);
else
 for i in s’ range loop result := resolution_table(result, s(i));
 end loop ;
end if return result;

end resolved;
2-52 HDL Synthesis Manual

2

ent
 final

iple

is
ents

tools

ired

where
te
The resolution function of type std_logic takes a vector of the (unresolved)
base-type of std_logic : std_ulogic . It returns a single std_ulogic .

Now if you have two concurrent assignments to any signal of type std_logic , the
resolution function will be called to determine the final value of the signal. The
resolution function will be called with a vector with two elements, where each elem
contains the value of a concurrent assignment. Inside the resolution function, the
value of the signal is defined, based on the two assignment values.

Synthesis Issues

Resolution functions are especially useful when you want to model nets with mult
drivers (like busses with three-state drivers). However, VHDL lets you define a
resolution function freely, without any special restrictions. The resolution function
thus just another function, only it gets called wherever there are multiple assignm
to a signal of the (sub)type it is attached to.

The Exemplar synthesis tools synthesize resolution functions without restriction.

You can define a resolution function and attach it to a subtype, and the synthesis
will synthesize the circuitry it implies for each multiple assignment.

In many cases, the resolution function mimics a certain electrical behavior for the
simulator. In the case of the IEEE type std_logic , and its resolution function
resolved (described above), the resolution function resembles tri-states being w
together. Therefore, the synthesis directive attribute (synthesis_result) is set to
WIRED_THREE_STATE. This synthesis directive is a hint to the synthesis tools to
interpret the elements of the incoming vector as parallel three-state assignments,
the three-state condition is derived from the assignment. That way, any three-sta
drivers can be created with multiple assignments (For more information, see
“Three-state Buffers” on page 14).
VHDL Language Features 2-53

2

is

rror:

Let’s go through one example step by step, to show what the resolution function
doing:

When the above example is executed, the synthesis tools will give the following e

This message is obvious, since you did not explain what should happen when a and b
force (different) values concurrently onto signal TMP. For that, write a resolution
function. Suppose you want the concurrent assignments to be ANDed. Then you should
write a resolution function that performs an AND operation of the elements of its input
vector.

Also attach the resolution function to TMP. You could do that in two ways:

1. Create a subtype of bit , say, rbit , and attach the resolution function to that
subtype, just as we did for the type std_logic .

2. Directly attach the resolution function to the signal TMP. This is the easiest way, and
it is useful if there are not many signals that need the resolution function.

entity test_resolver is
port (a, b : bit ;

o : out bit) ;
end test_resolver ;
architecture exemplar of test_resolver is

signal tmp : bit ;
begin

tmp <= a ;
tmp <= b ;
o <= tmp ;

end exemplar ;

file,line 9: Error, multiple sources on unresolved signal TMP; also line 10.
2-54 HDL Synthesis Manual

2

 the
The second method is used below:

The synthesis tools will synthesize this description and tmp becomes the AND of
a andb.

BUS and REGISTER

In the previous section, multiple concurrent assignments were discussed. Each
concurrent assignment to a signal in VHDL creates what is called a ‘driver’ to the
signal, and the resolution function resolves the values of the (multiple) drivers on
signal.

entity test_resolver is
port (a, b : bit ;

o : out bit) ;
end test_resolver ;

architecture exemplar of test_resolver is
-- Write the resolution function that ANDs the elements:
function my_and_resolved (a : bit_vector) return bit is

variable result : bit := ’1’ ;
begin

for i in a’range loop
result := result AND a(i) ;

end loop ;
return result ;

end my_and_resolved ;

-- Declare the signal and attach the resolution function to it:
signal tmp : my_and_resolved bit ;

begin
tmp <= a ;
tmp <= b ;
o <= tmp ;

end exemplar ;
VHDL Language Features 2-55

2

 of

 are
ss

L

n

Now it is possible to (temporarily) switch-off drivers to a signal. Lets investigate an
example:

In this example, o gets a driver from (concurrent) process statement. However, if c is
not ’1’ , the NULL value is assigned to o. The NULL value is called a ‘disconnection
statement’. In VHDL this means that the driver of c is switched off if c is not ’1’ . A
VHDL simulator will NOT include the driver value as an element in the input vector
the resolution function as long as the driver is switched off.

Since drivers can be switched off, we have to consider the case that ALL drivers
switched off. For that particular reason, VHDL defines what is called an entity cla
for a signal. There are two entity classes: BUS and REGISTER.

If the entity class is BUS, and all drivers on the signal are switched off, then VHD
defines that the resolution function should still be called, but with a vector of zero
elements (a NULL vector).

If the entity class is REGISTER, and all drivers on the signal are switched off, the
VHDL defines that the signal should hold its previous value.

Signals of BUS or REGISTER entity class are called resolved signals. A resolved
signal always needs a resolution function.

process (c,d)
begin

if (c = ’1’) then
o <= d ;

else
o <= NULL ;

end if ;
end process ;
2-56 HDL Synthesis Manual

2

tate

ort all

 the
s

ass
Here is the full example where o gets a BUS entity class:

In this example, o is of entity class BUS, and thus the resolution function of
std_logic will be executed if all drivers on o are switched off. That means that o
will get the ’Z’ value. That means that the synthesis tools will synthesize a three-s
driver for o.

If o would be declared with the REGISTER entity class, the synthesis tools would
synthesize a LATCH for it, since o should retain its value if all drivers are off.

Switching off drivers can also be done with a GUARDED block, or with a disconnection
statement in a concurrent signal assignment. The Exemplar synthesis tools supp
these statements.

The synthesis tools synthesizes BUS and REGISTER entity classes according to
semantics described above with the following restrictions. The Exemplar synthesi
tools guarantee ONLY behavior compliant with VHDL language for BUS and
REGISTER signals if the resolution function contains the WIRED_THREE_STATE
synthesis directive. Also, multiple concurrent assignments to REGISTER entity cl
signals is not supported right now.

-- include the IEEE 1164 package to use type std_logic.
library ieee ;
use ieee.std_logic_1164. all ;
-- An entity with a BUS entity-class signal
entity test_bus is

port (c,d : std_logic ;
o : out std_logic BUS) ;

end test_bus ;
architecture exemplar of test_bus is
begin

process (c,d)
begin

if (c = ’1’) then
o <= d ;

else
o <= NULL ;

end if ;
end process ;

end exemplar ;
VHDL Language Features 2-57

2

nt
scribe
s an
dule
Component Instantiation

Components are a method of introducing structure in a VHDL description. A compone
represents a structural module in the design. Using components, it is possible to de
a netlist in VHDL. Components are instantiated in the dataflow environment. Here i
example of a structural VHDL description where four one-bit rams and a counter mo
are instantiated.

entity scanner is
port (reset : in bit ;

stop : in bit ;
load : in bit ;
clk : in bit ;
load_value : in bit_vector (0 to 3) ;
data : out bit_vector (0 to 3)

) ;
end scanner ;

architecture exemplar of scanner is

component RAM_32x1
port (a0, a1, a2, a3, a4 : in bit ;

 we, d : in bit ;
 o : out bit

) ;
end component ;

component counter

generic (size : integer := 4) ;
port (clk : in bit ;

 enable : in bit ;
 reset : in bit ;
 result : out bit_vector (0 to 4)

) ;
end component ;
signal ena : bit ;
signal addr : bit_vector (0 to 4) ;
2-58 HDL Synthesis Manual

2

ration

ment
.

t map

e
rt)
alue
The generate statement is used here to instantiate the four RAMs.

Components have to be declared before they can be used. This is done in the
declaration area of the architecture, or in a package (see next section). The decla
defines the interface of the component ports with their type and their direction.
Actually this example is just a netlist of components. We added one dataflow state
(the assignment to ena) to show that structure and behavior can be mixed in VHDL

The ports of the component are connected to actual signals (or ports) with the por
construct. The generics of the component are connected to actual values with the
generic map construct. In this example the generic size is set to 4 with the attribute
length on the array addr . If no generic value was set to size (or if the generic map
construct was completely absent), size gets value 4, as indicated by the initial valu
on size in the generic list of the component. It is an error if a generic (or input po
is not connected in a generic map (or port map) construct and there is no initial v
given in the component generic (or port) list.

In the example above, the input ports of the component RAM_32x1 are individual bits
(a0 , a1 , a2 , a3 , a4). If the input would have been declared as a bit_vector (0 to
4), then the individual bits could be connected with indexed formal names:

begin
for i in 0 to 3 generate

ram : RAM_32x1 port map (a0=>addr(0), a1=>addr(1),
a2=>addr(2), a3=>addr(3), a4=>addr(4), d=>data(i),
we=>load, o=>data(i)) ;

end generate ;

ena <= not stop ;
count : counter generic map (size=>addr’length)

port map(clk=>clk, enable=>ena,
 reset=>reset, result=>addr) ;

end exemplar ;

.. port map (a(0) => addr(0), a(1) => addr(1), a(2) => addr(2),
 a(3) => addr(3), a(4) => addr(4), ...
VHDL Language Features 2-59

2

hould

 not

t

or it.

tity
rts

me

sue
or with a sliced formal name:

or simply with a full identifier association:

The Exemplar synthesis tools support any form of slicing or indexing of formal
parameter names, as long as the VHDL language rules are obeyed (formal name s
be static).

The synthesis tools also support type-transformation functions in port and generic
associations as long as they are synthesizable. Type transformation functions are
very often used and so are not explained here.

The definition of the components counter and RAM_32x1 are not yet given in the
example. The process of giving a contents definition for a component is called binding
in VHDL. With the Exemplar synthesis tools, there are four ways to do componen
binding:

1. Specify an entity with the same name as the component and an architecture f
This way, the component gets bound to the entity with the same name. This is
called ’default binding’ in VHDL.

2. Specify a configuration specification. Here you can bind a component to an en
with a different name, and you can even connect component ports to entity po
with a different name.

3. Use a source technology in the synthesis tools that contains a cell with the sa
name as the component. The synthesis tools will bind the component to the
technology cell (and include functional, timing and area information for it).

4. Do not specify any entity for the component. This way, the synthesis tools will is
a warning and create a black-box for the component.

.. port map (a(0 to 4) => addr(0 to 4),

.. port map (a => addr,
2-60 HDL Synthesis Manual

2

ugh

n the
note
etails
on
The component counter is a good example of the first option:

This description only includes behavior. There is no component instantiated, altho
it is possible, and it makes hierarchical design possible.

Note that in this case the overloaded ’+’ operator is used on vectors, as defined i
exemplar package. (See “The Exemplar Packages” on page 11 for details.) Also
that an asynchronous reset construction is used to reset the counter value. For d
about various synthesizable forms of reset, see “Registers, Latches and Resets”
page 1.

entity counter is
generic (size : integer) ;
port (clk : in bit ;

enable : in bit ;
reset : in bit ;
result : out bit_vector (0 to size-1)

) ;
end counter ;

architecture exemplar of counter is
begin

process (clk,reset)
begin

if (reset=’1’) then
result <= (others=>’0’) ;

elsif (clk’event and clk=’1’) then
if (enable=’1’) then

result <= result + "1" ;
end if ;

end if ;
end process ;

end exemplar ;
VHDL Language Features 2-61

2

 you
nd

 one
The second option gives more freedom to bind an entity to a component. Suppose
have a counter entity that does exactly what you need, but it is named differently, a
(or) has differently named ports and generics:

In our example, the following configuration specification could be used to bind the
component counter to the entity alternative , for a particular or all instances of
the counter component. The configuration specification is added after the counter
component declaration:

This configuration specification binds all instances of component counter to an
entity called alternative (architecture ex) in the work library, and it connects the
generics and ports of the entity to differently named generics and ports in the
component. If the ports and generics have the same name in the entity and the
architecture, the generic map and port map don’t have to be given. If there is only
architecture of the entity alternative then the architecture (ex) does not have to

 entity alternative is
 generic (N : integer) ;
 port (clock : in bit ;
 ena : bit :
 reset : bit ;
 output : out bit_vector (0 to N-1)) ;
 end alternative ;
 architecture ex of alternative is
 begin

 end ex ;

component counter
 generic (size : integer) ;
 port (clk : in bit ;
 enable : in bit ;
 reset : in bit ;
 result : out bit_vector(0 to 4)) ;
end counter ;
for all :counter use entity work.alternative(ex) generic map (N=>size)
 port map (clock=>clk, ena=>enable,
 reset=>reset,output=>result) ;
2-62 HDL Synthesis Manual

2

ns

g as

the

ro

y

annot
pty

esis
e a
.
ules
be given either. If not all, but just one or two instances of the component counter
should be bound to the entity alternative , then replace all by a list of instance
(label) names.

Configuration specifications are a very powerful method to quickly switch definitio
of components to a different alternative.

Core fully supports all forms of configuration specifications that are allowed in the
language.

If no configuration specification is given, the synthesis tools use the default bindin
explained in the first option.

For the third option, use a source technology in the synthesis tools that includes
component RAM_32x1. If the source technology is lib_name, the synthesis tools
recognize the component in the lib_name library, and instantiates it in the design. In
this case, RAM_32x1 is a RAM cell, and the synthesis tools cannot really optimize
that behavior (and RAM32x1 shows up in the netlist as a hard macro). But if the mac
contained combinational logic, the synthesis tools would include that logic in the
optimization process, and map it to other target technology cells.

Note – Galileo and Leonardo use different techniques to indicate which source
technology to use. Galileo uses the -source= lib_name switch. Leonardo requires
that you load the source technology by using the load_library lib_name command
before reading the design in the database.

The fourth option, omitting any entity for the component, is helpful when hierarch
has to be preserved. This technique can be effectively used in Galileo to maintain
hierarchy. The synthesis tools generate an empty module for each component it c
find in the present file as an entity or as a library cell in the source technology. Em
modules show up as blocks in the final netlist. They are not touched by the synth
and optimization process. Components without a definition can also help to isolat
particular difficult or user-defined part of the design from the synthesis operations
Clock generators or other asynchronous circuits or time-critical user-defined mod
are an example of this.
VHDL Language Features 2-63

2

res,
efine
a

lued

me

 used
Packages

A package is a cluster of declarations and definitions of objects, functions, procedu
components, attributes etc. that can be used in a VHDL description. You cannot d
an entity or architecture in a package, so a package by itself does not represent
circuit.

A package consists of two parts. The package header, with declarations, and the
package body, with definitions. An example of a package is std_logic_1164 , the
IEEE 1164 logic types package. It defines types and operations on types for 9-va
logic.

To include functionality from a package into a VHDL description, the use clause is
used.

This example shows how the IEEE 1164 standard logic types and functions beco
accessible to the description in entity xxx .

This is the general form to include a package in a VHDL description:

The use clause is preceded by a library clause. The predefined libraries work and
std do not have to be declared in a library clause before they are used in a use
clause. All other libraries do need to be declared.

The selection can consist of only one name of a object, component, type or
subprogram that is present in the package, or the word all, in which case all
functionality defined in the package is loaded into the synthesis tools, and can be
in the VHDL description.

library ieee ;
use ieee.std_logic_1164.all ;

entity xxx is

port (x : std_logic ; -- type std_logic is known since it is
-- defined in package
-- std_logic_1164

...

library lib ;
use lib.package.selection ;
2-64 HDL Synthesis Manual

2

 you
gn to

e a

ed
Aliases

An alias is an alternate name for an existing object. By using an alias of an object,
actually use the object to which it refers. By assigning to an alias, you actually assi
the object to which the alias refers.

Aliases are often useful in unbound function calls. For instance, if you want to mak
function that takes the AND operation of the two left most bits of an arbitrary array
parameter. If you want to make the function general enough to handle arbitrary siz
arrays, this function could look like this:

signal vec : std_logic_vector (4 downto 0) ;
alias mid_bit : std_logic is vec(2) ;
-- Assignment :
mid_bit <= ’0’ ;
-- is the same as
vec(2) <= ’0’ ;

function left_and (arr: std_logic_vector) return std_logic is
begin
 return arr(arr’left) and arr(arr’left-1) ;
end left_and ;
 -- Function does not work for ascending index ranges of arr.
VHDL Language Features 2-65

2

 it
This function will only work correctly if the index range of arr is descending
(downto). Otherwise, arr’left-1 is not a valid index number. VHDL does not have
a simple attribute that will give the one-but-leftmost bit out of an arbitrary vector, so
will be difficult to make a function that works correctly both for ascending and
descending index ranges. Instead, you could make an alias of arr , with a known index
range, and operate on the alias:

The Exemplar synthesis tools fully support aliases.

function left_and (arr : std_logic_vector) return std_logic is
alias aliased_arr : std_logic_vector (0 to arr’length-1) is arr ;

begin
return aliased_arr(0) and aliased_arr(1) ;

end left_and ;
-- Function works for both ascending and descending index
-- ranges of arr.
2-66 HDL Synthesis Manual

The Art Of VHDL Synthesis 3
ntax

l
ized

ding

not in

ions
an
This chapter explains the relationship between constructs in VHDL and the logic
which is synthesized. It focuses on coding styles with the best performance for
synthesis. Actual synthesis restrictions on VHDL are discussed in the section, Sy
and Semantic Restrictions.

Registers, Latches and Resets

VHDL synthesis produces registered and combinational logic at the RTL level. Al
combinational behavior around the registers is, unless prohibited by the user, optim
automatically. The style of coding combinational behavior, such as if -then -else
and case statements, has some effect on the final circuit result, but the style of co
sequential behavior has significant impact on your design.

The purpose of this section is to show how sequential behavior is produced with
VHDL, so that you understand why registers are generated at certain places and
others.

Most examples explain the generation of these modules with short VHDL descript
in a process. If you are not working in a process, but just in the dataflow area of
architecture in VHDL, it is possible to generate these modules using predefined
procedures in the exemplar.vhd package. For details about this package, refer to
the section The Exemplar Packages.
3-1

3

hesis
ing a
Level-Sensitive Latch

This first example describes a level-sensitive latch:

In this example, the sensitivity list is required, and indicates that the process is
executed whenever the signals ena or input_foo change. Also, since the
assignment to the global signal output_foo is hidden in a conditional clause,
output_foo cannot change (will preserve its old value) if ena is ’0’ . If ena is
’1’ , output_foo is immediately updated with the value of input_foo , whenever
it changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synt
tools translate the initially generated latches to the gate-equivalent of the latch, us
combinational loop.

Latches can also be generated in dataflow statements, using a guarded block:

signal input_foo, output_foo, ena : bit ;
...
process (ena, input_foo)
begin

if (ena = ’1’) then
output_foo <= input_foo ;

end if ;
end process ;

b1 : block (ena=’1’)
begin

output_foo <= GUARDED input_foo ;
end block ;
3-2 HDL Synthesis Manual

3

For

ays
 the

ess.

sed to
Edge-Sensitive Flip-Flops

The Event Attribute

An edge triggered flip-flop is generated from a VHDL description only if a signal
assignment is executed on the leading (or on the falling) edge of another signal.
that reason, the condition under which the assignment is done should include an
edge-detecting mechanism. The EVENT attribute on a signal is the most commonly
used edge-detecting mechanism.

The EVENT attribute operates on a signal and returns a boolean. The result is alw
FALSE, unless the signal showed a change (edge) in value. If the signal started
process by a change in value, the EVENT attribute is TRUE all the way through the
process.

Here is one example of the event attribute, used in the condition clause in a proc
The synthesis tools recognize an edge triggered flip-flop from this behavior, with
output_foo updated only on the leading edge of clk .

The attribute STABLE is the boolean inversion of the EVENT attribute. Hence,
CLK’EVENT is the same as NOT CLK’STABLE. The Exemplar synthesis tools
support both attributes.

Flip-flops and registers can also be generated with dataflow statements (as oppo
from a process) using a GUARDED block.

signal input_foo, output_foo, clk : bit ;
....
process (clk)
begin

if (clk’event and clk=’1’) then
output_foo <= input_foo ;

end if ;
end process ;

b2 : block (clk’event and clk=’1’)
begin

output_foo <= GUARDED input_foo ;
end block ;
The Art Of VHDL Synthesis 3-3

3

n

using
By adding the GUARDED statement option, a flip-flop will be inserted in between
input_foo and output_foo , since the output_foo expression of the block
specifies a clock edge.

Synchronous Sets And Resets

All conditional assignments to signal output_foo inside the if clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we could
make a synchronous reset on the flip-flop by doing a conditional assignment to
output_foo :

Note – Signals reset and input_foo do not have to be on the sensitivity list
(although it is allowed) since a change in their values does not result in any actio
inside the process.

Alternatively, dataflow statements could be used to specify a synchronous reset,
a GUARDED block and a conditional signal assignment.

signal input_foo, output_foo, clk, reset : bit ;
...
process (clk)
begin

if (clk’event and clk = ’1’) then
if reset = ’1’ then

output_foo <= ’0’ ;
else

output_foo <= input_foo ;
end if ;

end if ;
end process ;

b3 : block (clk’event and clk=’1’)
begin

output_foo <= GUARDED ’0’ when reset=’1’ else input_foo ;
end block ;
3-4 HDL Synthesis Manual

3

t to

t
Asynchronous Sets And Resets

If the reset signal should have immediate effect on the output, but the assignmen
output_foo from input_foo should happen only on the leading clock edge, an
asynchronous reset is required. Here is the process:

Now reset HAS TO BE on the sensitivity list! If it were not there, VHDL semantics
require that the process should not start if reset changes. It would only start if clk
changes. That means that if reset becomes ’1’ , output_foo would be set to ’0’ if
clk either goes up, or goes down, but not before any change of clk . This behavior
cannot be synthesized into logic. The synthesis tools issue an error message tha
reminds you to put reset on the sensitivity list.

signal input_foo, output_foo, clk, reset : bit ;
...
process (clk,reset)
begin

if (reset = ’1’) then
output_foo <= ’0’ ;

elsif (clk’event and clk = ’1’) then
output_foo <= input_foo ;

end if ;
end process ;
The Art Of VHDL Synthesis 3-5

3

ions

f the
uch

if
ignal
 result
 is
Asynchronous set and reset can both be used. It is also possible to have express
instead of the fixed ’0’ or ’1’ in the assignments to output_foo in the reset and
set conditions. This results in combinational logic driving the set and reset input o
flip-flop of the target signal. The following code fragment shows the structure of s
a process:

There can be several asynchronous elsif clauses, but the synchronous elsif clause (
present) has to be the last one in the if clause. A flip-flop is generated for each s
that is assigned in the synchronous signal assignment. The asynchronous clauses
in combinational logic that drives the set and reset inputs of the flip-flops. If there
no synchronous clause, all logic becomes combinational.

process (clock, asynchronously_used_signals)
begin

if (boolean_expression) then
asynchronous signal_assignments

elsif (boolean_expression) then
asynchronous signal_assignments

elsif (clock’event and clock = constant) then
synchronous signal_assignments

end if ;
end process ;
3-6 HDL Synthesis Manual

3

ave a
e

n
Clock Enable

 It is also possible to specify an enable signal in a process. Some technologies h
special enable pin on their basic building blocks. The synthesis tools recognize th
function of the enable from the VHDL description and generates a flip-flop with a
enable signal from the following code fragment:

In dataflow statements, a clock enable can be constructed with a GUARDED block and
a conditional signals assignment.

signal input_foo, output_foo, enable, clk : bit ;
...
process (clk)
begin

if (clk’event and clk=’1’) then
if (enable=’1’) then

output_foo <= input_foo ;
end if ;

end if ;
end process ;

b4: block (clk’event and clk=’1’)
begin

output_foo <= GUARDED input_foo when enable=’1’
else output_foo ;

end block ;
The Art Of VHDL Synthesis 3-7

3

ment
about
rates

a

set
 Wait Statements

Another way to generate registers is by using the wait until statement. The wait
until clause can be used in a process, and is synthesizable if it is the first state
in the process. “Syntax and Semantic Restrictions” on page 22 gives more details
the synthesis restrictions of the wait statement. The following code fragment gene
an edge triggered flip-flop between signal input_foo and output_foo :

Note – There is no sensitivity list on this process. In VHDL, a process can have
sensitivity list or a wait statement, but not both. In this example, the process is
executed if clk changes since clk is present in the wait condition. Also, the wait
condition can be simplified to wait until clk=’1’ ; , since the process only
starts if clk changes, and thus clk’event is always true.

The Exemplar synthesis tools do not support asynchronous reset behavior with wait
statements. A synchronous reset remains possible however, by describing the re
behavior after the wait statement.

signal input_foo, output_foo, clk : bit ;
...
process
begin

wait until clk’event and clk=’1’ ;
output_foo <= input_foo ;

end process ;
3-8 HDL Synthesis Manual

3

 the
erates
 For

y
lue
u will
Variables

Variables (like signals) can also generate flip-flops. Since the variable is defined in
process itself, and its value never leaves the process, the only time a variable gen
a flip-flop is when the variable is used before it is assigned in a clocked process.
instance, the following code segment generates a three-bit shift register.

In this case, the variables a and b are used before they are assigned. Therefore, the
pass their values from the last run through the process, which is the assigned va
delayed by one clock cycle. If the variables are assigned before they are used, yo
get a different circuit:

signal input_foo, output_foo, clk : bit ;
...
process (clk)

variable a, b : bit ;
begin

if (clk’event and clk=’1’) then
output_foo <= b ;
b := a ;
a := input_foo ;

end if ;
end process ;

signal input_foo, output_foo, clk : bit ;
...
process (clk)

variable a, b : bit ;
begin

if (clk’event and clk=’1’) then
a := input_foo ;
b := a ;
output_foo <= b ;

end if ;
end process ;
The Art Of VHDL Synthesis 3-9

3

 the
 the
e,
res,

he
Here, a and b are assigned before used, and therefore do not generate flip-flops.
Instead, they generate a single wire. Only one flip-flop remains in between
input_foo and output_foo because of the signal assignment in the clocked
process.

Predefined Flip-flops and Latches

Flip-flops and latches can also be generated by using predefined procedures from
exemplar package. These procedure calls cause the synthesis tools to instantiate
required flip-flop or D-latch. There are various forms of these procedures availabl
including versions with asynchronous preset and clear. For details of the procedu
see “Predefined Procedures” on page 20.

