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Overview

VHDL is a high level description language for system and circuit design. The langu
supports various levels of abstraction. Whereas regular netlist formats support on
structural description, and a boolean entry system supports only dataflow behavio
VHDL supports a wide range of description styles. These include structural 
descriptions, dataflow descriptions and behavioral descriptions.

The structural and dataflow descriptions show a concurrent behavior. That is, all 
statements are executed concurrently, and the order of the statements is not rele
On the other hand, behavioral descriptions are executed sequentially in processe
procedures and functions in VHDL. The behavioral descriptions resemble high-lev
programming languages.

VHDL allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic need
resulting in a final netlist description in the technology of your choice. The Top-Do
Design Flow enabled by the use of the synthesis tools is shown in Figure 1-1. 
1-1
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Figure 1-1 Top-Down Design Flow with the Exemplar synthesis tools

VHDL and Synthesis

VHDL is fully simulatable, but not fully synthesizable. There are a number of VHD
constructs that do not have valid representation in a digital circuit. Other construct
in theory, have a representation in a digital circuit, but cannot be reproduced with
guaranteed accuracy. Delay time modeling in VHDL is an example. 

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) 
circuit descriptions and target a specific technology. Scheduling and allocation 
algorithms, which perform circuit optimization at a very high and abstract level, ar
not yet robust enough for general circuit applications. Therefore, the result of 
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synthesizing a VHDL description depends on the style of VHDL that is used. User
the Exemplar synthesis tools should understand some of the concepts of synthes
specific to VHDL coding style at the RTL level in order to achieve the desired circ
implementation. 

Synthesis tools are ideal for solving many of the cumbersome RTL logic optimiza
problems that occur during a typical top-down design project. 

This manual is intended to give the VHDL designer guidelines to achieve a circui
implementation that satisfies the timing and area constraints set for a given targe
circuit, while still using a high level of abstraction in the VHDL source code. This g
will be discussed both in the general case for synthesis applications, as well as fo
Exemplar synthesis tools specifically. Examples are used extensively; VHDL rules
not emphasized. 

Knowledge of the basic constructs of VHDL is assumed, although Chapter 2, VH
Language Features is dedicated to the discussion of all the constructs in VHDL tha
useful for synthesis. If you need more details about VHDL, a comprehensive 
description of VHDL is given in the book “VHDL” by Douglas E. Perry 
(McGraw-Hill, Inc.), and VHDL related to digital circuits is discussed by Randolph 
Harr in “Applications of VHDL to Circuit Design” (Kluwer Academic Publishers). In
addition, training on the Exemplar synthesis tools and VHDL for synthesis is availa
from Exemplar Logic, and training on VHDL and top-down design in general is 
available from a number of different sources.

In This Manual

The VHDL portion of this manual is organized as follows: 

A basic description of the most relevant VHDL constructs is given in Chapter 2, 
“VHDL Language Features.” Chapter 3, “The Art Of VHDL Synthesis,” discusses 
VHDL for synthesis purposes. Within this chapter, a number of common digital 
circuits are analyzed, with examples of how to properly code these designs in VH
Chapter 4, “The VHDL Environment,” deals with how the Exemplar synthesis tool
are used together with other VHDL and CAE software, and how non-standard iss
such as file handling, are implemented. The Exemplar VHDL package is also 
presented in this chapter. 
Introduction to VHDL Synthesis 1-3
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Customer Support

If you encounter problems using VHDL or the Exemplar synthesis tools, or if you h
any questions or remarks about this VHDL manual, contact the Exemplar Custom
Support Hot Line at (510) 337-3742, or send e-mail to support@exemplar.com .
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This chapter provides an introduction to the basic language constructs in VHDL: 
defining logic blocks, structural, dataflow and behavioral descriptions, concurrent 
sequential functionality, design partitioning and more. The Exemplar synthesis too
synthesize all levels of abstraction, and minimizes the amount of logic needed, 
resulting in a final netlist description in the technology of your choice.

Entities and Architectures 

The basic building blocks in VHDL are Entities and Architectures. An entity describes 
the boundaries of the logic block. Its ports and its generics are declared here. An
architecture describes the contents of the block in structural, dataflow and behavio
constructs. 
2-1
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This VHDL description shows the implementation of small_block , a block that 
describes some simple logic functions. 

The entity describes the boundary. The port list is given with a direction (in this c
in  or out ), and a type (bit ) for each port. The entity’s name is small_block . The 
architecture’s name is exemplar  and it is linked to the entity via the name 
small_block . There can be multiple architectures per entity, but always only on
architecture is executed. By default, the last defined architecture is linked to the ent

The architecture describes the contents of the small_block . The architecture starts 
with a declarative region; in this case, the internal signal s  is declared. It also has a 
type (bit ), just like the ports in the entity. 

A signal is another form of an object in VHDL. All objects and expressions in VHD
are strongly typed. This means that all objects are of a defined type and issues an
message if there is a type mismatch. For example, you cannot assign an integer o
signal  to a bit .

The architecture contents starts after the begin  statement. This is called the dataflow 
environment (please refer to the previous example). All statements in the dataflow
environment are executed concurrently, and thus the order of the statements is 
irrelevant. This is why it is valid to use s  before s  is assigned anything. Assignment o
a value to a signal is done with the <= sign. In the first statement, o1  is assigned the 
result value of s  or c . or  is a predefined operator.   

entity  small_block is
port  (a, b, c : in  bit ;     

o1 : out  bit ;     
o2 : out  bit     

) ;  
end  small_block ;
  
architecture  exemplar of  small_block is

signal  s : bit ;
begin      

o1 <= s or  c ;
s <= a and  b ;
o2 <= s xor  c ;

end  exemplar ;
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Additional details about the various dataflow statements and operators are given i
following sections.

Configuration

In summary, a configuration declaration provides the mechanism for delayed 
component binding specification. The entity name identifies the root entity to be 
elaborated. The optional architecture name provides the name of the architecture
elaborated. 

A configuration declaration can configure each component instantiation individual
with a different entity or architecture. The configuration declaration can also config
some lower level component instantiation of the current component being configu

With the help of the configuration declaration, you can try out different possible 
bindings of the component instantiations by keeping the basic hierarchical structu
the top level design intact.

NOTE: If you use “con” for configuration and “ent” for entity then the name of the
hierarchy cell created is “con_ent ”.

library  ieee;
library  work;
use  ieee.std_logic_1164.all;

package  global_decl is
type  log_arr is array(std_logic) std_logic;
constant  std_to_bin : log_arr:=( 'X','X','0','1','X','X', '0','1','X');
function to_bin (from : std_logic) return  std_logic;

end ;
package  global_decl is

function to_bin (from : std_logic) return  std_logic is
begin

return  std_to_bin(from);
end ;

end ;
continued....
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....continued

library  ieee;
library  work;
use  ieee.std_logic_1164.all;
use  work.global_decl.all;

entity en1 is   port
(a: in std_logic;
b: out  std_logic);

end ;

architecture  ar1 of  en1 is
begin

b <= to _bin (a);
end ;

architecture  ar2 of  en1 is  
begin

b <= not  ( to _bin (a));
end ;

library  ieee;
library  work;
use  ieee.std_logic_1164.all;
use  work.global_decl.all;

entity en2 is   port
(a: in std_logic;
b, c: out  std_logic);

end ;

architecture  arc of  en2 is  
component en1  port

(a: in std_logic;
b: out  std_logic);

end component ;
continued....
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begin

c1: en1 port  map (a => a, b => b);
c2: en1 port  map (a => a, b => c);

end ;

library  work;
configuration binding of  en2 is

for  arc
for  c1: en1 use entity  work.en1 (ar1);
end for ;
for c2: en1 use entity  work.en1 (ar2);
end for ;

end for ;
end  binding ;

Processes 

Processes are sections of sequentially executed statements, as opposed to the dat
environment, where all statements are executed concurrently. In a process, the or
the statements does matter. In fact, processes resemble the sequential coding style
high level programming languages. Also, processes offer a variety of powerful 
statements and constructs that make them very suitable for high level behavioral
descriptions.

A process can be called from the dataflow area. Each process is a sequentially 
executed program, but all processes run concurrently. In a sense, multiple proces
resemble multiple programs that can run simultaneously. Processes communicate
each other via signals that are declared in the architecture. Also the ports defined 
entity can be used in the processes.
VHDL Language Features 2-5
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entity  experiment is      
port  ( source : in  bit_vector(0 to 3) ;        

ce : in  bit ;        
wrclk : in  bit ;        
selector : in  bit_vector(0 to 1) ;        
result : out  bit 

);
end  experiment;
 
architecture  exemplar of  experiment is       

signal  intreg : bit_vector(0 to  3) ;  
 
begin    -- dataflow environment

writer : process -- process statement        
-- declarative region (empty here)

begin -- sequential environment        
-- sequential (clocked) statements 

       wait until  wrclk’event and  wrclk = ’1’ ;        
if  (ce=’1’) then            

intreg <= source ;        
end if  ;     

end  process writer;
     

reader : process  (intreg, selector)   -- process statement 
-- with sensitivity list   

-- declarative region (empty here)
begin         

-- sequential (not-clocked) statements         
case  selector is               

when "00" => result <= intreg(0) ;            
when  "01" => result <= intreg(1) ;            
when  "10" => result <= intreg(2) ;            
when  "11" => result <= intreg(3) ;        

end  case  ;     
end  process reader;

end  exemplar ;
2-6 HDL Synthesis Manual



2

ge of 

l 
value 

he 
 in 
 the 

alue of 

 

 

 etc. 
ocess 

t can 
er to 
This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk ), store the value internally in a register (intreg ) if a chip 
enable (ce ) is active, while it produces one bit of the register constantly (not 
synchronized). The bit is selected by a selector signals of two bits.

The description consists of two processes, one to write the value into the interna
register, and one to read from it. The two processes communicate via the register 
intreg. 

The first process (writer ) includes a wait statement. The wait statement causes t
process to execute only if its condition is true (a further explanation is given later
the chapter). In this case, the wait statement waits until a positive edge occurs on
signal wrclk  (expression wrclk’event and wrclk=’1’ ). Each time the edge 
occurs, the statements below the wait statements are executed. In this case, the v
the input signal source is loaded into the internal signal intreg  only if ce  is’1’ . If 
ce  is’0’ , intreg  retains its value. In synthesis terms, this translates into a 
D-flipflop, clocked on wrclk , and enabled by ce . 

The second process (reader ) does not have a wait statement. Instead, it has a 
sensitivity list, with the signals intreg  and selector  there. This construct defines
that the whole process is executed each time either intreg  or selector  changes. If 
the process is executed, the output signal result  gets updated with depending on the
values of intreg  and selector . Note that this leads to combinational behavior, 
since result  depends on only intreg  and selector , and each time either of 
these signals changes, result  gets updated.

A process has an optional name (in this case writer  and reader ), a sensitivity list 
OR a wait statement, and a declarative region where signals, variables, functions
can be declared which are used only within the process. The next section of the pr
is the sequential environment where all statements are made. Each statement is 
executed sequentially, as in a programming language. 

Not all constructs, or combinations of constructs, in a process lead to behavior tha
be implemented as logic. For more information about synthesizable constructs, ref
“Syntax and Semantic Restrictions” on page 22.
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Literals 

Constant values in VHDL are given in literals. Literals are lexical elements. Below is 
an overview, with examples given for each type of literal.

Literals are used to define types and as constant values in expressions. This list 
provides a brief description of their function in VHDL which will be more clear afte
the descriptions of types and expressions.

The ’_’  in bit string literals, decimal literals and based literals helps to order you
literal, but does not represent a value.

Character literals contain only a single character, and are single quoted. 

String literals contain an array of characters, and are double quoted. 

Bit String Literals are a special form of string literals. They contain an array of the
characters 0 and 1, and are preceded by one of three representation forms. B is 
representation (0 or 1 allowed), X the hexadecimal representation (0 to F allowed)
O the octal representation (0 to 7 allowed). X"5F" is exactly the same as B"010111
which is again the same as the string literal "01011111".

Bit string literals can contain underscores, which are ignored and only inserted fo
readability. 

Decimal literals are integer  or real  values. 

Based literals are also integer  or real  values, but they are written in a based form
8#75# is the same as decimal 61. However it is not the same as the bit literal va
O"75" since the bit literal value is an array (of bits) and the based literal is a integ

Physical literals are sometimes required for simulation. As they are not used in th
synthesized part of the design, we do not go into detail about them. 

Character Literals:    ’0’  ’X’  ’a’ ’%’#  

String Literals:      “1110100” “XXX” “try me!” “$^&@!” 

Bit String Literals:   B“0010_0001” X”5F’   O“63_07” 

Decimal Literals:      27  -5 4E3  76_562  4.25    

Based Literals:        2#1001#    8#65_07"  14#C5#E+2    

Physical Literals:     2 ns    5.0 V    15 pF    

Identifiers:          Idle TeSTing    a       true_story
2-8 HDL Synthesis Manual
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Identifiers can be enumeration literals. They are case-insensitive, like all identifier
VHDL. Their use becomes more clear with the discussion of VHDL types.

Types 

A type is a set of values. VHDL supports a large set of types, but here we concen
on types that are useful for synthesis. 

VHDL is a strongly typed language: every object (see “Objects” on page 30) in a 
VHDL source needs to be declared and needs to be of a specific type. This allow
VHDL compiler to check that each object stores a value that is in its type. This av
confusion about the intended behavior of the object, and in general allows the us
catch errors early in the design process. It also allows overloading of operators a
subprograms (“User-Defined Attributes” on page 46 and “Resolution Functions” on 
page 52). It also make coding in VHDL a look more difficult at first sight, but tends
produce cleaner, better maintainable code in the end.

VHDL defines four classes of types: 

•  Scalar types

•  Composite types

•  Access types

•  File types

Access types and File type cannot be applied for logic synthesis, since they requ
dynamic resource allocation, which is not possible in a synthesized hardware (se
“VHDL Language Restrictions” on page 23). Therefore, we will not discuss these.

Instead, only scalar types and composite types will be discussed. These are all s
types in VHDL:

•  Enumeration types. 

•  Integer types

•  Floating-point types 

•  Physical types

VHDL has two forms of composite types:

•  Array types 

•  Record types.
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This section will discuss the syntax and semantics of scalar and composite types
comment about the synthesizability of objects of these types.

Finally, this section will discuss some of the built-in standard types of the languag
(IEEE 1076), and a standardized set of types that are often used for logic synthe
purposes (IEEE 1164).

Enumeration Types

Syntax and Semantics   

An enumeration type consists of a set of literals (values). It indicates that objects o
that type cannot contain any other values than the ones specified in the enumera
type.

An example of an enumeration type is the pre-defined type bit . This is how the type 
bit  is declared:

Any object of type bit  can only contain the (literal) values ’0’  and ’1’ . The VHDL 
compiler will error out (type error) if a different value could be assigned to the obj

Enumeration types are also often used to declare the (possible) states of a state 
machine. Here is an example of the declaration of the states of an imaginary stat
machine are declared:

Once an object of this type is declared, the object can contain only one of these 
‘state’ values. 

   type  bit is  (’0’,’1’) ;

   type  states is  (IDLE, RECEIVE, SEND) ;
2-10 HDL Synthesis Manual
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Synthesis Issues

It is important to understand a logic synthesis tool needs to do state encoding on
enumeration type. For example, the states  type in the previous section needs at lea
two bits to represent the three possible values. This section mainly deals with the
various forms of controlling the enumeration encoding for each enumeration type
your design.

By default, the synthesis tools perform onehot encoding on an enumeration type. 
With Galileo, any other encoding can be achieved with a global switch (-encoding ). 
With Leonardo, other encodings can be achieved by using the encoding  variable. In 
addition both tools support alternate encodings by using any of the following 
attributes:

• TYPE_ENCODING_STYLE (define the encoding style for state machine type 
encoding)

• TYPE_ENCODING (define the bit-to-bit encoding for state machine type values 
manually) 

• LOGIC_TYPE_ENCODING (define that the type needs to be synthesized into a 
single binary value) 

These three attributes are declared in the exemplar_1164  package. So you do not 
need to declare them if you use a use exemplar.exemplar_1164.all  
statement in your design unit. For more information, see “The Exemplar Packages” o
page 11.)

The LOGIC_TYPE_ENCODING attribute on an enumeration type will give a hint to th
compiler that any object of the type should be encoded with a single bit, even tho
there might be more than two value in the type. An example of a type where 
LOGIC_TYPE_ENCODING is helpful, is the type std_ulogic  in the IEEE 1164 
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package (see “IEEE 1076 Predefined Types” on page 28). The type consists of n
values, but the synthesis tools should encode any object of std_ulogic  as a single 
bit value. Here is how the synthesis tools encode std_ulogic  as a single-bit value:

LOGIC_TYPE_ENCODING takes an array of characters, as many as there are value
the type, and each character states how the synthesis tools should treat the relat
value. There are four values that the synthesis tools accepts as legal single bit va
for the LOGIC_TYPE_ENCODING attribute: ’0’,’1’,’X’,’Z’ .

’0’  : Treat the value as a logic zero.

’1’  : Treat the value as a logic one.

’X’  : Treat the value as either a logic one or a logic zero. The Exemplar synthes
tools can decide which one, depending on the context it is used in. The synt
tools will use this freedom to optimize the circuit as much as it can.

’Z’  : Treat the value as a high-Z values. The synthesis tools will generate a three
driver if this value is used in an assignment. 

The synthesis tools can work with all values of a type with a 
LOGIC_TYPE_ENCODING attribute. Only comparisons of a NON-STATIC value 
with ’X’  or ’Z’  will return FALSE.

The TYPE_ENCODING and TYPE_ENCODING_STYLE attributes on an enumeration 
type are used to control state-encoding for state-machine descriptions. Normally, 
state-machines in VHDL are described by giving a enumeration type that identifie
each possible state of the state machine. The encoding for this enumeration type
done by the synthesis tools. By default, they use BINARY encoding. 

-- Declare the LOGIC_TYPE_ENCODING attribute :
attribute  LOGIC_TYPE_ENCODING : string ;

-- Declare the std_ulogic type :
type  std_ulogic is  (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;

-- Set the LOGIC_TYPE_ENCODING attribute on the std_ulogic type :
attribute  LOGIC_TYPE_ENCODING of  std_ulogic:type is
           (’X’,’X’,’0’,’1’,’Z’,’X’,’0’,’1’,’X’) ;
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The TYPE_ENCODING_STYLE gives a hint to the compiler as to what kind of 
encoding style to choose. There are four different styles to choose from: BINARY, 
GRAY, ONEHOT, RANDOM. Here is an example of how to use the 
TYPE_ENCODING_STYLE attribute on a (imaginary) state enumeration type:

In the above example, the synthesis tools will use one-hot encoding for the value
my_state_type . More specifically, the synthesis tools will use five bits for the typ
and will encode the states as follows:

The ’-’  value will allow the synthesis tools to only compare a single bit when a s
value is tested for. When a state value is assigned, ’-’  means a 0. This scheme allows
the synthesis tools to eliminate almost all logic when testing for the state machine 
in a particular state. On the other hand, since ONEHOT encoding requires more bits 
than other encoding styles, the number of flip-flops will increase. ONEHOT encoding 
can therefore be very beneficial for technologies where flip-flops are not expensiv
but combinational logic is (like in the Xilinx architectures).

-- Declare the TYPE_ENCODING_STYLE attribute 
-- (not needed if the exemplar_1164 package is used) :
type  encoding_style is  (BINARY, ONEHOT, GRAY, RANDOM) ;
attribute  TYPE_ENCODING_STYLE : encoding style ;

-- Declare the (state-machine) enumeration type :
type  my_state_type is  (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the TYPE_ENCODING_STYLE of the state type :
attribute  TYPE_ENCODING_STYLE of  my_state_type:type is  ONEHOT ; 

             bit4   bit3   bit2   bit1  bit0
  SEND        -      -      -      -     1
  RECEIVE     -      -      -      1     -
  IGNORE      -      -      1      -     -
  HOLD        -      1      -      -     -
  IDLE        1      -      -      -     -
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Naming: For ONEHOT encoding, the synthesized bits of a state machine will be nam
after the bit number in the above table. Here is an example:

The signal state  will be synthesized with one-hot encoding style, and the synthe
tools will generate five bits for it, where each one gets the state number from the a
table:

state(4)      corresponds to bit4 in the state table

state(3)      corresponds to bit3 in the state table

state(2)      corresponds to bit2 in the state table

state(1)      corresponds to bit1 in the state table

state(0)      corresponds to bit0 in the state table

For BINARY encoding (the default) the synthesis tools will use the following state
table:

BINARY encoding (as GRAY and RANDOM encoding) uses the minimum number of bit
needed to encode all values. In the above case (five values), BINARY encoding needs 
three bits. The last value (for IDLE) in the above table indicates several ’-’ s. The 
’-’  (just as the ’-’ ) value is used to reduce the size of comparators needed to tes
state. 

signal state : my_state_type ;

             bit2 bit1 bit0
   SEND       0    0    0 
   RECEIVE    0    0    1
   IGNORE     0    1    0 
   HOLD       0    1    1
   IDLE       1    -    -
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Naming: For BINARY encoding, as well as for GRAY and RANDOM encoding, the 
synthesis tools will generate the minimum number of bits needed for an object of
type. The signal state  will now generate three bits, each with the following name:

state(2)    corresponds to bit2  in the state table

state(1)    corresponds to bit1  in the state table

state(0)    corresponds to bit0  in the state table

GRAY encoding lets the synthesis tools build a Gray-code encoding. Gray-code 
encoding assures that in each successive value, only one single bit changes:

Gray encoding does not use the optimization possible with the ’-’  value. Gray 
encoding reduces glitches in the combinational logic when moving from one value
(state ) to its successor. It can be helpful in designs that require very clean logic
switching and state machines that do not perform many jumps to different states.