Assigning I/O Buffers From VHDL

There are three ways to assign I/O buffers to your design from VHDL:

• Run the synthesis tools in “chip” mode.

• Use the buffer_sig attribute on a port in the VHDL source

• Use the buffer_sig command.

• Use direct component instantiation in VHDL of the buffer you require.

The buffer_sig attribute or the direct component instantiation will overwrite any
default buffer assignment that the synthesis tools would do in “chip” mode.

The buffer_sig command is implemented differently for Galileo and Leonardo.
For Galileo, you put the command in the control file. For Leonardo, you use the
buffer_sig procedure.

It is important to realize that if you specify buffer names in the VHDL source, the
synthesis tools will check the source technology library to find the buffer you
requested. If you specify buffers in the control file, the synthesis tools will check t
target technology library for a matching buffer.
3-10 HDL Synthesis Manual

3

on:

ffers”
Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to use the -chip option in the synthesis tools.
(For Galileo, run the tool with the -chip option, or choose “Chip” mode from the
Graphical User Interface. For Leonardo, use the -chip option with the optimize
command.) This automatically assigns appropriate input, output, three-state, or
bidirectional buffers to the ports in your entity definition. For instance,

targeted to the Actel technology translates into an INBUF for inp and clk , an
OUTBUF for outp , and a BIBUF for inoutp (if it is both used and assigned). outp
would become a TRIBUFF if it was assigned to a three-state value under a conditi

The above example also holds for buses, of course. The sections “Three-state Bu
on page 14 and “Bidirectional Buffers” on page 17 give more details on how to
generate three-state buffers and bidirectional buffers from VHDL.

Manual Assignment Using The BUFFER_SIG Property

For Galileo only, special buffers, e.g. clock buffers, can be assigned using the
buffer_sig property. This can be done in the control file, with the BUFFER_SIG
command. Here is an example:

For Leonardo, special buffers can be assigned by using the BUFFER_SIG procedure.
After reading in a design, use the command BUFFER_SIG CLOCK_BUFFER
net_names.

entity example is
port (inp, clk : in std_logic;

outp : out std_logic;
inoutp : inout std_logic

);
end example;

outp <= inp when ena = ’1’ else ’Z’ ;

BUFFER_SIG CLOCK_BUFFER clk
The Art Of VHDL Synthesis 3-11

3

.
rary.
The buffer_sig property can also be set on a port using the buffer_sig attribute
in the VHDL source.

Port clk will be connected to the input of the external clock buffer CLOCK_BUFFER.
An intermediate node called manual_clk appears on CLOCK_BUFFER’s output.
Gates specified in the control file are searched for in the target technology library
Gates specified in the VHDL source are searched for in the source technology lib

entity example is
port (inp, clk : in std_logic;

outp : out std_logic;
inoutp : inout std_logic
);
attribute buffer_sig : string ;
attribute buffer_sig of clk: signal is “CLOCK_BUFFER” ;

end example;
3-12 HDL Synthesis Manual

3

be
Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the VHDL source file with component
instantiation. In particular, if you want a specific complex input or output buffer to
present on a specific input or output, component instantiation is a very powerful
method:

In this example, component instantiation forces an OUTPUT_FLIPFLOP buffer on the
bidirectional pin inoutp . Also an input buffer INPUT_BUFFER is specified to pick
up the value from this pin to be used internally.

entity special is
port (inp : in std_logic ;

clk : in std_logic ;
...
outp : out std_logic;
inoutp : inout std_logic

) ;
end special ;

architecture exemplar of special is
 component OUTPUT_FLIPFLOP

port (c,d,t : in std_logic ;
o : out std_logic

) ;
end component ;

 component INPUT_BUFFER
port (i : in std_logic ;

o : out std_logic
) ;

end component ;
signal intern_in, intern_out, io_control : std_logic ;

begin
 b1 : OUTPUT_FLIPFLOP port map (c=>clk, d=>intern_out,

t=>io_control, o=>inoutp) ;
b2 : INPUT_BUFFER port map (i=>inoutp, o=>intern_in) ;
...

end exemplar ;
The Art Of VHDL Synthesis 3-13

3

e

ffer

 easy

not
ines
f the
) of
e

t or
The synthesis tools will look for definitions of VHDL instantiated components in th
source library. Make sure that you specify a source library (-source=lib_name) or
set the attribute NOBUFF on the I/O pin of the instantiated buffer, otherwise The
synthesis tools will consider the buffer to be a user-defined block and will add a bu
from the target technology.

Three-state Buffers

Three-state buffers and bidirectional buffers (covered in the next section) are very
to generate from a VHDL description.

A disabled three-state buffer will be in a high-impedance state. VHDL itself does
predefine a high-impedance state, but the IEEE 1164 standard logic package def
the ’Z’ character literal to have a behavior that exactly resembles the behavior o
high-impedance state of a three-state buffer. A signal (a port or an internal signal
the standard logic type can be assigned a ’Z’ value. The synthesis tools recognize th
’Z’ value and creates a three-state buffer from a conditional assignment with ’Z’ :

Note – In the when clause, both input_signal and the condition ena=’1’ can be
full expressions. The synthesis tools generate combinational logic driving the inpu
the enable of the three-state buffer for these expressions.

entity three-state is
port (input_signal : in std_logic ;

ena : in std_logic ;
output_signal : out std_logic

) ;
end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal when ena = ’1’ else ’Z’ ;
end exemplar ;
3-14 HDL Synthesis Manual

3

-state

nts.

ble to
 case.
Normally, simultaneous assignment to one signal in VHDL is not allowed for
synthesis, since it would cause data conflicts. However, if a conditional ’Z’ is
assigned in each assignment, simultaneous assignment resembles multiple three
buffers driving the same bus.

Note – The synthesis tools do not check for bus-conflicts on three-state assignme
Therefore, make sure that the enable signals of the three-state drivers are never
simultaneously active. In this example, ena_1 and ena_2 should never be ’1’
simultaneously.

These examples show assignments to output ports (device ports). It is also possi
do the assignments to an internal signal. This will create internal busses in such a

entity three-state is
port (input_signal_1, input_signal_2 : in std_logic ;

ena_1, ena_2 : in std_logic ;
output_signal : out std_logic

) ;
end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal_1 when ena_1 = ’1’ else ’Z’ ;
output_signal <= input_signal_2 when ena_2 = ’1’ else ’Z’ ;

end exemplar ;
The Art Of VHDL Synthesis 3-15

3

n
Three-state buffers can also be generated from process statements:

If the target technology does not have any internal three-state drivers, Galileo ca
transform the three-state buffers into regular logic with the -tristate option.
Leonardo performs this transformation when the tristate_map variable is set to
TRUE.

driver1 : process (ena_1, input_signal_1) begin
if (ena_1=’1’) then

output_signal <= input_signal_1 ;
else

output_signal <= ’Z’ ;
end if ;

end process ;
driver2 : process (ena_2, input_signal_2) begin

if (ena_2=’1’) then
output_signal <= input_signal_2 ;

else
output_signal <= ’Z’ ;

end if ;
end process ;
3-16 HDL Synthesis Manual

3

s

sed

 of

y
Bidirectional Buffers

Bidirectional I/O buffers will be created by the synthesis tools if an external port i
both used and assigned inside the architecture. Here is an example:

The difference with the previous example is that in this case, the output itself is u
again internally. Note that for that reason, the port bidir_port is declared to be
inout .

The enable signal ena could also be generated from inside the architecture, instead
being a primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technolog
library. If there is no bidirectional buffer available, it selects a combination of a
three-state buffer and an input buffer.

entity bidir_function is
port (bidir_port : inout std_logic ;

ena : in std_logic ;
...

) ;
end bidir_function ;

architecture exemplar of bidir_function is

signal internal_signal, internal_input : std_logic ;
begin

bidir_port <= internal_signal when ena = ’1’ else ’Z’ ;
internal_input <= bidir_port ;

 ...
-- use internal_input
...
-- generate internal_signal

end exemplar ;
The Art Of VHDL Synthesis 3-17

3

sses
type

y,

ed.

ly
Busses

The examples in the previous sections all use single bits as signals. In reality, bu
are often used: arrays of bits with (multiple) three-state drivers. In that case, the
of the bus signal should be std_logic_vector . All examples given still apply for
busses, although the ’Z’ character literal now has to be a string literal. Here is one
example:

This generates two set of eight three-state buffers, two on each line of the bus
output_signal .

As with single three-state drivers, busses can be internal signal, or ports. Similarl
busses can be created using processes.

State Machines

This section describes a basic form of a general state machine description. VHDL
coding style, power-up and reset, state encoding and other issues will be discuss

General State Machine Description

There are various ways to describe a state machine in VHDL. This section will on
show the most commonly used description.

entity three-state is
port (input_signal_1, input_signal_2 : in

std_logic_vector (0 to 7) ;
ena_1, ena_2 : in std_logic ;
output_signal : out std_logic_vector(0 to 7)

) ;
end three-state ;

architecture exemplar of three-state is
begin

output_signal <= input_signal_1 when ena_1 = ’1’
else “ZZZZZZZZ” ;

output_signal <= input_signal_2 when ena_2=’1’
else “ZZZZZZZZ” ;

end exemplar ;
3-18 HDL Synthesis Manual

3

al of
a
ng on
d.
s care
The possible states of the state machine are listed in an enumerated type. A sign
this type (present_state) defines in which state the state machine appears. In
case statement of one process, a second signal (next_state) is updated dependi
present_state and the inputs. In the same case statement, the outputs are also update
Another process updates present_state with next_state on a clock edge, and take
of the state machine reset.

Here is the VHDL code for such a typical state machine description. This design
implements a RAS-CAS controller for DRAM refresh circuitry.

entity ras_cas is
port (clk, cs, refresh, reset : in bit ;

ras, cas, ready : out bit) ;
end ras_cas ;

architecture exemplar of ras_cas is

-- Define the possible states of the state machine
type state_type is (s0, s1, s2, s3, s4) ;
signal present_state, next_state : state_type ;

begin

registers : process (clk, reset)
begin

-- process to update the present state
if (reset=’1’) then

present_state <= s0 ;
elsif clk’event and clk = ’1’ then

present_state <= next_state;
end if ;

end process ;
The Art Of VHDL Synthesis 3-19

3

VHDL Coding Style For State Machines

There are various issues of coding style for state-machines that might affect
performance of the synthesized result.

transitions : process (present_state, refresh, cs)
begin

-- process to calculate the next state and the outputs
case present_state is

when s0 =>
ras <= ’1’ ; cas <= ’1’ ; ready <= ’1’ ;
if (refresh = ’1’) then

next_state <= s3 ;
elsif (cs = ’1’) then

next_state <= s1 ;
else

next_state <= s0 ;
end if ;

when s1 =>
ras <= ’0’ ; cas <= ’1’ ; ready <= ’0’ ;
next_state <= s2 ;

when s2 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;
if (cs = ’0’) then

next_state <= s0 ;
else

next_state <= s2 ;
end if ;

when s3 =>
ras <= ’1’ ; cas <= ’0’ ; ready <= ’0’ ;
next_state <= s4 ;

when s4 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;
next_state <= s0 ;

end case ;
end process ;

end exemplar ;
3-20 HDL Synthesis Manual

3

 two
ine,
ealy

, cas

 in

he
ote

 not.
e same

 its

tches
lue
 user

, you
re the
A first issue is the form of state machine that will be created. There are basically
forms of state machines, Mealy machines and Moore machines. In a Moore mach
the outputs do not directly depend on the inputs, only on the present state. In a M
machine, the outputs depend directly on the present state and the inputs.

In the RAS-CAS state machine described in the previous section, the outputs ras
and ready only depend on the value of present_state . This means that the
description implements a Moore machine. If the outputs would be set to different
values under the input conditions in the if statements inside the case statement, a
Mealy machine would have been created. In a Moore machine, there is always a
register in between the inputs and the outputs. This does not have to be the case
Mealy machines.

A second issue in coding style is the case statement that has been used to test the
present_state . A case statement is more efficient than a
if -then -elsif -else statement, since that would build a priority encoder to test t
state (which could mean more logic in the implementation). It is also important to n
that there is no OTHERS entry in the case statement. An OTHERS entry could create
extra logic if not all the states are mentioned in the case statement. This extra logic
will have to determine if the machine is in any of the already mentioned states or
Unless there are a number of states where the state machine behaves exactly th
(which is not likely since then you could reduce the state machine easily) an OTHERS
entry is not beneficial and will, in general, create more logic than is required.

A third issue is the assignments to outputs and next_state in the state transition
process. VHDL defines that any signal that is not assigned anything should retain
value. This means that if you forget to assign something to an output (or
next_state) under a certain condition in the case statement, the synthesis tools
will have to preserve the value. Since the state transition process is not clocked, la
will have to be generated. You could easily forget to assign to an output if the va
does not matter. The synthesis tools will warn you about this, since it is a common
error in VHDL:

Make sure to always assign something to next_state and the state machine outputs
under every condition in the process to avoid this problem. To be absolutely sure
could also assign a value to the signal at the very beginning of the process (befo
start of the case statement).

"file.vhd", line xx : Warning, latches might be needed for XXX.
The Art Of VHDL Synthesis 3-21

3

ions
ar
L

ry
d by

ers
e of
wer

ible.
sets

 for

hat

t
se
Note – Graphical state-machine entry tools often generate state machine descript
that do not always assign values to the outputs under all conditions. The Exempl
synthesis tools will warn about this, and you could either manually fix it in the VHD
description, or make sure you fully specify the state machine in the graphical ent
tool. The synthesis tools cannot fill in the missing specifications, since it is bounde
the semantics of VHDL on this issue.

Power-up And Reset

For simulation, the state machine will initialize into the leftmost value of the
enumeration type, but for synthesis it is unknown in which state the machine pow
up. Since the Exemplar synthesis tools do state encoding on the enumeration typ
the state machine (see “State Encoding” below), the state machine could even po
up in a state that is not even defined in VHDL. Therefore, to get simulation and
synthesis consistency, it is very important to supply a reset to the state machine.

In the example state machine shown in “General State Machine Description” on
page 18, an asynchronous reset is used, but a synchronous reset would be poss
“Registers, Latches and Resets” on page 1 explains more about how to specify re
on registers in VHDL.

State Encoding

The Exemplar synthesis tools have a variety of methods to control state encoding
state machines that use an enumeration type for the declaration of the states.
“Enumeration Types” on page 10 discusses all forms of state encoding in detail.

Arithmetic And Relational Logic

This section gives an overview of how arithmetic logic is generated from VHDL, w
the synthesis tools do with this logic and how to avoid getting into combinational
explosion with large amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing “random” combinational
behavior, but has problems with logic which is arithmetic in nature. Often special
precautions have to be taken into consideration to avoid ending up with inefficien
logic or excessive run times. Alternatively, macros may be used to implement the
functions. For more information see “Technology-Specific Macros” on page 29.
3-22 HDL Synthesis Manual

3

age).

 tools
 not

der
ted. If
can be

The Exemplar synthesis tools support the overloaded operators “+”, “-”, “*”, and
“abs.” These operators work on integers (and on arrays; with the exemplar pack

If you use overloaded operators to calculate compile time constants, the synthesis
will not generate any logic for them. For example, the following code segments do
result in logic, but assign a constant integer 13 to signal foo .

If you are not working with compile time constant operands, arithmetic logic is
generated for arithmetic operators.

The pre-defined “+” on integers generates an adder. The number of bits of the ad
depends on the size of the operands. If you use integers, a 32 bit adder is genera
you use ranged integers, the size of the adder is defined so that the entire range
represented in bits. For example, if variables a and b do not evaluate to constants, the
following code segment:

generates a 32-bit (signed) adder, but

function add_sub (a: integer, b: integer, add : boolean)
return integer is

begin
if (add = TRUE) then

return a + b ;
else

return a - b ;
end if ;

end my_adder ;
signal foo : integer ;
constant left : integer := 12 ;
....
foo <= add_sub (left,6,TRUE) - 5 ;-- Expression evaluates to 13

variable a, b, c : integer ;
c := a + b ;

variable a, b, c : integer range 0 to 255 ;
c := a + b ;
The Art Of VHDL Synthesis 3-23

3

ut

th the

.

wer

 are

d
generates an 8-bit (unsigned) adder.

If one of the operands is a constant, initially a full-sized adder is still generated b
logic minimization eliminates much of the logic inside the adder, since half of the
inputs of the adder are constant.

The pre-defined “-” on integers generates a subtracter. Same remarks apply as wi
“+” operator.

The pre-defined “*” multiplication on integers generates a multiplier. Full
multiplication is supported when a module generator is used. See the Synthesis and
Technology Reference Guide for information on module generators supported for
specific technologies. You can also define your own technology specific multiplier

The pre-defined “/” division on integers generates a divider. Only division by a po
of two is supported. In this case, there is no logic generated, only shifting of the
non-constant operand. With module generation you could define your own
technology-specific divider.

The predefined “**” exponentiation on integers is only supported if both operands
constant.

“=,” “/=,” “<,” “>,” “<=,” and “>=” generate comparators with the appropriate
functionality.

Operations on integers are done in two-complement implementation if the integer
range extends below 0. If the integer range is only positive, an unsigned
implementation is used.

There are a number of other ways to generate arithmetic logic. The predefined
exemplar functions add , add2 , sub , sub2 , +, and - on bit_vector and
std_logic_vector types are examples of functions which do this. For
descriptions of these functions, see “Predefined Functions” on page 14.

By default, the synthesis tools will generate “random” logic for all pre-defined
operators. Alternatively, if a module generator for a particular target technology is
supplied, the synthesis tools will generate technology specific solutions (e.g., har
macros) instead of random logic.
3-24 HDL Synthesis Manual

3

s for
ny of

et
s time

 do

code,
Module Generation

When arithmetic and relational logic are used for a specific VHDL design, the
synthesis tools provide a method to synthesize technology specific implementation
these operations. Generic modules (for bit-sizes > 2) have been developed for ma
the FPGAs supported by the Exemplar synthesis tools to make the most efficient
technology specific implementation for arithmetic and relational operations.

For Galileo, use the -modgen= modgen_library option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design. For Leonardo, use the
modgen_read modgen_library command to load the module generation library into
the HDL database. Since these modules have been designed optimally for a targ
technology, the synthesis result is, in general, smaller and/or faster and takes les
to compile.

If you want to define your own module generator for a specific technology, you can
so by describing a module generator in VHDL. For more information on module
generation, see Chapter 9-Chapter 11.

Resource Sharing

The synthesis tools perform automatic common subexpression elimination for
arithmetic and boolean expressions. The following example has two adders in the
but they are adding the same numbers, a and b.

signal a,b,c,d : integer range 0 to 255 ;
...
process (a,b,c,d) begin

if (a+b = c) then <statements>
elsif (a+b = d) then <more_statements>
end if ;

end process ;
The Art Of VHDL Synthesis 3-25

3

 the

ed to

f
le:
After automatic common subexpression elimination, only one adder will be used in
final circuit. Thus, it would create the same logic as the following example.

Proper use of parentheses guide the synthesis tools in eliminating common
subexpressions. The following code segment, for example, can be properly modifi
share an adder.

Using parentheses, the logic can share an adder for inputs b and c , as shown below.

The synthesis tools automatically perform a limited amount of resource sharing o
arithmetic expressions that are mutually exclusive. Consider the following examp

process (a,b.c.d)
variable tmp : integer range 0 to 255 ;

begin
tmp := a+b ;
if (tmp = c) then <statements>
elsif (tmp = d) then <more_statements>
end if ;

end process ;

o1 <= a + b + c;
o2 <= b + c + d;

o1 <= a + (b + c);
o2 <= (b + c) + d;

process (a,b,c,test) begin
if (test=TRUE) then

o <= a + b ;
else

o <= a + c ;
end if ;

end process ;
3-26 HDL Synthesis Manual

3

e
m the

e the

und

nts of
ome
ed
nd
eed

tion:

e
Initially, two adders and a multiplexer are created, but after the automatic resourc
sharing one adder is reduced, and the final circuit is same as would be created fro
following code:

The limitations of automatic resource sharing are as follows:

• Complex operators must drive the same signal.

• Complex operators must be of the same type (for example, two adders) and hav
same width (for example, 8-bit adders).

Ranged Integers

It is best to use ranged integers instead of “unbound” integers. In VHDL, an unbo
integer (integer with no range specified) is guaranteed to include the range
-2147483647 to +2147483647. This means that at least 32 bits are needed to
implement an object of this type. The synthesis tools have to generate large amou
logic in order to perform operations on these objects. Some of this logic may bec
redundant and get eliminated in the optimization process, but the run time is slow
down considerably. If you use integers as ports, all logic has to remain in place a
synthesis algorithms are faced with a complex problem. Therefore, if you do not n
the full range of an integer, specify the range that you need in the object declara

small_int only uses eight bits in this example, instead of the 32 bits if the rang
was not specified.

process (a,b,c,test) begin
variable tmp : integer range 0 to 255 ;

begin
if (test=TRUE) then

tmp := b ;
else

tmp := c ;
end if ;
o <= a + tmp ;

end process ;

signal small_int : integer range 255 downto 0 ;
The Art Of VHDL Synthesis 3-27

3

les of

 of
 One

 it

or

n
DL
Advanced Design Optimization

Module generation, resource sharing and the use of ranged integers are all examp
how a particular design can be improved for synthesis without changing the
functionality. Sometimes it is possible to change the functionality of the design
slightly, without violating the design specification constraints, and improve the
implementation for synthesis. This requires understanding of VHDL and what kind
circuitry is generated, as well as understanding of the specifications of the design.
example of this is given, in the form of a loadable loop counter.

Often, applications involve a counter that counts up to a input signal value, and if
reaches that value, some actions are needed and the counter is reset to 0.

In this example, the synthesis tools build an incrementer and a full-size comparat
that compares the incoming signal with the counter value.

In this example, a full comparator has to be created since the VHDL description
indicates that the comparison has to be done each clock cycle. If the specificatio
allows that the comparison is only done during the reset, we could re-code the VH
and reduce the overall circuit size by loading the counter with the input_signal ,
and then counting down to zero:

process begin
wait until clk’event and clk=’1’ ;

if (count = input_signal) then
count <= 0 ;

else
count <= count + 1 ;

end if ;
end process ;

process begin
wait until clk’event and clk=’1’ ;

if (count = 0) then
count <= input_signal ;

else
count <= count - 1 ;

end if ;
end process ;
3-28 HDL Synthesis Manual

3

uch

 use
.

d soft
ed

L
ll

cific
rs
lains

e

 soft

cuit

Here, one decrementer is needed plus a comparison to a constant (0). Since
comparisons to constants are a lot cheaper to implement, this new behavior is m
easier to synthesize, and results in a smaller circuit.

This is a single example of how to improve synthesis results by changing the
functionality of the design, while staying within the freedom of the design
specification. However, the possibilities are endless, and a designer should try to
the freedom in the design specification to get truly optimal synthesis performance

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros an
macros that perform specific arithmetic logic functions. These macros are optimiz
for the target technology and have high performance.

This section will explain how to instantiate technology specific macros in the VHD
source to assure full control over the synthesized logic. The VHDL description wi
become technology dependent.

Note that the Exemplar synthesis tools do automatic inference of technology spe
macros from standard (technology independent) arithmetic and relational operato
when Module Generation is used. The section “Resource Sharing” on page 25 exp
more about this and details can be found in Chapter 9–Chapter 11. However, if a
particular hard-macro is required, or there is no Module Generator available for th
your technology, manual instantiation will be needed.

With the Exemplar synthesis tools, it is possible to use component instantiation of
macros or hard macros in the target technology, and use these high performance
macros. An added benefit is that the time needed for optimization of the whole cir
can be significantly reduced since the synthesis tools do not have to optimize the
implementation of the dedicated functions anymore.
The Art Of VHDL Synthesis 3-29

3

ily

nt

no

e
uld

se.

and

d
As an example, suppose you would like to build an 8-bit counter in the device fam
FPGAX. There is a hard-macro available in the FPGAX library that will do this. Call it
the COUNT8. In order to directly instantiate this macro in VHDL, declare a compone
COUNT8 and instantiate it with a component instantiation statement.

The synthesis tools will synthesize this component as a black-box, since there is
entity/architecture description for it. It will appear in the output file as a symbol.

If you use hard-macros in a VHDL description, specify a source technology so th
synthesis tools can include area and timing information. For this example, you wo
use the option -source=fpgax with Galileo. With Leonardo, you would use the
load_library fpgax command to load the source library into the design databa

If simulation is required on the source VHDL design, you have to supply an entity
architecture for COUNT8. In that case, make sure to set the attribute NOOPT to TRUE
on the component COUNT8, so that the synthesis tools treat the component as a
black-box, otherwise they will synthesize COUNT8 into general logic. For more
information about setting the NOOPT attribute on a component, see the section
“Finding Definitions of Components” on page 3.

Using technology specific macro instantiation can speed-up the synthesis and
optimization process considerably. It also often leads to more predictable area an
delay costs of the design. The VHDL description however becomes technology
dependent.

component COUNT8
port (pe, c, ce, rd : in std_logic ;

d : in std_logic_vector (7 downto 0) ;
 q : out std_logic_vector (7 downto 0)

) ;
end component ;
...
-- clock, count_enable, reset, load, load_data and output are signals
-- in the VHDL source
...
counter_1 : COUNT8 port map (c=>clock, ce=>count_enable,

 rd=>reset, pe=>load, d=>load_data, q=>output) ;
3-30 HDL Synthesis Manual

3

s. In

mble

 the

y do
Multiplexers and Selectors

From a case statement, the synthesis tools create either muxes or selector circuit
the following example, a selector circuit is created.

If the selector value is the index to be selected from an array, the selector will rese
a multiplexer. It is still possible to express this in a case statement, but it is also
possible to use a variable indexed array. For example, if an integer value defines
index of an array, a variable indexed array will create the multiplexer function:

selects bit i out of the vector vec . This is equivalent to the more complex writing
style with a case statement:

For the prior description, the synthesis tools create the same multiplexers as the
for the variable-indexed array.

case test_vector is
when “000" => o <= bus(0) ;
when “001" | ”010" | “100" => o <= bus(1) ;
when “011" | ”101" | “110" => o <= bus(2) ;
when “111" => o <= bus(3) ;

end case ;

signal vec : std_logic_vector (0 to 15) ;
signal o : std_logic ;
signal i : integer range 0 to 15 ;
...
o <= vec(i) ;

case i is
when 0 => o <= vec(0) ;
when 1 => o <= vec(1) ;
when 2 => o <= vec(2) ;
when 3 => o <= vec(3) ;
...

end case ;
The Art Of VHDL Synthesis 3-31

3

x

e

The Exemplar synthesis tools fully support variable-indexed arrays, including inde
values that are enumerated types rather then integers, and index values that are
expressions rather then singe identifiers.

ROMs, PLAs And Decoders

There are many ways to express decoder behavior from a ROM or PLA table. Th
clearest description of a ROM would be a case statement with the ROM addresses in
the case conditions, and the ROM data in the case statements. In this section, two
other forms are discussed:

1. Decoder as a constant array of arrays.

2. Decoder as a constant two-dimensional array.

Here is an example of a ROM implemented with an array of array type. The ROM
defines a hexadecimal to 7-segment decoder:

type seven_segment is array (6 downto 0) ;
type rom_type is array (natural range <>) of seven_segment ;
constant hex_to_7 : rom_type (0 to 15) :=

(“0111111", -- 0
 “0011000", -- 1
 “1101101", -- 2 Display segment index numbers :
 “1111100", -- 3 2
 “1011010", -- 4 1 3
 “1110110", -- 5 6
 “1110111", -- 6 0 4
 “0011100", -- 7 5
 “1111111", -- 8
 “1111110", -- 9
 “1011111", -- A
 “1110011", -- B
 “0100111", -- C
 “1111001", -- D
 “1100111", -- E
 “1000111") ; -- F

-- Now, the ROM field can be accessed via a integer index
display_bus <= hex_to_7 (i) ;
3-32 HDL Synthesis Manual

3

ssed
er

alue

The ROM with array of array implementation has the advantage that it can be acce
via a simple integer value as its address. A disadvantage is that each time anoth
ROM is defined, a new element type (seven_segment) and a new ROM type
(rom_type) have to be defined.

PLA descriptions should allow a ’X’ or ’-’ dont-care value in the input field, to
indicate a product lines’ insensitivity for a particular input. You cannot use a case
statement for a PLA with dont cares in the input field since a comparison with a v
that is not ’0’ or ’1’ will return FALSE in a case condition (as opposed to just
ignoring the input). Instead, a small procedure or function is needed that explicitly
defines comparisons to ’X’ or ’-’ . The following example describes such a
procedure. First, a general 2-dimensional PLA array type is declared.

type std_logic_pla is array (natural range <>, natural range <>)
of std_logic;
...
procedure pla_table (constant invec: std_logic_vector;
 signal outvec: out std_logic_vector;

constant table: std_logic_pla) is
variable x : std_logic_vector (table’range(1)) ; -- product lines
variable y : std_logic_vector (outvec’range) ; -- outputs
variable b : std_logic ;

begin
assert (invec’length + outvec’length = table’length(2))
report “Size of Inputs and Outputs do not match table size”
severity ERROR ;
The Art Of VHDL Synthesis 3-33

3

-- Calculate the AND plane
 x := (others =>’1’) ;
 for i in table’range(1) loop
 for j in invec’range loop
 b := table (i,table’left(2)-invec’left+j) ;
 if (b=’1’) then
 x(i) := x(i) AND invec (j) ;
 elsif (b=’0’) then
 x(i) := x(i) AND NOT invec(j) ;
 end if ;
-- If b is not ’0’ or ’1’ (e.g. ’-’) product line is insensitive to
invec(j)
 end loop ;
 end loop ;
-- Calculate the OR plane
 y := (others =>’0’) ;
 for i in table’range(1) loop
 for j in outvec’range loop
 b := table(i,table’right(2)-outvec’right+j) ;
 if (b=’1’) then
 y(j) := y(j) OR x(i);
 end if ;
 end loop ;
 end loop ;
 outvec <= y ;
end pla_table ;
3-34 HDL Synthesis Manual

3

sy to
on of

ond

t

e
ble
 a

g a

s
Once the two-dimensional array type and the PLA procedure are defined, it is ea
generate and use PLAs (or ROMs). As a simple example, here is a PLA descripti
a decoder that returns the position of the first ’1’ in an array. The PLA has five
product lines (first dimension) and seven IOs (four inputs and three outputs) (sec
dimension).

The PLA could have been defined in a array-of-array type also, just as the ROM
described above. A procedure or function for the PLA description will always be
necessary to resolve the dont-care information in the PLA input field.

Note – The synthesis tools will do a considerable amount of compile-time constan
propagation on each call to the procedure pla_table . This does not affect the final
circuit result at all. It just adds the possibility to specify dont-care information in th
PLA input table. In fact, a ROM described with an array-of-array type and a varia
integer index as its address will produce the same circuit as the ROM specified in
two-dimensional array and using the pla_table procedure. If the modeled ROM or
PLA becomes large, consider a technology-specific solution by directly instantiatin
ROM or PLA component in the VHDL description. Many FPGA and ASIC vendor
supply ROM and/or PLA modules in their library for this purpose.

constant pos_of_fist_one : std_logic_pla (4 downto 0, 6 downto 0) :=
(“1---000",-- first ’1’ is at position 0
 “01--001",-- first ’1’ is at position 1
 “001-010",-- first ’1’ is at position 2
 “0001011",-- first ’1’ is at position 3
 “0000111") ;-- There is no ’1’ in the input

signal test_vector : std_logic_vector (3 downto 0) ;
signal result_vector : std_logic_vector (2 downto 0) ;
...
-- Now use the pla table procedure with PLA pos_of_first_one
-- test_vector is the input of the PLA, result_vector the output.
...
pla_table (test_vector, result_vector, pos_of_first_one) ;
The Art Of VHDL Synthesis 3-35

3

3-36 HDL Synthesis Manual

The VHDL Environment 4
ent,
ge.

ory
les
leo.
This chapter discusses the Exemplar synthesis tools and the VHDL tool environm
including search paths, interfacing with other VHDL tools, and the Exemplar packa

 Entity and Package Handling

 Loading Entities and Packages (Galileo)

Packages and entities in VHDL are stored in libraries. VHDL tools often have the
possibility to load VHDL files (with packages and entities) separately into a direct
that is assigned to a library. Galileo does not have the ability to pre-load VHDL fi
into libraries. Instead, all VHDL sources need to be specified for each run of Gali

Galileo can get VHDL source from three different areas:

1. Predefined VHDL package files

2. Optionally included VHDL files

3. The source (input) VHDL file for the run of the tool
4-1

4

the

nt.
ded

s

he

sed
nded

n is
rder
ere is
must
, and
An example of a predefined package is the package STANDARD (which is
pre-defined for VHDL), that Galileo loads from file standard.vhd in
$EXEMPLAR/data/packages.syn . Other packages are available both in that
directory, and in $EXEMPLAR/data .

With the -vhdl_file=<filename> option, it is possible to load a VHDL file into
Galileo before the source VHDL file is read. In the Graphical User Interface, use
“VHDL Files” option in the Input Options menu. Multiple -vhdl_file options
allow you to load multiple files. The order in which the files are included is importa
If you use a package A in file B, make sure that the file in which A is defined is loa
before file B.

After all the -vhdl_file options are executed, and their corresponding VHDL file
are loaded into Galileo, the source VHDL file is read.

Galileo can handle either VHDL IEEE 1076-1987 or IEEE 1076-1993 dialects of
VHDL. The default is 87. To run 93-style VHDL, use the switch -vhdl_93 on the
command line, or use the “VHDL Style” option the (VHDL) input options menu on t
GUI.

Galileo does not handle all 93 style features. They support the most commonly u
features of the ’93 extension: shifter and rotator operators, xnor operator and exte
identifiers.

Loading Entities and Packages (Leonardo)

If there is only design file, you can read the file directly into Leonardo. If the desig
split into multiple source files, however, you need to analyze them in the proper o
so that all terms are defined before they are used in the design. For example, if th
a package declaration in one file that must be used by the whole design, that file
be analyzed first. In Leonardo, all the design units are stored in the HDL database
you can analyze as many of them as you want.

-vhdl_file= filename
4-2 HDL Synthesis Manual

4

nd
ource

y
 file

 root
ou
Entity Compiled as the Design Root

When the VHDL source is loaded, Galileo will start compiling the top level entity a
start the synthesis process. By default, Galileo uses the last entity found in the s
file as the top-level entity. This behavior can be changed, however.

The option -entity= entity_name on the command line will let Galileo find the
entity specified and consider that the root of the design. In the Graphical User
Interface, use the “Top Entity” option in the VHDL Input Options window. An entity
from an included VHDL file can be specified as the root of the design.

After the root entity is found, Galileo will try to find a matching architecture for it. B
default, the tools will choose the LAST architecture described in the source VHDL
that matches the top-level entity. Use the -architecture= architecture_name to
overwrite this default. In the Graphical User Interface, use the option “Top
Architecture” in the VHDL Input Options window.

By default, Leonardo assumes that the last entity or configuration analyzed is the
entity. By default, the LAST architecture analyzed for the root entity is compiled. Y
can use the elaborate command with -entity entity_name and
-architecture arch_name arguments to selectively compile a particular
entity-architecture pair.

Finding Definitions of Components

In order to instantiate an entity into a VHDL description, you must first declare a
component for it. If you use a component instantiation in your VHDL design, the
synthesis tools try to find the definition of that component. There are three
possibilities.

1. The component is a cell in a source technology library.

2. The component has a matching (named) entity in the VHDL source

3. The component has no definition.

-entity= entity_name

-architecture= architecture_name
The VHDL Environment 4-3

4

 the

cific

 find
the

 the

 of
le of

get

here
,
y,
n
if a
ools.
If a source technology is specified, the synthesis tools try to find the component in
source technology library. This is especially helpful if the component represents a
particular macro in the source technology. For an example, see “Technology-Spe
Macros” on page 29.

If the component is not present in the source technology, the synthesis tools try to
an entity and architecture for it. The entity (and architecture) could be present in
same file, or in an included VHDL file.

If the synthesis tools cannot find a matching entity for the component, they issue
following warning and leave the contents component undefined:

Working with components without a definition can be useful if a particular module
the design is not synthesizable. A clock generator or a delay-module is an examp
this. The contents of that module should be provided separately to the physical
implementation tools. Leaving components undefined is also useful in two other
cases:

• With Galileo, to preserve hierarchy through the synthesis process.

• With all the Exemplar synthesis tools, for using hard and soft macros in the tar
technology (see “Technology-Specific Macros” on page 29).

It is possible to explicitly leave the contents of a component empty, even though t
is a entity/architecture for it or a cell in the source technology library. In that case
specify the boolean attribute NOOPT on the component, or on its corresponding entit
or use the -noopt =entity_name option (for Galileo only) as described below. This ca
be useful when only a part of the hierarchy of a design has to be synthesized or
user-defined simulatable but not synthesizable block is run through the synthesis t
Here is an example of how to set the noopt attribute:

Warning, component component_name has no definition

component clock_gen
.....

end component ;
attribute noopt : boolean ;
attribute noopt of clock_gen: component is TRUE ;
4-4 HDL Synthesis Manual

4

ck
lying
e to
the
if the

ng

in a

orm

sis

kage

 used
Components with a noopt attribute or undefined components will be handled as bla
boxes by the synthesis tools, and will show up as cells in the target netlist. Supp
the technology-specific contents of these cells is left to the user. It is also possibl
only noopt a particular instance of a component by setting the noopt attribute on
label of the component instantiation statement. This will have the same effect as
attribute was added to the underlying entity.

How to Use Packages

A functionality described in a VHDL package is included into the VHDL design usi
the use clause. This is the general form of the use clause:

The use clause is preceded by a library clause. There are predefined libraries work
and std that do not have to be declared in a library clause before they are used
use clause. All other libraries do need top be declared. Library std is normally only
used to include packages predefined in VHDL1076, but library work is free to be used
for any user-defined packages. User-defined library names are also allowed.

If a particular package is not found in the specified library, the synthesis tools perf
the following steps to find the package:

1. The current work library is searched for the package.

2. If it is not there, it searches for a file with the name package.vhd in the present
working directory. The present working directory is the directory where a synthe
tool is running.

3. If the file is not there, the synthesis tools try to find it in the $EXEMPLAR/data or
the $EXEMPLAR/data/packages.syn directory to check if it is a pre-defined
package.

4. If the file is not there, the synthesis tools issue an error message that the pac
can not be found.

The selection can consist of only one name of an object, component, type or
subprogram that is present in the package, or the word all , in which case all
functionality defined in the package is loaded into the synthesis tools and can be
in the VHDL description.

library lib ;
use lib. package. selection ;
The VHDL Environment 4-5

4

sis

ed

,
ce

hes

t are
esis

lator
As an example, the IEEE 1164 std_logic_1164 package (that defines the
multi-valued logic types that are often used for circuit design), is included with the
following statements:

This package is loaded from the $EXEMPLAR/data/packages.syn file. This file
contains only the declarations of the functions of the std_logic_1164 package.
The bodies of the functions are built into the Exemplar synthesis tools for synthe
efficiency.

Note – The contents of the package you include with a use clause becomes visible
and usable only within the scope where you use the use clause. It would be beyond
the scope of this manual to explain the VHDL scoping rules, but if you start a new
entity (and architecture), always make sure that you include the packages you ne
with use clauses just before the entity.

Interfacing With Other VHDL Tools

The VHDL parsers in the Exemplar synthesis tools are compliant with the IEEE
VHDL 1076-1987 standard. Hence, apart from the VHDL restrictions for synthesis
interfacing with tools that generate VHDL or operate on VHDL should not introdu
compatibility problems.

However, since VHDL 1076 does not define file handling, there might be mismatc
in the way the tools handle files. Many VHDL simulators incorporate a directory
structure to store separately compiled VHDL files. The synthesis tools do not use
separate compilation of VHDL files. Therefore, all packages and components tha
used for a VHDL design description should be identified before running the synth
tools, as explained in the previous section.

VHDL Simulators

Always make sure to load the packages and entities in your design into the simu
prior to simulating your root entity. For simulation, the exemplar and
exemplar_1164 packages can be found in the $EXEMPLAR/data directory. For
details on using these packages, see “The Exemplar Packages” on page 11.

library ieee ;
use ieee.std_logic_1164.all ;
4-6 HDL Synthesis Manual

4

ral
e

ten
d.

.

ign.

ng:
Post-Synthesis Functional Simulation

If desired, post-synthesis functional simulation can be performed using the structu
VHDL output from the synthesis tools. In your design flow, choose the appropriat
netlist output for the target technology. Then use the -effort=reformat switch
(with Galileo) to produce structural VHDL for simulation. The flow with Galileo is,
assuming an ASIC as the target technology for this example,

1. VHDL synthesis with Galileo:

2. Produce VHDL netlist:

This produces the structural VHDL file my_test.vhd , which may now be simulated.

The synthesis tools synthesize all port types into single-bit values. These get writ
out in VHDL as ports of type std_logic . The original port types are not preserve

In Leonardo, the same design can be written into multiple files in multiple formats
After optimization, choose the appropriate netlist output format for the target
technology; then, you can write a VHDL description of the same synthesized des
By using a simulatable library of the target technology, this VHDL output can be
simulated. The sequence of synthesis statements should be similar to the followi

galileo my_design.vhd my_design.edf -target=asic
-effort=exhaustive -report=2

galileo my_design.edf my_test.vhd -source=asic
-target=asic -effort=reformat -report=2

load_lib asic
read original.vhd
optimize -tar asic <other options>
write synthesized.edf -- required for target technology
write synthesized.vhd -- can be used for simulation.
The VHDL Environment 4-7

4

ode

ion

ve
ry (in

he

ules

o the
When doing synthesis from a VHDL description, one goal of post-synthesis VHDL
simulation is to simulate the design with the original set of ports (same type, io m
etc.). With Galileo, the -vhdl_wrapper= filename option is used for that. On the
GUI, you can find the wrapper option in the ’VHDL Input Options’ menu. With
Leonardo, use the create_wrapper command to create the wrapper file.

The wrapper consists of an architecture (that connects to the original entity) that
instantiates a component that refers to the synthesized description. Type-convers
functions connect ports of the synthesized description to the ports of the original
description. Since both the synthesized description and the original description ha
the same name, we need to store the synthesized description into a different libra
the simulator) than the original one.

Load the synthesized VHDL description in a library called synthesis in your
simulator. Then load the wrapper architecture into the work library. It will link with t
originally compiled entity of the original VHDL description. The wrapper file uses
type transformation functions from a package called typetran to translate the port
types. This packages in the file $EXEMPLAR/vhdl/typetran.vhd . You have to
load this package into the simulator before you load the wrapper description.

Now, the original entity can be simulated with the wrapper architecture. Since the
wrapper instantiates the synthesized description, simulation will be done of the
synthesized design by using the original entity (ports), and thus the original test
vectors can be used to simulate.

Viewlogic

Users with VHDL files originally written for the Viewlogic synthesis or simulation
systems will be using the pack1076 and stdsynth packages. Galileo supports all
behavior from these packages, as long as they are included according to VHDL r
with a use clause. Viewlogic accepts descriptions without the use clause.

To avoid having to re-code the VHDL files from Viewlogic to Exemplar, Galileo
accepts an option (-viewlogic) that triggers the VHDL parser to adjust to the
Viewlogic semantics of VHDL. In the Graphical User Interface, use the manual
options line in the Global Options window to set the -viewlogic option. This
option also makes sure that the search path for packages is changed according t

-viewlogic
4-8 HDL Synthesis Manual

4

or

r the

s

ile,
tools.
Viewlogic rules. This search path includes the current working directory, and the
./ lib/behv , ./vhdllibs/ lib, $WDIR/ lib/behv and $WDIR/vhdllibs/ lib
directories.

Note – The Exemplar synthesis tools do not support the old Viewlogic package
synth . Only the packages pack1076 and stdsynth are supported and recognized
as the packages that define Viewlogic’s synthesis functions and types.

To use Viewlogic VHDL files with Leonardo, you must set the variable
viewlogic_vhdl to TRUE.

Synopsys

Users that have existing VHDL files for Synopsys VHDL Compiler will rely on one
more of the Synopsys pre-defined VHDL packages. The Exemplar synthesis tools
support all these packages; a use clause includes them into your design. The
Exemplar versions of these packages cause an implementation that is efficient fo
Exemplar synthesis tools to be used.

The Synopsys packages define a set of types and functions that contain Synopsy
progamas that VHDL Compiler uses as synthesis directives. These pragmas are
correctly interpreted by the following Exemplar tools:

pragma translate_on
pragma translate_off
synopsys translate _on
synopsys translate_off
synopsys synthesis_on
synopsys synthesis_off

Apart from a use clause for each Synopsys package that you need in your VHDL f
you should NOT have to load any Synopsys package into the Exemplar synthesis
They will search for the packages that you want to use in the directory
$EXEMPLAR/data . Here is the list of files with the packages they contain:
The VHDL Environment 4-9

4

s
any

s

ude

o

It is very important that you let the synthesis tools find these packages themselve
(from the use clause in your VHDL description). The synthesis tools should load
of the files above from the $EXEMPLAR/data directory, or it will probably read a
file without the synthesis directives. Without the synthesis directives, the synthesi
tools can NOT efficiently synthesize any of the Synopsys packages.

The synthesis tools assume that the Synopsys libraries are called from either the
VHDL library SYNOPSYS or the VHDL library IEEE (this is where Synopsys advises
its packages to be stored). If you store your Synopsys library (on your VHDL
simulator) somewhere else than in these libraries, they you have to manually incl
the (package) files needed from the $EXEMPLAR/data directory, since the synthesis
tools will not recognize them as Synopsys packages. For Galileo, the technique t
manually include such packages is to use the option
-vhdl_file= libname:: filename to include the files (packages) you need into the
library you want. For Leonardo, use the analyze libname filename command and
argument. Make sure again that you use the files from the $EXEMPLAR/data
directory (with synthesis directive attributes in there).

File Name Package Name

syn_ari.vhd ARITHMETIC

syn_attr.vhd ATTRIBUTES

syn_type.vhd TYPES

syn_arit.vhd STD_LOGIC_ARITH

syn_misc.vhd STD_LOGIC_MISC

syn_unsi.vhd STD_LOGIC_UNSIGNED

syn_sign.vhd STD_LOGIC_SIGNED
4-10 HDL Synthesis Manual

4

of
DL

use

ed.

r
aller

sis
iting
s is

Mentor Graphics

The Exemplar synthesis tools are source-code compatible with the latest version
Autologic II. Therefore, you should not encounter any problems when running VH
designs from Mentor Graphics. The Exemplar synthesis tools support two VHDL
packages from Autologic II, both of which are stored in the $EXEMPLAR/data
directory:

These files will be automatically read when you specify the package names in a
clause in your VHDL description.

 The Exemplar Packages

There are a number of operations in VHDL that occur regularly. An example is
translation of vectors to integers and back. For this reason, Exemplar provides
packages that define attributes, types, functions and procedures that are often us
Using the functions and procedures reduces the amount of initial circuitry that is
generated, compared to writing the behavior explicitly in a user-defined function o
procedure. This reduces the cpu-time for compilation and also could result in a sm
circuit implementation due to improved optimization.

This section discusses all the defined functionality in the Exemplar packages
exemplar and exemplar_1164 . The package bodies are not read by the synthe
tools; the functions are built-in. The packages are used for simulation only, and ed
them will NOT change the synthesized logic. The VHDL source for these package
given in the files exemplar.vhd and ex_1164.vhd , respectively in the
$EXEMPLAR/data directory.

The exemplar_1164 package defines the same functionality of the exemplar
package, but operates on the IEEE 1164 multi-valued logic types.

If you are using the IEEE 1164 types in your VHDL description, include the IEEE
standard logic type definition into your VHDL description with a use clause. The
VHDL source of the IEEE 1164 types package is in the file std_1164.vhd in the

File Name Package Name

std_arit.vhd STD_LOGIC_ARITH

qsim_logic.vhd QSIM_LOGIC
The VHDL Environment 4-11

4

4
t

s,
ll

ard

you
al

rce.
 the
$EXEMPLAR/data directory. For details about the IEEE 1164 types, see “IEEE 116
Predefined Types” on page 28. If you also want to use the Exemplar functions tha
operate on these types, include the package ex_1164 with a use clause.

If you do not use the IEEE 1164 types, but still want to use the Exemplar function
just include the package exemplar in your VHDL description with a use clause. A
functions are then defined on the predefined types bit and bit_vector , and on the
four-valued types elbit and elbit_vector .

Predefined Types

The exemplar package defines a four-valued type called elbit and its array
equivalent elbit_vector . The elbit type includes the bit values ’0’ , ’1’ , ’X’
and ’Z’ .

Exemplar recommends that you use the IEEE 1164 standard logic types, and the
exemplar_1164 package. The Exemplar data types are included only for backw
compatibility with Galileo releases prior to 1.2.

Predefined Attributes

The Exemplar synthesis tools use attributes to control synthesis of the described
circuit. With Galileo, these attributes can be set in the control file. With Leonardo,
can use the set_attribute command to set object attributes within the hierarchic
database.

In many cases, though, it is more convenient to define attributes in the VHDL sou
The following attributes are recognized by the VHDL parser, and declared in both
exemplar and the exemplar_1164 package:

Attribute Type Description

required_time time Set required time on output

arrival_time time Set arrival_time on input

output_load real Specify load set on output

max_load real Specify max load allowed on input

clock_cycle time Specify clock length on clock pin

pulse_width time Specify pulse width on clock pin

input_drive time Specify delay/unit load for input
4-12 HDL Synthesis Manual

4

hey
ctive
r. So
In order to set a particular attribute on a signal (or port) in VHDL, use the normal
attribute specification statement in VHDL. Here are some examples:

Since variables do not represent one unique node in the circuit implementation (t
represent a different circuit node after each assignment) the attributes will be effe
on all circuit nodes the variable represents. This could lead to unexpected behavio
be careful using the exemplar attributes on variables.

nobuf boolean Reject buffer insertion for a input

pin_number string Specify location of input or output pin

array_pin_number 1 array of strings Specify location for each bit of a bus

preserve_signal boolean Signal’s function will survive synthesis

buffer_sig string Specify explicit buffer on a pin

modgen_sel modgen_select Specify time requirement for module
generators driving this signal

1. This attribute can be set only in the VHDL source.

library exemplar ;
use exemplar.exemplar. all ; -- Include the ’exemplar’ package
entity test is

port (my_input : in bit ;
my_output : out bit_vector (5 downto 0) ;

) ;
attribute pin_number of my_input: signal is "P15" ;
attribute array_pin_number of my_output:signal is

("P14","P13","P12","P11","P10","P9") ;
attribute required_time of my_output:signal is 5 ns ;

end test ;

architecture exemplar of test is

signal internal_signal : bit ;
attribute preserve_signal of internal_signal: signal is TRUE ;
attribute modgen_sel of internal_signal: signal is FAST ;

begin
...

Attribute Type Description
The VHDL Environment 4-13

4

 for
All attributes work both on single-bit signals and on arrays of bits. In the case an
attribute is set on a signal that is an array of bits (bit_vector , elbit_vector or
std_logic_vector) the value of the attribute is set to all circuit nodes in the
vector. An exception is the pin_number attribute which only operates on single bit
ports. Use the array_pin_number attribute to set pin numbers on all bits of a bus.

Predefined Functions

The package exemplar defines a set of functions that are often used in VHDL for
synthesis. First of all, the package defines the overloaded operators and , NAND, or ,
nor , xor , and not for the types elbit and elbit_vector , as well a for
elbit_matrix , a two-dimensional array type of elbit values.