RANDOM encoding will create a random encoding scheme. The state table cannot
predicted, nor is there any way to let the synthesis tools produce it for you. RANDOM 
encoding is interesting if you would like to see whether or not the circuit size of 
performance depends heavily on the state encoding.

             bit2 bit1 bit0
   SEND       0    0    0 
   RECEIVE    0    0    1
   IGNORE     0    1    1 
   HOLD       0    1    0
   IDLE       1    1    0
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To fully control the state encoding, use the TYPE_ENCODING attribute. With the 
TYPE_ENCODING attribute you can define the state table used. Here is an examp

The TYPE_ENCODING attribute takes an array of equal-length strings, where each
string defines a row in the state table. The TYPE_ENCODING attribute is declared in 
the exemplar_1164  package, so if you use that, you do not have to enter the 
declaration for it.

This attribute setting will let the synthesis tools to use the following state table:

Note – The number of bits used in the TYPE_ENCODING attribute value does not have
to be the smallest possible number of bits. Just make sure that you specify as m
strings as there are values in the enumeration type. Also note that you can use th’-’  
value to let the Exemplar synthesis tools know to not use these bits when testing 
state machine is in the given state. You can use this to reduce the size of the circ

-- Declare the TYPE_ENCODING attribute :
type  exemplar_string_array is  array (natural range <>, natural range <>) 
    of  character ;
attribute  array_pin_number : exemplar_string_array ;
attribute  TYPE_ENCODING : exemplar_string_array ;

-- Declare the (state-machine) enumeration type :
type  my_state_type is  (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the type-encoding attribute :
attribute  TYPE_ENCODING of  my_state_type:type is
                        ("0001","01--","0000","11--","0010") ;

             bit3 bit2 bit1 bit0
   SEND       0    0    0    1
   RECEIVE    0    1    -    -
   IGNORE     0    0    0    0
   HOLD       1    1    -    -
   IDLE       0    0    1    0 
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Right now, the synthesis tools do not have an algorithm to find a good state enco
for any enumeration type. Still, the various forms of manual state table control 
explained in this section should allow you to find a good state encoding for each 
machine in your design.

The attributes described in this section allow you to encode each state machine (
state-type) individually. Galileo also provides a command line switch (-encoding ) 
that sets the default encoding (BINARY) to either BINARY, ONEHOT, GRAY or 
RANDOM. This command-line switch is useful to quickly switch from one state 
encoding style to another on a design with a single state machine. Any of the ab
encoding attributes overwrite any default setting. For Leonardo, set the encoding  
variable to BINARY (default), ONEHOT, GRAY or RANDOM before reading in a design 
to use a different encoding style for the state machines in the design.

An interesting effect of this way of handling encoding for enumeration types in 
synthesis of the predefined type character  in VHDL. The character  type is 
defined in the package standard , as an enumeration of all characters in the 8-bit 
ASCII set. When BINARY encoding (default) is chosen, each character will be 
synthesized into seven bits, with exactly its 8-bit ASCII value. So, the synthesis t
can synthesize characters (and strings) representing them as ASCII values. If a 
different default encoding is chosen, the encoding of the character type will chan
accordingly.

Integer Types

Syntax and Semantics

When designing arithmetic behavior, it is very helpful to work with integer types. 
integer type defines the set of integer values in its range. This is how an integer ty
defined:

Any object of type my_integer  can only contain integer values in the range 
specified. VHDL pre-defines an integer type called integer , that at least covers a 
range of integer values that can be represented in two’s complement with 32 bits

type  my_integer is  range  0 to  15 ;

type  integer is  range  -2147483647 to  2147483647;
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Actually, VHDL 1076 does not define the maximum bounds of the predefined type
integer  nor of any other integer type, it just states that it should at least include 
range.

Synthesis issues

The Exemplar synthesis tools can synthesize with any integer type that contains 
values outside the range -2147483648 to 2147483647. The reason is that the syn
tools store integer values (constant ones) using (32 bit) integers internally. If more
32 bits are needed for a particular circuit design, you should use arrays to repres
them. It is not wise to use integer types that exceed the above range in general, 
many other VHDL tools have the same restriction as the Exemplar synthesis tool

The synthesis tools need to do encoding for integer types, since an integer range
requires multiple bits to represent. The synthesis tools will analyze the range of a
integer type and calculate the number of bits needed to represent it.

If there are no negative values in the integer range, the synthesis tools will create
unsigned representation. For example, consider the following object of the type 
my_integer  from the previous section:

The signal count  will be represented as unsigned, consisting of four bits. When 
synthesized, the four bits will be named as elements of a bus in the resulting net

If the range includes negative numbers, the synthesis tools will use two’s-complem
representation of the integer values. For example, any object of the predefined ty
integer  will be represented with 32 bits where the MSB bit represents the sign 

Example:

   signal  count : my_integer ; 

count(0)     the LSB bit  
count(1)                   
count(2)                   
count(3)     the MSB bit   

signal  big_value : integer ;
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Now, the synthesis tools will represent the signal big_value  as 32 bits:  

Floating-point Types

Syntax and Semantics

As any high-level programming language, VHDL defines floating-point types. 
Floating-point types approximate the real numbers. 

Here is an example of the declaration of a floating-point type:

VHDL pre-defines a very general floating-point type called real.

Just as with the integer types, maximum bounds of any floating-point type is not 
defined by the language. Still, any floating-point type should but should at least 
include -1.0E38 to 1.0E38. 

Nothing in the language defines anything about the accuracy of the resolution of 
floating-point type values.

Synthesis Issues

In general, since the resolution of floating-point types is not defined by the langua
it is difficult to come up with a good rule for encoding floating-point types. While in
regular (software) compilers floating-point types are represented in 32, 64 or 128 
the floating-point operations just require time. In hardware compilers like a logic 

big_value(0)   the LSB bit 
big_value(1)
    :
    :
big_value(30)  the MSB bit
big_value(31)  the sign bit

 type  my_real is  range 0.0 to  1.0 ;

type  real is  range -1.0E38 to  1.0E38 ;
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synthesis tool, floating-point operations would require massive amounts of actual
synthesized hardware, unless the resolution and bounds of the floating-point type
kept under very close control.

For the above reasons, the Exemplar synthesis tools do not currently support syn
of floating point objects. 

Floating-point types and objects can however be used in constant expression. 

For example, an attribute could get a (compile time constant) floating-point expres
and the synthesis tools will calculate the expression and set the floating-point valu
the attribute.

Physical Types

Syntax and Semantics

VHDL allows the definition of physical types. Physical types represent relations betwee
quantities. A good example of a physical type is the predefined type time :

Objects of physical types can contain physical values of the quantities specified in
type, as long as the values do not exceed the type’s range. Type time  is often used in 
VHDL designs to model delay.

type  time is  range -2147483647 to  2147483647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end  units;
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Synthesis Issues

Physical types, objects and values are normally only used for simulation purpose
Objects and values of type time  are used in after  clauses to model delay.

The Exemplar synthesis tools attempt to synthesize any physical value that is wit
the range of the type. The encoding follows the encoding for integer types, and 
expresses the value with respect to the base quantity (fs  in the type time ). It is not 
common practice however to synthesize logic circuitry to model physical values.

The synthesis tools handles constant expressions of physical values without any 
problems. For example, attributes of type time  can receive constant values of type 
time . This is often used to model arrival time and required time properties in the
design. (For more information, see “The Exemplar Packages” on page 11.)

Array Types

Syntax and Semantics

An array type in VHDL specifies a collection of values of the same type. There ar
constrained and unconstrained array types.

For an constrained array type, the number of elements and the name of the elemen
index) is defined and fixed. 

Example:

In this example, type byte  defines an array of 8 element, each of type bit . The 
elements are named with indexes ranging from 7 (for the left most element in the a
downto 0 (for the right most element in the array). Example of an array object:

type  byte is  array (7 downto 0) of  bit ;

constant  seven : byte := "00000111" ;
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Individual elements of the array object can now be referred to using indexing:

seven(0)  is the name of the right most element in array seven . Its value is the 
bit literal ’1’ .

seven(7)  is the name of the left most element in array seven . Its value is the bit 
literal ’0’ .

Parts of the array can be retrieved using slicing:

seven(3 downto 0)  is the name of the right most four elements in array 
seven . The value is an array of four bits: "0111" . The indexes of this array range
from 3 down to 0.

For an unconstrained array type, the number of elements and the name of the elem
not yet defined. An example is the pre-defined type bit_vector : 

Here, the array type defines that the element type is bit , and that the index type is 
type natural . Type natural  is a integer subtype that include all non-negative 
integer. The meaning of this is that the index value for any object of type 
bit_vector  can never be negative.

By defining an unconstrained array type, you defer specifying a size for the array. S
in order to define a valid object of an unconstrained array type, we need to constrain
index range. This is normally done on the object declaration: 

Unconstrained array types are very important, since they allow to declare many 
different-size objects to be declared and used through each other, without introdu
type conflicts.

The type of the element of an (constrained or unconstrained) array type is not rest
to enumerated type bit  as in the examples above. Actually, an array element type 
be any type but an unconstrained array type.

So you could define an array of integers, an array of 6-bit arrays, an array of rec
etc. But you cannot declare an array of (the unconstrained array type) bit_vector .

type  bit_vector is  array (natural range <>) of  bit ;

constant  eight : bit_vector (7 downto  0) := "00001000" ;
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If you want an unconstrained array type where you need more indexes to remain 
unconstrained, you need a multi-dimensional array type:

Multi-dimensional (constrained and unconstrained) array type are handy when 
modeling RAMs, ROMs and PLAs in VHDL. The section “Edge-Sensitive Flip-Flop
on page 3 gives some examples. Indexes and slices of multi-dimensional arrays n
specify all index dimensions, separated by a comma. Again, “Edge-Sensitive 
Flip-Flops” on page 3 gives examples.

Finally, the index type of an array type does not have to be an integer (sub)type. I
also be an enumeration type.

Synthesis Issues

There are no synthesis restrictions in the Exemplar synthesis tools on using arrays
synthesis tools support arrays of anything (within the language rules), 
multi-dimensional arrays, array types with enumeration index type. Negative inde
are also allowed. 

Naming of array objects is straightforward. The synthesis tools append the index 
each element after the array name. If the element type consists of multiple bits, t
synthesis tools append the element indexes to the array name with its index. 

It is important to understand that there is no Most Significant Bit (MSB) or Least 
Significant Bit (LSB) defined in an array type or array object. The semantics of w
is interpreted as MSB or LSB is defined by the operations on the array. In the exa
of object seven  above, the user probably meant the left most bit to be the MSB, 
the right most bit the LSB. However, this is not defined by the language, just by t
user. 

Additions, subtractions, and multiplications have to be defined by the user. Most 
synthesis tool vendors define (arithmetic) operations on arrays in packages that a
shipped with the product. Most of these packages assume that leftmost bit is the 
and the rightmost bit is the LSB. As an example of this, the packages exemplar  and 
exemplar_1164  (see “The Exemplar Packages” on page 11) define arithmetic 
operators the bit_vector  and the IEEE 1164 array equivalent 
std_logic_vector  type. In these packages, the leftmost bit is assumed to be 
MSB.

type  matrix is  array (natural range <>, natural range <>) of  bit ;
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Record Types

Syntax and Semantics

A record type defines a collection of values, just like the array type.

All elements of an array must be of the same type. Elements of a record can be of
different types:

The element type month_name  in this example could be an enumeration type with a
names of the months as literals. 

The elements of a record type can again be of any type, but cannot be an unconst
array.

Consider the following object of type date :

Note – An aggregate is used here to initialize the constant. Aggregates are discuss
the section “IEEE 1076 Predefined Operators” on page 40.

Individual elements of a record object can be accessed with a selected name. A 
selected name consists of the object name, followed by a dot (.) and the element 

my_birthday.year  selects the year  field out of my_birthday  and returns 
the integer value 1993 .

type  date is
record  

day : integer range 1 to  31 ;
month : month_name ;
year : integer range 0 to  4000 ;

end  record ;

constant  my_birthday : date := (29, june, 1963) ;
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Synthesis Issues

The Exemplar synthesis tools impose no restrictions (apart from the language rule
record types and record objects. 

Naming of the individual bits that result after synthesizing a record object follow t
selected naming rule of the language: Each bit in a record object get the record n
followed by a dot, followed by the element name. If the element synthesizes into 
multiple bits, the index of the bits in each element are appended to that. As an 
example, the five bits that represent the day  field in my_birthday  will be named as 
follows:

Subtypes

A subtype is a type with a constraint.

A subtype allows you to restrict the values that can be used for an object without act
declaring a new type. This speeds up the debugging cycle, since the simulator will 
run-time check on values being out of the declared range. Declaring a new type wo
cause type conflicts. Here is an example:

my_birthday.day(0)     LSB in my_birthday.day
my_birthday.day(1) 
my_birthday.day(2) 
my_birthday.day(3) 
my_birthday.day(4)     MSB in my_birthday.day

subtype  <subtype_name> is  <base_type> [<constraint>] ;

type  big_integer is  range 0 to 1000 ;
type  small_integer is  range 0 to 7 ;

signal  intermediate : small_integer ;
signal  final : big_integer ;

final <= intermediate * 5 ; <- type error occurs because 
                            big_integer and small_integer are
                            NOT the same type  
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With a type-conversion (see next section), you can ’cast’ one integer into another o
avoid the above error. Still, it is cleaner to use a subtype declaration for the (more 
constrained) small_integer  type:

Subtypes can be used to constraint integer types (as in the above example), 
floating-point type, and unconstrained arrays.

Declaring a subtype that constraints an unconstrained array type is exactly the sam
declaring a constrained array type:

has the same effect as:

Just as in the integer type example above, subtypes of one and the same uncons
base-type are compatible (will not cause type errors), but when two constrained a
types are used, they will cause type errors if objects of both types are intermixed
expressions. Type conversion is then the only possibility to let objects of the two ty
be used together in expressions without type errors (see next section).

There are no synthesis restrictions on the use of subtypes.

type  big_integer is  range 0 to  1000 ;
subtype  small_integer is  big_integer range  0 to  7 ;

signal  intermediate : small_integer ;
signal  final : big_integer ;

final <= intermediate * 5 ;<- NO type error occurs ! because
big_integer and small_integer
have the same base-type 
(big_integer).

type  bit_vector is  array (natural range <>) of  bit ;
subtype eight_bit_vector is  bit_vector (0 to  7) ;

type  eight_bit_vector is  array (0 to  7) of  bit ;
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Type Conversions

In cases where it is not possible to declare one type and one subtype instead of tw
separate types, VHDL has the concept of type conversion. Type conversion is similar to 
type ’casting’ in high level programming languages. To cast an expression into a ty
use the following syntax:

Type conversion is allowed between ’related’ types. There is a long and detailed 
discussion in the VHDL LRM about what related types are, but in general, if it is 
obvious to you that the compiler should be able to figure out how to translate value
one type to values of another type, the types are probably related. For example, 
integer types are related, all floating-point types are related and all array types of
same element type are related. 

So, the problem of type error between two different types in example of the previou
section could be solved with a type conversion:

<type>(<expression>)

type  big_integer is  range 0 to  1000 ;
type  small_integer is  range 0 to  7 ;

signal  intermediate : small_integer ;
signal  final : big_integer ;

final <= big_integer(intermediate * 5) ;<- NO type error occurs now, 
since the compiler knows how to 
translate ’small_integer’ into
big_integer with the type 
conversion.                                    
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IEEE 1076 Predefined Types  

The VHDL IEEE 1076 standard predefines a number of types. Listed below are the 
which are most important for synthesis:

The Exemplar synthesis tools also understand the predefined types CHARACTER, 
STRING, SEVERITY_LEVEL, TIME, REAL and FILE . For more information on 
synthesis restrictions for these object types, see “Syntax and Semantic Restriction
page 22.

 IEEE 1164 Predefined Types 

A problem with the 1076 standard is that it does not specify any multi-valued logi
types for simulation purposes, but rather left this to the user and/or tool vendor. T
IEEE 1164 Standard specifies a 9-valued logic. The Exemplar synthesis tools sup
these types, although some restrictions apply to the values you can use for synth
These restrictions are discussed in the section “Syntax and Semantic Restrictions
page 22.

The meaning of the different type values of the IEEE 1164 standard are given belo

  ’U’      Uninitialized  

  ’X’      Forcing Unknown

  ’0’      Forcing Low

  ’1’      Forcing High

  ’Z’      High Impedance

  ’W’      Weak Unknown

  ’L’      Weak Low

type  bit is  (’0’,’1’) ;  
type  bit_vector is array  (integer range <>) of bit ;  
type  integer is range  MININT to  MAXINT ;  
subtype  positive is  integer range  1 to  MAXINT ;  
subtype  natural is  integer range  0 to  MAXINT ;  
type  boolean is  (TRUE,FALSE) ;
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  ’H’      Weak High

  ’-’      Dont Care

The weak values on a node can always be overwritten by a forcing value. The hi
impedance state can be overwritten by all other values.

Most of these values are meaningful for simulation purposes only. Some restrictio
apply if you want to use these values for synthesis. Only the values 
’0’ ,’1’ ,’X’ ,’-’  and ’Z’  have a well-described meaning for synthesis. For deta
see “Syntax and Semantic Restrictions” on page 22.

Some examples of IEEE 1164 type statements are:

The identifier resolution_func  is a function that defines which value should be
generated in case multiple values are assigned to an object of the same type. Th
called the resolution function of the type. Resolution functions are supported as lon
they do not return any metalogical values. For details, refer to “Syntax and Sema
Restrictions” on page 22.

To use the IEEE 1164 types you must load the IEEE package into your VHDL 
description. This is done with the following statements:

Details about how the synthesis tools handle packages are explained in the secti
“Entity and Package Handling” on page 1.

type  std_ulogic is  (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) ;   
type  std_ulogic_vector is array  (natural range <>) of  std_ulogic ;   
subtype  std_logic is  resolution_func std_ulogic ;   
type  std_logic_vector is  (natural range <>) of  std_logic ;   
subtype  X01Z is  resolution_func std_ulogic range  ’X’ to  ’Z’ ; 

-- includes X,0,1,Z   

library  ieee ; 
use  ieee.std_logic_1164.all ;
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Objects 

Objects in VHDL (signals, variables, constants, ports, loop variables, generics) ca
contain values. Values can be assigned to objects, and these values can be used
elsewhere in the description by using the object in an expression. All objects exc
loop variables have to be declared before they are used. This section describes t
various objects in VHDL and their semantics. 

Signals 

Signals represent wires in a logic circuit. Here are a few examples of signal declarat

Signals can be declared in all declarative regions in VHDL except for functions an
procedures. The declaration assigns a name to the signal (foo ); a type, with or without 
a range restriction (bit_vector(0 to 5) ); and optionally an initial (constant) 
value. Initial values on signals are usually ignored by synthesis (For details, see 
“Restrictions on Initialization Values” on page 24.) 

Signals can be assigned values using an assignment statement 
(e.g., aux <= ’0’ ; ).  If the signal is of an array type, elements of the signal’s 
array can be accessed and assigned using indexing or slicing. For more informat
see “Statements” on page 33.

Assignments to signals are not immediate, but scheduled to be executed after a 
delay. (This effect is an essential difference between variables and signals.) This
discussed in detail in “Usage Of Attributes” on page 46.

 Constants   

Constants can not be assigned a value after their declaration. Their only value is th
initial constant value. Initialization of a constant is required. An example of declarin
constant is:

signal  foo : bit_vector (0 to  5) := B"000000" ; 
signal  aux : bit ;
signal  max_value : integer ; 

constant  ZEE_8 : std_logic_vector (0 to 7) := "ZZZZZZZZ" ;
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Variables  

Variables can not be declared or used in the dataflow areas or in packages, only
processes, functions and procedures.  

An example of declaring a variable is:

Assignments to a variable are immediate. This effect is an essential difference bet
variables and signals. This is discussed in detail in “Usage Of Attributes” on page

The initial assignment to a variable is optional. The initial assignment to a variabl
a process is usually ignored by synthesis. (For more information, see “Restriction
Initialization Values” on page 24.)