The Exemplar package defines a large set of functions for both the standard bit and
bit_vector types. For backwards compatibility, these functions are also defined
elbit and elbit_vector types. These functions are discussed below.

All functions are also defined with the IEEE 1164 types std_logic , std_ulogic ,
std_logic_vector , and std_ulogic_vector in the package ex_1164 in file
ex_1164.vhd .

bool2elb (l: boolean) return std_logic;

Takes a boolean, and returns a std_logic bit. Boolean value TRUE will become
std_logic value ’1’ , FALSE will become ’0’ .

elb2bool (l: std_logic) return boolean;

Takes a std_logic value and returns a boolean. The std_logic value ’1’ will
become TRUE, all other values become FALSE.

int2boo (l: integer) return boolean;

Takes an integer and returns a boolean. Integer value ’0’ will return FALSE, all other
integer values return TRUE.
4-14 HDL Synthesis Manual

4

;

st bit
reted

r;

omes

lting
 is

 on a
he

me
the
boo2int (l: boolean) return integer;

Takes a boolean and returns an integer. Boolean value TRUE will return 1, FALSE
will return 0.

evec2int (l: std_logic_vector) return integer

Takes a vector of bits and returns the (positive) integer representation. The left mo
in the vector is assumed the MSB for the value of the integer. The vector is interp
as an unsigned representation.

int2evec (l: integer, size : integer := 32) return std_logic_vecto

Takes a integer and returns the vector representation. The size of the vector bec
equal to the value of an optional second argument (size). If this argument is not
specified, the size of the return vector defaults to 32. The left most bit in the resu
vector is the MSB of the returned value. If the integer value of the first parameter
negative, the MSB is the sign bit.

Note – The second parameter in the int2evec function is new. Prior to Galileo 2.1,
int2evec took only a single parameter. This created simulator-synthesis
inconsistencies that have been eliminated with the introduction of the second
parameter. In some cases this means that Galileo 2.1 will give an array-size error
design that used to run fine under older versions of Galileo. Make sure you add t
second parameter to return the right-sized array.

elb2int (l: std_logic) return integer;

Takes a std_logic value and returns an integer. The std_logic value ’1’ will
return integer value 1, all other values will return integer value 0.

For all shifter functions that follow, the shift amount (r) could either be a compile ti
constant or not. If it is, the synthesized circuit will only consist of a re-ordering of
wires in the array. Otherwise, the synthesis tools will synthesize a shifter circuit.
The VHDL Environment 4-15

4

r;

e
lt

r;

ign

r;

r;

the

r;

 the
ding
ctor
 sl (l: std_logic_vector; r: integer) return std_logic_vecto

Takes a vector l and an integer r and returns a vector. The resulting vector is the sam
size as l, but all bits of l are shifted left r places. The bits on the right side of the resu
vector are zero-filled. The integer r must be non-negative.

 sl2 (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sl , but the vector l is treated as a 2-complement (signed) representation. S
bit is the left most bit in vector. Bits on the right are zero-filled.

 sr (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sl , but bits are shifted to the right side of the vector. Bits on left side are
zero-filled.

 sr2 (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sr , but the vector l is treated as a 2-complement representation. Sign bit is
left most bit in vector. Bits on the left side are sign-bit filled.

add (op_l, op_r: std_logic_vector) return std_logic_vecto

Takes two vectors and returns a vector. The resulting vector is one bit larger than
largest of the input vectors, and represents the addition of the input vectors, inclu
the carry bit. The left most bit is assumed to be the MSB. The add function is a ve
addition of two unsigned vectors. The smallest input vector is ’0’ , extended on the
MSB side to the size of the largest input vector before addition is performed.

add ("1011","0100") result : "01111" (add (11,4) == 15)
add ("0011","100") result : "00111" (add (3,4) == 7)
4-16 HDL Synthesis Manual

4

r;

tion.

r;

r;
add2 (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add , but now the vectors are assumed to be in 2-complement representa
Sign bit is the left most bit in the vectors. The smallest input vector is sign-bit
extended on the MSB side to the size of the largest vector before addition is
performed.

sub (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add , but the subtraction function is implemented on unsigned vectors. op_r is
subtracted from op_l.

Actually this is an under-flow of unsigned !

sub2 (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add2 , but the subtraction function is implemented on 2-complement
representation vectors. op_r is subtracted from op_1.

add2 ("1011","0100") result : "00001" (add2 (-5,4) == 1)
add2 ("0011","100") result : "11111" (add2 (3,-4) == -1)

sub ("1011","0100")result : "00111" (sub (11,4) == 7)
sub ("0011","100") result : "11111" (sub(3,4) == 31)

sub2 ("1011","0100") result : "10111" (sub2(-5,4) == -9)
sub2 ("1011", "100") result : "11111" (sub2(-5,-4) == -1)
The VHDL Environment 4-17

4

rsion

tor
gic)

r;

input
tive)
extend (op_l: std_logic_vector; op_r: integer)
return std_logic_vector;

Takes a vector op_l and an integer op_r and returns a vector. The vector op_l is
extended in size up to op_r elements. The input vector op_l is zero-extended on the
MSB side. The left most bit in the vector is assumed the MSB. There is also a ve
of extend that takes a single (std_logic) value and extends it to a vector of size
op_r.

extend2 (op_l: std_logic_vector; op_r: integer)
return std_logic_vector;

Same as extend , but the vector is in 2’s-complement representation. The input vec
is sign-bit extended. There is also a version of extend2 that takes a single (std_lo
value and sign-extends it to a vector of size op_r.

comp2 (op: std_logic_vector) return std_logic_vecto

Takes a vector and returns a vector of the same size. This function assumes the
vector to be in 2-complement representation and will return the complement (nega
value of the input value. The right most bit is assumed to be the LSB.

extend ("1001",7) result : "001001"
extend (’1’,3) result : "001"
extend ("011001001", 4) result : "1001" -- Truncation

extend2 ("1001",7) result : "1111001"
extend2 (’1’,3) result : "111"
extend2 ("011001001",4) result : "1001" -- Truncation

comp2 ("1001") result : "0111" (comp2 (-7) == 7)
4-18 HDL Synthesis Manual

4

r;

. The
nd.

;

r;

e of

de to

r;

on.
tors,
input
"+" (op_l, op_r: std_logic_vector) return std_logic_vecto

Takes two vectors and returns a vector. As add, but now the carry bit is not saved
resulting vector is the same size as the largest input vector. Overflow wraps arou
This function implements addition of unsigned vectors.

"-" (op_l, op_r: std_logic_vector) return std_logic_vector

Same as “+”, only the subtraction function is performed. op_r is subtracted from op_l.
This function implements subtraction of unsigned vectors.

"mult" (op_l, op_r: std_ulogic_vector) return std_ulogic_vecto

Takes two vectors and returns a vector. The size of the resulting vector is the siz
both input vectors added. In each vector, the left most bit is the MSB. The mult
function performs UNSIGNED multiplication of the two input vectors. In case of
unequal-length input vectors, the smallest vector is zero-extended on the MSB si
the size of the largest input vector before the multiplication is performed.

"mult2" (op_l, op_r: std_ulogic_vector) return std_ulogic_vecto

Like mult , but now the vectors are assumed to be in 2-complement representati
The sign bit is the left most bit in each vector. In case of unequal-length input vec
the smallest vector is sign-bit extended on the MSB side to the size of the largest
vector before the multiplication is performed.

"10110" + "101"
result : "11011" (22 + 5 == 27)

"10110" - "101"
 result : "10001" (22 - 5 == 17)

mult ("1011", "0100") result: "00101100" (mult(11,4)==44)
mult ("1", "1111") result: "00001111" (mult(1,15)==15)
The VHDL Environment 4-19

4

sing

nt

ous

 files

the
 of
Predefined Procedures

There are various ways to generate flip-flops and d-latches with VHDL, such as u
processes and specifying behavior that represents the behavior of flip-flops and
dlatches. However, in some cases it is useful to instantiate technology independe
flip-flops or dlatches in the VHDL dataflow environment immediately. A more
structural oriented VHDL style will be possible that way. The exemplar package
includes the definition of procedures that represent flip-flops or dlatches with vari
set or reset facilities that operate on single bits or vectors (to create registers).

The exemplar package defines these procedures on signals of type bit ,
bit_vector , elbit and elbit_vector , while the package exemplar_1164
defines the same procedures for the IEEE 1164 types std_logic , std_ulogic ,
std_logic_vector and std_ulogic_vector . In the description below only
examples for bit and bit_vector are given, but the full definition of the
procedures, for the types listed above, is available for simulation purposes in the
exemplar.vhd and exemplar_1164.vhd .

Flip-flops

Here dff is the single bit D flip-flop and dff_v is the vectored D flip-flop. dff has
no preset or clear inputs, dffc has an active-high asynchronous clear (set q to ’0’)
input, dffp has an active-high asynchronous preset (set q to ’1’) input, and dffpc
has both a preset and a clear input. If both preset and clear are asserted, q is not
defined. All inputs are active high, the clock input is positive edge triggered. For
vectored dffs, the number of flip-flops that will be instantiated is defined by the size
the input (d) and output (q) vectors of the dff#_v instantiation. (The size of d and q
vectors must be the same.)

If q is a port of the VHDL entity, it must be declared as an INOUT port, since q is
used bidirectionally in each of these functions.

dff[_v](data, clock, q)
dffc[_v](data, clear, clock, q)
dffp[_v](data, preset, clock, q)
dffpc[_v](data, preset, clear, clock, q)
4-20 HDL Synthesis Manual

4

s of

le of

e
dures

e

-up
y are
r
ed to
state
logic
Latches

These define a level sensitive D-type latch with an enable. The latch is enabled
(transparent) when the enable input is 1, disabled when the input is 0. dlatch has no
preset or clear capability, dlatchc has an asynchronous active-high clear (set q to
’0’) input, dlatchp has an asynchronous active-high preset (set q to ’1’), and
dlatchpc has both preset and clear. If both preset and clear are asserted, q is not
defined. dlatch_v creates the vector equivalent procedures to generate register
dlatches.

Tristate Busses

When a signal is assigned in multiple concurrent statements, the synthesis
implementation requires that in each statement the signal is assigned a ’Z’ value
under at least one condition. A tristate gate is created in this case, with the enab
the gate corresponding to the inverse of the condition where the ’Z’ is assigned in the
model. This is the only case where multiple assignments to a signal in different
concurrent statements is allowed.

It is also possible for the user to specify what to do in the case where none of th
drivers of the bus are enabled. To address this situation, three pre-defined proce
have been declared to handle the three standard tristate bus conditions: PULLUP,
PULLDN and TRSTMEM. These drive an otherwise undriven bus to the values 1, 0, or
retain the current value , respectively. Only one of these functions may b
specified for a given bus. The synthesis tools will build the appropriate logic to
implement the specified function in the technology. If the technology includes pull
or pull-down resistors or repeater cells on internal busses these will be used. If the
not available, an additional tristate gate, whose enable is the NOR of all the othe
enables and whose input is either VCC, GND or the value on the bus will be creat
implement the specified function. The synthesis tools also know what the default
for a bus is in the technology, and if that matches the specified function, no extra
is created. If no termination is specified, then its undriven value depends on the
technology used.

dlatch[_v](data, enable, q)
dlatchc[_v](data, clear, enable, q)
dlatchp[_v](data, preset, enable, q)
dlatchpc[_v](data, preset, clear, enable, q)
The VHDL Environment 4-21

4

that
,

 is

f the

ools

ons
The tristate bus procedures defined below may be used with signals of type bit ,
elbit , (package exemplar) std_logic and std_ulogic (package ex_1164).

pullup(busname)

When a bus is not driven, this procedure will pull the bus up to 1.

pulldn(busname)

When a bus is not driven, this procedure will pull the bus down to 0.

trstmem(busname)

When a bus is not driven, this procedure will drive the bus to its last driven state.

Syntax and Semantic Restrictions

VHDL as the IEEE Standard 1076 is a extended language with many constructs
are useful for simulation. However, during the initial development of the language
logic synthesis was not taken into account. Therefore, a number of constructs or
combination of constructs cannot be implemented in actual circuits. VHDL 1076
fully simulatable, but not fully synthesizable.

Synthesis Tool Restrictions

This section discusses the syntax and semantic restrictions of the VHDL parsers o
Exemplar synthesis tools.

• Operations on files not supported. Files in VHDL could behave like ROMs or
RAMs, but the synthesis tools do not support using file (types). The synthesis t
will ignore, but accept, file (type) declarations.

• Operations on objects of real types are not supported. Objects of real types
have no defined bit-resolution. The synthesis tools will ignore, but accept,
declarations of (objects of) real types.

• Operations on objects of access types are not supported, since they lead to
unsynthesizable behavior. The synthesis tools will ignore, but accept, declarati
of (objects of) access types.
4-22 HDL Synthesis Manual

4

rces,

or
ions

for

teed
• Attributes BEHAVIOR, STRUCTURE, LAST_EVENT, LAST_ACTIVE, and
TRANSACTION are not supported.

• Configurations are ignored; default component binding (by name) is assumed.

• Global, non-constant signals are not supported, that is, signals declared in a
package.

• Allocators are not supported, because they perform dynamic allocation of resou
which is not synthesizable.

• Configuration declarations are ignored. The synthesis tools allow only entities
components as the main building blocks of the design. Configuration specificat
(binding a component (instance) to an entity) ARE supported.

• REGISTER and BUS signal declarations are not supported. Only resolution
functions with a synthesis directive are allowed (see the section “BUS and
REGISTER” on page 55).

VHDL Language Restrictions

Apart from these restrictions, which are mostly tool-related, there are some basic
restrictions that apply to VHDL descriptions for synthesis. Since they occur quite
often, additional descriptions are presented here to clarify the problems involved
synthesis. Here is the list:

• after clause ignored.

• Restrictions on Initialization values.

• Ranges of loops have to evaluate to constants during compile time.

• Restrictions on edge-detecting attributes (EVENT and STABLE).

• Restrictions on wait statements.

• Restrictions on multiple drivers on one signal.

A more detailed description of these restrictions follows below:

After Clause Ignored

The after clause refers to delay in a signal. Since delay values cannot be guaran
in synthesis, they are ignored by the synthesis tools after they issue a warning.
The VHDL Environment 4-23

4

or

ne

ed
a
ion
les a

 the

le

alues
Restrictions on Initialization Values

Initialization values are allowed in a number of constructs in VHDL:

1. Initial value of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of a variable in a variable declaration in a subprogram (procedure
function).

4. Initial value of a generic or port in a component declaration.

5. Initial value of a parameter in a subprogram interface list.

The problem with initialization values for synthesis is that some initial values defi
the initial value of an object before actual simulation is done. This behavior
corresponds to controlling the power-up state of a device that would be synthesiz
from the VHDL description. Since synthesis cannot control the power-up state of
device, this kind of initial value cannot be synthesized. However, if after initializat
there is never an change of value, the behavior can be synthesized, and resemb
simple constant value.

The synthesis tools fully support initialization values, except for initializing objects
that can change their value after initialization. That is, the following form of
initialization values are NOT supported because they imply power-up behavior of
synthesized device:

1. Initial values of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of an OUTPUT or INOUT port in an interface list.

All other forms of initialization values are supported by the synthesis tools.

Ranges Of Loops Have To Evaluate To Constants During Compi
Time

Loops with no compile time bounds (especially infinite loops) have no RTL logic
representation. Therefore, make sure that the loop bounds depend on “constant” v
like the bounds of a vector or ordinary decimal literals. The attributes ’LEFT ,
’RIGHT , ’RANGE, etc. are normally sufficient to indicate bounds of a loop.
4-24 HDL Synthesis Manual

4

the

d

ns,
d
Restrictions On Edge-Detecting Attributes (’event)

Most restrictions on VHDL to assure correct compilation into a logic circuit are on
constructs that define edges or changes on signals. The ’EVENT attribute is the best
example of this. signal’EVENT is TRUE only if signal changes. Then it is TRUE for
one simulation delta of time. In all other cases it is FALSE. The STABLE attribute is
the boolean inversion of EVENT.

There are two restrictions for synthesis on usage of the EVENT and the STABLE
attribute:

1. An EVENT or STABLE attribute can be used only to specify a leading or falling
clock edge. For example:

2. Clock edge expressions can only be used as conditions. For example:

These restrictions originate from the fact that binary logic circuits have a restricte
number of elements that are active ONLY during signal edges. Basically, only
(set/resettable) edge triggered flip-flops show that behavior. Within these restrictio
the synthesis tools allow free usage of the clock edge conditions, either in guarde
blocks, processes or subprograms.

clk’event and clk=’1’ -- Leading edge of clk
clk’event and clk=’0’ -- Falling edge of clk
NOT clk’stable and clk=’0’ -- Falling edge of clk
clk’event and clk -- Leading edge of (boolean) clk

if (clk’event and clk=’1’) then ...
wait until NOT clk’stable and clk=’0’ ;
wait until clk=’1’ ; --Implicit clock edge due to

 --VHDL semantics of ’wait’
block (clk’event and clk=’1’... --Block GUARD condition
The VHDL Environment 4-25

4

t:

r

le
 are

s of
at

l
 on

able

n
re,
ch
e
Restrictions on Wait Statements

All state-of-the-art VHDL synthesis tools on the market right now have strong
restrictions with respect to wait statements and use of edge-detecting attributes
(’event and ’stable). Here are the (informal) restrictions for the wait statemen

• Only one wait (until) statement is allowed in a process.

• That wait (until) statement (if present) must be the first or last statement in the
process.

• The expression in the “until” condition must specify a leading or falling single
clock edge. (Examples are shown above in the EVENT attribute section.)

All assignments inside the process result in the creation of registers. Each registe
(flip-flop) is clocked with the single clock signal.

There are a number of cases where multiple waits are synthesizable and resemb
state-machine behavior. In the Exemplar synthesis tools, however, multiple waits
not supported. State machine behavior, however, can always be re-written to a case
statement and register process, as explained in “State Machines” on page 18.

Restrictions on Multiple Drivers on One Signal

VHDL does not allow multiple drivers on a signal of an unresolved type. For signal
resolved types, VHDL defines that a (user-defined) resolution function defines wh
the signal value is going to be in case there are multiple driver (simultaneous
assignments) to the signal.

A resolution function with meta-logical values (’Z’ , ’X’ , etc.) in general leads to
behavior that is not synthesizable (since logic circuits cannot produce meta-logica
values). Therefore, in general, VHDL synthesis tools do not allow multiple drivers
a signal. However, if the resolution function defines the behavior of multiple
three-state drivers on a bus, multiple drivers of a signal could represent synthesiz
behavior.

The ’Z’ value is in general used to identify three-state behavior. The resolution
function of the IEEE std_logic (resolved) type is written so that multiple drivers o
a signal of std_logic do resemble multiple three-state drivers on a bus. Therefo
the synthesis tools accept multiple assignments to the same signal as long as ea
assignment is conditionally set to the ’Z’ value. The synthesis tools allow free usag
4-26 HDL Synthesis Manual

4

 the
of ’Z’ assignments (either from dataflow statements, process statements or from
within procedures). The synthesis tools will implement three-state drivers to mimic
three-state behavior.

It is important to note that the synthesis tools do not check if there could be a
bus-conflict on the driven bus. In this case, the simulation would just call the
resolution function again to resolve the value (normally producing a meta-logical
value), but the behavior for synthesis is not defined. Avoiding bus conflicts is the
responsibility of the user.
The VHDL Environment 4-27

4

4-28 HDL Synthesis Manual

Introduction to Verilog HDL Synthesis 5
e
ports
is
s.

nts
 other
nd

ed,
Verilog HDL is a high level description language for system and circuit design. Th
language supports various levels of abstraction. Where a regular netlist format sup
only structural description, Verilog supports a wide range of description styles. Th
includes structural descriptions, data flow descriptions and behavioral description

The structural and data flow descriptions show a concurrent behavior. All stateme
are executed concurrently, and the order of the statements does not matter. On the
hand, behavioral descriptions are executed sequentially in always blocks, tasks a
functions in Verilog. The behavioral descriptions resemble high-level programming
languages.

Verilog allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic need
resulting in a final netlist description in the technology of your choice.
5-1

5

ot be
le of
The high level design flow enabled by the use of the Exemplar synthesis tools is
shown in Figure 5-1.

Figure 5-1 Top-Down Design Flow with Exemplar Synthesis Tools

Verilog and Synthesis

Verilog is completely simulatable, but not completely synthesizable. There are a
number of Verilog constructs that have no valid representation in a digital circuit.
Other constructs do, in theory, have a representation in a digital circuits, but cann
reproduced with guaranteed accuracy. Delay time modeling in Verilog is an examp
that.

concept

LeoHDL 01

synthesize to gate

translate to behavior/simulate

optimize speed/area

technology map

physical implementation

CAE simulator

E
xe

m
pl

ar
 S

yn
th

es
is

 T
oo

ls
5-2 HDL Synthesis Manual

5

 not
a
plar

erilog
n.

me
ct.

it
arget

as for
rules

esis.

ou

put
esis
State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL)
circuit descriptions and target a specific technology. Scheduling and allocation
algorithms, that perform circuit optimization at a very high and abstract level, are
yet available for general circuit applications. Therefore, the result of synthesis of
Verilog description depends on the style of Verilog that is used. Users of the Exem
synthesis tools should understand some of the concepts of synthesis specific to V
coding style at the RTL level, in order to achieve the desired circuit implementatio

What synthesis tools do best then is to automatically solve many of the cumberso
RTL logic optimization problems that occur during a typical top-down design proje

This manual is intended to give the Verilog designer guidelines to achieve a circu
implementation that satisfies the timing and area constraints that are set for the t
circuit, while still using a high level of abstraction in the Verilog source code. This
goal will be discussed both in the general case for synthesis applications, as well
the Exemplar synthesis tools specifically. Examples are used extensively; Verilog
are not emphasized.

Knowledge of the basic constructs of Verilog is assumed, although one chapter is
dedicated to the discussion of all the constructs in Verilog that are useful for synth
For more information on the Verilog language, refer to the Verilog Hardware
Description Language Reference Manual, published by Open Verilog International.

Synthesizing the Verilog Design

Using the Exemplar synthesis tools to synthesize your Verilog design is easy. If y
run Galileo from the command line, use the following option:

If you run Leonardo from the command line, use the following command and
argument:

If using the graphical user interface, use the interface to choose “Verilog as the In
Format.” Target technology and other options are chosen as usual with the synth
tools.

-input_format=verilog

read -format verilog file_name
Introduction to Verilog HDL Synthesis 5-3

5

5-4 HDL Synthesis Manual

Verilog Language Features 6

he
our
This chapter provides an introduction to the basic language constructs in Verilog:
defining logic blocks:

• Data flow and behavioral descriptions

• Concurrent and sequential functionality

• Numbers and data types.

The Exemplar synthesis tools synthesize all levels of abstraction and minimizes t
amount of logic needed resulting in a final netlist description in the technology of y
choice.
6-1

6

 and

g
hus

e

’.
Modules

A basic building block in Verilog is a module. The module describes both the
boundaries of the logic block and the contents of the block, in structural, data flow
behavioral constructs.

This Verilog description shows the implementation of small_block , a block that
describes some simple logic functions.

The port list is declared, the port directions are specified, then an internal wire is
declared. A wire in Verilog represents physical connection in hardware. It can
connect between modules or gates, and does not store a value. A wire can be used
anywhere inside the module , but can only be assigned by:

• Connecting it to an output of a gate or a module .

• Assigning to it using a continuous assignment.

This module contains only dataflow behavior. Dataflow behavior is described usin
continuous assignments. All continuous assignments are executed concurrently, t
the order of these assignments does not matter. This is why it is valid to use s before
s is assigned. In the first statement o1 is assigned the result of the logical OR of s and
c . “| |” denotes the logical OR operation.

More details about the various dataflow statements and operators are given in th
following sections.

The Exemplar synthesis tools support empty top level modules.

’macromodule’

The Exemplar synthesis tools support ’macromodule’, which is treated as ’module

module small_block (a, b, c, o1, o2);
input a, b, c;
output o1, o2;
wire s;

assign o1 = s || c ;
assign s = a && b ;
assign o2 = s ^ c ;

endmodule
6-2 HDL Synthesis Manual

6

er
imal

ber,
 be
al.

stants
Numbers

Numbers in Verilog can be either constants or parameters. Constants can be eith
sized or unsized. Either one can be specified in binary, octal, hexadecimal, or dec
format.

If a prefix is preceded by a number, this number defines the bit width of the num
for instance, 8’b 01010101 . If no such number exists, the number is assumed to
32 bits wide. If no prefix is specified, the number is assumed to be 32 bits decim

The synthesis tools produce a warning when encountering non-synthesizable con
such as float. The value 0 is assumed.

For example, in

x will evaluate to 8.

Special characters in numbers:

“_” a separator to improve readability.

’x’, ’X’ unknown value.

’z’, ’Z’, ’?’ tri-state value.

Examples:

334 32 bits wide decimal number

’b101 32 bits wide binary number

3’b11 3 bits wide binary number

Name Prefix Legal Characters

binary ’b 01xXzZ_?

octal ’o 0-7xXzZ_?

decimal ’d 0-9_

hexcadecimal ’h 0-9a-fA-FxXzZ_?

x = 2.5 + 8;
Verilog Language Features 6-3

6

ation
:

20’h’ff_fff 20 bits wide hexcadecimal number

10’bZ 10 bits wide all tri-state

Data Types

Verilog defines three main data types:

• net

• register

• parameter

By default these data types are scalars, but all can take an optional range specific
as a means of creating a bit vector. The range expression is of the following form

[<most significant bit> : <least significant bit>]
6-4 HDL Synthesis Manual

6

g

Some of these data types are used in the example below, along with the range
expression syntax. Further details on the data types are presented in the followin
sections.