Ports 

A port is an interface terminal of an entity. A port represents an ordinary port in a ne
description. Ports in VHDL are, just like other objects, typed and can have an initia
value. In addition, a port has a “direction.” This is a property that indicates the poss
information flow through the port. Possible directions are in , out , inout  and 
buffer , where inout  and buffer  indicate bidirectional functionality.  

After declaration, a port can be used in the architecture of the entity as if it were 
normal signal, with the following restrictions: first, you cannot assign to a port wit
direction in, and second, you cannot use a port of direction out in an expression.

variable  temp : integer range 0 to 10 := 5 ;

entity  adder is  
port  (

input_vector : in  bit_vector (0 to  7) ;
output_vector : out  bit_vector (0 to  7) 

) ;
end  adder ;
VHDL Language Features 2-31



2

the 

 in 

neric 

and 

s or 

. The 
e. 
Generics 

A generic is a property of an entity. A good example of a generic is the definition of 
size of the interface of the entity. Generics are declared in a generic list.   

The generic size  can be used inside the entity (e.g., to define the size of ports) and
the architecture that matches the entity. In this example, the generic size  is defined as 
an integer with an initial value 8. The sizes of the input and output ports of the entity 
increment are set to be 8 bits unless the value of the generic is overwritten by a ge
map statement in the component instantiation of the entity. 

Here, a 16-bit incrementer is instantiated, and connected to the signals invec  and 
outvec . “Component Instantiation” on page 58 explains more about how to use 
generics when instantiating components.

The Exemplar synthesis tools fully support generics and generic map constructs 
imposes no restriction on the type of the generic. Generics are very useful in 
generalizing your VHDL description for essential properties like sizes of interface
for passing timing information for simulation to instantiated components.

Loop Variables 

A loop variable is a special object in the sense that it does not have to be declared
loop variable gets its type and value from the specified range in the iteration schem

entity  increment is        
generic  ( size : integer := 8 ) ;       
port  (  ivec  : in   bit_vector (0 to  size-1) ;    

ovec : out  bit_vector (0 to  size-1)) ;   
end  increment ;

inst_1 : increment   generic map (size=>16)
port map (ivec=>invec, ovec=>outvec) ;

for  i in  0 to  5 loop        
a(i) <= b(i) and  ena ;   

end loop  ;
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In this code fragment, i  becomes an integer with values 0,1,2...5 respectively, whe
the loop statements are executed 6 times. A loop variable can only be used insid
loop, and there can be no assignments to the loop variable. For synthesis, the ra
specified for the loop variable must be a compile-time constant, otherwise the 
construct is not synthesizable.

Statements 

This section briefly discusses the basic statements that can be used in VHDL 
descriptions. 

Conditional Statements 

This code fragment describes a multiplexer function, implemented with an if-then-
statement. This statement can only be used in a sequential environment, such as
process, procedure or a function.

signal  a : integer ;   
signal  output_signal, x, y, z : bit_vector (0 to 3) ;  
....    
if  a = 1 then       

output_signal <= x ;   
elsif  a = 2 then       

output_signal <= y ;   
elsif  a = 3 then       

output_signal <= z ;   
else  

output_signal <= "0000" ;   
end if ;
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The same functionality in the dataflow environment is accomplished with the use o
conditional signal assignment statement:

Selection Statements  

If many conditional clauses have to be performed on the same selection signal, a c
statement is a better solution than the if -then -else  construct:

The “|” sign indicates that particular case has to be entered if any of the given ch
is true (or functionality). Each case can contain a sequence of statements.

signal  a : integer ;   
signal  output_signal, x, y, z : bit_vector (0 to  3) ;  
....    
output_signal <= x when a=1 else    
y when a=2 else     
z when a=3 else     
"0000" ;

signal  output_signal, sel, x, y, z : bit_vector (0 to  3) ;  
....    
case  sel is       

when "0010" => output_signal <= x ;      
when "0100" => output_signal <= y ;      
when "1000" => output_signal <= z ;      
when "1010" | ”1100" | "0110" => output_signal <= x and y and  z ;
when others  => output_signal <= "0000" ;   

end  case  ;
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The case statement can only be used in a sequential environment. In the dataflow 
environment, the selected signal assignment statement has the equivalent behavio

Loop Statements and Generate Statements

In many cases, especially with operations on arrays, many statements look alike, b
differ only on minor points. In that case, you might consider using a loop statement

In this code fragment, each bit of a input signal is “anded” with a single bit enable
signal, to produce an output array signal. The loop variable i  does not have to be 
declared. It holds an integer value since the loop range is an integer range.

The previous example showed a for  loop. VHDL also has a while  loop. Here is an 
example:

signal  output_signal, sel, x, y, z : bit_vector (0 to  3) ;
....
with  sel select  

output_signal <= x when "0010",
y when "0100",
z when "1000",
x and  y and  z when "1010" | "1100"
|"0110", "0000" when others  ;

signal  result, input_signal : bit_vector (0 to  5) ;   
signal  ena : bit ;  
....    
for  i in  0 to  5 loop       

result(i) <= ena and  input_signal(i) ;   
end loop  ;

variable  i : integer ;
 ......
i := 0 ;
while  (i < 6) loop

result(i) <= ena AND input_signal(i) ;
i := i + 1 ;

end  loop  ;
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The Exemplar synthesis tools can synthesize any for  loop. A while  loop, however, 
can be synthesized only if the while  condition evaluates to a constant (as in the 
example above). If the while  condition does not evaluate to a run-time constant, th
the synthesis tools do not know how many times the loop should be executed, and
cannot define how must hardware to generate for the statements inside the while 
A while  loop with a non-constant condition could be synthesized if there were a
wait  statement inside the loop. However, this implies multiple wait  statements in a 
process, which is not supported by the synthesis tools.

Both a for-loop and a while-loop support EXIT  or NEXT statements. An EXIT  
statement tells the synthesis tools to leave the loop, and a NEXT statement tells it to go 
to the next iteration. 

For example, we could write the above while  loop as follows:

This example is just to indicate how the EXIT  and NEXT statements work. We do not
want to advise you to use the exit and next statement like this. The synthesis too
however, do synthesize this description into the same logic as the original for  or 
while  loop. The synthesis tools are extremely good in analyzing constant 
expressions, and that is why this example works.

i := -1 ;
while  (TRUE) loop

i := i + 1 ;

exit if  (i > 5) ;
if  (input_signal(i) = ’0’) then

result(i) <= ’0’ ;
next ;

end if  ;
result(i) <= ena ;

end  loop  ; 
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The loop statement can only be used inside sequential environments. Its equivalen
statement in the dataflow environment is the generate  statement:

Note – The generate  statement is preceded by a label (G1). A label is required in 
the generate statement but is optional in the loop statement.

The generate  statement does not allow EXIT  and NEXT statements. The reason is 
that the statements inside the generate  statement are executed concurrently. So the
is no way to know when to exit. The generate  statement has no while  equivalent, 
for the same reason. Instead however, there is a if  equivalent in the generate  
statement:

The condition must evaluate to a run-time constant. That is a language requireme

Note – There is no else  part possible in a generate  statement. We consider this a
flaw in the language, but the Exemplar synthesis tools has to comply with it.

The synthesis tools have no synthesis restrictions for the generate  statement.

signal  result, input_signal : bit_vector (0 to 5) ;   
signal  ena : bit ;  
....
G1 : for  i in  0 to 5 generate         

result(i) <= ena and  input_signal(i) ;   
end generate  ;

i := -1 ;
while  (TRUE) loop

i := i + 1 ;

exit if  (i > 5) ;
if  (input_signal(i) = ’0’) then

result(i) <= ’0’ ;
next ;

end if  ;
result(i) <= ena ;

end  loop  ; 
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Assignment Statements

Assignments can be done to signals, ports and variables in VHDL. Assignments to
signals and ports are done with the <= operator. 

In this code fragment o gets assigned the value of the vector-XOR (bit by bit) of 
vectors a and b. The type of the object on the left hand side of the assignment sho
always match the type of the value on the right hand side of the assignment. Sig
assignments can be used both in dataflow environment and sequential environme

Assignments to variables are done with the “:= ” sign.

Variable assignments can only be used in sequential environments. Types on left
right hand side of the “:= ” sign should match.

There is one important difference between assignments to signals and assignmen
variables: when the values are updated. The value of a variable in a variable 
assignment is updated immediately after the assignment. The value of a signal in
signal assignment is not updated immediately, but gets “scheduled” until after a d
(delay) time. This delay time is not related to actual time, but is merely a simulati
characteristic. This behavior of the signal assignment does not have any effect fo
signal assignments in a dataflow environment, since assignments are done concur
there. However, in a process, the actual value of the signal changes only after th
complete execution of the process.  

signal  o, a, b : std_logic_vector (0 to  5) ;  
....    
o <= a xor  b ;

variable  o : std_logic_vector (0 to  5) ;   
signal  a, b : std_logic_vector (0 to  5) ;  
....    
o := a AND NOT b ;
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The following example illustrates this effect. It shows the description of a multiplexe
that can select one bit out of a four bit vector using two select signals.

This description does not behave as intended. The problem is because muxval  is a 
signal; the value of muxval  is not immediately set to the value defined by bits a and 
b. Instead, muxval  still has the same value it had when the process started when
if  statement is executed. All assignments to muxval  are scheduled until after the 
process finishes. This means that muxval  still has the value it got from the last time
the process was executed, and that value is used to select the bit from the input v

entity  mux is       
port  ( s1, s2 : in  bit ;        

inputs : in  bit_vector (0 to  3) ;        
result : out  bit      

) ;   
end  mux ;
 
architecture  wrong of  mux is    
begin       

process  (s1,s2,inp)          
signal  muxval : integer range 0 to  3 ;      
begin           

muxval <= 0 ;          
if  (s1 = ’1’) then  muxval <= muxval+1 ;          
if  (s2 = ’1’) then  muxval <= muxval+2 ;  
-- use muxval as index of array ’inputs’
result <= inputs (muxval) ;        

end  process ;   
end  wrong ;
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The solution to this problem is to make muxval  a variable. In that case, all assignment
done to muxval  are immediate, and the process works as intended.

As a general rule, if you use signal assignments in processes, do not use the val
the signal after the assignment, unless you explicitly need the previous value of t
signal. Alternatively, you can use a variable instead.

Operators 

IEEE 1076 Predefined Operators 

VHDL predefines a large number of operators for operations on objects of variou
types. The following is an overview:

Relational operators on ALL types (predefined or not):

  =  <=

/=  >

<   >=

entity  mux is       
port  (  s1, s2 : in  bit ;        

inputs : in  bit_vector (0 to  3) ;        
result : out  bit) ;   

end  mux ;
  
architecture  right of  mux is    
begin       

process  (s1,s2,inp)          
variable  muxval : integer range  0 to  3 ;      
begin           

muxval := 0 ;          
if  (s1 = ’1’) then  muxval := muxval+1 ;          
if  (s2 = ’1’) then  muxval := muxval+2 ;          
-- Use muxval as index of array ’inputs’
result <= inputs (muxval) ;

end  process ;   
end  right ;
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 Logical operators on pre-defined types BIT and BOOLEAN:

   AND  NOR

OR  XOR

NAND   NOT

Arithmetic operators on all integer types:

   +  mod

 -   rem

*   abs

/  

** 

Concatenation of elements into an array of elements:

   &    (,,,,) 

Relational operators operate on any type. The basis of comparing two values is de
from the order of definition. For example in the std_logic  type the value ’U’  is 
smaller than the value ’1’  because ’U’  is defined first in the order of values in the 
type. The comparison of two arrays is accomplished by comparing each element o
array. The left most element is the most significant one for comparisons. 

In this example, a(7)  is the most significant bit for comparisons with vector a, and 
b(5)  is the most significant bit for comparisons with vector b.

Logical operators work in a straightforward manner and do the appropriate opera
on types BIT  and BOOLEAN, and also for one-dimensional arrays of BIT  and 
BOOLEAN. In the latter case, the logical operation is executed on each element o
array. The result is a array with the same size and type as the operands.

signal  a : bit_vector (7 downto  0) ;   
signal  b : bit_vector (5 to 9) ;
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Arithmetic operators work on integers and on all types derived from integers. The
Exemplar synthesis tools support arithmetic operators on vectors, described in th
exemplar package. “The Exemplar Packages” on page 11 presents more details a
operations on vectors.

Concatenation operators can group elements of the same type into an array of tha
Consider the following examples:

This description is the same as the following one:

The aggregate operator in VHDL is especially useful when assigning to a vector of
unknown or large size:

signal  a, b, c : bit ;   
signal  x : bit_vector (5 downto  0) ;   
signal  y : bit_vector (0 to  3) ;  
....    
-- using concatenation operator

x <= a & b & c & B"00" & ’0’ ;          
-- using an aggregate

y <= (’1’, ’0’, b, c) ;              

signal  a, b, c : bit ;   
signal  x : bit_vector (5 downto  0) ;   
signal  y : bit_vector (0 to  3) ;  
....    

x(5) <= a ;   
x(4) <= b ;   
x(3) <= c ;   
x(2 downto  0) <= "000" ;   
y(0) <= ’1’ ;   
y(1) <= ’0’ ;   
y(2) <= b ;   
y(3) <= c ;

signal  o : bit_vector (0 to  255) ;
....

o <= (0=>’1’, others =>’0’) ;
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In this example, o(0)  is assigned ’1’  and all other elements of o (independent of its 
size) get value ’0’ .

 IEEE 1164 Predefined Operators 

The IEEE 1164 standard logic package describes a set of new types for logic val
However, the binary operators that are predefined in VHDL only operate on bit an
boolean types, and arrays of bits and booleans. Therefore, the IEEE standard logi
package redefines the logical operators (and, or, not, etc.) for the types std_logic , 
std_ulogic  and the array types std_logic_vector  and 
std_ulogic_vector .  

Operator Overloading 

The operators +, -, *, mod, abs, < ,>, etc. are predefined for integer and floating-po
types, and the operators and, or, not etc. are predefined on the type bit  and boolean . 
If you want to use an operator that is not pre-defined for the types you want to use
operator overloading in VHDL to define what the operator should do. Suppose you 
to add an integer and a bit according to your own semantics, and you want to use th
operator:

The first “+ ” in the assignment to t is the pre-defined “+”  operator on integers. T
second “+” is the user defined overloaded operator that adds a bit to an integer. T“  
character around the “+” operator definition is needed to distinguish the operator 
definition from a regular function definition (see “Resolution Functions” on page 5

function  “+” (a: integer; b: bit) return  integer is
begin

 if  (b=’1’) then
return  a+1 ;

else
return  a ;

end if ;
end  “+” ;
signal   o, t: integer range  0 to 255 ;
signal  b : bit ;
...
t <= o + 5 + b ;
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Operator overloading is also necessary if you defined your own logic type and wo
like to use any operator on it.

If you want to do arithmetic operations (+, -, etc.) on the array types bit_vector  or 
std_logic_vector , it will be more efficient for synthesis to use the pre-defined
operators from the exemplar  and the exemplar_1164  packages. For details of 
these packages operations and their use, see “The Exemplar Packages” on page

The Exemplar synthesis tools fully support operator overloading as described by 
language.

Attributes 

In VHDL, attributes can be set on a variety of objects, such as signals and variab
and many other identifiers, like types, functions, labels etc.

An attribute indicates a specific property of the signal, and is of a defined type. Us
attributes at the right places creates a very flexible style of writing VHDL code. A
example of this is given at the end of this section.
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VHDL Predefined Attributes

VHDL pre-defines a large set of attributes for signals. The following example shows
definition of two vectors and the values of the VHDL predefined attributes for them

The attributes do not have to be written in capitals; VHDL is case-insensitive for 
identifiers.  

An important predefined attribute for synthesis is the EVENT attribute. Its value 
reveals edges of signals. For more information about the EVENT attribute, see 
“Edge-Sensitive Flip-Flops” on page 3.

Exemplar Predefined Attributes

Apart from the VHDL predefined types, Exemplar also supplies a set of predefine
attributes that are specifically helpful for guiding the synthesis process or controll
down-stream tools. For details of these attributes, see “Predefined Attributes” on 
page 12.

signal vector_up : bit_vector (4 to 9) ;   
signal vector_dwn : bit_vector (25 downto 0) ;  
....       
vector_up’LEFT-- returns integer 4
vector_dwn’LEFT-- returns integer 25
vector_up’RIGHT-- returns integer 9
vector_dwn’RIGHT-- returns integer 0
vector_up’HIGH-- returns integer 9
vector_dwn’HIGH-- returns integer 25
vector_up’LOW-- returns integer 4
vector_dwn’LOW-- returns integer 0
vector_up’LENGTH-- returns integer 6
vector_dwn’LENGTH-- returns integer 26
vector_up’RANGE -- returns range 4 to 9
vector_dwn’RANGE-- returns range 25 to 0
vector_up’REVERSE_RANGE-- returns range 9 to 4
vector_dwn’REVERSE_RANGE-- returns range 0 to 25
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User-Defined Attributes

Attributes can also be user defined. In this case, the attribute first has to be declared
a type, and then its value can be set on a signal or other object. This value can the
used with the “ ’ ” construct. The following is an example:

Usage Of Attributes

To indicate where attributes in a VHDL description are useful, consider the followin
example. 

signal  my_vector : bit_vector (0 to  4) ;    
attribute  MIDDLE : integer ;    
attribute  MIDDLE of  my_vector : signal is   my_vector’LENGTH/2 ;
....     

my_vector’MIDDLE         -- returns integer 2 

entity  masked_parity is        
port  ( source : in  bit_vector (0 to  5) ;     

mask : in  bit_vector (0 to  5) ;     
result : out  bit       

) ;   
end  masked_parity ;
  
architecture  soso of  masked_parity is    
begin        

process  (source, mask)   
variable  tmp : bit ;   
variable  masked_source : bit_vector (0 to  5) ;       

begin             
masked_source := source and  mask ;   
tmp := masked_source(0) ;   
for  i in  1 to  5 loop         

tmp := tmp XOR masked_source(i) ;             
end loop ;    
result <= tmp ;       

end  process ;   
end  soso ;
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This example calculates the parity of the bits of a source vector, where each bit c
masked. This VHDL description is correct, but is not very flexible. Suppose the 
application changes slightly and requires a different size input. Then the VHDL 
description has to be modified significantly, since the range of the vector affects m
places in the description. The information is not concentrated, and there are man
dependencies. Attributes can resolve these dependencies. 

Here is an improved version of the same example, where attributes LEFT, RIGHT, and 
RANGE define the dependencies on the size of the vector.

If the application requires a different size parity checker, this time we only have to
modify the source vector range, and the attributes ensure that the rest of the descr
gets adjusted accordingly. Now the information is concentrated.   

entity  masked_parity is        
generic  ( size : integer := 5) ;
port  ( source : in  bit_vector (0 to  size) ;     

mask : in  bit_vector (source’RANGE) ;     
result : out  bit       

) ;   
end  masked_parity ;
  
architecture  better of  masked_parity is    
begin        

process  (source, mask)   
variable  tmp : bit ;   
variable  masked_source : bit_vector (source’RANGE) ;

begin             
masked_source := source and  mask ;   
tmp := masked_source(source’LEFT) ;   
for  i in  source’LEFT+1 to  source’RIGHT loop        

tmp := tmp xor  masked_source(i) ;             
end loop  ;    
result <= tmp ;       

end  process ;   
end  better ;
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Blocks 

When using processes and dataflow statements it is possible to use VHDL as a h
level hardware description language. However, as the descriptions get more and 
complicated, some form of design partitioning, or hierarchy, is required or desirab

VHDL offers a variety of methods for design partitioning. One form of partitioning 
to divide a description into various processes. In the following sections four more
forms of partitioning are discussed: blocks, subprograms (functions and procedur
components and packages. 

A block is a method to cluster a set of related dataflow statements. Signals, subprog
attributes, etc. that are local to the block can be defined in a block declarative region
statements in a block are executed concurrently, and thus define a dataflow environ

Blocks can be nested, as in the example above.

Signals, ports and generics declared outside the block can be used inside the blo
either directly (as global_sig  is used in block B2), or via a port map (as g1  is 
connected to o1  in block B2) or generic maps (for generics). There is no real 
difference between the two methods, except that the port (generic) map construc
cleaner coding style which could reduce errors when using or assigning to global
objects. 

architecture  xxx of  yyy is      
signal  global_sig ,g1,g2,c bit ;  

begin     
B1 : block         -- block declarative region        

signal  local_sig : bit ;    
begin           -- block concurrent statements 

local_sig <= global_sig ;
-- Block in a block 

B2 : block   (c=’1’) -- Block has “GUARD” expression
port  (o1,o2 : out bit) -- Block port declarations
port map  (o1=>g1,o2=>g2) ;

begin      
o1 <= guarded  local_sig ;
o2 <= global_sig ;

end block  ;     
end block ;

end  xxx ;
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A block can also have a GUARD expression (c=’1’  in block B2). In that case, an 
assignment inside the block that contains the keyword GUARDED will only be executed 
when the GUARD expression is TRUE. In the example above, o1  only gets the value of 
local_sig  when c=’1’ . GUARDED blocks and assignments provide a interesting
alternative to construct latches or flip-flops in the synthesized circuit. For example
refer to “Registers, Latches and Resets” on page 1.