// This design implements a Manchester Encoder
//
module manenc (clk , data , load , sdata, ready);
parameter max_count = 7;

input clk, load;
input [0:max_count] data;
output sdata, ready ;

reg sdata, ready ;
reg [2:0] count;
reg [0:max_count] sout;
reg phase;

// Phase encoding
always @ (posedge clk)

begin
 sdata = sout[max_count] ^ phase;
 phase = ~phase ;

end
Verilog Language Features 6-5

6

Net Data Types

The net data types supported by the Exemplar synthesis tools are

• wire

• tri

• supply0

• supply1

• wand

• wor

// Shift data
always @ (posedge phase)
 begin

 if ((count == 0) & !load) begin
sout[1 : max_count] = sout[0 : max_count - 1];
sout[0] = 1’b0;
ready = 1’b1;

end
else if ((count == 0) & load) begin

sout = data;
count = count + 1;
ready = 1’b0;

end
else if (count == max_count) begin

sout[1 : max_count] = sout[0 : max_count - 1];
sout[0]= 1’b0;
count = 0;

end
else begin

sout[1 : max_count] = sout[0 : max_count - 1];
sout[0]= 1’b0;
count = count + 1;

end
end

endmodule
6-6 HDL Synthesis Manual

6

ntities
annot

ools).

e
re

ile

nd
e

 not

 an
These data types are used to represent physical connections between structural e
in the Verilog design, such as a wire between two gates, or a tristate bus. Values c
be assigned to net data types within always blocks. (tri0 , tri1 , triand , trior
and trireg are also net data types, but are not yet supported by the synthesis t

wire and tri Nets

The wire and tri net data types are identical in usage (syntax and function). Th
two different names are provided for design clarity. Nets driven by a single gate a
usually declared as wire nets, as shown in “Modules” on page 2 in this chapter, wh
nets driven by multiple gates are usually declared as tri nets.

Supply Nets

The supply1 and supply0 net data types are used to describe the power (VCC) a
ground supplies in the circuit. For example, to declare a ground net with the nam
GND, the following code is used:

wand and wor Net Types

wand and wor statements result into and or logic respectively, since wired logic is
available in all technologies.

Register Data Type

A register, declared with keyword reg , represents a variable in Verilog. Where net
data types do not store values, reg data types do. Registers can be assigned only in
always block, task or function. When a variable is assigned a value in an always
block that has a clock edge event expression (posedge or negedge), a flip-flop is

supply0 GND ;

wor out;
out = a&b
out = c&d;
endmodule
Verilog Language Features 6-7

6

e

synthesized by the synthesis tools. To avoid the creation of flip-flops for reg data
types, separate the combinational logic into a different always block (that does not
have a clock edge event expression as a trigger).

Parameter Data Type

The parameter data type is used to represent constants in Verilog. Parameters ar
declared by using the keyword parameter and a default value. Parameters can be
overridden when a module is instantiated.

Declaration Local to Begin-End Block

Local declaration of registers and integers is allowed inside a named begin -end
block.

Array of reg and integer Declaration (Memory Declaration)

Declaration and usage of an array of registers or integers is now allowed.

input [10:0] data;
always @ (data)
begin : named_block
integer i;

parity = 0;
for (i = 0; i < 11; i= i + 1)
parity = parity ^ data[i];

end //named_block

input [0:3] address;
input [0:7] date_in;
output [0:7] data_out;
reg [0:7] data_out, mem [0:15];
always @ (address or date_in or we)

if (we) mem [address] = date_in;
else data_out = mem [address];
6-8 HDL Synthesis Manual

6

 ports
t part
alues,
s
.

 using

 of the

 the

Continuous Assignments

A continuous assignment is used to assign values to nets and ports. The nets or
may be either scalar or vector in nature. (Assignments to a bit select or a constan
select of a vector are also allowed.) Because nets and ports are being assigned v
continuous assignments are allowed only in the dataflow portion of the module. A
such, the net or port is updated whenever the value being assigned to it changes

Continuous assignments may be made at the same time the net is declared, or by
the assign statement.

Net Declaration Assignment

The net declaration assignment uses the same statement for both the declaration
net and the continuous assignment:

Only one net declaration assignment can be made to a specific net, in contrast to
continuous assignment statement, where multiple assignments are allowed.

Continuous Assignment Statement

The continuous assignment statement (assign) is used to assign values to nets and
ports that have previously been declared.

wire [0:1]sel = selector ;
Verilog Language Features 6-9

6

the

ural
 the
The following example describes a circuit that loads a source vector of 4 bits on
edge of a clock (wrclk), and stores the value internally in a register (intreg) if the
chip enable (ce) is active. One bit of the register output is put on a tristate bus
(result_int) based on a bit selector signal (selector), with the bus output
clocked through a final register (result).

Procedural Assignments

Procedural assignments are different from continuous assignments in that proced
assignments are used to update register variables. Assignments may be made to
complete variable, or to a bit select or part select of the register variable.

module tri_asgn (source, ce, wrclk, selector, result) ;
input [0:3]source ;
input ce, wrclk ;
input [0:1]selector ;
output result ;
reg [0:3]intreg ;
reg result ;
// net declaration assignment
wire [0:1]sel = selector ;
tri result_int ;

// continuous assignment statement

assign
result_int = (sel == 2’b00)? intreg[0] : 1’bZ ,
result_int = (sel == 2’b01)? intreg[1] : 1’bZ ,
result_int = (sel == 2’b10)? intreg[2] : 1’bZ ,
result_int = (sel == 2’b11)? intreg[3] : 1’bZ ;

always @(posedge wrclk)
begin

if (ce)
begin

 intreg = source;
result = result_int ;

end
end

endmodule
6-10 HDL Synthesis Manual

6

llow it
g

ter

lue of
 step.
ce
s an
ly

the

e for
Both blocking and non-blocking procedural assignments are allowed.

Blocking assignments, specified with the “=” operator, are used to designate
assignments that must be executed before the execution of the statements that fo
in a sequential block. This means that the value of a register variable in a blockin
assignment is updated immediately after the assignment.

Non-blocking assignments, specified with the “<=” operator, are used to schedule
assignments without blocking the procedural flow. It can be used whenever regis
assignments within the same time step can be made without regard to order or
dependence upon each other. Also, in contrast to the blocking assignment, the va
a register variable in a non-blocking assignment is updated at the end of the time
This behavior does not affect assignments done in the dataflow environment, sin
assignments are done concurrently there. However, in a sequential block, such a
always block, the value of the variable in a non-blocking assignment changes on
after the complete execution of the sequential block.

Refer to the Verilog Language Reference Manual for more information on
non-blocking procedural assignments.

Always Blocks

Always blocks are sections of sequentially executed statements, as opposed to
dataflow environment, where all statements are executed concurrently. In an always
block, the order of the statements DOES matter. In fact, always blocks resemble the
sequential coding style of high level programming languages. Also, always blocks
offer a variety of powerful statements and constructs that make them very suitabl
high level behavioral descriptions.

An always block can be called from the dataflow area. Each always block is a
sequentially executed program, but all always blocks run concurrently. In a sense,
multiple always blocks resemble multiple programs that can run simultaneously.
Verilog Language Features 6-11

6

ge of

t

l
Always blocks communicate with each other via variables of type reg which are
declared in the module . Also, the ports and wires defined in the module can be
used in the always blocks.

This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk), store the value internally in a register (intreg) if a chip
enable (ce) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked ou
through the register result.

The description consists of two always blocks, one to write the value into the interna
register and clock the output, and one to read from it. The two always blocks
communicate via the register values intreg and result_int .

module mux_case (source, ce, wrclk, selector, result);
input [0:3]source;
input ce, wrclk;
input [0:1]selector;
output result;
reg [0:3]intreg;
reg result, result_int;

always @(posedge wrclk)
begin

if (ce)
intreg = source;

result = result_int;
end

always @(intreg or selector)

case (selector)
2’b00: result_int = intreg[0];
2’b01: result_int = intreg[1];
2’b10: result_int = intreg[2];
2’b11: result_int = intreg[3];

endcase

endmodule
6-12 HDL Synthesis Manual

6

. In
 the

,

ion
e

,

r

 Any
e

n
The first always block is a synchronous block. As is explained later, the always
block executes only if the event expression at the event control evaluates to true
this case, the event expression evaluates to true when a positive edge occurs on
input wrclk (event expression posedge wrclk). Each time the edge occurs, the
statements inside the always statement are executed. In this case, the value of the
input source is loaded into the internal variable intreg only if ce is ’1’ . If ce is
’0’ , intreg retains its value. In synthesis terms, this translates into a D flip-flop
clocked on wrclk , and enabled by ce . Also, the intermediate output result_int is
loaded into the output result (a D flip-flop clocked on wrclk).

The second always block is a combinational block. In this case, the event express
evaluates to true when either intreg or selector changes. When this happens, th
statements inside the always statement are executed, and the output result_int
gets updated depending on the values of intreg and selector . Note that this leads
to combinational behavior (essentially a multiplexer), since result_int only
depends on intreg and selector , and each time either of these signals changes
result_int gets updated.

The reason for separating the two always blocks is to avoid the creation of a registe
for the variable result_int . result_int must be of reg data type, because it is
assigned in an always block, but it does not need to be registered logic.

Not all constructs, or combinations of constructs, in an always block lead to behavior
that can be implemented as logic. More information about synthesizable Verilog
constructs is given in Chapter 7, “The Art of Verilog Synthesis.”

The Exemplar synthesis tools support empty always statements.

Note that constants on the sensitivity list have no effect in simulation or synthesis.
kind of expression inside a sensitivity list is legal in Verilog and is accepted by th
synthesis tools. For synthesis, all the leaf level identifiers of the expression are
considered to be in the sensitivity list, so some simulation mismatch might be see
after synthesis.

always @ (inp1[0:2] or 3'b011 or {a, b}) // allowed
.........
.........
Verilog Language Features 6-13

6

or to
AM

the

ent
ed,
Module Instantiation

Module instantiation can be used to implement individual gates or cells, macros,
add hierarchy to your design. Here is an example that generates an address for R
and instantiates the RAM cells:

For this example, if the RAM module RAM_32x1 is a cell or macro in a library, the
synthesis tools will implement that cell or macro in the output netlist. To do that,
library in which the cell or macro exists must be specified as the Input Design
Technology. If no Input Design Technology is specified, the synthesis tools implem
the RAM module as a black box in the output netlist, with inputs and outputs defin
but no functionality.

module scanner (reset, stop, load, clk, load_value, data) ;
input reset, stop, load, clk;
input [3:0]load_value;
output [3:0]data;
reg [4:0] addr;

// Instantiate and connect 4 32x1-bit rams

RAM_32x1 U0 (.a(addr), .d(load_value[0]), .we(load), .o(data[0]));
RAM_32x1 U1 (.a(addr), .d(load_value[1]), .we(load), .o(data[1]));
RAM_32x1 U2 (.a(addr), .d(load_value[2]), .we(load), .o(data[2]));
RAM_32x1 U3 (.a(addr), .d(load_value[3]), .we(load), .o(data[3]));

// Generate the address for the rams
always @(posedge clk or posedge reset)
begin

if (reset)
addr = 5’b0 ;

else if (~stop)
addr = addr + 5’b1 ;

end
endmodule

module RAM_32x1 (a, we, d, o);
input [4:0] a;
input we, d ;
output o;
endmodule
6-14 HDL Synthesis Manual

6

odule
is

ly.
erride
Note – Galileo and Leonardo use different techniques to indicate which source
technology to use. Galileo uses the -source= lib_name switch. Leonardo requires
that you load the source technology by using the load_library lib_name command
before reading the design in the database.

The Exemplar synthesis tools support empty named port connections, e.g.,

Parameter Override During Instantiation of Module

Parameter overriding during module instantiation (as shown in the example) is
supported by the synthesis tools.

Defparam Statement

When using the defparam statement, parameter values can be changed in any m
instance throughout the design, provided the hierarchical name of the parameter
used.

NOTE: In the synthesis tool, the hierarchical name is restricted to single level on
This means that when the defparam statement is used, the user will be able to ov
any parameter value of an instance in the current module only.

nd2 x1 (.a(f), .b());

module top (a, b);
input [0:3] a;
output [0:3] b;

do_assign #(4) name (a, b);
endmodule
module do_assign (a, b);

parameter n = 2;
input [0:n-1] a;
output [0:n-1] b;

assign b = a;
endmodule
Verilog Language Features 6-15

6

Example:

module top (a, b);

input [0:3] a;

output [0:3] b;

wire top;

do_assign name (a, b);

defparam name.n = 4;

endmodule

module do_assign (a, b);

parameter n = 2;

input [0:n-1] a;

output [0:n-1] b;

assign b = a;

endmodule
6-16 HDL Synthesis Manual

6

t

ore
is
’unconnected_drive’ and ’nounconnected_drive’

These directives are specified as outside modules only. ’unconnected_drive ’
takes either pull0 or pull1 as a parameter and causes all the unconnected inpu
ports to be pulled down or up, according to the parameter. ’nounconnected_
drive ’ restores the normal condition (where the unconnected input ports are
connected to high-Z).

Operators

This section describes the operators available for use in Verilog expressions. Bef
discussing operators, a brief summary of the operands that the operators act on
appropriate.

Operands

An operand in an expression can be one of the following:

• Number

• Net (including bit-select and part-select)

• Register (including bit-select and part-select)

• A call to a function that returns any of the above

’unconnected_drive’ pull1
module with_unconn_port (o, i);
output o;
input i;
assign o = i;
endmodule
’nounconnected_drive’
module test (i, o1, o2);
input i;
output o1, o2;
with_unconn_port I1 (o1,); // o1 = 1
with_unconn_port I2 (o2, i); // o2 = i
endmodule
Verilog Language Features 6-17

6

s are
Bit-selects take the value of a specific bit from a vector net or register. Part-select
a set of two or more contiguous bits from a vector net or register. For example:

...
wire bit_int ;
reg [0:1] part_int ;
reg [0:3] intreg;

bit_int = intreg[1] ; // bit-select of intreg assigned to bit_int
part_int = intreg[1:2] ;// part-select of intreg assigned to part_int
...
6-18 HDL Synthesis Manual

6

The operators supported by the Exemplar synthesis tools are listed in Table 6-1.

Table 6-1 Verilog Language Operators

Operator Description

+ - * / arithmetic

< > <= >= relational

== logical equality

!= logic inequality

! logical negation

&& logical and

|| logical or

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

^ bit-wise exclusive or

^~ or ~^ bit-wise equivalence

& reduction and

| reduction or

^ reduction xor

<< left shift

>> right shift

? : conditional

{} concatenation
Verilog Language Features 6-19

6

’.
er of

ors:

’.

ne of
 to

 that
Arithmetic Operators

The Exemplar synthesis tools support the following arithmetic operators:

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X
The “/” operator is supported in the case where the divisor is a constant and a pow
two.

Relational and Equality Operators

The Exemplar synthesis tools support the following relational and equality operat

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X

=== and !== Operators are Treated as == and !=

=== and !== operators are treated as == and != for synthesis purposes if either o
the operands is nonconstant. If both the operands are constant, they can be used
compare metalogical values. In simulation, the difference between == and === is
one can compare metalogical characters exactly with === but not with ==. Any
metalogical character causes the output of == to be unknown x. The difference
between != and !== is the same.

+ - * /

< > <= >= == !=
6-20 HDL Synthesis Manual

6

Logical Operators

The Exemplar synthesis tools support the following logical operators:

Bit-Wise Operators

The Exemplar synthesis tools support the following bit_wise operators:

module triple_eq_neq (in1, in2, O);
output [0:10] O;
input [0:2] in1, in2;
assign
 O[0] = 3'b0x0 === 3'b0x0, // output is 1
 O[1] = 3'b0x0 !== 3'b0x0, // output is 0
 O[2] = 3'b0x0 === 3'b1x0, // output is 0
 O[3] = 3'b0x0 !== 3'b1x0, // output is 1O[4]=in1===3'b0x0,

 // LHS is non constant so this
 // produces warning that comparison
 // metalogical character is
 // with zero. output is 0
 O[5] = in1 !== 3'b0x0, // LHS is non constant so this
 // produces warning that comparison
 // with metalogical character is
 // zero.output is 1,because it
 // checks for not equality
 O[6] = in1 === 3'b010, // normal comparison
 O[7] = in1 !== 3'b010, // normal comparison
 O[8] = in1 === in2, // normal comparison
 O[9] = in1 !== in2, // normal comparison
 O[10] = 3'b00x === 1'bx; // output is 1
endmodule

! && ||

~ & | ^ ^~ ~^
Verilog Language Features 6-21

6

re

he
These operators perform bit-wise operations on equivalent bits in the operands.

Reduction Operators

The Exemplar synthesis tools support the following reduction operators:

These operators perform reduction operations on a single operand. Operations a
performed on the first and second bits of the operand, then on the result of that
operation with the third bit of the operand, until the limit of the vector is reached. T
result is a single bit value.

The following operators:

are negations of the “&”, “|”, and “^” operators.

Shift Operators

The Exemplar synthesis tools support the following shift operators:

Conditional Operator

The conditional operator statement has the following syntax:

& | ^

~& ~| ~^

<< >>

conditional_expression ? true_expression : false_expression
6-22 HDL Synthesis Manual

6

ality
The result of this operation is true_expression if conditional_expression
evaluates to true, and false_expression if false. In the following example, result
is assigned the value of intreg[0] if sel = 2’b00 , otherwise result is
assignedZ:

Concatenation

The concatenation of bits from multiple expressions is accomplished using the
characters { and }. For example, the following expressions are equivalent:

 For a = 5’b11010, c = 5’b10101, the result is foo = 5’b11001.

‘ signed and ‘ unsigned Attributes on Operators

‘signed and ‘unsigned attributes change the type of a particular operator.
Comparison between two bit vectors are always done unsigned, but if the function
needs to be signed, a ‘signed attribute can be used just after the comparator.

Similarly, an ‘unsigned attribute can be used to perform an unsigned operation
between two integers.

...
output result ;
reg [0:3} intreg ;
wire [0:1] sel ;

assign result = (~sel[0] && ~sel[1]) ? intreg[0] : 1’bZ ;
...

foo = {a[4:3], 1’b0, c[1:0]} ;
foo = {a[4], a[3], 1’b0, c[1], c[0]} ;

input [0:3] A, B;
output o;
assign o = A < ‘signed B; // Signed comparator.
Verilog Language Features 6-23

6

nd

rmed
ssion.
hest
ce.

The shift operators always do a logical shift. By using the ‘signed directive, they
can be made to do an arithmetic shift. Arithmetic right shift shifts in the sign bit a
the left shift shifts in the least significant bit (e.g., 4’b0001 << ‘signed 1 produces
4’b0011).

Operator Precedence

The operator precedence rules determine the order in which operations are perfo
in a given expression. Parentheses can be used to change the order in an expre
The operators supported by the synthesis tools are listed below in order from hig
precedence to lowest, with operators on the same line having the same preceden

Statements

This section presents information on the use of if-else , case and for statements
for specifying designs.

If-Else Statements

The if-else conditional construct is used to specify conditional decisions. As an
example, here is the design from “Procedural Assignments,” with the multiplexer
described with this construct instead of the case statement:

+ - ! ~ (unary)
* / (binary)
+ - (binary)
<< >>
< > <= >=
== !=
&
^ ^~ ~^
|
&&
||
? : (ternary)
6-24 HDL Synthesis Manual

6

ge of

t

This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk), store the value internally in a register (intreg) if a chip
enable (ce) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked ou
through the register result.

module mux_case (source, ce, wrclk, selector, result);
input [0:3]source;
input ce, wrclk;
input [0:1]selector;
output result;
reg [0:3]intreg;
reg result, result_int;

always @(posedge wrclk)
begin
// if statement for chip enable on register

if (ce)
intreg = source;

result = result_int;
end

always @(intreg or selector)
begin
// if-else construct for multiplexer functionality

if (sel == 2’b00)
result_int = intreg[0] ;

else if (sel == 2’b01)
result_int = intreg[1] ;

else if (sel == 2’b10)
result_int = intreg[2] ;

else if (sel == 2’b11)
result_int = intreg[3] ;

end

endmodule
Verilog Language Features 6-25

6

Case Statements

If many conditional clauses have to be performed on the same selection signal, a case
statement is a better solution than the if-else construct. The following example
describes a traffic light controller (state machine with binary encoding):

module traffic (clock, sensor1, sensor2,
red1, yellow1, green1, red2, yellow2, green2);

input clock, sensor1, sensor2;
output red1, yellow1, green1, red2, yellow2, green2;
parameter st0 = 0, st1 = 1, st2 = 2, st3 = 3,

st4 = 4, st5 = 5, st6 = 6, st7 = 7;
reg [2:0] state, nxstate ;
reg red1, yellow1, green1, red2, yellow2, green2;

always @(posedge clock)

state = nxstate;

always @(state or sensor1 or sensor2)
begin

red1 = 1’b0; yellow1 = 1’b0; green1 = 1’b0;
red2 = 1’b0; yellow2 = 1’b0; green2 = 1’b0;

case (state)
st0: begin

green1 = 1’b1;
red2 = 1’b1;
if (sensor2 == sensor1)

nxstate = st1;
else if (~sensor1 & sensor2)

nxstate = st2;
 end

st1: begin
green1 = 1’b1;
red2 = 1’b1;
nxstate = st2;

 end
6-26 HDL Synthesis Manual

6

st2: begin
green1 = 1’b1;
red2 = 1’b1;
nxstate = st3;

 end
st3: begin

yellow1 = 1’b1;
red2 = 1’b1;
nxstate = st4;

 end
st4: begin

red1 = 1’b1;
green2 = 1’b1;
if (~sensor1 & ~sensor2)

nxstate = st5;
else if (sensor1 & ~sensor2)

nxstate = st6;
 end

st5: begin
red1 = 1’b1;
green2 = 1’b1;
nxstate = st6;

 end
st6: begin

red1 = 1’b1;
green2 = 1’b1;
nxstate = st7;

 end
st7: begin

red1 = 1’b1;
yellow2 = 1’b1;
nxstate = st0;

 end
endcase

end
endmodule
Verilog Language Features 6-27

6

e
or

iven

thesis
the

 the

l and
Case Statement and Multiplexer Generation

The case statement, as defined by the Verilog LRM, is evaluated by order, and th
first expression to match the control expression is executed (during simulation). F
synthesis, this implies a priority encoding. However, in many cases the case
statement is used to imply a multiplexer. This is true whenever the case conditions
are mutually exclusive (the control expressions equals only one condition at any g
time).

In Verilog, the case items can be non-constants also. In such a situation, the syn
tools cannot detect that the case statements are parallel. Users can, however, use
global switch -parallel_case for Galileo or set the Tcl variable
parallel_case to TRUE for Leonardo to inform the tool that all the case
statements in the design a mutually exclusive.

For example, the following Verilog code:

results in the equation:

If parallel case is used, the following equation will be synthesized:

This equation is simpler than the first. For a bigger case statement the amount of
logic reduction can be significant. This can not be determined automatically since
case items are nonconstants.

Note – The use of this option can cause simulation differences between behaviora
post-synthesis netlists.

case (1’b1)
s[0]: o = a;
s[1]: o = b;

endcase

o = s[0] * a + !s[0] * s[1] * b;

o = s[0] * a + s[1] * b;
6-28 HDL Synthesis Manual

6

The
 in a
Automatic Full Case Detection

The casex statement below is full case (it covers all possible values 000 to 111).
default statement is not necessary and is ignored by the synthesis tools, resulting
warning message. The synthesis tools also do full-case detection for normal case and
casez statements.

The synthesis tools do full coverage analysis for the if -then -else structure. The
following example is considered a full if -then -else . The last else is ignored and
a warning is issued.

input [0:2] sel;
casex (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default :

endcase

wire [0:1] data;
if (data == 2)

else if (data == 1)

else if (data == 3)

else if (data == 0)

else
 // Ignored for synthesis purpose
endmodule
Verilog Language Features 6-29

6

ls
se
l
Automatic Parallel Case Detection

casex statements are priority-encoded by definition. The Exemplar synthesis too
automatically detect parallel case and produce a warning message saying that ca
conditions are mutually exclusive. The following case statement is treated as paralle
case.

The synthesis tools do parallel case detection for case and casez statements. It also
extracts the parallelism of a mutually exclusive if -then -else structure as shown
below.

input [0:2] sel;
casex (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default :

endcase

wire [0:1] data;
if (data == 2)

else if (data == 1)

else if (data == 3)

else if (data == 0)

6-30 HDL Synthesis Manual

6

ignal
nt

nt

a
casex Statement

The casex statement is used when comparison to only a subset of the selection s
is desired. For example, in the following Verilog code only the three least significa
bits of vect are compared to 001 . The comparison ignores the three most significa
bits.

For more information on comparisons to X and Z, refer to Chapter 8, “Verilog and
Synthesis of Logic.”

casez Supported

casez is used in Verilog to specify “don't care” bits of the case tags. The ’z’ s in the
case tags are not compared when a comparison between the case expression sel and
the tags is done.

’case’ and ’default’ Statements

The Exemplar synthesis tools allow the default statement to appear anywhere in
case , casez , or casex statement, and supports the case statement with only one
default entry.

casex (vect)
6’bXXX001 : <statement> ;

// this statement is executed if vect[2:0] = 3’b001
endcase

...
casez (sel)

3'b10z: ...
3'bz10: ...
3'bz11: ...
3'b00z: ...
default :

endcase
Verilog Language Features 6-31

6

ach
lt:
for Statements

for loops are used for repetitive operations on vectors. In the following example, e
bit of an input signal is ANDed with a single bit enable signal to produce the resu

for loops are supported on if they are bounded by constants.

...
input clk ;
reg [4:0] input_signal, result ;
reg enable ;

always @ (posedge clk)

for (i = 0; i < 5; i = i + 1)
result[i] = enable & input_signal[i] ;

...
6-32 HDL Synthesis Manual

6

rom
low
Disable Statement

The disable statement disables a named block or a task. Disabling of one block f
another block is supported only if the second block is contained in the first one. Be
is an example of disabling a named block.

module add_up_to (up_to_this, the_out);
input [0:3] up_to_this;
output the_out;
reg [0:7] the_out;
integer i;

always @ (up_to_this)
begin : blk

the_out = 0;
for (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if (i == up_to_this) disable blk;

end
end
endmodule

//Below is an example of disabling a task.
module add_up_to (up_to_this, the_out);
input [0:3] up_to_this;
output the_out;
reg [0:7] the_out;

always @ (up_to_this)
begin

add_upto_this (up_to_this, the_out);
end
Verilog Language Features 6-33

6

n).
forever, repeat, while and Generalized Form of for Loop

forever , repeat , while , and the generalized form of the for loop are supported
as long as they are bounded by constants. In the following forever example, the
system counts the number of 1s in the input vector.

Note – The forever loops only twice (which can be determined during compilatio

task add_upto_this;
input [0:3] up_to_this;
output [0:7] the_out;
integer i;
begin

the_out = 0;
for (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if (i == up_to_this) disable add_upto_this;

end
end
endtask
endmodule

module forever_example (in, out);
input [0:1] in;
output out;
reg [0:1] out;

always @ (in)
begin :label
integer tmpcount;
reg [0:1] in_tmp;
6-34 HDL Synthesis Manual

6

 the
Note – If any loop construct is NOT bound by constants, the synthesis tools issue
“iteration limit reached” error.

always @ (in)
begin :label
integer tmpcount;
reg [0:1] in_tmp;

out = 0;
in_tmp = in;
tmpcount = 0;
forever
begin

if (in_tmp[1])
out = out + 1;

in_tmp = in_tmp >> 1;
tmpcount = tmpcount +1;
if (tmpcount == 2) disable label;

end
end
endmodule

module repeat_example (i, o);
input i;
output o;
reg o;

always @ (i)
begin

o = i;
repeat (4'b1011)

o = ~o; // o = ~i
end
endmodule
Verilog Language Features 6-35

6

 be

ned.
Functions and Tasks

Pieces of Verilog can be grouped together in functions and tasks, which can then
used as subprograms in the Verilog code. This is useful for repeated code, or for
readability of the main module.

Tasks and functions appear similar, but are used in different ways. A task is a
subprogram with inputs and outputs, and replaces any piece of verilog code in a
module. Expressions in a task can be both combinational and sequential.

Functions have only inputs and returns a value by its name. Functions are purely
combinational.

Functions

Functions are defined inside a module and can be freely used once they are defi
Functions are always used in an expression, behavioral or dataflow:

or

assign y = func(a,b);

x = func(z);
6-36 HDL Synthesis Manual

6

An example of a function is given below.

module calculator (a, b, clk, s, operator);
input [7:0] a, b;
input clk;
input [1:0] operator;
output [7:0] s;
reg [7:0] s;
parameter ADD = 2’b00, SUB = 2’b01, MUL = 2’b10;

function [15:0] mult;

input [7:0] a, b ;
reg [15:0] r;
integer i;

begin
if (a[0] == 1)

r = b;
else

r = 0;
for (i = 1; i < 7; i = i + 1) begin

if (a[i] == 1)
r = r + b << i ;

end
mult = r;

end
endfunction

always @ (posedge clk)
begin

case (operator)
ADD: s = a + b ;
SUB: s = a - b ;
MUL: s = mult(a,b);

endcase
end
endmodule
Verilog Language Features 6-37

6

Tasks

Tasks are always displayed as statements:

The Exemplar synthesis tools support empty tasks.

An example of a task is presented below.

my_task(a,b,c,d);

task demux (state, load, bait, enable, ready, write, read);
input [2:0] state;
output load, bait, enable, ready, write, read;
parameter LOAD = 3’b000, WAIT = 3’b100, ENAB = 3’b110,

READ = 3’b111, WRIT = 3’b011, STRO = 3’b001;

case (state)
 LOAD:

{state, load, bait, enable, ready, write, read} = 6’b100000;
 WAIT:

{state, load, bait, enable, ready, write, read} = 6’b010000;
 ENAB:

{state, load, bait, enable, ready, write, read} = 6’b001000;
READ:

{state, load, bait, enable, ready, write, read} = 6’b000100;
WRIT:

{state, load, bait, enable, ready, write, read} = 6’b000010;
STRO:

{state, load, bait, enable, ready, write, read} = 6’b000001;
endcase

endtask
6-38 HDL Synthesis Manual

6

Inout Ports in Task

The Exemplar synthesis tools support inout ports in a task statement. Any value
passed through inout ports can be used and modified inside the task .

module inoutintask (i, o1, o2);
input i;
output o1, o2;
reg r, o1, o2;
task T ;
inout io;
output o;
begin

o = io;
io = ~io;

end
endtask
always @ (i)
begin

r = i;
T (r, o1); // o1 = i, r = ~i
o2 = r; // o2 = ~i;

end
endmodule
Verilog Language Features 6-39

6

ored,

d for
Access of Global Variables from Functions and Tasks

Global variables can be accessed for both reading and writing.

System Task Calls

The Exemplar synthesis tools accept system task calls. System task calls are ign
and a warning is issued.

System Function Calls

The Exemplar synthesis tools accept system function calls. The value 0 is assume
system function calls, and a warning is issued.

module x (clk, reset, i1, i2, o);
input clk, reset, i1, i2;
output o;
reg o;
reg [0:1] state;

 task T; //without any port
begin
 case (state)
 2'b00: o = i1;
 2'b01: o = i2;
 2'b10: o = ~i1;
 2'b11: o = ~i2;
 endcase
 state = state + 1; // next state
end
endtask

always @ (posedge clk or posedge reset)
if (reset) begin
 state = 0;
 o = 0;
end
 else T;
endmodule
6-40 HDL Synthesis Manual

6

orted
d

arts
Initial Statement

The Exemplar synthesis tools accept initial statements. The actual value is
ignored.

Compiler Directives

Verilog supports a large list of compiler directives. Most of them are useful for
simulation, but are meaningless for synthesis purposes. A few directives are supp
by the synthesis tools, and those directives have to do with macro substitution an
conditional compilation. Following is a list of these directives:

Note – The symbol exemplar is predefined by the synthesis tools.

Therefore, the statement:

will always be true, and the else part will always be false. This is useful if some p
need to be excluded from synthesis, but used by simulation or other tools. For
example:

‘define
‘ifdef
‘else
‘endif
‘include
‘signed
‘unsigned
‘unconnected_drive
‘nounconnected_drive

‘ifdef exemplar
Verilog Language Features 6-41

6

‘ifdef exemplar
// do nothing here when running simulator
‘else
initial
// do all initialization here. This will be ignored by the synthesis
tools.
‘endif
6-42 HDL Synthesis Manual

The Art of Verilog Synthesis 7
ilog

ized

ing

tions
This chapter explains how particular logic constructs can be synthesized with Ver
restrictions taken into account.

Registers, Latches, and Resets

Verilog synthesis produces registers and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optim
automatically. Hence, the style of coding combinational behavior, like if -then -else
and case statements, has little affect on the final circuit result, but the style of cod
sequential behavior has significant impact on your design.

This section shows how sequential behavior is produced with Verilog, so that you
understand why registers are generated at certain places and why not in others.

Most examples explain the generation of these modules with short Verilog descrip
in an always block.
7-1

7

of

hesis
ing a

er

tes in
 Level-Sensitive Latch

This first example describes a level-sensitive latch:

The sensitivity list is required, and indicates that the always block is executed
whenever the signals ena or input_foo change. Also, since the assignment to the
register output_foo is hidden in a conditional clause, output_foo cannot change
(preserves its old value) if ena is 0. If ena is 1, output_foo is immediately
updated with the value of input_foo , whenever that changes. This is the behavior
a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synt
tools translate the initially generated latches to the gate equivalent of the latch, us
combinational loop.

Edge-Sensitive Flip-flops

An edge triggered flip-flop is generated from a Verilog description if a variable
assignment is executed only on the leading (or only on the trailing) edge of anoth
variable. For that reason, the condition under which the assignment is done must
include an edge-detecting construct. There are a number of edge detecting attribu
Verilog. The two most commonly constructs are posedge and negedge .

The posedge construct detects transitions (is true) for 0 to 1. The negedge
construct detects transitions from 1 to 0.

...
input input_foo, ena ;
reg output_foo ;
...
always @ (ena or input_foo)

if (ena)
output_foo = input_foo ;

...
7-2 HDL Synthesis Manual

7

n
Here is one example of the posedge construct, used in the condition clause in an
always block. The synthesis tools generate an edge-triggered flip-flop out of this
behavior, with output_foo updated only if clk shows a leading edge.

If the posedge construct is not in the sensitivity list of the always block, a warning
is issued that input_foo is not on the sensitivity list.

 Synchronous Sets and Resets

All conditional assignments to variable output_foo inside the if clause translate
into combinational logic in front of the D-input of the flip-flop. For instance, we ca
make a synchronous reset on the flip-flop by doing a conditional assignment to
output_foo :

Variables reset and input_foo should not be included on the sensitivity list
executing this block should not occur when they change.

....
input input_foo, clk ;
reg output_foo ;
....
always @ (posedge clk)

output_foo = input_foo ;
....

...
input input_foo, clk, reset ;
reg output_foo ;
...
always @ (posedge clk)

if (reset)
output_foo = 1’b0 ;

else
output_foo = input_foo ;

...
The Art of Verilog Synthesis 7-3

7

de

lauses
Asynchronous Sets and Resets

If we want the reset signal to have immediate effect on the output, but still let the
assignment to output_foo from input_foo only happen on the leading clock
edge, we require the behavior of an asynchronous reset.

Now reset HAS TO BE on the sensitivity list. If it is not there, Verilog semantics
require that the always block will not execute if reset changes. It will execute only
if a positive change in clk is detected.

Asynchronous set and reset can both be used. This results in combinational logic
driving the set and reset input of the flip-flop of the target signal. The following co
fragment shows the structure of such a process:

There can be several asynchronous else if clauses, but the synchronous
assignments have to be the last one in the if clause. A flip-flop is generated for each
signal that is assigned in the synchronous signal assignment. The asynchronous c
result in combinational logic that drives the set and reset inputs of the flip-flops.

...
input input_foo, clk, reset ;
reg output_foo ;
...
always @ (posedge clk or posedge reset)

if (reset)
output_foo = 1’b0 ;

else
output_foo = input_foo ;

...

always @(<edge of clock> or <edge_of_asynchronous_signals>)
if (<asynchronous_signal>)

 <asynchronous signal_assignments>
else if (<asynchronous_signal>)

 <asynchronous signal_assignments>
...

else
 <synchronous signal_assignments>
7-4 HDL Synthesis Manual

7

is
tes a

 in

y
Clock Enable

It is also possible to specify an enable signal in a process. Some technologies
(specifically Xilinx) have a special enable pin on their basic flip-flop. The synthes
tools recognize the function of the enable from the Verilog description and genera
flip-flop with an enable signal from the following code fragment:

If an enable pin does not exist in the target technology a multiplexer is generated
front of the data input of the flip-flop.

Assigning I/O Buffers from Verilog

There are three ways to assign I/O buffers to your design from Verilog:

• Run the synthesis tools in “chip” mode

• Use the buffer_sig command

• Use component instantiation in Verilog of the buffer you require.

The buffer_sig command or the direct component instantiation will overwrite an
default buffer assignment that the synthesis tools would do in “chip” mode.

The buffer_sig command is implemented differently for Galileo and Leonardo.
For Galileo, you put the command in the control file. For Leonardo, you use the
buffer_sig procedure.

...
input input_foo, clk, enable ;
reg output_foo ;
...
always @ (posedge clk)
 if (enable)

output_foo = input_foo ;
...
The Art of Verilog Synthesis 7-5

7

rilog
ed

ign is

.

.

his is

8 and
These approaches can be used together by specifying certain I/O buffers in the Ve
source description and others in the control file, with the remaining buffers assign
automatically by the synthesis tools. The order the buffers are inserted in the des
important:

1. Components in the Verilog source are instantiated from the source technology

2. Buffers are added by using the buffer_sig command from the target technology

3. Terminals without identifiable I/O gates have buffers inserted from the target
technology.

In all cases, the names of the original I/O terminals are preserved.

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to run the synthesis tools in chip mode. (T
the default.) This automatically assigns appropriate input, output, tristate, or
bidirectional buffers to the ports in your module definition. For example,

generates an INPUT_BUFFER for inp , and an OUTPUT_BUFFER for outp . outp
becomes a TRISTATE_BUFFER if it was assigned in the following fashion:

The above example also holds for buses. The sections “Tristate Buffers” on page
“Bidirectional Buffers” on page 10 in this chapter provide more details on how to
generate tristate buffers and bidirectional buffers from Verilog.

module buffer_example (inp, outp, inoutp) ;
input inp ;
output outp ;
inout inoutp;
endmodule

tri outp ;
assign outp = ena ? inp : 1’bZ
7-6 HDL Synthesis Manual

7

d

nt

e
e
Manual Assignment Using the Control File

Special buffers, e.g., <gate> , can be assigned using the control file. The comman

where <gate> is the name of a gate on the target technology, connects signal clk to
the input of the external clock buffer <gate> . An intermediate node called
clk_manual appears on CLOCK_BUFFER’s output. Gates specified in the control
file are searched for in the target technology library.

Use of the control file together with chip mode, to manually control only critical
buffers, is accepted procedure when using the synthesis tools.

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the Verilog source file with component
instantiation. In particular, if you want a specific input or output buffer to be prese
on a specific input or output, component instantiation is a very powerful method:

In this example, component instantiation forces an OUTPUT_FF buffer (complex I/O
output/flip-flop buffer) on the bidirectional pin inoutp. Also an input buffer
INPUT_BUFFER is specified to pick up the value from inp to be used internally.

In the case of component instantiation of I/O buffers, a source technology must b
specified to assure that the synthesis tools take the instantiated I/O buffer from th
right library. If no source library is specified, an error is issued. If the source

BUFFER_SIG <gate> clk

module special_buffer_example (inp, clk, outp, inoutp) ;
input inp, clk ;
output outp ;
inout inoutp ;
wire intern_in, intern_out, io_control ;

OUTPUT_FF A1(.c(clk), .d(intern_out), .t(io_control),.o(inoutp));
INPUT_BUFFER A2(.i(inp), .o(intern_in)) ;

endmodule
The Art of Verilog Synthesis 7-7

7

 the

y to
technology is specified, the components are instantiated from this library, which
automatically gives them the right functionality. The synthesis tools recognize that
I/O pin is properly buffered, and does not add default buffers around it.

Tristate Buffers

Tristate buffers and bidirectional buffers (covered in the next section) are very eas
generate from a Verilog description.

Example 1:

Example 2:

// conditional expression
assign o1 = oe1 ? d1 : 1’bz;
assign x = oe2 ? d2 : 1’bz;
assign o1 = x;

// if statement
always @ (oe3 or d3)

if (oe3)
o2 = d3;

else
o2 = 1’bz;

// case statement
always @ (oe4 or d4)

case (oe4)
default : o2 = 1’bz;
1’b1 : o2 = d4;

endcase

module tristate (input_signal, ena, output_signal) ;
input input_signal, ena ;
output output_signal ;

assign output_signal = ena ? input_signal : 1’bz ;

endmodule
7-8 HDL Synthesis Manual

7

al

e

te

 do
ses,

n
Note that in the conditional clause of the assign statement, both input_signal and
ena can be full expressions. The Exemplar synthesis tools generate combination
logic driving the input or the enable of the tristate buffer for these expressions.

However, it is illegal to use the ’z’ value in an expression. It is also illegal to use th
’z’ value in any form inside a clocked always block.

Example 3:

Normally, simultaneous assignment to one signal in Verilog is not allowed for
synthesis, since it would cause data conflicts. However, if a conditional ’Z’ is
assigned in each assignment, simultaneous assignment resembles multiple trista
buffers driving the same bus.

You can still introduce a data conflict with these simultaneous assignments to
output_signal , by making both ena_1 and ena_2 1’b1 . The synthesis tools do
not check for a possible bus conflict. Make sure that you can never have that
possibility by carefully generating the enable signals for the tristate conditions.

These examples show assignments to outputs. However, it is certainly possible to
the assignments to an internal wire as well. This might be used for generating bu
and is discussed in “Buses” on page 10 in this chapter.

If the target technology does not have any internal three-state drivers, Galileo ca
transform the three-state buffers into regular logic with the -tristate option.
Leonardo performs this transformation when the tristate_map variable is set to
TRUE.

assign output_signal = input_signal & 1’bz;

module tristate_example_2 (input_signal_1, input_signal_2, ena1, ena2,
output_signal) ;
input input_signal_1, input_signal_2, ena1, ena2 ;
output output_signal ;

assign output_signal = ena1 ? input_signal_1 : 1’bz ;
assign output_signal = ena2 ? input_signal_2 : 1’bz ;

endmodule
The Art of Verilog Synthesis 7-9

7

used

 a

y
ate

f bits
 the

as a
Bidirectional Buffers

Bidirectional I/O buffers can be coded in Verilog as follows:

The difference with the previous examples is that in this case, the output itself is
again internally. For that reason, the port bidir_port is declared to be inout.

The enable signal ena could also be generated inside the module instead of being
primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technolog
library. If there is no bidirectional buffer available, it selects a combination of a trist
buffer and an input buffer.

Buses

The examples given above all use single bits as signals. In reality, buses (arrays o
with tristatable (multiple) drivers) are often used. Buses are used both internally to
design and as I/O. For internal tristate buses, the bus signal should be declared
tri net.

module bidirectional (bidir_port, ena, ...) ;
input ena ;
inout bidir_port ;

assign bidir_port = ena ? internal_output : 1’bZ ;
assign internal_input = bidir_port ;
...
// use internal_input
...
// generate internal_output

endmodule
7-10 HDL Synthesis Manual

7

the

The following example describes a circuit that loads a source vector of 4 bits on
edge of a clock (wrclk), and stores the value internally in a register (intreg) if the
chip enable (ce) is active. One bit of the register output is put on a tristate bus
(result_int), based on a 2-bit selector signal (selector), with the bus output
clocked through a final register (result). For more information, refer to “Continuous
Assignments” on page 9.

module tri_asgn (source, ce, wrclk, selector, result) ;
input [0:3]source ;
input ce, wrclk ;
input [0:1]selector ;
output result ;
reg [0:3]intreg ;
reg result ;
wire [0:1]sel = selector ;
tri result_int ;

// assignment to internal tristate bus
assign

result_int = (~sel[0] && ~sel [1]) ? intreg[0] : 1’bZ ,
result_int = (sel[0] && ~sel [1]) ? intreg[1] : 1’bZ ,
result_int = (~sel[0] && sel [1]) ? intreg[2] : 1’bZ ,
result_int = (sel[0] && sel [1]) ? intreg[3] : 1’bZ ;

always @(posedge wrclk)
begin

 if (ce)
intreg = source;

result = result_int ;
end

endmodule
The Art of Verilog Synthesis 7-11

7

 a

 only
sent
In the following example of a tristate bus used for output, a source is loaded into
register (tbuf_in) whose output is a set of tristate buffers.

State Machines

There are basically two forms of state machines, Mealy machines and Moore
machines. In a Moore machine, the outputs do not directly depend on the inputs,
on the present state. In a Mealy machine, the outputs depend directly on the pre
state and the inputs.

In general, a description of a state machine consists of descriptions of the state
transitions, the output functions and a register function. Because of the register
function, an always block in Verilog is an appropriate way to describe a state
machine. if -else -if or case statements in an always block perform the state
transition and output function descriptions.

module tri_bus (d, clk, en, tbuf_out) ;
parameter n = 8 ;
parameter triZ = 8’bZ ;
input [(n-1):0] d ;
input clk, en ;
output [(n-1):0] tbuf_out ;
reg [(n-1):0] tbuf_in ;

assign tbuf_out = en ? tbuf_in : triZ ;

always @ (posedge clk)

tbuf_in = d ;

endmodule
7-12 HDL Synthesis Manual

7

is
In the following sections, the DRAM interface state machine shown in Figure 7-1
used to illustrate state machine design using Verilog.

Figure 7-1 DRAM Interface with Refresh

Altera 04

s0

s1

s2

s3

s4

refresh=1'b1

ras1'b1 cas=1'b1 ready=1'b1

cs=1'b0 refresh=1'b1

cs=1'b1

ras1'b1
cas=1'b1
ready=1'b1

ras1'b1
cas=1'b1
ready=1'b1

ras1'b0 cas=1'b0 ready=1'b0

ras1'b0 cas=1'b0 ready=1'b0

ras1'b0 cas=1'b0 ready=1'b0

cs=1'b1 refresh=1'b0

ras1'b0 cas=1'b1 ready=1'b0

cs=1'b0

ras1'b1 cas=1'b0 ready=1'b0
The Art of Verilog Synthesis 7-13

7

Moore Machines

An example of a Moore machine is:

module moore (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;
reg [2:0] present_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

case (present_state)
s0 : begin

if (refresh)
present_state = s3 ;

else if (cs)
present_state = s1 ;

else
present_state = s0 ;

 end
s1 : begin

present_state = s2 ;
 end

s2 : begin
if (~cs)

present_state = s0 ;
else

present_state = s2 ;
 end

s3 : begin
present_state = s4 ;

 end
s4 : begin

present_state = s0 ;
 end
7-14 HDL Synthesis Manual

7

t it

 split
 be

There are two always blocks in the state machine description. The first is
synchronized with the clock clk and describes the state transitions. This block
depends on the present state and the inputs. The second is not synchronized, bu
reacts immediately if there is a change in present_state . This second always
block describes the functions of the outputs depending on the present state. The
into two processes is not absolutely necessary. The same functional behavior can
generated by merging the two always blocks into one. However, the logic that is
generated is somewhat different, as explained below.

default : begin
present_state = s0 ;

 end
endcase

end
always @ (present_state)
begin

case (present_state)
s0 : begin

ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;
 end

s1 : begin
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

 end
s2 : begin

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
 end

s3 : begin
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

 end
s4 : begin

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
 end

default : begin
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

 end
endcase

end
endmodule
The Art of Verilog Synthesis 7-15

7

only

e

ange
of an
Below is exactly the same Moore machine description, but this time it consists of
one always block. In the first description, the outputs ras , cas and ready were
assigned in an asynchronous (not clocked) always block as a function of
present_state . They therefore appear as purely combinational logic. In the
description below, the same outputs are generated in a clocked always block.
Therefore, the outputs ras , cas and ready appear at the Q-output of flip-flops with
the combinational logic computing the value of these signals at the D-inputs of th
same flip-flops.

The subtle differences between the two descriptions result in trading off timing
behavior and logic circuitry. The first description builds a circuit where the outputs
ripple through logic after the clock edge. In the second description, the outputs ch
glitch-free at the clock-edge, and are stable immediately after that, but at the cost
additional flip-flop for each output.

module moore_example_2 (clk, cs, refresh, reset, ras, cas, ready) ;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;

reg [2:0] present_state ;
reg ras, cas, ready ;

always @ (posedge clk or posedge reset)
begin

if (reset) // asynchronous reset
begin

present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

case (present_state)
s0 :

if (refresh)
begin

present_state = s3 ;
ras = 1’b1; cas = 1’b0 ; ready = 1’b0 ;

end
7-16 HDL Synthesis Manual

7

else if (cs)
begin

present_state = s1 ;
ras = 1’b0; cas = 1’b1 ; ready = 1’b0 ;

end
else
begin

present_state = s0 ;
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
s1 :

begin
present_state = s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s2 :

begin
if (~cs)
begin

present_state = s0 ;
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
else // cs = 1’b1
begin

present_state = s2 ;
ras = 1’b0; cas = 1’b0 ; ready = 1’b0 ;

end
end

s3 :
begin

present_state = s4 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s4 :

begin
present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
The Art of Verilog Synthesis 7-17

7

hine,
ine

y,
o be

one,
this
 clock

ck
ith

Note – This example also added an asynchronous reset to the design.

Mealy Machines

So far, we have shown a number of examples of Moore machines. In a Mealy mac
outputs depend on both the present state and the inputs. Below is the state mach
again, but now in a Mealy machine form. Notice that the behavior changes slightl
since the inputs affect the outputs immediately, without waiting for the new state t
generated.

In the Moore machine example, it was possible to merge the two processes into
synchronized with a clock, since all activity was happening on the clock edge. In
Mealy machine example, however, the outputs are updated even when there is no
edge. Thus, in this case, it is not possible to merge the two processes into one.

A Mealy machine is, in general, described with two always blocks, where one blo
does all combinational functionality and the other just updates the present state w
the next state, on the clock edge.

default:
begin

present_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

end
endcase

end
end
endmodule
7-18 HDL Synthesis Manual

7

This code shows an example of a Mealy machine.

module mealy (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;

reg [2:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

// always block to update the present state
present_state = next_state ;

end

always @ (present_state or refresh or cs)
begin

// always block to calculate the next state and the outputs
next_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;
case (present_state)

s0 : begin
if (refresh)
begin

next_state = s3 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if (cs)
begin

next_state = s1 ;
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

end
else
begin

next_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
 end
The Art of Verilog Synthesis 7-19

7

in a
 (for

cs

op or

Combinational loops can be generated easily (and are in most cases unwanted)
Mealy machine description. If nothing is assigned to a signal in one or more cases
instance because you do not care what the value is going to be), Verilog semanti
require that the value of the signal is preserved. In an asynchronized always block as
the one shown above, this means that synthesis must generate a combinational lo
a level-sensitive latch to preserve the value.