The Exemplar synthesis tools fully support blocks, with port/generic lists and 
port/generic maps and the GUARD options of blocks.

Functions And Procedures 

Subprograms (function and procedures) are powerful tools to implement functiona
that is repeatedly used. Functions take a number of arguments that are all inputs to t
function, and return a single value. Procedures take a number of arguments that can b
inputs, outputs or inouts, depending on the direction of the flow of information thro
the argument. All statements in functions and procedures are executed sequentia
in a process. Also, variables that are local to the subprogram can be declared in 
subprogram. Local signals are not allowed.

As an example, suppose you would like to add two vectors. In this case, you could d
a function that performs the addition. The following code fragment shows how an 
addition of two 6-bit vectors is done.

function  vector_adder (x : bit_vector(0 to  5);  y : bit_vector(0 to  5)) 
return  bit_vector(0 to  5) is
 -- declarative region      

variable  carry : bit ;       
variable  result : bit_vector(0 to  5) ;  

begin   
-- sequential statements      

carry := ’0’ ;      
for  i in  0 to 5 loop   

result (i) := x(i) xor  y(i) xor  carry ;  
carry := carry AND (x(i) OR y(i))  OR  x(i) AND y(i) ;       

end loop  ;      
return  result ;  

end  vector_adder ;
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Note – That vector addition, implemented this way, is not very efficient for synthes
The packages exemplar  and exemplar_1164  provide vector additions that can 
implement efficient/fast adders more easily. For more information, see “The Exem
Packages” on page 11.

An example of a procedure is shown below. The procedure increments a vector only
enable signal is high.

This incrementer procedure shows the behavior of an inout port. The parameter vect  
is both set and used in this procedure. Also, the procedure statements use a call
previously defined vector_adder  function. If an input of a function or a procedure
is not connected when it is used, that input will get the initial value as declared on
interface list. 

For example, input ena  will get (initial) value ’1’  if it is not connected in a 
procedure call to the procedure increment . It is an error if an input is not connected
and also does not have an initial value specified.

One important feature of subprograms in VHDL is that the arguments can be unbo
The given examples operate on vectors of 6 bits. If you want to use the subprogram
arbitrary length vectors, you could specify the length-dependencies with attributes a

procedure  increment (vect : inout  bit_vector(0 to  5); ena : in  bit :=’1’)  
is   
begin        

if  (ena=’1’) then   
vect := vector_adder (vect, "000001") ;      

end if ;  
end  increment ;
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not specify a range on the parameters (leave them unbound). Here is a redefinition
both the vector addition function and the incrementer procedure for arbitrary length
vectors.   

In the procedure increment example, name association was added in the parame
of the vector_adder  call. The name association (e.g., x=>vect ) is an alternative 
way to connect a formal parameter (x ) to its actual parameter (vect ). Name 
associations (as well as positional associations) are helpful if the number of param
is large. 

Subprograms can be called from the dataflow environment and from any sequent
environment (processes and other sub-programs). If a procedure output or inout 
signal, the corresponding parameter of the procedure should also be declared as
signal. 

Subprograms can be overloaded. That is, there could be multiple subprograms wit
same name, but with different parameter list types or return types. The synthesis 
perform the overlaod resolution.

function  vector_adder (x : bit_vector; y : bit_vector) return  bit_vector 
is

variable  carry : bit := ’0’ ;       
variable  result : bit_vector(x’RANGE) ;  

begin       
for  i in  x’RANGE loop   

result (i) := x(i) XOR y(i) XOR carry ;  
carry := carry AND (x(i) OR y(i))  OR  x(i) AND y(i) ;       

end  loop  ;      
return  result ;  

end  vector_adder ;
 
procedure  increment (vect : inout  bit_vector; ena : in  bit :=’1’) is   
begin        

if  (ena=’1’) then   
vect := vector_adder (x=>vect, "000001" ) ;

end if ;  
end  increment ;
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In the last example, the variable carry was initialized in when it was declared. Th
a more compact way of setting the starting value of a variable in a function or 
procedure. The initial value does not have to be a constant. It could be a noncon
value also (like the value of one of the parameters).

The Exemplar synthesis tools fully support all VHDL language features of function
and procedures.

Resolution Functions

Syntax and Semantics

In a concurrent area in VHDL (see the section “Entities and Architectures” on page
all statements happen concurrently. That means that if there are two assignments 
and the same signal, that the final value of the signal needs to be resolved. In VHD
you can only have multiple concurrent assignments to a signal if the type of the sign
resolved . A resolved type is a type with a resolution function. A good example of 
resolved type is the type std_logic  from the IEEE 1164 package:

The word resolved  in this declaration refers to a resolution function called 
resolved . Here is how it is specified in the std_logic_1164  package:

subtype  std_logic is  resolved std_ulogic ;

function  resolved ( s : std_ulogic_vector ) return  std_ulogic is
variable  result : std_ulogic := ’Z’;  -- weakest state default
attribute  synthesis_return of  result: variable  is  “WIRED_THREE_STATE” ;
begin

-- the test for a single driver is essential otherwise the
-- loop would return ’X’ for a single driver of ’-’ and that
-- would conflict with the value of a single driver unresolved
-- signal.
if     (s’LENGTH = 1) then     return  s(s’LOW);
else
  for  i in  s’ range loop  result := resolution_table(result, s(i));
  end loop ;
end if    return  result;

end  resolved;
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The resolution function of type std_logic  takes a vector of the (unresolved) 
base-type of std_logic  : std_ulogic . It returns a single std_ulogic .

Now if you have two concurrent assignments to any signal of type std_logic , the 
resolution function will be called to determine the final value of the signal. The 
resolution function will be called with a vector with two elements, where each elem
contains the value of a concurrent assignment. Inside the resolution function, the
value of the signal is defined, based on the two assignment values.

Synthesis Issues

Resolution functions are especially useful when you want to model nets with mult
drivers (like busses with three-state drivers). However, VHDL lets you define a 
resolution function freely, without any special restrictions. The resolution function 
thus just another function, only it gets called wherever there are multiple assignm
to a signal of the (sub)type it is attached to.

The Exemplar synthesis tools synthesize resolution functions without restriction.

You can define a resolution function and attach it to a subtype, and the synthesis 
will synthesize the circuitry it implies for each multiple assignment. 

In many cases, the resolution function mimics a certain electrical behavior for the
simulator. In the case of the IEEE type std_logic , and its resolution function 
resolved  (described above), the resolution function resembles tri-states being w
together. Therefore, the synthesis directive attribute (synthesis_result ) is set to 
WIRED_THREE_STATE. This synthesis directive is a hint to the synthesis tools to 
interpret the elements of the incoming vector as parallel three-state assignments, 
the three-state condition is derived from the assignment. That way, any three-sta
drivers can be created with multiple assignments (For more information, see 
“Three-state Buffers” on page 14).
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Let’s go through one example step by step, to show what the resolution function 
doing:

When the above example is executed, the synthesis tools will give the following e

This message is obvious, since you did not explain what should happen when a and b 
force (different) values concurrently onto signal TMP. For that, write a resolution 
function. Suppose you want the concurrent assignments to be ANDed. Then you should 
write a resolution function that performs an AND operation of the elements of its input
vector.

Also attach the resolution function to TMP. You could do that in two ways:

1. Create a subtype of bit , say, rbit , and attach the resolution function to that 
subtype, just as we did for the type std_logic . 

2. Directly attach the resolution function to the signal TMP. This is the easiest way, and
it is useful if there are not many signals that need the resolution function.

entity  test_resolver is
port  (a, b : bit ;

o : out bit ) ;
end  test_resolver ;
architecture  exemplar of  test_resolver is  

signal  tmp : bit ;
begin

tmp <= a ;
tmp <= b ;
o <= tmp ;

end  exemplar ;

file,line 9: Error, multiple sources on unresolved signal TMP; also line 10.
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The second method is used below:

The synthesis tools will synthesize this description and tmp  becomes the AND of 
a andb.

BUS and REGISTER 

In the previous section, multiple concurrent assignments were discussed. Each 
concurrent assignment to a signal in VHDL creates what is called a ‘driver’ to the
signal, and the resolution function resolves the values of the (multiple) drivers on
signal.

entity  test_resolver is
port  (a, b : bit ;

o : out bit ) ;
end  test_resolver ;

architecture  exemplar of  test_resolver is  
-- Write the resolution function that ANDs the elements:
function  my_and_resolved (a : bit_vector) return  bit is

variable  result : bit := ’1’ ;
begin

for  i in  a’range loop
result := result AND a(i) ;

end  loop  ;
return  result ;

end  my_and_resolved ;

-- Declare the signal and attach the resolution function to it:
signal  tmp : my_and_resolved bit ;

begin
tmp <= a ;
tmp <= b ;
o <= tmp ;

end  exemplar ;
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Now it is possible to (temporarily) switch-off drivers to a signal. Lets investigate an 
example:

In this example, o gets a driver from (concurrent) process statement. However, if c  is 
not ’1’ , the NULL value is assigned to o. The NULL value is called a ‘disconnection
statement’. In VHDL this means that the driver of c  is switched off if c  is not ’1’ .  A 
VHDL simulator will NOT include the driver value as an element in the input vector
the resolution function as long as the driver is switched off.

Since drivers can be switched off, we have to consider the case that ALL drivers
switched off. For that particular reason, VHDL defines what is called an entity cla
for a signal. There are two entity classes: BUS and REGISTER. 

If the entity class is BUS, and all drivers on the signal are switched off, then VHD
defines that the resolution function should still be called, but with a vector of zero
elements (a NULL vector).

If the entity class is REGISTER, and all drivers on the signal are switched off, the
VHDL defines that the signal should hold its previous value.

Signals of BUS or REGISTER entity class are called resolved signals. A resolved
signal always needs a resolution function.

process  (c,d)
begin

if  (c = ’1’) then
o <= d ;

else
o <= NULL ;

end  if  ;
end process  ;
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Here is the full example where o gets a BUS entity class:

In this example, o is of entity class BUS, and thus the resolution function of 
std_logic  will be executed if all drivers on o are switched off. That means that o 
will get the ’Z’  value. That means that the synthesis tools will synthesize a three-s
driver for o.

If o would be declared with the REGISTER entity class, the synthesis tools would
synthesize a LATCH for it, since o should retain its value if all drivers are off.

Switching off drivers can also be done with a GUARDED block, or with a disconnection 
statement in a concurrent signal assignment. The Exemplar synthesis tools supp
these statements.

The synthesis tools synthesizes BUS and REGISTER entity classes according to
semantics described above with the following restrictions. The Exemplar synthesi
tools guarantee ONLY behavior compliant with VHDL language for BUS and 
REGISTER signals if the resolution function contains the WIRED_THREE_STATE 
synthesis directive. Also, multiple concurrent assignments to REGISTER entity cl
signals is not supported right now.

-- include the IEEE 1164 package to use type std_logic.
library  ieee ;
use  ieee.std_logic_1164. all  ;
-- An entity with a BUS entity-class signal
entity  test_bus is

port  (c,d : std_logic ;
o : out std_logic BUS) ;

end  test_bus ;
architecture  exemplar of  test_bus is
begin  

process  (c,d)
begin

if  (c = ’1’) then
o <= d ;

else
o <= NULL ;

end  if  ;
end  process  ;

end  exemplar ;
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Component Instantiation 

Components are a method of introducing structure in a VHDL description. A compone
represents a structural module in the design. Using components, it is possible to de
a netlist in VHDL. Components are instantiated in the dataflow environment. Here i
example of a structural VHDL description where four one-bit rams and a counter mo
are instantiated.

entity  scanner is       
port  ( reset  : in  bit ;          

stop   : in  bit ;          
load   : in  bit ;  
clk : in  bit ;          
load_value : in  bit_vector (0 to 3) ;          
data   : out  bit_vector (0 to 3)       

) ;   
end  scanner ;
  
architecture  exemplar of  scanner is
 

component  RAM_32x1           
port  ( a0, a1, a2, a3, a4 : in bit ;        

   we, d : in  bit ;      
   o : out  bit           

) ;      
end component  ;

     
component  counter 

generic  (size : integer := 4 ) ;
port  ( clk : in  bit ;      

   enable : in  bit ;      
   reset : in  bit ;      
   result : out  bit_vector (0 to 4)           

) ;      
end component ;
signal  ena : bit ;      
signal  addr : bit_vector (0 to 4) ;   
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The generate statement is used here to instantiate the four RAMs. 

Components have to be declared before they can be used. This is done in the 
declaration area of the architecture, or in a package (see next section). The decla
defines the interface of the component ports with their type and their direction. 
Actually this example is just a netlist of components. We added one dataflow state
(the assignment to ena ) to show that structure and behavior can be mixed in VHDL

The ports of the component are connected to actual signals (or ports) with the por
construct. The generics of the component are connected to actual values with the
generic map construct. In this example the generic size  is set to 4 with the attribute 
length on the array addr . If no generic value was set to size  (or if the generic map 
construct was completely absent), size  gets value 4, as indicated by the initial valu
on size  in the generic list of the component. It is an error if a generic (or input po
is not connected in a generic map (or port map) construct and there is no initial v
given in the component generic (or port) list.

In the example above, the input ports of the component RAM_32x1 are individual bits 
(a0 , a1 , a2 , a3 , a4 ). If the input would have been declared as a bit_vector  (0 to 
4), then the individual bits could be connected with indexed formal names:

begin
for  i in  0 to  3 generate            

ram : RAM_32x1 port map (a0=>addr(0), a1=>addr(1),
a2=>addr(2), a3=>addr(3), a4=>addr(4), d=>data(i),
we=>load, o=>data(i) ) ;      

end generate  ;
 

ena <= not  stop ;      
count : counter    generic map (size=>addr’length)

port map(clk=>clk, enable=>ena, 
  reset=>reset, result=>addr) ;   

end  exemplar ;

.. port map (a(0) => addr(0), a(1) => addr(1), a(2) => addr(2),
             a(3) => addr(3), a(4) => addr(4), ...
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or with a sliced formal name:

or simply with a full identifier association:

The Exemplar synthesis tools support any form of slicing or indexing of formal 
parameter names, as long as the VHDL language rules are obeyed (formal name s
be static).

The synthesis tools also support type-transformation functions in port and generic
associations as long as they are synthesizable. Type transformation functions are
very often used and so are not explained here.

The definition of the components counter and RAM_32x1 are not yet given in the 
example. The process of giving a contents definition for a component is called binding 
in VHDL. With the Exemplar synthesis tools, there are four ways to do componen
binding:

1. Specify an entity with the same name as the component and an architecture f
This way, the component gets bound to the entity with the same name. This is
called ’default binding’ in VHDL.

2. Specify a configuration specification. Here you can bind a component to an en
with a different name, and you can even connect component ports to entity po
with a different name.

3. Use a source technology in the synthesis tools that contains a cell with the sa
name as the component. The synthesis tools will bind the component to the 
technology cell (and include functional, timing and area information for it).

4. Do not specify any entity for the component. This way, the synthesis tools will is
a warning and create a black-box for the component.

.. port map (a(0 to 4) => addr(0 to 4), ..... 

.. port map ( a => addr, .....
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The component counter is a good example of the first option:

This description only includes behavior. There is no component instantiated, altho
it is possible, and it makes hierarchical design possible. 

Note that in this case the overloaded ’+’ operator is used on vectors, as defined i
exemplar  package. (See “The Exemplar Packages” on page 11 for details.) Also 
that an asynchronous reset construction is used to reset the counter value. For d
about various synthesizable forms of reset, see “Registers, Latches and Resets” 
page 1.

entity  counter is  
generic  (size : integer ) ;
port  ( clk : in  bit ; 

enable : in  bit ; 
reset  : in  bit ; 
result : out  bit_vector (0 to size-1)

) ;   
end  counter ;
  
architecture  exemplar of  counter is    
begin       

process  (clk,reset)      
begin   

if  (reset=’1’) then      
result <= (others=>’0’) ; 

elsif  (clk’event and  clk=’1’) then      
if  (enable=’1’) then  

result <= result + "1" ;     
end if  ;  

end if  ;      
end  process ;   

end  exemplar ;
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The second option gives more freedom to bind an entity to a component. Suppose
have a counter entity that does exactly what you need, but it is named differently, a
(or) has differently named ports and generics:

In our example, the following configuration specification could be used to bind the 
component counter  to the entity alternative , for a particular or all instances of 
the counter  component. The configuration specification is added after the counter  
component declaration:

This configuration specification binds all  instances of component counter  to an 
entity called alternative  (architecture ex ) in the work  library, and it connects the 
generics and ports of the entity to differently named generics and ports in the 
component. If the ports and generics have the same name in the entity and the 
architecture, the generic map and port map don’t have to be given. If there is only
architecture of the entity alternative  then the architecture (ex ) does not have to 

 entity  alternative is
    generic  (N : integer) ;
    port  (clock : in bit ;
          ena : bit :
          reset : bit ;
          output : out bit_vector (0 to N-1) ) ;
 end  alternative ;
 architecture ex of alternative is
 begin
    .....
 end ex ;

component  counter 
    generic  (size : integer) ; 
    port  (clk : in bit ;
           enable  : in bit ;
           reset  : in bit ;
           result  : out bit_vector(0 to 4)) ;
end  counter ;
for all :counter use  entity work.alternative(ex) generic map (N=>size)
                     port  map (clock=>clk, ena=>enable, 
                               reset=>reset,output=>result) ;
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be given either. If not all, but just one or two instances of the component counter  
should be bound to the entity alternative , then replace all  by a list of instance 
(label) names.

Configuration specifications are a very powerful method to quickly switch definitio
of components to a different alternative. 

Core fully supports all forms of configuration specifications that are allowed in the
language.

If no configuration specification is given, the synthesis tools use the default bindin
explained in the first option. 

For the third option, use a source technology in the synthesis tools that includes 
component RAM_32x1. If the source technology is lib_name, the synthesis tools 
recognize the component in the lib_name library, and instantiates it in the design. In 
this case, RAM_32x1 is a RAM cell, and the synthesis tools cannot really optimize
that behavior (and RAM32x1 shows up in the netlist as a hard macro). But if the mac
contained combinational logic, the synthesis tools would include that logic in the 
optimization process, and map it to other target technology cells. 

Note – Galileo and Leonardo use different techniques to indicate which source 
technology to use. Galileo uses the -source= lib_name switch. Leonardo requires 
that you load the source technology by using the load_library  lib_name command 
before reading the design in the database.

The fourth option, omitting any entity for the component, is helpful when hierarch
has to be preserved. This technique can be effectively used in Galileo to maintain
hierarchy. The synthesis tools generate an empty module for each component it c
find in the present file as an entity or as a library cell in the source technology. Em
modules show up as blocks in the final netlist. They are not touched by the synth
and optimization process. Components without a definition can also help to isolat
particular difficult or user-defined part of the design from the synthesis operations
Clock generators or other asynchronous circuits or time-critical user-defined mod
are an example of this. 
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Packages 

A package is a cluster of declarations and definitions of objects, functions, procedu
components, attributes etc. that can be used in a VHDL description. You cannot d
an entity or architecture in a package, so a package by itself does not represent 
circuit. 

A package consists of two parts. The package header, with declarations, and the
package body, with definitions. An example of a package is std_logic_1164 , the 
IEEE 1164 logic types package. It defines types and operations on types for 9-va
logic.

To include functionality from a package into a VHDL description, the use  clause is 
used.

This example shows how the IEEE 1164 standard logic types and functions beco
accessible to the description in entity xxx .  

This is the general form to include a package in a VHDL description:

The use  clause is preceded by a library  clause. The predefined libraries work  and 
std  do not have to be declared in a library  clause before they are used in a use  
clause. All other libraries do need to be declared. 

The selection can consist of only one name of a object, component, type or 
subprogram that is present in the package, or the word all, in which case all 
functionality defined in the package is loaded into the synthesis tools, and can be
in the VHDL description.

library  ieee ;  
use  ieee.std_logic_1164.all ;
  
entity  xxx is     

port  ( x : std_logic ; -- type std_logic is known since it is 
-- defined in package 
-- std_logic_1164    

...

library  lib ; 
use  lib.package.selection ;
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Aliases

An alias is an alternate name for an existing object.   By using an alias of an object,
actually use the object to which it refers. By assigning to an alias, you actually assi
the object to which the alias refers.

Aliases are often useful in unbound function calls. For instance, if you want to mak
function that takes the AND operation of the two left most bits of an arbitrary array 
parameter. If you want to make the function general enough to handle arbitrary siz
arrays, this function could look like this:

signal  vec : std_logic_vector (4 downto 0) ;
alias  mid_bit : std_logic is  vec(2) ;
-- Assignment :
mid_bit <= ’0’ ;
-- is the same as 
vec(2) <= ’0’ ;

function  left_and (arr: std_logic_vector) return  std_logic is
begin
     return arr(arr’left) and  arr(arr’left-1) ;
end  left_and ;
 -- Function does not work for ascending index ranges of arr.
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This function will only work correctly if the index range of arr  is descending 
(downto ). Otherwise, arr’left-1  is not a valid index number. VHDL does not have
a simple attribute that will give the one-but-leftmost bit out of an arbitrary vector, so
will be difficult to make a function that works correctly both for ascending and 
descending index ranges.   Instead, you could make an alias of arr , with a known index 
range, and operate on the alias:

The Exemplar synthesis tools fully support aliases.

function  left_and (arr : std_logic_vector) return  std_logic is
alias  aliased_arr : std_logic_vector (0 to  arr’length-1) is  arr ;

begin
return aliased_arr(0) and  aliased_arr(1) ;

end  left_and ;
-- Function works for both ascending and descending index 
-- ranges of arr.
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This chapter explains the relationship between constructs in VHDL and the logic 
which is synthesized. It focuses on coding styles with the best performance for 
synthesis. Actual synthesis restrictions on VHDL are discussed in the section, Sy
and Semantic Restrictions.

Registers, Latches and Resets 

VHDL synthesis produces registered and combinational logic at the RTL level. Al
combinational behavior around the registers is, unless prohibited by the user, optim
automatically. The style of coding combinational behavior, such as if -then -else  
and case  statements, has some effect on the final circuit result, but the style of co
sequential behavior has significant impact on your design.

The purpose of this section is to show how sequential behavior is produced with 
VHDL, so that you understand why registers are generated at certain places and 
others.

Most examples explain the generation of these modules with short VHDL descript
in a process. If you are not working in a process, but just in the dataflow area of 
architecture in VHDL, it is possible to generate these modules using predefined 
procedures in the exemplar.vhd  package. For details about this package, refer to 
the section The Exemplar Packages.
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Level-Sensitive Latch

This first example describes a level-sensitive latch:

In this example, the sensitivity list is required, and indicates that the process is 
executed whenever the signals ena  or input_foo  change. Also, since the 
assignment to the global signal output_foo  is hidden in a conditional clause, 
output_foo  cannot change (will preserve its old value) if ena  is ’0’ .  If ena  is 
’1’ , output_foo  is immediately updated with the value of input_foo , whenever 
it changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synt
tools translate the initially generated latches to the gate-equivalent of the latch, us
combinational loop.

Latches can also be generated in dataflow statements, using a guarded block:

signal  input_foo, output_foo, ena : bit ; 
...  
process  (ena, input_foo)   
begin        

if  (ena = ’1’) then    
output_foo <= input_foo ;       

end if  ;   
end process  ; 

b1 :  block  (ena=’1’) 
begin

output_foo <= GUARDED input_foo ;
end block  ;
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Edge-Sensitive Flip-Flops

The Event Attribute

An edge triggered flip-flop is generated from a VHDL description only if a signal 
assignment is executed on the leading (or on the falling) edge of another signal. 
that reason, the condition under which the assignment is done should include an
edge-detecting mechanism. The EVENT attribute on a signal is the most commonly 
used edge-detecting mechanism.

The EVENT attribute operates on a signal and returns a boolean. The result is alw
FALSE, unless the signal showed a change (edge) in value.   If the signal started
process by a change in value, the EVENT attribute is TRUE all the way through the 
process.

Here is one example of the event attribute, used in the condition clause in a proc
The synthesis tools recognize an edge triggered flip-flop from this behavior, with 
output_foo  updated only on the leading edge of clk .

The attribute STABLE is the boolean inversion of the EVENT attribute. Hence, 
CLK’EVENT is the same as NOT CLK’STABLE. The Exemplar synthesis tools 
support both attributes.

Flip-flops and registers can also be generated with dataflow statements (as oppo
from a process) using a GUARDED block.

signal  input_foo, output_foo, clk : bit ;  
....  
process  (clk) 
begin    

if  (clk’event and  clk=’1’) then    
output_foo <= input_foo ; 

end if  ; 
end process  ; 

b2 : block  (clk’event and  clk=’1’)
begin

output_foo <= GUARDED input_foo ;
end block ;
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By adding the GUARDED statement option, a flip-flop will be inserted in between 
input_foo  and output_foo , since the output_foo  expression of the block 
specifies a clock edge.

Synchronous Sets And Resets

All conditional assignments to signal output_foo  inside the if clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we could 
make a synchronous reset on the flip-flop by doing a conditional assignment to 
output_foo :  

Note – Signals reset  and input_foo  do not have to be on the sensitivity list 
(although it is allowed) since a change in their values does not result in any actio
inside the process.  

Alternatively, dataflow statements could be used to specify a synchronous reset, 
a GUARDED block and a conditional signal assignment.

signal  input_foo, output_foo, clk, reset : bit ;
...
process  (clk)
begin

if  (clk’event and  clk = ’1’) then
if reset = ’1’ then

output_foo <= ’0’ ;
else  

output_foo <= input_foo ;
end if  ;

end if  ;
end process  ;

b3 : block  (clk’event and  clk=’1’) 
begin

output_foo <= GUARDED ’0’ when reset=’1’ else  input_foo ;
end block  ;
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Asynchronous Sets And Resets

If the reset signal should have immediate effect on the output, but the assignmen
output_foo  from input_foo  should happen only on the leading clock edge, an
asynchronous reset is required. Here is the process:

Now reset HAS TO BE on the sensitivity list! If it were not there, VHDL semantics
require that the process should not start if reset changes. It would only start if clk  
changes. That means that if reset becomes ’1’ , output_foo  would be set to ’0’  if 
clk  either goes up, or goes down, but not before any change of clk . This behavior 
cannot be synthesized into logic. The synthesis tools issue an error message tha
reminds you to put reset on the sensitivity list.

signal  input_foo, output_foo, clk, reset : bit ; 
...  
process  (clk,reset)   
begin        

if  (reset = ’1’) then    
output_foo <= ’0’ ;       

elsif  (clk’event and clk = ’1’) then            
output_foo <= input_foo ;       

end if ;   
end process  ; 
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Asynchronous set and reset can both be used. It is also possible to have express
instead of the fixed ’0’  or ’1’  in the assignments to output_foo  in the reset and 
set conditions. This results in combinational logic driving the set and reset input o
flip-flop of the target signal. The following code fragment shows the structure of s
a process:

There can be several asynchronous elsif  clauses, but the synchronous elsif clause (
present) has to be the last one in the if clause. A flip-flop is generated for each s
that is assigned in the synchronous signal assignment. The asynchronous clauses
in combinational logic that drives the set and reset inputs of the flip-flops. If there
no synchronous clause, all logic becomes combinational. 

process  ( clock, asynchronously_used_signals )    
begin         

if  ( boolean_expression) then     
asynchronous signal_assignments        

elsif  ( boolean_expression) then     
asynchronous signal_assignments    

elsif ( clock’event and clock = constant ) then   
synchronous signal_assignments        

end if  ;    
end process  ;
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Clock Enable

 It is also possible to specify an enable signal in a process. Some technologies h
special enable pin on their basic building blocks. The synthesis tools recognize th
function of the enable from the VHDL description and generates a flip-flop with a
enable signal from the following code fragment:

In dataflow statements, a clock enable can be constructed with a GUARDED block and 
a conditional signals assignment.

signal  input_foo, output_foo, enable, clk : bit ; 
...  
process   (clk)
begin        

if  (clk’event and clk=’1’) then       
if  (enable=’1’) then            

output_foo <= input_foo ;   
end if  ;    

end if  ;   
end process  ; 

b4: block   (clk’event and  clk=’1’) 
begin

output_foo <= GUARDED input_foo when enable=’1’ 
else  output_foo ;

end block  ;
The Art Of VHDL Synthesis 3-7
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 Wait Statements  

Another way to generate registers is by using the wait until  statement. The wait 
until  clause can be used in a process, and is synthesizable if it is the first state
in the process. “Syntax and Semantic Restrictions” on page 22 gives more details 
the synthesis restrictions of the wait statement. The following code fragment gene
an edge triggered flip-flop between signal input_foo  and output_foo :

Note – There is no sensitivity list on this process.  In VHDL, a process can have 
sensitivity list or a wait statement, but not both. In this example, the process is 
executed if clk changes since clk is present in the wait condition. Also, the wait 
condition can be simplified to wait until clk=’1’ ; , since the process only 
starts if clk  changes, and thus clk’event  is always true.

The Exemplar synthesis tools do not support asynchronous reset behavior with wait
statements. A synchronous reset remains possible however, by describing the re
behavior after the wait statement.

signal  input_foo, output_foo, clk : bit ; 
...  
process     
begin        

wait until  clk’event and  clk=’1’ ;       
output_foo <= input_foo ;   

end process ; 
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Variables

Variables (like signals) can also generate flip-flops. Since the variable is defined in
process itself, and its value never leaves the process, the only time a variable gen
a flip-flop is when the variable is used before it is assigned in a clocked process.
instance, the following code segment generates a three-bit shift register.

In this case, the variables a and b are used before they are assigned. Therefore, the
pass their values from the last run through the process, which is the assigned va
delayed by one clock cycle. If the variables are assigned before they are used, yo
get a different circuit:

signal  input_foo, output_foo, clk : bit ;  
...   
process  (clk) 

variable  a, b : bit ;     
begin   

if  (clk’event and  clk=’1’) then      
output_foo <= b ;     
b := a ;     
a := input_foo ;         

end if  ;     
end process  ;  

signal  input_foo, output_foo, clk : bit ;  
...   
process  (clk) 

variable  a, b : bit ;     
begin   

if  (clk’event and  clk=’1’) then      
a := input_foo ;     
b := a ;     
output_foo <= b ;         

end if  ;     
end process  ;
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Here, a and b are assigned before used, and therefore do not generate flip-flops. 
Instead, they generate a single wire. Only one flip-flop remains in between 
input_foo  and output_foo  because of the signal assignment in the clocked 
process.

Predefined Flip-flops and Latches 

Flip-flops and latches can also be generated by using predefined procedures from
exemplar package. These procedure calls cause the synthesis tools to instantiate
required flip-flop or D-latch. There are various forms of these procedures availabl
including versions with asynchronous preset and clear. For details of the procedu
see “Predefined Procedures” on page 20.

Assigning I/O Buffers From VHDL 

There are three ways to assign I/O buffers to your design from VHDL: 

• Run the synthesis tools in “chip” mode.

• Use the buffer_sig  attribute on a port in the VHDL source 

• Use the buffer_sig  command. 

• Use direct component instantiation in VHDL of the buffer you require. 

The buffer_sig  attribute or the direct component instantiation will overwrite any
default buffer assignment that the synthesis tools would do in “chip” mode. 

The buffer_sig  command is implemented differently for Galileo and Leonardo. 
For Galileo, you put the command in the control file. For Leonardo, you use the 
buffer_sig  procedure. 

It is important to realize that if you specify buffer names in the VHDL source, the
synthesis tools will check the source technology library to find the buffer you 
requested. If you specify buffers in the control file, the synthesis tools will check t
target technology library for a matching buffer.
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Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to use the -chip  option in the synthesis tools.
(For Galileo, run the tool with the -chip  option, or choose “Chip” mode from the 
Graphical User Interface. For Leonardo, use the -chip  option with the optimize  
command.) This automatically assigns appropriate input, output, three-state, or 
bidirectional buffers to the ports in your entity definition. For instance,

targeted to the Actel technology translates into an INBUF for inp  and clk , an 
OUTBUF for outp , and a BIBUF for inoutp  (if it is both used and assigned). outp  
would become a TRIBUFF if it was assigned to a three-state value under a conditi

The above example also holds for buses, of course. The sections “Three-state Bu
on page 14 and “Bidirectional Buffers” on page 17 give more details on how to 
generate three-state buffers and bidirectional buffers from VHDL.

Manual Assignment Using The BUFFER_SIG Property

For Galileo only, special buffers, e.g. clock buffers, can be assigned using the 
buffer_sig  property. This can be done in the control file, with the BUFFER_SIG 
command. Here is an example:

For Leonardo, special buffers can be assigned by using the BUFFER_SIG procedure. 
After reading in a design, use the command BUFFER_SIG CLOCK_BUFFER 
net_names.

entity  example is    
port  (  inp, clk   : in  std_logic;            

outp   : out  std_logic;            
inoutp : inout  std_logic     

); 
end  example;

outp <= inp when ena = ’1’ else  ’Z’ ;

BUFFER_SIG CLOCK_BUFFER clk
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The buffer_sig  property can also be set on a port using the buffer_sig  attribute 
in the VHDL source.

Port clk  will be connected to the input of the external clock buffer CLOCK_BUFFER. 
An intermediate node called manual_clk  appears on CLOCK_BUFFER’s output. 
Gates specified in the control file are searched for in the target technology library
Gates specified in the VHDL source are searched for in the source technology lib

entity  example is    
port  (  inp, clk   : in  std_logic;            

outp   : out  std_logic;            
inoutp : inout  std_logic     
); 
attribute  buffer_sig : string ;
attribute  buffer_sig of  clk: signal  is  “CLOCK_BUFFER” ;

end  example;
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Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the VHDL source file with component 
instantiation. In particular, if you want a specific complex input or output buffer to 
present on a specific input or output, component instantiation is a very powerful 
method:

In this example, component instantiation forces an OUTPUT_FLIPFLOP buffer on the 
bidirectional pin inoutp . Also an input buffer INPUT_BUFFER is specified to pick 
up the value from this pin to be used internally. 

entity  special is    
port  ( inp : in  std_logic ;   

clk : in  std_logic ;     
...   
outp : out  std_logic;   
inoutp : inout  std_logic    

) ; 
end  special ;
 
architecture  exemplar of  special is  
  component  OUTPUT_FLIPFLOP       

port  (  c,d,t : in  std_logic ;      
o : out  std_logic           

) ;   
end component  ;

  component  INPUT_BUFFER      
port  (  i : in  std_logic ;      

o : out  std_logic            
) ;   

end  component  ;
signal  intern_in, intern_out, io_control : std_logic ;  

begin  
  b1 : OUTPUT_FLIPFLOP port map  (c=>clk, d=>intern_out, 

t=>io_control, o=>inoutp) ;   
b2 : INPUT_BUFFER port map  (i=>inoutp, o=>intern_in) ;  
...  

end exemplar ;
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The synthesis tools will look for definitions of VHDL instantiated components in th
source library. Make sure that you specify a source library (-source=lib_name ) or 
set the attribute NOBUFF on the I/O pin of the instantiated buffer, otherwise The 
synthesis tools will consider the buffer to be a user-defined block and will add a bu
from the target technology.

Three-state Buffers 

Three-state buffers and bidirectional buffers (covered in the next section) are very
to generate from a VHDL description. 

A disabled three-state buffer will be in a high-impedance state. VHDL itself does 
predefine a high-impedance state, but the IEEE 1164 standard logic package def
the ’Z’  character literal to have a behavior that exactly resembles the behavior o
high-impedance state of a three-state buffer. A signal (a port or an internal signal
the standard logic type can be assigned a ’Z’  value. The synthesis tools recognize th
’Z’  value and creates a three-state buffer from a conditional assignment with ’Z’ :

Note – In the when clause, both input_signal  and the condition ena=’1’  can be 
full expressions. The synthesis tools generate combinational logic driving the inpu
the enable of the three-state buffer for these expressions.

entity  three-state is         
port  (   input_signal : in  std_logic ;             

ena : in  std_logic ;          
output_signal : out  std_logic              

) ;    
end  three-state ;
   
architecture  exemplar of  three-state is     
begin         

output_signal <= input_signal when ena = ’1’ else ’Z’ ;    
end  exemplar ;
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Normally, simultaneous assignment to one signal in VHDL is not allowed for 
synthesis, since it would cause data conflicts. However, if a conditional ’Z’  is 
assigned in each assignment, simultaneous assignment resembles multiple three
buffers driving the same bus. 

Note – The synthesis tools do not check for bus-conflicts on three-state assignme
Therefore, make sure that the enable signals of the three-state drivers are never
simultaneously active. In this example, ena_1  and ena_2  should never be ’1’  
simultaneously.

These examples show assignments to output ports (device ports). It is also possi
do the assignments to an internal signal. This will create internal busses in such a

entity  three-state is         
port  (   input_signal_1, input_signal_2 : in  std_logic ; 

ena_1, ena_2 : in  std_logic ;          
output_signal : out  std_logic              

) ;    
end  three-state ;
   
architecture  exemplar of  three-state is     
begin         

output_signal <= input_signal_1 when ena_1 = ’1’ else ’Z’ ; 
output_signal <= input_signal_2 when ena_2 = ’1’ else ’Z’ ;    

end  exemplar ;
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Three-state buffers can also be generated from process statements:

If the target technology does not have any internal three-state drivers, Galileo ca
transform the three-state buffers into regular logic with the -tristate  option. 
Leonardo performs this transformation when the tristate_map  variable is set to 
TRUE.

driver1 : process  (ena_1, input_signal_1) begin
if  (ena_1=’1’) then

output_signal <= input_signal_1 ;
else  

output_signal <= ’Z’ ;
end if ;

end process ;
driver2 : process  (ena_2, input_signal_2) begin

if (ena_2=’1’) then
output_signal <= input_signal_2 ;

else  
output_signal <= ’Z’ ;

end if ;
end process ;
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Bidirectional Buffers 

Bidirectional I/O buffers will be created by the synthesis tools if an external port i
both used and assigned inside the architecture. Here is an example:

The difference with the previous example is that in this case, the output itself is u
again internally. Note that for that reason, the port bidir_port  is declared to be 
inout .

The enable signal ena  could also be generated from inside the architecture, instead
being a primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technolog
library. If there is no bidirectional buffer available, it selects a combination of a 
three-state buffer and an input buffer.

entity  bidir_function is         
port  (   bidir_port : inout  std_logic ;             

ena : in  std_logic ;   
...           

) ;    
end  bidir_function ;
 
architecture  exemplar of  bidir_function is     

signal  internal_signal, internal_input : std_logic ;
begin         

bidir_port <= internal_signal when ena = ’1’ else ’Z’ ;       
internal_input <= bidir_port ;

      ...  
-- use internal_input       
...  
-- generate internal_signal    

end  exemplar ;
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Busses

The examples in the previous sections all use single bits as signals.  In reality, bu
are often used: arrays of bits with (multiple) three-state drivers. In that case, the 
of the bus signal should be std_logic_vector . All examples given still apply for 
busses, although the ’Z’  character literal now has to be a string literal. Here is one
example:

This generates two set of eight three-state buffers, two on each line of the bus 
output_signal .  

As with single three-state drivers, busses can be internal signal, or ports. Similarl
busses can be created using processes.

State Machines 

This section describes a basic form of a general state machine description. VHDL
coding style, power-up and reset, state encoding and other issues will be discuss

General State Machine Description

There are various ways to describe a state machine in VHDL. This section will on
show the most commonly used description. 

entity  three-state is         
port  (   input_signal_1, input_signal_2 : in  

std_logic_vector (0 to 7) ;       
ena_1, ena_2 : in  std_logic ;          
output_signal : out  std_logic_vector(0 to 7)               

) ;    
end  three-state ;
   
architecture  exemplar of  three-state is     
begin         

output_signal <= input_signal_1 when ena_1 = ’1’ 
else  “ZZZZZZZZ” ;

output_signal <= input_signal_2 when ena_2=’1’ 
else  “ZZZZZZZZ” ;

end  exemplar ;
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The possible states of the state machine are listed in an enumerated type. A sign
this type (present_state ) defines in which state the state machine appears. In 
case  statement of one process, a second signal (next_state) is updated dependi
present_state and the inputs. In the same case  statement, the outputs are also update
Another process updates present_state with next_state on a clock edge, and take
of the state machine reset. 

Here is the VHDL code for such a typical state machine description. This design 
implements a RAS-CAS controller for DRAM refresh circuitry.  

entity  ras_cas is      
port  ( clk, cs, refresh, reset : in  bit ;    

ras, cas, ready : out  bit ) ; 
end  ras_cas ;
 
architecture  exemplar of  ras_cas is      

-- Define the possible states of the state machine
type  state_type is  (s0, s1, s2, s3, s4) ;     
signal  present_state, next_state : state_type ; 

begin      
    

registers : process   (clk, reset)
begin  

-- process to update the present state
if  (reset=’1’) then

present_state <= s0 ;
elsif  clk’event and  clk = ’1’ then 

present_state <= next_state;  
end if  ;

end process  ;
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VHDL Coding Style For State Machines 

There are various issues of coding style for state-machines that might affect 
performance of the synthesized result.

transitions : process  (present_state, refresh, cs)     
begin    

-- process to calculate the next state and the outputs
case  present_state is    

when s0 =>           
ras <= ’1’ ; cas <= ’1’ ; ready <= ’1’ ; 
if  (refresh = ’1’) then    

next_state <= s3 ;
elsif  (cs = ’1’) then    

next_state <= s1 ;         
else     

next_state <= s0 ;
end if  ;    

when s1 =>
ras <= ’0’ ; cas <= ’1’ ; ready <= ’0’ ;         
next_state <= s2 ;      

when s2 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;       
if  (cs = ’0’) then    

next_state <= s0 ;         
else   

next_state <= s2 ;         
end if  ;   

when s3 =>      
ras <= ’1’ ; cas <= ’0’ ; ready <= ’0’ ;    
next_state <= s4 ;     

when s4 =>
ras <= ’0’ ; cas <= ’0’ ; ready <= ’0’ ;
next_state <= s0 ;     

end case  ;     
end process  ; 

end exemplar  ;
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A first issue is the form of state machine that will be created. There are basically
forms of state machines, Mealy machines and Moore machines. In a Moore mach
the outputs do not directly depend on the inputs, only on the present state. In a M
machine, the outputs depend directly on the present state and the inputs.