For more information on how to avoid unwanted loops, refer to “Operators” on
page 17.

s1 : begin
next_state = s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

 end
s2 : begin

if (~cs)
begin

next_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

next_state = s2 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
 end

s3 : begin
next_state = s4 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

 end
s4 : begin

next_state = s0 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

 end
endcase

end
endmodule
7-20 HDL Synthesis Manual

7

 the
Issues in State Machine Design

This section discusses several issues regarding the design of synthesizable state
machines:

• State encoding

• One-hot encoding

• Initialization of the state machine

• Power-up conditions

• Semantics of the case statement

State Encoding

States must be explicitly specified by the user. This can be done by explicitly using
bit pattern (e.g., 3’b101), or by defining a parameter (e.g., parameter s3 =
3’b101) and using the parameter as the case item.
The Art of Verilog Synthesis 7-21

7

 a

e
One-Hot Encoding

In order to achieve a different style of encoding, for example a one-hot encoding,
slightly different style of Verilog is required. As an example, here is the Verilog
description for a one-hot encoded state machine with the same functionality as th
example shown above.

module one_hot_mealy (clk, cs, refresh, reset, ras, cas, ready) ;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

reg [4:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin

// always block to update the present state
if (reset)

present_state = 5’b00001 ;
else

present_state = next_state ;
end

always @ (present_state or refresh or cs)
begin

// always block to calculate the next state and the outputs
next_state = 5’b00000 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

if (present_state[0])
begin

if (refresh)
begin

next_state = 5’b01000 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if (cs)
begin

next_state = 5’b00010 ;
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;
7-22 HDL Synthesis Manual

7

end
else
begin

next_state = 5’b00001 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
end

if (present_state[1])
begin

next_state = 5’b00100 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
if (present_state[2])
begin

if (~cs)
begin

next_state = 5’b00001 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else
begin

next_state = 5’b00100 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end
if (present_state[3])
begin

next_state = 5’b10000 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
if (present_state[4])
begin

next_state = 5’b00001 ;
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end
endmodule
The Art of Verilog Synthesis 7-23

7

n the
e on
 full

 that

the
ady.

ear in
he
cussed

an

tput

nd

s and

fined
vious
ronous
state
Some key points from this one-hot state machine are:

• The case statement should not be used for one-hot state machine design. Whe
casex statement is used for state comparisons, the comparisons must be don
only one bit of the state vector. If the whole vector is used for comparison, then
binary encoding logic is synthesized. Also, the case statement needs to be
compiled as parallel_case .

• The else if construct should not be used to do the state comparisons, since
introduces additional constraints on the values of each state. Using else if
means that this code is only entered if the all previous conditions are false. In
case of one-hot encoding, it is certain that all previous conditions are false alre

This state machine description works fine, as long as the machine can never app
a state with more than one ’1’ in the state vector. In order to assure that condition, t
need for a reset becomes inevitable in the one-hot case. The use of resets is dis
in greater detail in the next section.

Initialization and Power-Up Conditions

In synthesis, if the total number of states is not a power of two, the state signal c
power-up in a state that has not been defined, if binary encoding is used. In this
situation, it is essential that the Verilog description does an assignment to the ou
variables and the state variable under all conditions.

This can be done in two ways:

• Do a default assignment to the outputs and state variable before the case statement
that updates the state machine. This method is used in the first Moore and the
Mealy machine examples from the previous sections. It assures that outputs a
state variable always get a value assigned regardless of the state of the state
machine.

• Do the default assignment in the default clause of the case statement, as was
shown in the second Moore machine example. This has the same effect; output
states always get a value regardless of the state of the machine.

If you do not do a default assignment, the state machine could power-up in a unde
state. Verilog semantics require that if there is no assignment to a signal, the pre
value has to be preserved. In case the state transitions are defined in an asynch
always block, latches would be generated by the synthesis tools to preserve the
value.
7-24 HDL Synthesis Manual

7

ld be
hine
eans

 to a
ch
ive.

g on

hat
n

t
se

on or
y
If one-hot or another state encoding is used, the number of undefined states cou
even larger. Consider that in one-hot encoding, the specification of the state mac
has to rely on the fact that only one single state bit of the state vector is 1. That m
that the designer has to provide a special feature that takes care of the power-up
conditions.

One possibility might be to include a special detection function that sets the state
valid one the moment it occurs in a invalid one. However, it would require too mu
logic to implement this functionality, making the use of one-hot encoding unattract
In most cases, it is much more cost effective to include the possibility of a reset
function. The reset can be defined to be synchronous or asynchronous, dependin
what you want. The details about implementing resets are given in the section
“Registers, Latches, and Resets” on page 1 in this chapter.

Arithmetic and Relational Logic

This section gives an overview of how arithmetic logic is generated from Verilog, w
the synthesis tools do with it and how to avoid getting into combinational explosio
with large amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing random combinational
behavior, but has problems with logic which is arithmetic in nature. Often special
precautions have to be taken into consideration to avoid ending up with inefficien
logic or excessive run times. Alternatively, macros may be used to implement the
functions (see “Technology-Specific Macros” on page 29 in this chapter).

The synthesis tools support the operators “+”, “-”, “==”, “!=”, “<”, “>”, “>>”, “<<”,
“*”,“/”, “<=”, and “>=”.

If you use these operators to calculate compile time constants, there is no restricti
problem in using them. For example, the following division does not result in a an
logic, but replaces signal foo with a constant 3’d133 .

...
integer largest ;
integer divider ;
assign largest = 800 ;
asign divider = 6 ;
assign foo <= largest / divider ;
...
The Art of Verilog Synthesis 7-25

7

n the
ectors
r

ut
he

is
gy

,
If you are not working with constant operands, arithmetic logic is generated.

The operator “+” generates an adder. The number of bits of the adder depends o
size of the operands. If you use integers, a 32 bit adder is generated. If you add v
and integers, the size of the adder is defined to the range of the vector in bits. Fo
example:

generates a 32-bit adder but:

generates an 8-bit adder.

If one of the operands is a constant, initially a full-sized adder is still generated b
logic minimization eliminates much of the logic inside the adder because half of t
inputs of the adder are constant.

The operator “-” generates a subtracter. Same remarks as with the “+” operator.

The operator “*” generates a multiplier. Multiplication by a constant power of two
implemented as a shift operation. In all other cases ModGen (generic or technolo
specific) is required to implement the multiplier.

The operator “/” generates a divider. Only division by a power of two is supported
hence no logic here, only shifting the non-constant operand.

The operators “==”, “!=”, “<”, “>”, “>>”, “<<”, “<=”, and “>=” generate comparators
with the appropriate functionality. Same remarks apply as for the “+” operator.

• Operations on integers are done in twos-complement implementation.

...
integer a, b, c ;
assign c = a + b ;
...

...
input [7:0] a ;
output [7:0] c ;
integer b ;
assign c = a + b ;
...
7-26 HDL Synthesis Manual

7

ory

esis

void

esult.

een
ake

logy,
pile.

e
All arithmetic behavior is translated into logic functions and is part of the logic
optimization process. The result is that depending on area and timing criteria and
constraints set, the final logic circuit can include, for example, carry lookahead or
ripple carry adder implementation. If the design is getting large, run-time and mem
requirements increase rapidly. Some large designs can run forever without any
improvement, if any solution is produced at all. The reason is that the logic synth
optimization algorithms try too many possible circuit implementations from the
exponentially growing search space. Good design practices are needed to help a
this problem.

Below are some guidelines that have helped users to achieve a good synthesis r

Module Generation

When arithmetic and relational logic are used for a specific Verilog design, the
Exemplar synthesis tools provide a method to synthesize technology specific
implementations for these operations. Generic modules (for bit-sizes > 2) have b
developed for many of the CPLDs supported by the Exemplar synthesis tools to m
the most efficient technology specific implementation for arithmetic and relational
operations.

For Galileo, use the -modgen= modgen_library option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a design. For Leonardo, use the modgen_read
modgen_library command to load the module generation library into the HDL
database. Since these modules have been designed optimally for a target techno
the synthesis result is, in general, smaller and/or faster and takes less time to com

You may define your own module generator for a specific technology.

Resource Sharing and Common Subexpression Elimination

The synthesis tools automatically do CSE. For the following example, it will creat
only one adder (a+b) and use it for both the if conditions. For bigger expressions
user need to use parentheses properly to direct the synthesis tool for CSE, e.g., y =
a+(b-c), z = d+(b-c), (b-c) is shared.
The Art of Verilog Synthesis 7-27

7

 if it

Comparator Design

Often, applications involve a counter that counts up to an input signal value, and
reaches that value, some actions are needed and the counter is reset to 0.

...
reg a, b, c, d ;

always @ (a or b)
begin

if (a+b == c) //This adder will be shared
...

else if (a+b == d) // with this one.
...

else
...

end ;
...

 ...
begin

if (count == input_signal)
...
count = 0 ;

else
count = count + 1 ;

end ;
...
7-28 HDL Synthesis Manual

7

r that
t the

uch

of the

d soft
ed

 soft

ions

ilable
 The
uts as
tion
In this example the synthesis tools build an incrementer and a full-size comparato
compares the incoming signal with the counter value. It is usually better to prese
counter to the input_signal and count down, until zero is reached.

Now, one decrementer is needed plus a comparison to a constant (0). Since
comparisons to constants are a lot cheaper to implement, this new behavior is m
easier to synthesize, and results in a smaller circuit.

Even better results can be obtained with the use of hard macros and soft macros
target technology, as well as the use of hierarchy in the design. The following two
sections explain this in more detail.

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros an
macros that perform specific arithmetic logic functions. These macros are optimiz
for the target technology and have high performance.

With the Exemplar synthesis tools, it is possible to use component instantiation of
macros or hard macros in the target technology. An added benefit is that the time
needed for optimization of the whole circuit can be significantly reduced since the
synthesis tools do not have to optimize the implementation of the dedicated funct
any more.

Suppose you want to add two 8 bit vectors, and there is an 8 bit adder macro ava
in your target technology. You could use the “+” operator to add these two vectors.
alternative is to define a component that has the same name and inputs and outp
the hard macro you want to use. Instantiate the component in your Verilog descrip

...
begin

if (count == 0)
...
count = input_signal ;

else
count = count - 1 ;

end ;
...
The Art of Verilog Synthesis 7-29

7

 tools
tion

the
nd

ber

n

t are
t is

ery
and connect the inputs and output to the their appropriate signals. The synthesis
instantiate the hard macro without having to bother with the complicated optimiza
of the internal logic implemented by the macro.

This speeds up the optimization process considerably. In the netlist produced by
synthesis tools, the macro appears as a “black box” that the downstream place a
route tools recognize.

If your arithmetic functions cannot be expressed in hard macros or soft macros
immediately (for instance if you need a 32 bit adder, but only have an 8 bit adder
macro), you could write a Verilog description that instantiates the appropriate num
of these macros.

Synthesis Directives

parallel_case and full_case directives

parallel_case and full_case directives are allowed as synthesis directive o
case by case basis. The synthesis tool detects the true full and parallel cases
automatically. However, there are cases (like onehot encoded state machine) tha
not inherently parallel/full, but the environment guarantees that the case statemen
parallel and/or full. In such a condition the following two synthesis directives are v
useful.

input [0:3] inp_state;
// example of onehot encoded machine
case (1'b1) // exemplar parallel_case full_case
 inp_state[0]:
 inp_state[1]:
 inp_state[2]:
 inp_state[3]:
endcase
7-30 HDL Synthesis Manual

7

t

 tool

rated
e
llowed

case

ect of
r for
 of

alog
translate_off and translate_on directives

translate_off and translate_on synthesis directives are allowed to commen
out a portion of code that you may want to retain for some purpose other than
synthesis.

enum directive

The enum synthesis directive is supported for user convenience when trying out
different encoding on a state machine. With the synthesis directive, the synthesis
becomes sensitive to the global state encoding switch (-encoding), and the
enumeration values are encoded according to the setting of that option (onehot ,
gray , binary, or random).

Using the enum synthesis directive, a set of parameters can be treated as enume
values; resources like wire and reg can be declared as that enumerated type. Th
synthesis tool puts some restrictions on these enumerated types. Elements are a
with enumerated objects areas in the following instances:

In case statements: The enum type of case expression should match with the
tags. For comparison of the enumerated types with each other, assigning
enumerated types to each other (type should match).

These objects are treated as strongly typed so they cannot be mixed with the obj
any other type. Any boolean or arithmetic operations are considered to be in erro
enumerated objects. The synthesis tool gives an appropriate error when any one
these rules is violated. In such cases, you may not use the enum synthesis directive.

The encoding style of the enumeration can be selected from boolean (default),
onehot,gray, or random using the global -encoding option on the synthesis
tool mainline, or using the state encoding selection on the Verilog input options di
of the user interface.

// code for synthesis
// exemplar translate_off
$display (.....); // not for synthesis
// exemplar translate_on
// code for synthesis
endmodule
The Art of Verilog Synthesis 7-31

7

n
d an

thesis

State and S0, S1, S2, S3 are of enum type ee1. They cannot be used for any boolea
or arithmetic operation. Bit or part select from state or its values is also considere
error. Enumerated type module parts are not allowed.

attribute directive

The user can set some simple attributes on signals/instances to enhance the syn
efficiency of the Exemplar synthesis tool. For example, by setting the
modgen_select attribute to fastest on a signal on a critical path of a design,
the user can improve the timing performance of the design. The synthesis of this
directive is as follows:

// exemplar attribute <object_name><attribute_name><attribute_value>

module state_mc (clk, reset, o, i1, i2, i_state);
input clk, reset, i1, i2;
output o, i_state;
reg o;
parameter [0:1] /* exemplar enum ee1 */S0=1,S1=2,S2=3,S3=0;
reg [0:1] /* exemplar enum ee1 */ state;
assign i_state = (state == S1 | state == S3); // legal.
always @ (posedge clk or posedge reset)
if (reset) begin
 o = 0;
 state = S0; // Note state = 1, will cause a type mismatch
error
end
else
 case (state) // No need of full and parallel case
 S0: begin o = i1; state = S1; end
 S1: begin o = ~i1; state = S2; end
 S2: begin o = i2; state = S3; end
 S3: begin o = ~i2; state = S0; endNote case tag 0:
would cause type
mismatch error
endcase
endmodule
7-32 HDL Synthesis Manual

7

//example
module expr (a, b, c, out1, out2);
input [0:15] a, b, c;
output [0:15] out1, out2;

assign out1 = a + b;
assign out2 = b + c;

// exemplar atribute out1 modgen_sel fastest
endmodule
The Art of Verilog Synthesis 7-33

7

7-34 HDL Synthesis Manual

Verilog and Synthesis of Logic 8
 was
 of
hat

ended

ols.
 that
u

t of a
ight
Verilog is a language that has been developed for simulation purposes. Synthesis
not an issue in the development of the language. As a result, there are a number
Verilog constructs that cannot be synthesized. There has been very little written t
explains which constructs cannot be synthesized into logic circuits and why.

This chapter provides explanations on why certain Verilog constructs cannot be
synthesized into logic circuits and what changes have to be made to reach the int
behavior to obtain a synthesizable Verilog description.

Some obvious restrictions of the language are first presented, followed by a list
summarizing Verilog syntax and semantic restrictions for the Exemplar synthesis to
In addition, some guidelines are presented that should enable you to write Verilog
is easy to synthesize and give you a feeling for synthesis complexity problems yo
might introduce when you write your Verilog design.

Comparing With X and Z

Consider the Verilog modeling case where an if clause should be entered if a par
vector has a particular value. The rest of the vector does not really matter. You m
want to write this as follows:

if (vect == 6’bXXX001) begin ...
8-1

8

ND
ly
is
 bit
s
ree

e

 is
ly,
The user intention is to do a comparison to 001 (the right most three bits) and forget
about the left three bits. However, Verilog defines comparison on vectors as the A
of comparison of each individual element. Also, comparison of two elements is on
true if both elements have exactly the same value. This means that in order for th
condition to be true, the three left most bits have to be ’X’. But in logic synthesis, a
can only be ’0’ or ’1’ , so the condition is always be false. In fact, this condition i
not doing what was intended for simulation as well, since if any of the left most th
bits does not have the value ’X’ explicitly, the result is false.

However, comparison to ’X’ is allowed using the casex construct. This is
implemented in the following manner:

In this case, only the three least significant bits of vect are compared to “001". Th
comparison ignores the three most significant bits.

Variable Indexing of Bit Vectors

The Exemplar synthesis tools support variable indexing of a vector. The limitation
that only variable indexing of the form ’bit select’ is supported. Or more specifical
variable indexing of the form ’part select’ is not supported because it is not a
synthesizable construct.

casex (vect)
6’bXXX001 : <statement> ;

endcase
8-2 HDL Synthesis Manual

8

xing

lled
d by
.
The semantics of variable indexing varies depending on whether the variable inde
is done on the left hand side of an assignment or on the right hand side of the
assignment. The right-hand side variable indexing generates a multiplexer contro
by the index. The left-hand variable indexing generates a de-multiplexer controlle
the index. set of decoders enabling. The following example shows both examples

Syntax and Semantic Restrictions

This section provides a summary of the syntax and semantic restrictions of the
Exemplar synthesis tools’ Verilog HDL parser.

Unsupported Verilog Features

• UDP primitives

• specify block

• real variables and constants

• initial statement

• tri0 , tri1 , tri1 , tri1 , tri1 , net types

• time data type

module tryit (input_bus, in_bit, control_input, output_bus, out_bit);
input [3:0] input_bus ;
input [1:0] control_input ;
input in_bit ;
output [3:0] output_bus ;
output out_bit ;

reg [1:0] control_input ;
reg [3:0] input_bus, output_bus ;
reg in_bit, out_bit ;

always @ (control_input or input_bus or in_bit)
begin

out_bit = input_bus [control_input] ;
output_bus [control_input] = in_bit ;

end
endmodule
Verilog and Synthesis of Logic 8-3

8

,
• Named events and event triggers

• The following gates: pulldown , pullup , nmos, mmos, pmos, rpmos , cmos,
rcmos , tran , rtran , tranif0 , rtranif0 , tranif1 , rtranif1

• wait statements

• Parallel block, join and for .

• System task enable and system function call

• force statement

• release statement

• Blocking assignment with event control

• Named port specification (not to be confused with passing arguments by name
which is supported)

• Concatenation in port specification

• Bit selection in port specification

• Procedural assign and de-assign

Supported Verilog Features (Limited in Usage)

• Edge triggers on sensitivity list must be single bit variables.

• Indexing of parameters is not allowed.

• Loops must be bounded by constants.

Supported Verilog Features (Ignored by Exemplar Synthesis)

• Delay and delay control.

• ’vectored’ declaration.
8-4 HDL Synthesis Manual

Introduction to Module Generation 9
lly
r

 “>”,

dule

s,”

+”,

ific

uld
Arithmetic and relational logic, commonly known as data path logic, has traditiona
been difficult to synthesize with logic synthesis software. This is especially true fo
FPGAs, where each target technology has a different way to optimally utilize
resources.

Exemplar Logic’s Module Generation capability provides VHDL and Verilog HDL
designers with a mechanism to overload data path operators, such as “+”, “-” and
with technology-specific implementations.

This chapter introduces the concept of Module Generation and describes how to make
optimal use of this feature of the Exemplar synthesis tools. Chapter 10, “Using Mo
Generation,” focuses on how to use Module Generation to improve performance for
VHDL and Verilog HDL design files. Chapter 11, “User-Defined Module Generator
provides a detailed description of how to create your own module generators.

Module Generation provides a mechanism that matches behavioral operators like “
“-”, and “>”, with pre-designed implementations. This allows designers to describe
logic in a purely behavioral fashion, while making optimal use of technology-spec
hard or soft macros. As an example, consider the following VHDL statement:

When implementing this VHDL statement in an FPGA architecture, designers wo
like to utilize vendor-provided adder hard macros, dependent on the size of n.

signal a, b, s : std_logic_vector(n downto 0);
s <= a + b;
9-1

9

nt

d,
tion

ith
r is

 in
ools
ray

ssed
In HDLs, the user can explicitly instantiate a desired component (using compone
instantiation in VHDL or module instantiation in Verilog).

Three drawbacks exist with using component/module instantiation:

• The design methodology is no longer behavioral.

• The HDL source becomes technology dependent.

• Component instantiation is not allowed in operator or function definitions.

However, if neither component/module instantiation nor module generation is use
the synthesis tools generate logic without any knowledge of an optimal implementa
for the target technology. This typically produces sub-optimal results.

Module Generation solves this problem by matching certain data path operators w
pre-designed implementations from a side library. Whenever a supported operato
encountered in the source design, a technology-specific module generation library is
consulted for a matching implementation. If an implementation is found, it is used
the network. If no technology dependent implementation is found, the synthesis t
default to a generic logic implementation, which is applicable for a CMOS gate ar
implementation, for the operator (ripple carry for the above adder).

Figure 9-1 shows the general flow of data in the Exemplar Synthesis Tool/Module
Generation environment. After the HDL source code is successfully parsed, it is pa
on to an inference engine that matches supported operators (like addition) with
preferred implementations in the module generation library.
9-2 HDL Synthesis Manual

9

Figure 9-1 Exemplar Synthesis Tool/Module Generation Environment

As examples of the benefits of Module Generation, Figure 9-2 presents the average
area reduction achieved when Module Generation is used for synthesis targeting
FPGAs, while Figure 9-3 presents the average delay reduction achieved.

HDL source
code

HDL parser

module generation
inference engine

synthesis,
optimization,
and mapping

FPGA
netlist

module
generation

library

generics

module
Introduction to Module Generation 9-3

9

red

ired
Figure 9-2 Using Module Generation Results in Area Reduction When Adders Are Requi

Figure 9-3 Using Module Generation Results In Delay Reduction When Adders Are Requ

0 10 20 30 40 50

0

20

40

60

80

100

Width (bits)

A
re

a
R

ed
uc

tio
n

(%
)

Altera 06

0 10 20 30 40 50

0

20

40

60

80

100

Width (bits)

D
el

ay
 R

ed
uc

tio
n

(%
)

Altera 07
9-4 HDL Synthesis Manual

Using Module Generation 10
s
s

tors

.

This chapter presents information on the use of Module Generation: which operators
are supported, using Module Generation with the Exemplar synthesis tools, and
invoking Module Generation from both VHDL and Verilog design sources. It focuse
on using Module Generation for the technologies that are supported in the synthesi
tools.

Supported Technologies

A list of currently supported technologies is presented in the Release Notes
accompanying this manual. Also, performance information for the module genera
are presented in the appropriate chapter in the Synthesis and Technology Guide. These
data show how Module Generation implementation improves area or timing for
arithmetic and relational operations, as compared to random logic implementation
10-1

10
Supported Operators

The following operations are recognized by the synthesis tools for matching with
module generation libraries:

Verilog VHDL ’87 Operation

"+" "+" addition

"-" "-" binary subtraction, unary
negation

"+ 1" "+ 1" increment

"- 1" "- 1" decrement

"==" "=" equal

"!=" "\=" not equal

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power

"%" "mod" modulo

N/A "rem" remainder

N/A "abs" absolute value
10-2 HDL Synthesis Manual

10

e

ors in

or

r
nters

unter
From VHDL, the synthesis tools recognize these operations for operators on the
predefined type integer . It also recognizes these operations from operators for th
bit_vector and std_logic_vector types, as long as the package exemplar
or numeric_std package is included with a use clause. For Verilog HDL, the
synthesis tools recognize these operations from all (predefined) supported operat
the Verilog HDL language.

Counters and RAMs

Both Leonardo and Galileo can recognize counter and RAM behavior in a VHDL
Verilog HDL description and infer module generators. Counters are positive
edge-triggered with optional clock enable and/or count enable, asynchronous clea
and/or set, synchronous clear, and synchronous load. Up, down, and up-down cou
are supported. The following example is recognized as an 8-bit loadable down-co
with asynchronous clear and clock enable:

Verilog VHDL ’93 Operation

">>" "sra" shift right logical

"<<" "sla" shift left logical

N/A "sra" shift right arithmetic

N/A "sla" shift left arithmetic

N/A "rol" rotate left

"!=" "ror" rotate right

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power
Using Module Generation 10-3

10
Example

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity cnt_dn_ac_sl_en is
 port (clk, clk_en, aclear, sload: in std_logic;
 data: in std_logic_vector(7 downto 0);
 q: out std_logic_vector(7 downto 0));
end cnt_dn_ac_sl_en;

architecture ex of cnt_dn_ac_sl_en is
 signal q_int: std_logic_vector(q'range);
begin
 process (clk, aclear)
 begin
 if (aclear = '1') then
 q_int <= (q_int'range => '0');
 elsif (clk'event and clk'last_value = '0' and clk = '1') then
 if (clk_en = '1') then
 if (sload = '1') then
 q_int <= data;
 else
 q_int <= q_int - "1";
 end if ;
 end if ;
 end if ;
 end process ;
 q <= q_int;
end ex;
10-4 HDL Synthesis Manual

10

ta
rite

tween
ked

ce
ite

ogy
ized

ide
Counter and RAM Inferencing and Module Generation

There are two basic types of RAM Module Generators: a single-port RAM with
separate input and output data lines, and a single-port RAM with bidirectional da
lines. Both of these RAM types support synchronous or asynchronous read and w
operation. Synchronous writes use a positive edge-triggered clock to latch the
write-enable, address, and data signals. The inferencing process distinguishes be
RAMs that perform the read operation with an address that is clocked or not cloc
with the write clock.

The RAM output signals may also be latched by the same or a different positive
edge-triggered clock. The following two VHDL examples demonstrate the differen
between synchronous RAMs that do or do not clock the read address with the wr
clock. The first example, ram_example1 , does clock the read address, while the
second example, ram_example2 , does not clock the read address.