In the RAS-CAS state machine described in the previous section, the outputs ras
and ready only depend on the value of present_state . This means that the 
description implements a Moore machine. If the outputs would be set to different 
values under the input conditions in the if  statements inside the case  statement, a 
Mealy machine would have been created. In a Moore machine, there is always a
register in between the inputs and the outputs. This does not have to be the case
Mealy machines.

A second issue in coding style is the case  statement that has been used to test the
present_state . A case  statement is more efficient than a 
if -then -elsif -else  statement, since that would build a priority encoder to test t
state (which could mean more logic in the implementation). It is also important to n
that there is no OTHERS entry in the case  statement. An OTHERS entry could create 
extra logic if not all the states are mentioned in the case  statement. This extra logic 
will have to determine if the machine is in any of the already mentioned states or
Unless there are a number of states where the state machine behaves exactly th
(which is not likely since then you could reduce the state machine easily) an OTHERS 
entry is not beneficial and will, in general, create more logic than is required.

A third issue is the assignments to outputs and next_state  in the state transition 
process. VHDL defines that any signal that is not assigned anything should retain
value. This means that if you forget to assign something to an output (or 
next_state ) under a certain condition in the case  statement, the synthesis tools 
will have to preserve the value. Since the state transition process is not clocked, la
will have to be generated. You could easily forget to assign to an output if the va
does not matter. The synthesis tools will warn you about this, since it is a common
error in VHDL:

Make sure to always assign something to next_state  and the state machine outputs
under every condition in the process to avoid this problem. To be absolutely sure
could also assign a value to the signal at the very beginning of the process (befo
start of the case  statement). 

"file.vhd", line xx : Warning, latches might be needed for XXX.
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Note – Graphical state-machine entry tools often generate state machine descript
that do not always assign values to the outputs under all conditions. The Exempl
synthesis tools will warn about this, and you could either manually fix it in the VHD
description, or make sure you fully specify the state machine in the graphical ent
tool. The synthesis tools cannot fill in the missing specifications, since it is bounde
the semantics of VHDL on this issue.

Power-up And Reset

For simulation, the state machine will initialize into the leftmost value of the 
enumeration type, but for synthesis it is unknown in which state the machine pow
up. Since the Exemplar synthesis tools do state encoding on the enumeration typ
the state machine (see “State Encoding” below), the state machine could even po
up in a state that is not even defined in VHDL. Therefore, to get simulation and 
synthesis consistency, it is very important to supply a reset to the state machine.

In the example state machine shown in “General State Machine Description” on 
page 18, an asynchronous reset is used, but a synchronous reset would be poss
“Registers, Latches and Resets” on page 1 explains more about how to specify re
on registers in VHDL.

State Encoding

The Exemplar synthesis tools have a variety of methods to control state encoding
state machines that use an enumeration type for the declaration of the states. 
“Enumeration Types” on page 10 discusses all forms of state encoding in detail.

Arithmetic And Relational Logic 

This section gives an overview of how arithmetic logic is generated from VHDL, w
the synthesis tools do with this logic and how to avoid getting into combinational 
explosion with large amounts of arithmetic behavior. 

In general, logic synthesis is very powerful in optimizing “random” combinational 
behavior, but has problems with logic which is arithmetic in nature. Often special 
precautions have to be taken into consideration to avoid ending up with inefficien
logic or excessive run times. Alternatively, macros may be used to implement the
functions. For more information see “Technology-Specific Macros” on page 29.
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The Exemplar synthesis tools support the overloaded operators “+”, “-”,  “*”, and 
“abs.”  These operators work on integers (and on arrays; with the exemplar pack

If you use overloaded operators to calculate compile time constants, the synthesis
will not generate any logic for them. For example, the following code segments do
result in logic, but assign a constant integer 13 to signal foo .

If you are not working with compile time constant operands, arithmetic logic is 
generated for arithmetic operators.

The pre-defined “+” on integers generates an adder. The number of bits of the ad
depends on the size of the operands. If you use integers, a 32 bit adder is genera
you use ranged integers, the size of the adder is defined so that the entire range 
represented in bits. For example, if variables a and b do not evaluate to constants, the
following code segment:

generates a 32-bit (signed) adder, but 

function  add_sub (a: integer, b: integer, add : boolean) 
return integer is

begin  
if  (add = TRUE) then

return  a + b ;
else

return  a - b ;
end if  ;

end  my_adder ;  
signal foo  : integer ;   
constant  left : integer := 12 ;
....
foo <= add_sub (left,6,TRUE) - 5 ;-- Expression evaluates to 13

variable a, b, c : integer ;
c := a + b ;

variable a, b, c : integer range 0 to 255 ;
c := a + b ;
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generates an 8-bit (unsigned) adder.  

If one of the operands is a constant, initially a full-sized adder is still generated b
logic minimization eliminates much of the logic inside the adder, since half of the
inputs of the adder are constant.

The pre-defined “-” on integers generates a subtracter. Same remarks apply as wi
“+” operator.

The pre-defined “*” multiplication on integers generates a multiplier. Full 
multiplication is supported when a module generator is used. See the Synthesis and 
Technology Reference Guide for information on module generators supported for 
specific technologies. You can also define your own technology specific multiplier

The pre-defined “/” division on integers generates a divider. Only division by a po
of two is supported. In this case, there is no logic generated, only shifting of the 
non-constant operand. With module generation you could define your own 
technology-specific divider.

The predefined “**” exponentiation on integers is only supported if both operands
constant.

“=,” “/=,” “<,” “>,” “<=,” and “>=” generate comparators with the appropriate 
functionality.  

Operations on integers are done in two-complement implementation if the integer
range extends below 0. If the integer range is only positive, an unsigned 
implementation is used.

There are a number of other ways to generate arithmetic logic. The predefined 
exemplar functions add , add2 , sub , sub2 , +, and -  on bit_vector  and 
std_logic_vector  types are examples of functions which do this. For 
descriptions of these functions, see “Predefined Functions” on page 14.

By default, the synthesis tools will generate “random” logic for all pre-defined 
operators. Alternatively, if a module generator for a particular target technology is
supplied, the synthesis tools will generate technology specific solutions (e.g., har
macros) instead of random logic.
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Module Generation

When arithmetic and relational logic are used for a specific VHDL design, the 
synthesis tools provide a method to synthesize technology specific implementation
these operations. Generic modules (for bit-sizes > 2) have been developed for ma
the FPGAs supported by the Exemplar synthesis tools to make the most efficient
technology specific implementation for arithmetic and relational operations. 

For Galileo, use the -modgen= modgen_library option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design. For Leonardo, use the 
modgen_read  modgen_library command to load the module generation library into
the HDL database. Since these modules have been designed optimally for a targ
technology, the synthesis result is, in general, smaller and/or faster and takes les
to compile. 

If you want to define your own module generator for a specific technology, you can
so by describing a module generator in VHDL. For more information on module 
generation, see Chapter 9-Chapter 11.

Resource Sharing

The synthesis tools perform automatic common subexpression elimination for 
arithmetic and boolean expressions. The following example has two adders in the 
but they are adding the same numbers, a and b.

signal  a,b,c,d : integer range 0 to 255 ;  
...
process  (a,b,c,d) begin

if  ( a+b = c ) then     <statements>
elsif  ( a+b = d) then  <more_statements>
end if  ;         

end process ;
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After automatic common subexpression elimination, only one adder will be used in
final circuit. Thus, it would create the same logic as the following example.

Proper use of parentheses guide the synthesis tools in eliminating common 
subexpressions. The following code segment, for example, can be properly modifi
share an adder.

Using parentheses, the logic can share an adder for inputs b and c , as shown below.

The synthesis tools automatically perform a limited amount of resource sharing o
arithmetic expressions that are mutually exclusive. Consider the following examp

process   (a,b.c.d)     
variable  tmp : integer range  0 to  255 ;   

begin        
tmp := a+b ;      
if  ( tmp = c ) then   <statements>
elsif  ( tmp = d) then  <more_statements>
end if  ;          

end process  ;      

o1 <= a + b + c;
o2 <= b + c + d;

o1 <= a + (b + c);
o2 <= (b + c) + d;

process  (a,b,c,test) begin
if  (test=TRUE) then

o <= a + b ;
else  

o <= a + c ;
end if ;

end process ;
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Initially, two adders and a multiplexer are created, but after the automatic resourc
sharing one adder is reduced, and the final circuit is same as would be created fro
following code:

The limitations of automatic resource sharing are as follows:

• Complex operators must drive the same signal.

• Complex operators must be of the same type (for example, two adders) and hav
same width (for example, 8-bit adders).

Ranged Integers

It is best to use ranged integers instead of “unbound” integers. In VHDL, an unbo
integer (integer with no range specified) is guaranteed to include the range 
-2147483647 to +2147483647. This means that at least 32 bits are needed to 
implement an object of this type. The synthesis tools have to generate large amou
logic in order to perform operations on these objects. Some of this logic may bec
redundant and get eliminated in the optimization process, but the run time is slow
down considerably. If you use integers as ports, all logic has to remain in place a
synthesis algorithms are faced with a complex problem. Therefore, if you do not n
the full range of an integer, specify the range that you need in the object declara

small_int  only uses eight bits in this example, instead of the 32 bits if the rang
was not specified.

process  (a,b,c,test) begin
variable  tmp : integer range  0 to  255 ;

begin
if (test=TRUE) then

tmp := b ;
else  

tmp := c ;
end if  ;
o <= a + tmp ;

end process  ;

signal small_int : integer range 255 downto 0 ;
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Advanced Design Optimization

Module generation, resource sharing and the use of ranged integers are all examp
how a particular design can be improved for synthesis without changing the 
functionality. Sometimes it is possible to change the functionality of the design 
slightly, without violating the design specification constraints, and improve the 
implementation for synthesis. This requires understanding of VHDL and what kind
circuitry is generated, as well as understanding of the specifications of the design.
example of this is given, in the form of a loadable loop counter.

Often, applications involve a counter that counts up to a input signal value, and if
reaches that value, some actions are needed and the counter is reset to 0.

In this example, the synthesis tools build an incrementer and a full-size comparat
that compares the incoming signal with the counter value. 

In this example, a full comparator has to be created since the VHDL description 
indicates that the comparison has to be done each clock cycle. If the specificatio
allows that the comparison is only done during the reset, we could re-code the VH
and reduce the overall circuit size by loading the counter with the input_signal , 
and then counting down to zero:

process  begin     
wait  until clk’event and clk=’1’ ;

if  (count = input_signal) then       
count <= 0 ;          

else         
count <= count + 1 ;          

end  if  ;      
end  process ;

process  begin
wait  until clk’event and clk=’1’ ;

if  (count = 0) then       
count <= input_signal ;          

else         
count <= count - 1 ;          

end  if  ;      
end  process ;
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Here, one decrementer is needed plus a comparison to a constant (0). Since 
comparisons to constants are a lot cheaper to implement, this new behavior is m
easier to synthesize, and results in a smaller circuit.

This is a single example of how to improve synthesis results by changing the 
functionality of the design, while staying within the freedom of the design 
specification. However, the possibilities are endless, and a designer should try to
the freedom in the design specification to get truly optimal synthesis performance

Technology-Specific Macros 

In many cases, the target technology library includes a number of hard macros an
macros that perform specific arithmetic logic functions. These macros are optimiz
for the target technology and have high performance. 

This section will explain how to instantiate technology specific macros in the VHD
source to assure full control over the synthesized logic. The VHDL description wi
become technology dependent. 

Note that the Exemplar synthesis tools do automatic inference of technology spe
macros from standard (technology independent) arithmetic and relational operato
when Module Generation is used. The section “Resource Sharing” on page 25 exp
more about this and details can be found in Chapter 9–Chapter 11. However, if a
particular hard-macro is required, or there is no Module Generator available for th
your technology, manual instantiation will be needed.

With the Exemplar synthesis tools, it is possible to use component instantiation of
macros or hard macros in the target technology, and use these high performance
macros. An added benefit is that the time needed for optimization of the whole cir
can be significantly reduced since the synthesis tools do not have to optimize the
implementation of the dedicated functions anymore.
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As an example, suppose you would like to build an 8-bit counter in the device fam
FPGAX. There is a hard-macro available in the FPGAX library that will do this. Call it 
the COUNT8. In order to directly instantiate this macro in VHDL, declare a compone
COUNT8 and instantiate it with a component instantiation statement.

The synthesis tools will synthesize this component as a black-box, since there is 
entity/architecture description for it. It will appear in the output file as a symbol. 

If you use hard-macros in a VHDL description, specify a source technology so th
synthesis tools can include area and timing information. For this example, you wo
use the option -source=fpgax  with Galileo. With Leonardo, you would use the 
load_library  fpgax  command to load the source library into the design databa

If simulation is required on the source VHDL design, you have to supply an entity 
architecture for COUNT8. In that case, make sure to set the attribute NOOPT to TRUE 
on the component COUNT8, so that the synthesis tools treat the component as a 
black-box, otherwise they will synthesize COUNT8 into general logic. For more 
information about setting the NOOPT attribute on a component, see the section 
“Finding Definitions of Components” on page 3. 

Using technology specific macro instantiation can speed-up the synthesis and 
optimization process considerably. It also often leads to more predictable area an
delay costs of the design. The VHDL description however becomes technology 
dependent.

component  COUNT8 
port  (pe, c, ce, rd : in  std_logic ;

d : in  std_logic_vector (7 downto  0) ;
  q : out  std_logic_vector (7 downto  0)  

) ;
end component  ;
...
-- clock, count_enable, reset, load, load_data and output are signals
-- in the VHDL source
...
counter_1 : COUNT8 port map (c=>clock, ce=>count_enable, 

  rd=>reset, pe=>load, d=>load_data, q=>output) ;
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Multiplexers and Selectors

From a case  statement, the synthesis tools create either muxes or selector circuit
the following example, a selector circuit is created.

If the selector value is the index to be selected from an array, the selector will rese
a multiplexer. It is still possible to express this in a case  statement, but it is also 
possible to use a variable indexed array. For example, if an integer value defines
index of an array, a variable indexed array will create the multiplexer function:

selects bit i  out of the vector vec . This is equivalent to the more complex writing 
style with a case  statement:

For the prior description, the synthesis tools create the same multiplexers as the
for the variable-indexed array.

case  test_vector is
when  “000"  =>     o <= bus(0)  ;
when  “001" | ”010" | “100" => o <= bus(1)  ;
when  “011" | ”101" | “110" => o <= bus(2) ;
when  “111" =>     o <= bus(3) ;

end case  ;

signal  vec : std_logic_vector (0 to  15) ;
signal  o : std_logic ;
signal  i : integer range  0 to  15 ;
...
o <= vec(i) ;

case  i is  
when 0 => o <= vec(0) ;
when 1 => o <= vec(1) ;
when 2 => o <= vec(2) ;
when 3 => o <= vec(3) ;
...

end case  ;
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The Exemplar synthesis tools fully support variable-indexed arrays, including inde
values that are enumerated types rather then integers, and index values that are
expressions rather then singe identifiers.

ROMs, PLAs And Decoders

There are many ways to express decoder behavior from a ROM or PLA table. Th
clearest description of a ROM would be a case  statement with the ROM addresses in
the case conditions, and the ROM data in the case  statements. In this section, two 
other forms are discussed: 

1. Decoder as a constant array of arrays.

2. Decoder as a constant two-dimensional array.

Here is an example of a ROM implemented with an array of array type. The ROM
defines a hexadecimal to 7-segment decoder:

type  seven_segment is array  (6 downto  0) ;
type  rom_type is  array (natural range  <>) of  seven_segment ;
constant  hex_to_7 : rom_type (0 to 15)   := 

(“0111111", -- 0
 “0011000", -- 1
 “1101101", -- 2          Display segment index numbers :
 “1111100", -- 3                             2 
 “1011010", -- 4                         1      3
 “1110110", -- 5                             6
 “1110111", -- 6                         0      4
 “0011100", -- 7                             5
 “1111111", -- 8
 “1111110", -- 9
 “1011111", -- A
 “1110011", -- B
 “0100111", -- C
 “1111001", -- D
 “1100111", -- E
 “1000111") ; -- F 

-- Now, the ROM field can be accessed via a integer index 
display_bus <= hex_to_7 (i) ;
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The ROM with array of array implementation has the advantage that it can be acce
via a simple integer value as its address. A disadvantage is that each time anoth
ROM is defined, a new element type (seven_segment ) and a new ROM type 
(rom_type ) have to be defined.

PLA descriptions should allow a ’X’  or ’-’  dont-care value in the input field, to 
indicate a product lines’ insensitivity for a particular input. You cannot use a case  
statement for a PLA with dont cares in the input field since a comparison with a v
that is not ’0’  or ’1’  will return FALSE in a case condition (as opposed to just 
ignoring the input). Instead, a small procedure or function is needed that explicitly
defines comparisons to ’X’  or ’-’ .   The following example describes such a 
procedure. First, a general 2-dimensional PLA array type is declared.

type  std_logic_pla is  array  (natural range  <>, natural range  <>) 
of  std_logic;
...
procedure  pla_table ( constant  invec: std_logic_vector;
   signal  outvec: out  std_logic_vector;

constant  table: std_logic_pla) is
variable  x : std_logic_vector (table’range(1)) ; -- product lines
variable  y : std_logic_vector (outvec’range) ;   -- outputs
variable  b : std_logic ;

begin
assert  (invec’length + outvec’length = table’length(2))
report  “Size of Inputs and Outputs do not match table size”
severity  ERROR ;
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-- Calculate the AND plane
     x := ( others =>’1’) ;
     for  i in  table’range(1) loop
        for  j in  invec’range loop
            b := table (i,table’left(2)-invec’left+j) ;
            if  (b=’1’) then
                x(i) := x(i) AND invec (j) ;
            elsif  (b=’0’) then
                x(i) := x(i) AND NOT invec(j) ;
            end if ;
-- If b is not ’0’ or ’1’ (e.g. ’-’) product line is insensitive to 
invec(j) 
            end loop  ;
     end loop  ;
-- Calculate the OR plane
     y := ( others =>’0’) ;
     for  i in  table’range(1) loop
        for  j in  outvec’range loop
            b := table(i,table’right(2)-outvec’right+j) ;
            if  (b=’1’) then
                y(j) := y(j) OR x(i);
            end if  ;
        end loop  ;
     end loop  ;
     outvec <= y ;
end  pla_table ; 
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Once the two-dimensional array type and the PLA procedure are defined, it is ea
generate and use PLAs (or ROMs). As a simple example, here is a PLA descripti
a decoder that returns the position of the first ’1’  in an array. The PLA has five 
product lines (first dimension) and seven IOs (four inputs and three outputs) (sec
dimension).

The PLA could have been defined in a array-of-array type also, just as the ROM 
described above. A procedure or function for the PLA description will always be 
necessary to resolve the dont-care information in the PLA input field. 

Note – The synthesis tools will do a considerable amount of compile-time constan
propagation on each call to the procedure pla_table . This does not affect the final 
circuit result at all. It just adds the possibility to specify dont-care information in th
PLA input table. In fact, a ROM described with an array-of-array type and a varia
integer index as its address will produce the same circuit as the ROM specified in
two-dimensional array and using the pla_table  procedure. If the modeled ROM or
PLA becomes large, consider a technology-specific solution by directly instantiatin
ROM or PLA component in the VHDL description. Many FPGA and ASIC vendor
supply ROM and/or PLA modules in their library for this purpose.

constant  pos_of_fist_one : std_logic_pla (4 downto  0, 6 downto  0) := 
(“1---000",--  first ’1’ is at position 0
 “01--001",--  first ’1’ is at position 1
 “001-010",--  first ’1’ is at position 2
 “0001011",--  first ’1’ is at position 3
 “0000111") ;--  There is no ’1’ in the input 

signal  test_vector : std_logic_vector (3 downto  0) ;
signal  result_vector : std_logic_vector (2 downto  0) ;
...
-- Now use the pla table procedure with PLA pos_of_first_one
-- test_vector is the input of the PLA, result_vector the output.
...
pla_table ( test_vector, result_vector, pos_of_first_one) ;
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This chapter discusses the Exemplar synthesis tools and the VHDL tool environm
including search paths, interfacing with other VHDL tools, and the Exemplar packa

 Entity and Package Handling

 Loading Entities and Packages (Galileo)

Packages and entities in VHDL are stored in libraries. VHDL tools often have the
possibility to load VHDL files (with packages and entities) separately into a direct
that is assigned to a library. Galileo does not have the ability to pre-load VHDL fi
into libraries. Instead, all VHDL sources need to be specified for each run of Gali

Galileo can get VHDL source from three different areas:

1. Predefined VHDL package files

2. Optionally included VHDL files

3. The source (input) VHDL file for the run of the tool 
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An example of a predefined package is the package STANDARD (which is 
pre-defined for VHDL), that Galileo loads from file standard.vhd in 
$EXEMPLAR/data/packages.syn . Other packages are available both in that 
directory, and in $EXEMPLAR/data . 