Most technologies only support one of these types. In addition, particular technol
Modgen libraries may not contain module generators for all types of RAMs recogn
by Leonardo and Galileo. Information concerning which types are supported by a
particular technology can be found in the Leonardo Synthesis and Technology Gu
and the Galileo Synthesis and Technology Guide.
Using Module Generation 10-5

10
Example 1

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example1 is
 port (data: in std_logic_vector(7 downto 0);

 address: in std_logic_vector(5 downto 0);

 we, inclock, outclock: in std_logic;

 q: out std_logic_vector(7 downto 0));

end ram_example1;

architecture ex1 of ram_example1 is
 type mem_type is array (63 downto 0) of

 std_logic_vector (7 downto 0);

 signal mem: mem_type;

begin
 l 0: process (inclock, outclock, we, address) begin

 if (inclock = '1' and inclock'event) then

 if (we = '1') then

 mem(evec2int(address)) <= data;

end if ;

end if ;

 if (outclock = '1' and outclock'event) then

q <= mem(evec2int(address));

 end if ;

 end process ;

end ex1;
10-6 HDL Synthesis Manual

10
Example 2

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example2 is
 port (data: in std_logic_vector(7 downto 0);

 address: in std_logic_vector(5 downto 0);

 we, inclock, outclock: in std_logic;

 q: out std_logic_vector(7 downto 0));

 end ram_example2;

architecture ex2 of ram_example2 is
 type mem_type is array (63 downto 0) of

 std_logic_vector (7 downto 0);

 signal mem: mem_type;

 signal address_int: std_logic_vector(5 downto 0);

begin
 l0: process (inclock, outclock, we, address) begin

 if (inclock = '1' and inclock'event) then

address_int <= address;

 if (we = '1') then

 mem(evec2int(address)) <= data;

end if ;

end if ;

 if (outclock = '1' and outclock'event) then

q <= mem(evec2int(address_int));

end if ;

 end process ;

end ex2;
Using Module Generation 10-7

10

ired
 For

ed
r

 in

ols

ctel

r
he

ions

Using Module Generation With Exemplar Synthesis Tools

Specifying Module Generation Library

Module Generation is invoked by including a module generation library during logic
synthesis.

From the command line for Galileo, use the -modgen= modgen_library option to
include a module generation library of the specified technology and infer the requ
arithmetic and relational operations of the required size from a user VHDL design.
Leonardo, use the modgen_read modgen_library command to load the module
generation library into the HDL database. Since these modules have been design
optimally for a target technology, the synthesis result is, in general, smaller and/o
faster and takes less time to compile.

The module generation library can have any name, without an extension. All the
module generator files provided by Exemplar Logic are named lib_base_name.vhd ,
where lib_base_name is the technology library base name. These files can be found
the directory $EXEMPLAR/data/modgen . Since the directory is in the search path
for the synthesis tools, if you specify a module generation library, the synthesis to
will read the file with the matching technology name. These files are encrypted.

The Exemplar synthesis tools do not validate the generator. If, for instance, an A
technology is specified as the target technology, but accidentally a Xilinx module
generation library is specified, Xilinx macros will appear in the output netlist.

Area/Delay Trade-offs Attributes

Implementations of area and delay trade-offs may vary between module generato
packages. Galileo will choose a smaller or faster implementation, depending on t
area/delay switch in the GUI, or -area versus -delay option in the command line.
With Leonardo, the method for choosing between smaller and faster implementat
is to use the -area or -delay options to the optimize command.

Specific implementations can be configured in the VHDL file through attributes on
specific signals. The attribute modgen_sel is used for this purpose. modgen_sel is
an attribute of enumerated type modgen_select , with four values: smallest ,
small , fast , fastest . This attribute controls which implementation of a module
generator is used. By default, the synthesis tools use small if the global optimization
criteria is -area . The synthesis tools choose fast if the -delay switch is set. The
10-8 HDL Synthesis Manual

10

re is

n the

pens

 of
user can overwrite these defaults by specifying the attribute modgen_sel on a target
signal or variable that is driven by an expression that calls module generators. He
an example:

In this example, for both adders that drive s , Module Generation will choose the
smallest implementation possible. In essence, the modgen_sel attribute is passed to
the module generator inference engine where a different implementation, other tha
default, is selected.

The type modgen_select and the attribute modgen_sel are declared in the
packages exemplar and exemplar_1164 . Hence, if you use one of these
packages, declaring them is not required in the user code.

Disabling Module Generation

Once the -modgen option is specified, Module Generation is enabled for all
arithmetic and relational operators in the design. Module Generation can be switched
off for all operator calls driving a particular signal, by setting the boolean
use_modgen to FALSE.

In this case, for both adders that drive s , Module Generation is disabled and the adders
will be implemented in random logic. Disabling Module Generation for specific
signals or variables can be useful when large portions of the operators can be
eliminated during the boolean optimization and synthesis process. This often hap
for user defined type-transformation functions, where the operators implement
simulation behavior, but for synthesis the function should implement a simple set

type modgen_select is (smallest, small, fast, fastest) ;
attribute modgen_sel : modgen_select ;
signal a,b,c,s : bit_vector (7 downto 0) ;
attribute modgen_sel of s: signal is smallest ;
...
s <= a + b + c ;

attribute use_modgen : boolean ;
signal a,b,c,s : bit_vector (7 downto 0) ;
attribute use_modgen of s: signal is FALSE ;
--
s <= a + b + c ;
Using Module Generation 10-9

10

f

rdo,
wires. Using Module Generation for such function would generate a large amount o
arithmetic logic when it is not required. The attribute use_modgen is defined in the
exemplar and exemplar_1164 packages. If one of these packages is used,
declaring the attribute is not required in the user code.

Counter and RAM Extraction

In Galileo, counters and RAMs are recognized and extracted by default. In Leona
the pre_optimize command with the -extract option must be executed.

Verilog Usage

Verilog usage of Module Generation is completely straightforward. Module Generation
will infer the arithmetic and relational operators from Verilog descriptions and
implement them accordingly.
10-10 HDL Synthesis Manual

User-Defined Module Generators 11
port

o use
ith

sign

 the

ach

ted.

gen
asy
Apart from the module generators that have been developed by Exemplar to sup
the standard FPGA technologies, a user can build his/her own module generator.

The purpose of this chapter is to set guidelines and boundary conditions on how t
the module generation environment to produce user-defined module generators w
the intended functionality.

Module generators are described in VHDL, regardless of the actual HDL input de
language.

User-defined module generators, as opposed to using overloaded functions, allow
use of technology specific macros (with component instantiation) for operators in
VHDL or Verilog HDL.

The Module Generator Boundary

Since all operators in VHDL are defined for various sized vectors and integers, e
module generator description for a particular operator should be an entity with
generics.

Only one generic affects the amount of inputs and outputs that have to be genera
This is the integer generic size . The amount of inputs and outputs generated by a
modgen description should exactly match the amount required by size . Any
discrepancy will be labeled as an error. Of course, the functionality inside the mod
description is the responsibility of the modgen description designer. It is relatively e
to let a "+" in VHDL work as a "-" with this amount of freedom.
11-1

11

tors)

 for

is
e
Since the function of some operators is defined both for unsigned integers (or vec
and for signed integers, a boolean generic signed is supplied to indicate that a signed
or unsigned function needs to be generated.

Table 11-1 on page 3 states which VHDL operators are supported in the Module
Generation environment, which generics are required, how many inputs are needed
each (of the two) parameters of the operator and how many outputs should be
generated.

Note that the generic signed is not required for arithmetic operations. The reason
that there is no difference between signed and unsigned arithmetic functions if th
input parameters and the output all have the same size , and thus the carry bit is not
used. The synthesis tools will make sure that this always happens.

In general, the module description should have two input vectors (one for each
parameter of the operator it represents), and one output vector.
11-2 HDL Synthesis Manual

11

Table 11-1 Supported Operators, Their Module Generators And An Overview Of Boundary
Conditions For Correct Matching Of Operators And Module Generation

VHDL’87 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits

"+" modgen_add size size size size

"-" modgen_sub size size size size

"-" modgen_umin size size n/a size

"+ 1" modgen_inc size size n/a size

"- 1" modgen_dec size size n/a size

"*" modgen_mult size size size size

"/" modgen_div size size size size

"=" modgen_eq size size size 1 bit

"/=" modgen_ne size size size 1 bit

"<" modgen_lt size, signed size size 1 bit

">" modgen_gt size, signed size size 1 bit

"<=" modgen_le size, signed size size 1 bit

"=>" modgen_ge size, signed size size 1 bit

"**" modgen_power size size size size

"mod" modgen_mod size size size size

"rem" modgen_rem size size size size

"abs" modgen_abs size size n/a size

VHDL ’93 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits

"sll" sll size size size size

"srl" srl size size size size

"sla" sra size size size size

"sra" sra size size size size

"ror" ror size size size size

"rol" rol size size size size
User-Defined Module Generators 11-3

11

ts a

s:

. The

ake

ndent.
he

esult
As an example, the entity VHDL description for a module generator that implemen
“<=” operator should look like this:

Below are some important facts to keep in mind when defining module generator

• The initial assignments to both signed and size are optional. These two generics
are required for the "<=" operator and therefore are always inferred by the
synthesis tools for each call of a "<=" operator in VHDL.

• The types of the ports should represent arrays of bit values or single bit values
type std_logic_vector for vector types and std_logic for bit values are
advised because they comply with the IEEE 1164 standard type definitions. M
sure you include the IEEE 1164 package in your description. Use the following
statement before each new entity:

• The names of the ports can be chosen freely. The associations are order depe
The first input port (x in this example) will be associated with the parameter on t
left of the operator. The second port mentioned in the port interface list will be
associated with the parameter on the right of the operator.

• The output port mentioned (there can be only one) will be associated with the r
of the operator function.

entity modgen_le is
generic (

size : integer := 8 ;
signed : boolean := FALSE

) ;
port (

x, y : std_logic_vector (size-1 downto 0) ;
result : out std_logic

) ;
end modgen_le ;

library ieee ;
use ieee.std_logic_1164. all ;
11-4 HDL Synthesis Manual

11

le,

 the

tor,
ce

p to
L

the

at

ould

 will
ic

to
• The ’weight’ of the bits in a port which is a vector is also order dependent. The
LEFT most bit in the array range definition of the port is the MSB. In this examp
x is defined with a range size-1 downto 0 and therefore x(size-1) is
MSB, and x(0) is LSB. If the range would have been defined as
(0 to size-1) , x(0) would have been MSB.

• If signed operation is required (signed is TRUE), the Module Generation
environment expects the MSB bit to be the sign bit, and the bit next to it will be
new MSB.

Module Generator Contents

The VHDL entity for a module generator is relatively fixed for each module genera
as shown in the previous section. This is needed to provide a guaranteed interfa
between the module generators and VHDL operators they implement.

The contents of the module generators (the VHDL architecture) is completely left u
the user. You can use all VHDL constructs as long as they do not violate the VHD
synthesis restrictions.

Typically, component instantiations of technology specific macros will be used in
module generators. Some guidelines should be considered when making module
generators:

1. Make sure that the module generator has a definition for each generic ’size’ th
could be used from a user HDL description.

2. The synthesis tools do not check the functionality of the module generator. It w
be fairly easy to implement subtractor functionality for the modgen_add module
generator. In that case, each "+" operator in VHDL will build a subtractor circuit.
Make sure you verify the module generators for each generic size they could
implement.

3. If you use operators inside a module generator description, the synthesis tools
NOT try to infer a module generator for these. Instead, the default random-log
implementation for the operator will be chosen. This prevents infinite recursion
from occurring (module generators calling themselves). It also allows the user
utilize a specific implementation operator for just a few sizes, and rely on the
default implementation for all others.

Below is an example of a module generator that implements an ADDER8 hard-macro if
the size of the required adder is between 4 and 8.
User-Defined Module Generators 11-5

11
library ieee ;
use ieee.std_logic_1164. all ; -- Include IEEE 1164 type

 -- definition
library exemplar ;
use exemplar.exemplar_1164. all ; -- Include functions ’extend’, "+"

 -- etc.
entity modgen_add is

 generic (size : integer) ;
 port (x, y : std_logic_vector (size-1 downto 0) ;

 o : out std_logic_vector (size-1 downto 0)) ;
end modgen_add ;

architecture exemplar of modgen_add is
 -- Declare the Hard Macro
 component ADDER8
 port (a, b: in std_logic_vector(7 downto 0);
 add: in std_logic;
 s: out std_logic_vector(7 downt o 0);
 ofl: out std_logic);
 end component ;
 -- Declare internally used signals
 signal intern_a, intern_b, intern_o :

 std_logic_vector (7 downto 0) ;
 constant pwr : std_logic := ’1’ ;
11-6 HDL Synthesis Manual

11

n

c) is

s
This is the description of a full definition of a module generator that instantiates a
ADDER8 hard macro (generic name, not from any specific library, used for this
example) for adders between 4 and 8 bits. A default implementation (random logi
provided for all sizes of adders that should not generate a hard macro.

Usage

To include a module generator description into Galileo, use the
-modgen= modgen_library option to include a module generation library of
the specified technology and infer the required arithmetic and relational operation
of the required size from a user VHDL design. For Leonardo, use the
modgen_read modgen_library command to load the module generation library
into the HDL database.

--ADDER8 hard macro example (cont.)
begin

l1 : if size>=4 and size <=8 generate

-- Adjust the inputs to the size of the hard macro
 intern_a <= extend (x,8) ;
 intern_b <= extend (y,8) ;

-- Instantiate the Hard Macro
 i1 : ADDER8 port map (a=>intern_a, b=>intern_b,

add=>pwr,
s=>intern_o, ofl=> OPEN) ;

 -- For the output :pick-up the LSB bits from the hard macro
 o <= intern_o (size-1 downto 0) ;

 end generate ;

 -- Default "+" for all other sizes :
 l2 : if size<4 or size>8 generate
 o <= x + y ;
 end generate ;

end exemplar ;
User-Defined Module Generators 11-7

11

s in

, it
The search path for these files is:

1. The current working directory

2. The $EXEMPLAR/data/modgen directory

3. The $EXEMPLAR/data directory

Multiple module generator files can be included. If there is an overlap of operator
two included files, the operator from the last included file will be resolved. In any
case, for each operator resolved, Galileo reports the file that was used. Therefore
will be clear which operator has been resolved from which modgen file.
11-8 HDL Synthesis Manual

VHDL Index
A
alias, 2-65
architectures, 2-1
arithmetic and relational logic, 3-22

advanced design optimization, 3-28
module generation, 3-25
ranged integer, 3-27
resource sharing, 3-25

array type, 2-9, 2-21
syntax and semantics, 2-21
synthesis issue, 2-23

assignment statement, 2-38
signal, 2-38
variable, 2-38

attribute, 2-44
exemplar predefined attribute, 2-45
usage of attribute, 2-46
user-defined attribute, 2-46
vhdl predefined attribute, 2-45

Autologic II, 4-11

B
bidirectional buffer, 3-17
block, 2-48
bus, 3-18
bus class, 2-55
C
case statement, 2-34
clock

clock enable, 3-7

component instantiation, 2-58
conditional statement, 2-33
constant, 2-30

D
decoder, 3-32
design root, 4-3

E
entity and package, 4-1

loading in Galileo, 4-1
loading in Leonardo, 4-2
usage, 4-5

exemplar package, 4-11
predefined attribute, 4-12
predefined function, 4-14
predefined procedure, 4-20
predefined type, 4-12

exit statement, 2-36
Index-1

Index-2
F
finding definition of component, 4-3
flip-flop, 3-3

asynchronous sets and reset, 3-5
clock enable, 3-7
predefined procedure, 4-20
synchronous set and reset, 3-4

floating-point type, 2-19
for loop, 2-35, 2-36
function, 2-49

G
generate statement, 2-35
generic, 2-32

I
I/O buffer, 3-10

automatic assignment, 3-11
component instantiation, 3-13
manual assignment, 3-11

IEEE 1076, 2-28

IEEE 1076-1993, 4-2
IEEE 1164, 2-28
integer, 2-17

L
latch, 3-1, 3-2, 3-10
literal, 2-8
loop variable, 2-32

M
Mentor Graphics, 4-11
multiplexer, 3-31

N
next statement, 2-36

O
object, 2-30

constant, 2-30
generic, 2-32
loop variable, 2-32
port, 2-31
signal, 2-30
variable, 2-31, 3-9

operator, 2-40
IEEE 1076 predefined operator, 2-40
IEEE 1164 predefined operator, 2-43

operator overloading, 2-43

P
package, 2-64
physical type, 2-20

pla, 3-32
port, 2-31
post-synthesis functional simulation, 4-7
predefined flip-flops and latches, 3-10
procedure, 2-49

processes, 2-5

R
record, 2-24
register, 3-1
register class, 2-55
resolution function, 2-52
rom, 3-32

S
selector, 3-31
signal, 2-30

State, 3-22
state machine, 3-18

general state machine description, 3-18
power-up and reset, 3-22
state encoding, 3-22
vhdl coding style for state machine, 3-20

statement, 2-33
HDL Synthesis Manual

VHDL Index
assignment statement, 2-38
conditional statement, 2-33
generate statement, 2-35
loop statement, 2-35
selection statement, 2-34

std_logic, 2-29, 2-41, 2-52, 2-53
subtype, 2-25
Synopsys integration and packages, 4-9
syntax and semantic restriction, 4-22

synthesis tool restrictions, 4-22
VHDL language Restriction, 4-23

T
technology-specific macro, 3-29
three-state buffer, 3-14
type, 2-9

array type, 2-21
enumeration type, 2-10
floating-point type, 2-19
IEEE 1076 predefined type, 2-28
IEEE 1164 predefined types, 2-28
integer type, 2-17
physical type, 2-20
record type, 2-24
subtype, 2-25
type conversion, 2-27

V
variable, 3-9
VHDL environment, 4-1

interfacing with other VHDL tools, 4-6
Viewlogic integration and packages, 4-8

W
wait statement, 3-8
while loop, 2-35
Index-3

Index-4
 HDL Synthesis Manual

Verilog Index
A
always block,6-11
arithmetic and relational logic,7-25

comparator design,7-28
module generation,7-27
resource sharing,7-27

arithmetic operations,7-31

B
bidirectional buffer,7-10
boolean operations,7-31
bus, 7-10

C
case statement,6-26

automatic full case detection,6-29
automatic parallel case detection,6-30
casex statement,6-31
casez statement,6-31
enum type of case expression,7-31
multiplexer generation,6-28

comparing with x and z,8-1
compiler directive,6-41
continuous assignment,6-9

continuous assignment statement,6-9
net declaration assignment,6-9

D
data type,6-4

net data type,6-6
parameter data type,6-8
register data type,6-7

directives

parallel_case and full_case,7-30
translate_off and translate_on,7-31

disable statement,6-33

E
encoding style,7-31
enum synthesis directive,7-31

F
flip-flop, 7-2

asynchronous set and reset,7-4
Index-1

Index-2
clock enable,7-5
synchronous set and reset,7-3

for statement,6-32
function, 6-36

I
I/O buffer, 7-5

automatic assignment,7-6
component instantiation,7-7
manual assignment,7-7

if-else statement,6-24

L
latch, 7-1

M
module, 6-2
module generation,7-27
module instantiation,6-14

parameter override,6-15

N
net data type,6-6

supply net,6-7
wand and wor net,6-7
wire and tri net,6-7

number,6-3

O
one-hot encoding,7-22
operand,6-17
operator,6-17

arithmetic operator,6-20
bit-wise operator,6-21

concatenation,6-23
conditional operator,6-22
logical operator,6-21
reduction operator,6-22
relational and equality operator,6-20
shift operator,6-22
signed and unsigned attribute,6-23

R
register,7-1
reset,7-1

S
state encoding,7-21
state machine,7-12

issues in state machine design,7-21
Mealy machine,7-18
Moore machine,7-14

syntax and semantic restrictions,8-3
synthesis directives

attribute, 7-32
enum, 7-31
parallel_case and full_case,7-30
translate_off and translate_on,7-31

T
task, 6-38
technology-specific macro,7-29
tristate buffer,7-8

V
variable indexing of bit vector,8-2
HDL Synthesis Manual

Modgen Index
A
area/delay trade-off attributes,10-8

C
Counter,10-10
counter and RAM extraction,10-10

D
disabling module generation,10-9

M
module generation,9-1
module generator,11-1
module generator contents,11-5
module generator usage,11-7

S
specifying module generation library,10-8
supported operators,10-2
supported technologies,10-1
T
the module generator boundary,11-1

U
using module generation with exemplar

synthesis tools,10-8

V
Verilog, 10-10
verilog usage,10-10
Index-1

Index-2
 HDL Synthesis Manual

	Contents
	Introduction to VHDL Synthesis
	Overview
	VHDL and Synthesis
	In This Manual
	Customer Support

	VHDL Language Features
	Entities and Architectures
	Configuration
	Processes

	Literals
	Types
	Enumeration Types
	Syntax and Semantics
	Synthesis Issues

	Integer Types
	Syntax and Semantics
	Synthesis issues

	Floating-point Types
	Syntax and Semantics
	Synthesis Issues

	Physical Types
	Syntax and Semantics
	Synthesis Issues

	Array Types
	Syntax and Semantics
	Synthesis Issues

	Record Types
	Syntax and Semantics
	Synthesis Issues

	Subtypes
	Type Conversions
	IEEE 1076 Predefined Types
	IEEE 1164 Predefined Types

	Objects
	Signals
	Constants
	Variables
	Ports
	Generics
	Loop Variables

	Statements
	Conditional Statements
	Selection Statements
	Loop Statements and Generate Statements
	Assignment Statements

	Operators
	IEEE 1076 Predefined Operators
	IEEE 1164 Predefined Operators
	Operator Overloading

	Attributes
	VHDL Predefined Attributes
	Exemplar Predefined Attributes
	User-Defined Attributes
	Usage Of Attributes

	Blocks
	Functions And Procedures
	Resolution Functions
	Syntax and Semantics
	Synthesis Issues

	BUS and REGISTER
	Component Instantiation
	Packages
	Aliases

	The Art Of VHDL Synthesis
	Registers, Latches and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-Flops
	The Event Attribute
	Synchronous Sets And Resets
	Asynchronous Sets And Resets
	Clock Enable

	Wait Statements
	Variables
	Predefined Flip-flops and Latches

	Assigning I/O Buffers From VHDL
	Automatic Assignment Using Chip Mode
	Manual Assignment Using The BUFFER_SIG Property
	Buffer Assignment Using Component Instantiation

	Three-state Buffers
	Bidirectional Buffers
	Busses
	State Machines
	General State Machine Description
	VHDL Coding Style For State Machines
	Power-up And Reset
	State Encoding
	Arithmetic And Relational Logic
	Module Generation
	Resource Sharing
	Ranged Integers
	Advanced Design Optimization

	Technology-Specific Macros
	Multiplexers and Selectors
	ROMs, PLAs And Decoders

	The VHDL Environment
	Entity and Package Handling
	Loading Entities and Packages (Galileo)
	Loading Entities and Packages (Leonardo)

	Entity Compiled as the Design Root
	Finding Definitions of Components
	How to Use Packages

	Interfacing With Other VHDL Tools
	VHDL Simulators
	Post-Synthesis Functional Simulation

	Viewlogic
	Synopsys
	Mentor Graphics

	The Exemplar Packages
	Predefined Types
	Predefined Attributes
	Predefined Functions
	Predefined Procedures
	Flip-flops
	Latches
	Tristate Busses
	pullup(busname)
	pulldn(busname)
	trstmem(busname)

	Syntax and Semantic Restrictions
	Synthesis Tool Restrictions
	VHDL Language Restrictions
	After Clause Ignored
	Restrictions on Initialization Values
	Ranges Of Loops Have To Evaluate To Constants During Compile Time
	Restrictions On Edge-Detecting Attributes (’event)
	Restrictions on Wait Statements
	Restrictions on Multiple Drivers on One Signal

	Introduction to Verilog HDL Synthesis
	Verilog and Synthesis
	Synthesizing the Verilog Design

	Verilog Language Features
	Modules
	 macromodule’

	Numbers
	Data Types
	Net Data Types
	wire and tri Nets
	Supply Nets
	wand and wor Net Types

	Register Data Type
	Parameter Data Type
	Declaration Local to Begin-End Block
	Array of reg and integer Declaration (Memory Declaration)

	Continuous Assignments
	Net Declaration Assignment
	Continuous Assignment Statement

	Procedural Assignments
	Always Blocks
	Module Instantiation
	Parameter Override During Instantiation of Module
	Defparam Statement
	Example:

	 unconnected_drive’ and ’nounconnected_drive’

	Operators
	Operands
	Arithmetic Operators
	Relational and Equality Operators
	=== and !== Operators are Treated as == and !=
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation

	 signed and ‘unsigned Attributes on Operators
	Operator Precedence

	Statements
	If-Else Statements
	Case Statements
	Case Statement and Multiplexer Generation
	Automatic Full Case Detection
	Automatic Parallel Case Detection
	casex Statement
	casez Supported
	 case’ and ’default’ Statements

	for Statements
	Disable Statement
	forever, repeat, while and Generalized Form of for Loop

	Functions and Tasks
	Functions
	Tasks
	Inout Ports in Task
	Access of Global Variables from Functions and Tasks

	System Task Calls
	System Function Calls
	Initial Statement
	Compiler Directives

	The Art of Verilog Synthesis
	Registers, Latches, and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-flops
	Synchronous Sets and Resets
	Asynchronous Sets and Resets
	Clock Enable

	Assigning I/O Buffers from Verilog
	Automatic Assignment Using Chip Mode
	Manual Assignment Using the Control File
	Buffer Assignment Using Component Instantiation

	Tristate Buffers
	Bidirectional Buffers
	Buses
	State Machines
	Moore Machines
	Mealy Machines
	Issues in State Machine Design
	State Encoding
	One-Hot Encoding
	Initialization and Power-Up Conditions

	Arithmetic and Relational Logic
	Module Generation
	Resource Sharing and Common Subexpression Elimination
	Comparator Design

	Technology-Specific Macros
	Synthesis Directives
	parallel_case and full_case directives
	translate_off and translate_on directives
	enum directive
	attribute directive

	Verilog and Synthesis of Logic
	Comparing With X and Z
	Variable Indexing of Bit Vectors
	Syntax and Semantic Restrictions
	Unsupported Verilog Features
	Supported Verilog Features (Limited in Usage)
	Supported Verilog Features (Ignored by Exemplar Synthesis)

	Introduction to Module Generation
	Using Module Generation
	Supported Technologies
	Supported Operators
	Counters and RAMs
	Counter and RAM Inferencing and Module Generation

	Using Module Generation With Exemplar Synthesis Tools
	Specifying Module Generation Library
	Area/Delay Trade-offs Attributes
	Disabling Module Generation

	Counter and RAM Extraction
	Verilog Usage

	User-Defined Module Generators
	The Module Generator Boundary
	Module Generator Contents
	Usage

	VHDL Index
	Verilog Index
	Modgen Index