With the -vhdl_file=<filename>  option, it is possible to load a VHDL file into 
Galileo before the source VHDL file is read. In the Graphical User Interface, use 
“VHDL Files” option in the Input Options menu. Multiple -vhdl_file  options 
allow you to load multiple files. The order in which the files are included is importa
If you use a package A in file B, make sure that the file in which A is defined is loa
before file B. 

After all the -vhdl_file  options are executed, and their corresponding VHDL file
are loaded into Galileo, the source VHDL file is read. 

Galileo can handle either VHDL IEEE 1076-1987 or IEEE 1076-1993 dialects of 
VHDL. The default is 87. To run 93-style VHDL, use the switch -vhdl_93 on the 
command line, or use the “VHDL Style” option the (VHDL) input options menu on t
GUI.

Galileo does not handle all 93 style features. They support the most commonly u
features of the ’93 extension: shifter and rotator operators, xnor operator and exte
identifiers.

Loading Entities and Packages (Leonardo)

If there is only design file, you can read the file directly into Leonardo. If the desig
split into multiple source files, however, you need to analyze them in the proper o
so that all terms are defined before they are used in the design. For example, if th
a package declaration in one file that must be used by the whole design, that file 
be analyzed first. In Leonardo, all the design units are stored in the HDL database
you can analyze as many of them as you want.

-vhdl_file= filename
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Entity Compiled as the Design Root

When the VHDL source is loaded, Galileo will start compiling the top level entity a
start the synthesis process. By default, Galileo uses the last entity found in the s
file as the top-level entity. This behavior can be changed, however.   

The option -entity= entity_name on the command line will let Galileo find the 
entity specified and consider that the root of the design. In the Graphical User 
Interface, use the “Top Entity” option in the VHDL Input Options window. An entity
from an included VHDL file can be specified as the root of the design. 

After the root entity is found, Galileo will try to find a matching architecture for it. B
default, the tools will choose the LAST architecture described in the source VHDL
that matches the top-level entity. Use the -architecture= architecture_name to 
overwrite this default. In the Graphical User Interface, use the option “Top 
Architecture” in the VHDL Input Options window.

By default, Leonardo assumes that the last entity or configuration analyzed is the
entity. By default, the LAST architecture analyzed for the root entity is compiled. Y
can use the elaborate  command with -entity  entity_name and 
-architecture  arch_name arguments to selectively compile a particular 
entity-architecture pair.

Finding Definitions of Components 

In order to instantiate an entity into a VHDL description, you must first declare a 
component for it. If you use a component instantiation in your VHDL design, the 
synthesis tools try to find the definition of that component. There are three 
possibilities.

1. The component is a cell in a source technology library. 

2. The component has a matching (named) entity in the VHDL source

3. The component has no definition. 

-entity= entity_name

-architecture= architecture_name
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If a source technology is specified, the synthesis tools try to find the component in
source technology library. This is especially helpful if the component represents a
particular macro in the source technology. For an example, see “Technology-Spe
Macros” on page 29.

If the component is not present in the source technology, the synthesis tools try to
an entity and architecture for it. The entity (and architecture) could be present in 
same file, or in an included VHDL file. 

If the synthesis tools cannot find a matching entity for the component, they issue
following warning and leave the contents component undefined:  

Working with components without a definition can be useful if a particular module
the design is not synthesizable. A clock generator or a delay-module is an examp
this. The contents of that module should be provided separately to the physical 
implementation tools.   Leaving components undefined is also useful in two other
cases: 

• With Galileo, to preserve hierarchy through the synthesis process.

• With all the Exemplar synthesis tools, for using hard and soft macros in the tar
technology (see “Technology-Specific Macros” on page 29). 

It is possible to explicitly leave the contents of a component empty, even though t
is a entity/architecture for it or a cell in the source technology library. In that case
specify the boolean attribute NOOPT on the component, or on its corresponding entit
or use the -noopt =entity_name option (for Galileo only) as described below. This ca
be useful when only a part of the hierarchy of a design has to be synthesized or 
user-defined simulatable but not synthesizable block is run through the synthesis t
Here is an example of how to set the noopt  attribute: 

Warning, component component_name has no definition

component  clock_gen 
.....

end component  ;
attribute  noopt : boolean ;
attribute  noopt of  clock_gen: component  is TRUE ;
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Components with a noopt  attribute or undefined components will be handled as bla
boxes by the synthesis tools, and will show up as cells in the target netlist. Supp
the technology-specific contents of these cells is left to the user. It is also possibl
only noopt a particular instance of a component by setting the noopt attribute on 
label of the component instantiation statement. This will have the same effect as 
attribute was added to the underlying entity.

How to Use Packages

A functionality described in a VHDL package is included into the VHDL design usi
the use clause. This is the general form of the use clause: 

The use clause is preceded by a library clause. There are predefined libraries work  
and std  that do not have to be declared in a library clause before they are used 
use clause. All other libraries do need top be declared. Library std  is normally only 
used to include packages predefined in VHDL1076, but library work  is free to be used 
for any user-defined packages. User-defined library names are also allowed. 

If a particular package is not found in the specified library, the synthesis tools perf
the following steps to find the package:

1. The current work  library is searched for the package.

2. If it is not there, it searches for a file with the name package.vhd  in the present 
working directory. The present working directory is the directory where a synthe
tool is running.    

3. If the file is not there, the synthesis tools try to find it in the $EXEMPLAR/data  or 
the $EXEMPLAR/data/packages.syn  directory to check if it is a pre-defined
package.

4. If the file is not there, the synthesis tools issue an error message that the pac
can not be found. 

The selection can consist of only one name of an object, component, type or 
subprogram that is present in the package, or the word all , in which case all 
functionality defined in the package is loaded into the synthesis tools and can be
in the VHDL description.

library  lib ;  
use  lib. package. selection ;
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As an example, the IEEE 1164 std_logic_1164  package (that defines the 
multi-valued logic types that are often used for circuit design), is included with the
following statements: 

This package is loaded from the $EXEMPLAR/data/packages.syn  file. This file 
contains only the declarations of the functions of the std_logic_1164  package. 
The bodies of the functions are built into the Exemplar synthesis tools for synthe
efficiency.

Note – The contents of the package you include with a use  clause becomes visible 
and usable only within the scope where you use the use  clause. It would be beyond 
the scope of this manual to explain the VHDL scoping rules, but if you start a new
entity (and architecture), always make sure that you include the packages you ne
with use  clauses just before the entity.

Interfacing With Other VHDL Tools 

The VHDL parsers in the Exemplar synthesis tools are compliant with the IEEE 
VHDL 1076-1987 standard. Hence, apart from the VHDL restrictions for synthesis
interfacing with tools that generate VHDL or operate on VHDL should not introdu
compatibility problems. 

However, since VHDL 1076 does not define file handling, there might be mismatc
in the way the tools handle files. Many VHDL simulators incorporate a directory 
structure to store separately compiled VHDL files. The synthesis tools do not use
separate compilation of VHDL files. Therefore, all packages and components tha
used for a VHDL design description should be identified before running the synth
tools, as explained in the previous section. 

VHDL Simulators

Always make sure to load the packages and entities in your design into the simu
prior to simulating your root entity. For simulation, the exemplar  and 
exemplar_1164  packages can be found in the $EXEMPLAR/data  directory. For 
details on using these packages, see “The Exemplar Packages” on page 11.

library  ieee ;
use  ieee.std_logic_1164.all ;
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Post-Synthesis Functional Simulation

If desired, post-synthesis functional simulation can be performed using the structu
VHDL output from the synthesis tools. In your design flow, choose the appropriat
netlist output for the target technology. Then use the -effort=reformat  switch 
(with Galileo) to produce structural VHDL for simulation. The flow with Galileo is,
assuming an ASIC as the target technology for this example, 

1. VHDL synthesis with Galileo: 

2. Produce VHDL netlist: 

This produces the structural VHDL file my_test.vhd , which may now be simulated.

The synthesis tools synthesize all port types into single-bit values. These get writ
out in VHDL as ports of type std_logic . The original port types are not preserve

In Leonardo, the same design can be written into multiple files in multiple formats
After optimization, choose the appropriate netlist output format for the target 
technology; then, you can write a VHDL description of the same synthesized des
By using a simulatable library of the target technology, this VHDL output can be 
simulated. The sequence of synthesis statements should be similar to the followi

galileo my_design.vhd my_design.edf -target=asic 
-effort=exhaustive -report=2

galileo my_design.edf my_test.vhd -source=asic 
-target=asic -effort=reformat -report=2

load_lib asic
read original.vhd
optimize -tar asic <other options>
write synthesized.edf -- required for target technology
write synthesized.vhd -- can be used for simulation.
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When doing synthesis from a VHDL description, one goal of post-synthesis VHDL
simulation is to simulate the design with the original set of ports (same type, io m
etc.). With Galileo, the -vhdl_wrapper= filename option is used for that. On the 
GUI, you can find the wrapper option in the ’VHDL Input Options’ menu. With 
Leonardo, use the create_wrapper  command to create the wrapper file.

The wrapper consists of an architecture (that connects to the original entity) that 
instantiates a component that refers to the synthesized description. Type-convers
functions connect ports of the synthesized description to the ports of the original 
description. Since both the synthesized description and the original description ha
the same name, we need to store the synthesized description into a different libra
the simulator) than the original one.

Load the synthesized VHDL description in a library called synthesis  in your 
simulator. Then load the wrapper architecture into the work library. It will link with t
originally compiled entity of the original VHDL description. The wrapper file uses 
type transformation functions from a package called typetran  to translate the port 
types. This packages in the file $EXEMPLAR/vhdl/typetran.vhd . You have to 
load this package into the simulator before you load the wrapper description.

Now, the original entity can be simulated with the wrapper architecture. Since the
wrapper instantiates the synthesized description, simulation will be done of the 
synthesized design by using the original entity (ports), and thus the original test 
vectors can be used to simulate.

Viewlogic

Users with VHDL files originally written for the Viewlogic synthesis or simulation 
systems will be using the pack1076  and stdsynth  packages. Galileo supports all 
behavior from these packages, as long as they are included according to VHDL r
with a use  clause. Viewlogic accepts descriptions without the use  clause. 

To avoid having to re-code the VHDL files from Viewlogic to Exemplar, Galileo 
accepts an option (-viewlogic ) that triggers the VHDL parser to adjust to the 
Viewlogic semantics of VHDL. In the Graphical User Interface, use the manual 
options line in the Global Options window to set the -viewlogic  option. This 
option also makes sure that the search path for packages is changed according t

-viewlogic
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Viewlogic rules. This search path includes the current working directory, and the 
./ lib/behv , ./vhdllibs/ lib, $WDIR/ lib/behv  and $WDIR/vhdllibs/ lib 
directories. 

Note – The Exemplar synthesis tools do not support the old Viewlogic package 
synth . Only the packages pack1076  and stdsynth  are supported and recognized
as the packages that define Viewlogic’s synthesis functions and types.

To use Viewlogic VHDL files with Leonardo, you must set the variable 
viewlogic_vhdl  to TRUE.

Synopsys

Users that have existing VHDL files for Synopsys VHDL Compiler will rely on one 
more of the Synopsys pre-defined VHDL packages. The Exemplar synthesis tools
support all these packages; a use  clause includes them into your design. The 
Exemplar versions of these packages cause an implementation that is efficient fo
Exemplar synthesis tools to be used. 

The Synopsys packages define a set of types and functions that contain Synopsy
progamas that VHDL Compiler uses as synthesis directives. These pragmas are 
correctly interpreted by the following Exemplar tools:

pragma translate_on
pragma translate_off
synopsys translate _on
synopsys translate_off
synopsys synthesis_on
synopsys synthesis_off

Apart from a use  clause for each Synopsys package that you need in your VHDL f
you should NOT have to load any Synopsys package into the Exemplar synthesis 
They will search for the packages that you want to use in the directory 
$EXEMPLAR/data . Here is the list of files with the packages they contain:
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It is very important that you let the synthesis tools find these packages themselve
(from the use clause in your VHDL description). The synthesis tools should load 
of the files above from the $EXEMPLAR/data  directory, or it will probably read a 
file without the synthesis directives. Without the synthesis directives, the synthesi
tools can NOT efficiently synthesize any of the Synopsys packages.

The synthesis tools assume that the Synopsys libraries are called from either the
VHDL library SYNOPSYS or the VHDL library IEEE  (this is where Synopsys advises
its packages to be stored). If you store your Synopsys library (on your VHDL 
simulator) somewhere else than in these libraries, they you have to manually incl
the (package) files needed from the $EXEMPLAR/data  directory, since the synthesis
tools will not recognize them as Synopsys packages. For Galileo, the technique t
manually include such packages is to use the option 
-vhdl_file= libname:: filename to include the files (packages) you need into the
library you want. For Leonardo, use the analyze  libname filename command and 
argument. Make sure again that you use the files from the $EXEMPLAR/data  
directory (with synthesis directive attributes in there).

File Name Package Name

syn_ari.vhd ARITHMETIC

syn_attr.vhd ATTRIBUTES

syn_type.vhd TYPES

syn_arit.vhd STD_LOGIC_ARITH

syn_misc.vhd STD_LOGIC_MISC

syn_unsi.vhd STD_LOGIC_UNSIGNED

syn_sign.vhd STD_LOGIC_SIGNED
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Mentor Graphics

The Exemplar synthesis tools are source-code compatible with the latest version 
Autologic II. Therefore, you should not encounter any problems when running VH
designs from Mentor Graphics. The Exemplar synthesis tools support two VHDL 
packages from Autologic II, both of which are stored in the $EXEMPLAR/data  
directory:

These files will be automatically read when you specify the package names in a 
clause in your VHDL description.

 The Exemplar Packages 

There are a number of operations in VHDL that occur regularly. An example is 
translation of vectors to integers and back. For this reason, Exemplar provides 
packages that define attributes, types, functions and procedures that are often us
Using the functions and procedures reduces the amount of initial circuitry that is 
generated, compared to writing the behavior explicitly in a user-defined function o
procedure. This reduces the cpu-time for compilation and also could result in a sm
circuit implementation due to improved optimization.

This section discusses all the defined functionality in the Exemplar packages 
exemplar  and exemplar_1164 . The package bodies are not read by the synthe
tools; the functions are built-in. The packages are used for simulation only, and ed
them will NOT change the synthesized logic. The VHDL source for these package
given in the files exemplar.vhd  and ex_1164.vhd , respectively in the 
$EXEMPLAR/data  directory. 

The exemplar_1164  package defines the same functionality of the exemplar 
package, but operates on the IEEE 1164 multi-valued logic types. 

If you are using the IEEE 1164 types in your VHDL description, include the IEEE
standard logic type definition into your VHDL description with a use clause. The 
VHDL source of the IEEE 1164 types package is in the file std_1164.vhd  in the 

File Name Package Name

std_arit.vhd STD_LOGIC_ARITH

qsim_logic.vhd QSIM_LOGIC
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$EXEMPLAR/data  directory. For details about the IEEE 1164 types, see “IEEE 116
Predefined Types” on page 28. If you also want to use the Exemplar functions tha
operate on these types, include the package ex_1164  with a use  clause.

If you do not use the IEEE 1164 types, but still want to use the Exemplar function
just include the package exemplar in your VHDL description with a use clause. A
functions are then defined on the predefined types bit  and bit_vector , and on the 
four-valued types elbit  and elbit_vector . 

Predefined Types 

The exemplar  package defines a four-valued type called elbit  and its array 
equivalent elbit_vector . The elbit  type includes the bit values ’0’ , ’1’ , ’X’  
and ’Z’ .  

Exemplar recommends that you use the IEEE 1164 standard logic types, and the
exemplar_1164  package. The Exemplar data types are included only for backw
compatibility with Galileo releases prior to 1.2. 

Predefined Attributes 

The Exemplar synthesis tools use attributes to control synthesis of the described
circuit. With Galileo, these attributes can be set in the control file. With Leonardo, 
can use the set_attribute  command to set object attributes within the hierarchic
database. 

In many cases, though, it is more convenient to define attributes in the VHDL sou
The following attributes are recognized by the VHDL parser, and declared in both
exemplar  and the exemplar_1164  package: 

Attribute Type Description

required_time   time Set required time on output

arrival_time    time Set arrival_time  on input

output_load     real      Specify load set on output

max_load        real      Specify max load allowed on input

clock_cycle     time Specify clock length on clock pin 

pulse_width     time      Specify pulse width on clock pin

input_drive     time Specify delay/unit load for input 
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In order to set a particular attribute on a signal (or port) in VHDL, use the normal
attribute specification statement in VHDL. Here are some examples: 

Since variables do not represent one unique node in the circuit implementation (t
represent a different circuit node after each assignment) the attributes will be effe
on all circuit nodes the variable represents. This could lead to unexpected behavio
be careful using the exemplar attributes on variables.

nobuf           boolean Reject buffer insertion for a input

pin_number      string      Specify location of input or output pin

array_pin_number 1 array of strings Specify location for each bit of a bus

preserve_signal boolean Signal’s function will survive synthesis

buffer_sig string Specify explicit buffer on a pin

modgen_sel modgen_select Specify time requirement for module 
generators driving this signal

1. This attribute can be set only in the VHDL source.

library  exemplar ;
use  exemplar.exemplar. all  ;  -- Include the ’exemplar’ package
entity  test is       

port  ( my_input : in  bit ; 
my_output : out  bit_vector (5 downto  0) ;     

) ;  
attribute  pin_number of  my_input: signal  is "P15" ;
attribute  array_pin_number of  my_output:signal  is

("P14","P13","P12","P11","P10","P9") ; 
attribute  required_time of  my_output:signal is  5 ns ;

end test ;
 
architecture  exemplar of  test is       

signal  internal_signal : bit ;
attribute  preserve_signal of  internal_signal: signal  is  TRUE ; 
attribute  modgen_sel of  internal_signal: signal  is  FAST ;  

begin      
...

Attribute Type Description
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All attributes work both on single-bit signals and on arrays of bits. In the case an
attribute is set on a signal that is an array of bits (bit_vector , elbit_vector  or 
std_logic_vector ) the value of the attribute is set to all circuit nodes in the 
vector. An exception is the pin_number  attribute which only operates on single bit
ports. Use the array_pin_number  attribute to set pin numbers on all bits of a bus.

Predefined Functions 

The package exemplar defines a set of functions that are often used in VHDL for
synthesis. First of all, the package defines the overloaded operators and , NAND, or , 
nor , xor , and not  for the types elbit  and elbit_vector , as well a for 
elbit_matrix , a two-dimensional array type of elbit  values. 

The Exemplar package defines a large set of functions for both the standard bit  and 
bit_vector  types. For backwards compatibility, these functions are also defined
elbit  and elbit_vector  types. These functions are discussed below. 

All functions are also defined with the IEEE 1164 types std_logic , std_ulogic , 
std_logic_vector , and std_ulogic_vector  in the package ex_1164  in file 
ex_1164.vhd .

bool2elb (l: boolean) return std_logic;

Takes a boolean, and returns a std_logic  bit. Boolean value TRUE will become 
std_logic  value ’1’ , FALSE will become ’0’ .

elb2bool (l: std_logic) return boolean;

Takes a std_logic  value and returns a boolean. The std_logic  value ’1’  will 
become TRUE, all other values become FALSE.

int2boo (l: integer) return boolean;

Takes an integer and returns a boolean. Integer value ’0’  will return FALSE, all other 
integer values return TRUE.
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boo2int (l: boolean) return integer;

Takes a boolean and returns an integer. Boolean value TRUE will return 1, FALSE 
will return 0.

evec2int (l: std_logic_vector) return integer

Takes a vector of bits and returns the (positive) integer representation. The left mo
in the vector is assumed the MSB for the value of the integer. The vector is interp
as an unsigned representation.

int2evec (l: integer, size : integer := 32) return std_logic_vecto

Takes a integer and returns the vector representation. The size of the vector bec
equal to the value of an optional second argument (size). If this argument is not 
specified, the size of the return vector defaults to 32. The left most bit in the resu
vector is the MSB of the returned value. If the integer value of the first parameter
negative, the MSB is the sign bit. 

Note – The second parameter in the int2evec  function is new. Prior to Galileo 2.1, 
int2evec  took only a single parameter. This created simulator-synthesis 
inconsistencies that have been eliminated with the introduction of the second 
parameter. In some cases this means that Galileo 2.1 will give an array-size error
design that used to run fine under older versions of Galileo. Make sure you add t
second parameter to return the right-sized array.

elb2int (l: std_logic) return integer;

Takes a std_logic  value and returns an integer. The std_logic  value ’1’  will 
return integer value 1, all other values will return integer value 0.       

For all shifter functions that follow, the shift amount (r) could either be a compile ti
constant or not. If it is, the synthesized circuit will only consist of a re-ordering of 
wires in the array. Otherwise, the synthesis tools will synthesize a shifter circuit.
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 sl     (l: std_logic_vector; r: integer) return std_logic_vecto

Takes a vector l and an integer r and returns a vector. The resulting vector is the sam
size as l, but all bits of l are shifted left r places. The bits on the right side of the resu
vector are zero-filled. The integer r must be non-negative.

 sl2     (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sl , but the vector l is treated as a 2-complement (signed) representation. S
bit is the left most bit in vector. Bits on the right are zero-filled.

 sr      (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sl , but bits are shifted to the right side of the vector. Bits on left side are
zero-filled.

 sr2      (l: std_logic_vector; r: integer) return std_logic_vecto

Same as sr , but the vector l is treated as a 2-complement representation. Sign bit is 
left most bit in vector. Bits on the left side are sign-bit filled.

add      (op_l, op_r: std_logic_vector) return std_logic_vecto

Takes two vectors and returns a vector. The resulting vector is one bit larger than
largest of the input vectors, and represents the addition of the input vectors, inclu
the carry bit. The left most bit is assumed to be the MSB. The add function is a ve
addition of two unsigned vectors. The smallest input vector is ’0’ , extended on the 
MSB side to the size of the largest input vector before addition is performed. 

add ("1011","0100") result : "01111"     (add (11,4) == 15) 
add ("0011","100")  result : "00111"     (add (3,4) == 7) 
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add2     (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add , but now the vectors are assumed to be in 2-complement representa
Sign bit is the left most bit in the vectors. The smallest input vector is sign-bit 
extended on the MSB side to the size of the largest vector before addition is 
performed. 

sub      (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add , but the subtraction function is implemented on unsigned vectors. op_r is 
subtracted from op_l. 

Actually this is an under-flow of unsigned !

sub2  (op_l, op_r: std_logic_vector) return std_logic_vecto

Same as add2 , but the subtraction function is implemented on 2-complement 
representation vectors. op_r is subtracted from op_1.

add2 ("1011","0100") result : "00001"    (add2 (-5,4) == 1) 
add2 ("0011","100")  result : "11111"    (add2 (3,-4) == -1)

sub  ("1011","0100")result : "00111"     (sub (11,4) == 7) 
sub  ("0011","100") result : "11111"     (sub(3,4) == 31) 

sub2 ("1011","0100") result : "10111"    (sub2(-5,4) == -9)
sub2 ("1011", "100") result : "11111"    (sub2(-5,-4) == -1)
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extend (op_l: std_logic_vector; op_r: integer)  
return  std_logic_vector;

Takes a vector op_l and an integer op_r and returns a vector. The vector op_l is 
extended in size up to op_r elements. The input vector op_l is zero-extended on the 
MSB side. The left most bit in the vector is assumed the MSB. There is also a ve
of extend that takes a single (std_logic ) value and extends it to a vector of size 
op_r. 

extend2 (op_l: std_logic_vector; op_r: integer) 
return std_logic_vector;   

Same as extend , but the vector is in 2’s-complement representation. The input vec
is sign-bit extended. There is also a version of extend2 that takes a single (std_lo
value and sign-extends it to a vector of size op_r. 

comp2 (op: std_logic_vector) return  std_logic_vecto

Takes a vector and returns a vector of the same size. This function assumes the 
vector to be in 2-complement representation and will return the complement (nega
value of the input value. The right most bit is assumed to be the LSB. 

extend ("1001",7)   result : "001001"
extend (’1’,3) result : "001" 
extend ("011001001", 4) result : "1001"    -- Truncation

extend2 ("1001",7)    result : "1111001"
extend2 (’1’,3)   result : "111"
extend2 ("011001001",4)   result : "1001" -- Truncation

comp2 ("1001") result : "0111"       ( comp2 (-7) == 7)
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"+"        (op_l, op_r: std_logic_vector) return std_logic_vecto

Takes two vectors and returns a vector. As add, but now the carry bit is not saved
resulting vector is the same size as the largest input vector. Overflow wraps arou
This function implements addition of unsigned vectors. 

"-" (op_l, op_r: std_logic_vector) return std_logic_vector

Same as “+”, only the subtraction function is performed. op_r is subtracted from op_l. 
This function implements subtraction of unsigned vectors. 

"mult"  (op_l, op_r: std_ulogic_vector) return std_ulogic_vecto

Takes two vectors and returns a vector. The size of the resulting vector is the siz
both input vectors added. In each vector, the left most bit is the MSB. The mult 
function performs UNSIGNED multiplication of the two input vectors. In case of 
unequal-length input vectors, the smallest vector is zero-extended on the MSB si
the size of the largest input vector before the multiplication is performed.

"mult2"  (op_l, op_r: std_ulogic_vector) return std_ulogic_vecto

Like mult , but now the vectors are assumed to be in 2-complement representati
The sign bit is the left most bit in each vector. In case of unequal-length input vec
the smallest vector is sign-bit extended on the MSB side to the size of the largest 
vector before the multiplication is performed.

"10110" + "101" 
result :  "11011"       (22 + 5 == 27) 

"10110" - "101"
 result : "10001"       (22 - 5 == 17)

mult ("1011", "0100") result: "00101100" (mult(11,4)==44)
mult ("1", "1111") result: "00001111" (mult(1,15)==15)
The VHDL Environment 4-19



4

sing 

nt 

ous 

 files 

the 
 of 
Predefined Procedures 

There are various ways to generate flip-flops and d-latches with VHDL, such as u
processes and specifying behavior that represents the behavior of flip-flops and 
dlatches. However, in some cases it is useful to instantiate technology independe
flip-flops or dlatches in the VHDL dataflow environment immediately. A more 
structural oriented VHDL style will be possible that way. The exemplar package 
includes the definition of procedures that represent flip-flops or dlatches with vari
set or reset facilities that operate on single bits or vectors (to create registers). 

The exemplar  package defines these procedures on signals of type bit , 
bit_vector , elbit  and elbit_vector , while the package exemplar_1164  
defines the same procedures for the IEEE 1164 types std_logic , std_ulogic , 
std_logic_vector  and std_ulogic_vector . In the description below only 
examples for bit  and bit_vector  are given, but the full definition of the 
procedures, for the types listed above, is available for simulation purposes in the
exemplar.vhd  and exemplar_1164.vhd .

Flip-flops 

Here dff  is the single bit D flip-flop and dff_v  is the vectored D flip-flop. dff has 
no preset or clear inputs, dffc  has an active-high asynchronous clear (set q to ’0’) 
input, dffp  has an active-high asynchronous preset (set q to ’1’) input, and dffpc 
has both a preset and a clear input. If both preset and clear are asserted, q is not 
defined. All inputs are active high, the clock input is positive edge triggered. For 
vectored dffs, the number of flip-flops that will be instantiated is defined by the size
the input (d) and output (q) vectors of the dff#_v  instantiation. (The size of d and q 
vectors must be the same.)

If q is a port of the VHDL entity, it must be declared as an INOUT port, since q is 
used bidirectionally in each of these functions. 

dff[_v](data, clock, q)
dffc[_v](data, clear, clock, q)
dffp[_v](data, preset, clock, q)
dffpc[_v](data, preset, clear, clock, q)
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Latches  

These define a level sensitive D-type latch with an enable. The latch is enabled 
(transparent) when the enable input is 1, disabled when the input is 0. dlatch  has no 
preset or clear capability, dlatchc  has an asynchronous active-high clear (set q to 
’0’ ) input, dlatchp has an asynchronous active-high preset (set q to ’1’ ), and 
dlatchpc  has both preset and clear. If both preset and clear are asserted, q is not 
defined. dlatch_v creates the vector equivalent procedures to generate register
dlatches. 

Tristate Busses

When a signal is assigned in multiple concurrent statements, the synthesis 
implementation requires that in each statement the signal is assigned a ’Z’  value 
under at least one condition. A tristate gate is created in this case, with the enab
the gate corresponding to the inverse of the condition where the ’Z’  is assigned in the 
model. This is the only case where multiple assignments to a signal in different 
concurrent statements is allowed. 

It is also possible for the user to specify what to do in the case where none of th
drivers of the bus are enabled. To address this situation, three pre-defined proce
have been declared to handle the three standard tristate bus conditions: PULLUP, 
PULLDN and TRSTMEM. These drive an otherwise undriven bus to the values 1, 0, or 
retain the current value , respectively. Only one of these functions may b
specified for a given bus. The synthesis tools will build the appropriate logic to 
implement the specified function in the technology. If the technology includes pull
or pull-down resistors or repeater cells on internal busses these will be used. If the
not available, an additional tristate gate, whose enable is the NOR of all the othe
enables and whose input is either VCC, GND or the value on the bus will be creat
implement the specified function. The synthesis tools also know what the default 
for a bus is in the technology, and if that matches the specified function, no extra 
is created. If no termination is specified, then its undriven value depends on the 
technology used. 

dlatch[_v](data, enable, q)
dlatchc[_v](data, clear, enable, q)
dlatchp[_v](data, preset, enable, q)
dlatchpc[_v](data, preset, clear, enable, q)
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The tristate bus procedures defined below may be used with signals of type bit , 
elbit , (package exemplar ) std_logic  and std_ulogic  (package ex_1164 ). 

pullup(busname)

When a bus is not driven, this procedure will pull the bus up to 1.

pulldn(busname)

When a bus is not driven, this procedure will pull the bus down to 0.

trstmem(busname)

When a bus is not driven, this procedure will drive the bus to its last driven state.

Syntax and Semantic Restrictions

VHDL as the IEEE Standard 1076 is a extended language with many constructs 
are useful for simulation. However, during the initial development of the language
logic synthesis was not taken into account. Therefore, a number of constructs or 
combination of constructs cannot be implemented in actual circuits.   VHDL 1076
fully simulatable, but not fully synthesizable.

Synthesis Tool Restrictions

This section discusses the syntax and semantic restrictions of the VHDL parsers o
Exemplar synthesis tools. 

• Operations on files not supported. Files in VHDL could behave like ROMs or 
RAMs, but the synthesis tools do not support using file (types). The synthesis t
will ignore, but accept, file (type) declarations.

• Operations on objects of real  types are not supported. Objects of real  types 
have no defined bit-resolution. The synthesis tools will ignore, but accept, 
declarations of (objects of) real  types.

• Operations on objects of access  types are not supported, since they lead to 
unsynthesizable behavior. The synthesis tools will ignore, but accept, declarati
of (objects of) access  types.
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• Attributes BEHAVIOR, STRUCTURE, LAST_EVENT, LAST_ACTIVE, and 
TRANSACTION are not supported.

• Configurations are ignored; default component binding (by name) is assumed.

• Global, non-constant signals are not supported, that is, signals declared in a 
package.

• Allocators are not supported, because they perform dynamic allocation of resou
which is not synthesizable.

• Configuration declarations are ignored. The synthesis tools allow only entities 
components as the main building blocks of the design. Configuration specificat
(binding a component (instance) to an entity) ARE supported.

• REGISTER and BUS signal declarations are not supported. Only resolution 
functions with a synthesis directive are allowed (see the section “BUS and 
REGISTER” on page 55).

VHDL Language Restrictions

Apart from these restrictions, which are mostly tool-related, there are some basic
restrictions that apply to VHDL descriptions for synthesis. Since they occur quite 
often, additional descriptions are presented here to clarify the problems involved 
synthesis. Here is the list:

• after  clause ignored.    

• Restrictions on Initialization values.

• Ranges of loops have to evaluate to constants during compile time.   

• Restrictions on edge-detecting attributes (EVENT and STABLE).   

• Restrictions on wait statements.   

• Restrictions on multiple drivers on one signal.

A more detailed description of these restrictions follows below:

After Clause Ignored

The after  clause refers to delay in a signal. Since delay values cannot be guaran
in synthesis, they are ignored by the synthesis tools after they issue a warning.
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Restrictions on Initialization Values

Initialization values are allowed in a number of constructs in VHDL:

1. Initial value of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of a variable in a variable declaration in a subprogram (procedure 
function).

4. Initial value of a generic or port in a component declaration.

5. Initial value of a parameter in a subprogram interface list.

The problem with initialization values for synthesis is that some initial values defi
the initial value of an object before actual simulation is done. This behavior 
corresponds to controlling the power-up state of a device that would be synthesiz
from the VHDL description. Since synthesis cannot control the power-up state of 
device, this kind of initial value cannot be synthesized. However, if after initializat
there is never an change of value, the behavior can be synthesized, and resemb
simple constant value. 

The synthesis tools fully support initialization values, except for initializing objects
that can change their value after initialization. That is, the following form of 
initialization values are NOT supported because they imply power-up behavior of
synthesized device:

1. Initial values of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of an OUTPUT or INOUT port in an interface list.

All other forms of initialization values are supported by the synthesis tools.

Ranges Of Loops Have To Evaluate To Constants During Compi
Time

Loops with no compile time bounds (especially infinite loops) have no RTL logic 
representation. Therefore, make sure that the loop bounds depend on “constant” v
like the bounds of a vector or ordinary decimal literals. The attributes ’LEFT , 
’RIGHT , ’RANGE, etc. are normally sufficient to indicate bounds of a loop. 
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Restrictions On Edge-Detecting Attributes (’event)

Most restrictions on VHDL to assure correct compilation into a logic circuit are on 
constructs that define edges or changes on signals. The ’EVENT attribute is the best 
example of this. signal’EVENT is TRUE only if signal changes. Then it is TRUE for 
one simulation delta of time. In all other cases it is FALSE. The STABLE attribute is 
the boolean inversion of EVENT.

There are two restrictions for synthesis on usage of the EVENT and the STABLE 
attribute:

1. An EVENT or STABLE attribute can be used only to specify a leading or falling 
clock edge. For example: 

2. Clock edge expressions can only be used as conditions. For example:

These restrictions originate from the fact that binary logic circuits have a restricte
number of elements that are active ONLY during signal edges. Basically, only 
(set/resettable) edge triggered flip-flops show that behavior. Within these restrictio
the synthesis tools allow free usage of the clock edge conditions, either in guarde
blocks, processes or subprograms.

clk’event and clk=’1’ -- Leading edge of clk
clk’event and clk=’0’ -- Falling edge of clk
NOT clk’stable and clk=’0’ -- Falling edge of clk
clk’event and clk -- Leading edge of (boolean) clk

if (clk’event and clk=’1’) then ...
wait until NOT clk’stable and clk=’0’ ;
wait until clk=’1’ ;       --Implicit clock edge due to

     --VHDL semantics of ’wait’
block (clk’event and clk=’1’... --Block GUARD condition
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Restrictions on Wait Statements

All state-of-the-art VHDL synthesis tools on the market right now have strong 
restrictions with respect to wait statements and use of edge-detecting attributes 
( ’event  and ’stable ). Here are the (informal) restrictions for the wait statemen

• Only one wait (until) statement is allowed in a process.     

• That wait (until) statement (if present) must be the first or last statement in the
process.      

• The expression in the “until” condition must specify a leading or falling single 
clock edge. (Examples are shown above in the EVENT attribute section.)

All assignments inside the process result in the creation of registers. Each registe
(flip-flop) is clocked with the single clock signal.

There are a number of cases where multiple waits are synthesizable and resemb
state-machine behavior. In the Exemplar synthesis tools, however, multiple waits
not supported. State machine behavior, however, can always be re-written to a case  
statement and register process, as explained in “State Machines” on page 18.

Restrictions on Multiple Drivers on One Signal

VHDL does not allow multiple drivers on a signal of an unresolved type. For signal
resolved types, VHDL defines that a (user-defined) resolution function defines wh
the signal value is going to be in case there are multiple driver (simultaneous 
assignments) to the signal. 

A resolution function with meta-logical values (’Z’ , ’X’ , etc.) in general leads to 
behavior that is not synthesizable (since logic circuits cannot produce meta-logica
values). Therefore, in general, VHDL synthesis tools do not allow multiple drivers
a signal. However, if the resolution function defines the behavior of multiple 
three-state drivers on a bus, multiple drivers of a signal could represent synthesiz
behavior. 

The ’Z’  value is in general used to identify three-state behavior. The resolution 
function of the IEEE std_logic  (resolved) type is written so that multiple drivers o
a signal of std_logic  do resemble multiple three-state drivers on a bus. Therefo
the synthesis tools accept multiple assignments to the same signal as long as ea
assignment is conditionally set to the ’Z’  value. The synthesis tools allow free usag
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of ’Z’  assignments (either from dataflow statements, process statements or from
within procedures). The synthesis tools will implement three-state drivers to mimic
three-state behavior. 

It is important to note that the synthesis tools do not check if there could be a 
bus-conflict on the driven bus. In this case, the simulation would just call the 
resolution function again to resolve the value (normally producing a meta-logical 
value), but the behavior for synthesis is not defined. Avoiding bus conflicts is the 
responsibility of the user.
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Verilog HDL is a high level description language for system and circuit design. Th
language supports various levels of abstraction. Where a regular netlist format sup
only structural description, Verilog supports a wide range of description styles. Th
includes structural descriptions, data flow descriptions and behavioral description

The structural and data flow descriptions show a concurrent behavior. All stateme
are executed concurrently, and the order of the statements does not matter. On the
hand, behavioral descriptions are executed sequentially in always blocks, tasks a
functions in Verilog. The behavioral descriptions resemble high-level programming
languages.

Verilog allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic need
resulting in a final netlist description in the technology of your choice. 
5-1



5

ot be 
le of 
The high level design flow enabled by the use of the Exemplar synthesis tools is 
shown in Figure 5-1. 

Figure 5-1 Top-Down Design Flow with Exemplar Synthesis Tools

Verilog and Synthesis

Verilog is completely simulatable, but not completely synthesizable. There are a 
number of Verilog constructs that have no valid representation in a digital circuit. 
Other constructs do, in theory, have a representation in a digital circuits, but cann
reproduced with guaranteed accuracy. Delay time modeling in Verilog is an examp
that. 
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State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL) 
circuit descriptions and target a specific technology. Scheduling and allocation 
algorithms, that perform circuit optimization at a very high and abstract level, are
yet available for general circuit applications. Therefore, the result of synthesis of 
Verilog description depends on the style of Verilog that is used. Users of the Exem
synthesis tools should understand some of the concepts of synthesis specific to V
coding style at the RTL level, in order to achieve the desired circuit implementatio

What synthesis tools do best then is to automatically solve many of the cumberso
RTL logic optimization problems that occur during a typical top-down design proje

This manual is intended to give the Verilog designer guidelines to achieve a circu
implementation that satisfies the timing and area constraints that are set for the t
circuit, while still using a high level of abstraction in the Verilog source code. This
goal will be discussed both in the general case for synthesis applications, as well 
the Exemplar synthesis tools specifically. Examples are used extensively; Verilog 
are not emphasized. 

Knowledge of the basic constructs of Verilog is assumed, although one chapter is
dedicated to the discussion of all the constructs in Verilog that are useful for synth
For more information on the Verilog language, refer to the Verilog Hardware 
Description Language Reference Manual, published by Open Verilog International. 

Synthesizing the Verilog Design

Using the Exemplar synthesis tools to synthesize your Verilog design is easy. If y
run Galileo from the command line, use the following option:  

If you run Leonardo from the command line, use the following command and 
argument:  

If using the graphical user interface, use the interface to choose “Verilog as the In
Format.” Target technology and other options are chosen as usual with the synth
tools. 

-input_format=verilog 

read -format verilog file_name
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This chapter provides an introduction to the basic language constructs in Verilog:
defining logic blocks:

• Data flow and behavioral descriptions

• Concurrent and sequential functionality

• Numbers and data types.

The Exemplar synthesis tools synthesize all levels of abstraction and minimizes t
amount of logic needed resulting in a final netlist description in the technology of y
choice.
6-1
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Modules 

A basic building block in Verilog is a module. The module describes both the 
boundaries of the logic block and the contents of the block, in structural, data flow
behavioral constructs.

This Verilog description shows the implementation of small_block , a block that 
describes some simple logic functions. 

The port list is declared, the port directions are specified, then an internal wire  is 
declared. A wire  in Verilog represents physical connection in hardware. It can 
connect between modules  or gates, and does not store a value. A wire  can be used 
anywhere inside the module , but can only be assigned by:

• Connecting it to an output of a gate or a module .

• Assigning to it using a continuous assignment.

This module  contains only dataflow behavior. Dataflow behavior is described usin
continuous assignments. All continuous assignments are executed concurrently, t
the order of these assignments does not matter. This is why it is valid to use s  before 
s  is assigned. In the first statement o1  is assigned the result of the logical OR of s  and 
c . “| |” denotes the logical OR operation.

More details about the various dataflow statements and operators are given in th
following sections.

The Exemplar synthesis tools support empty top level modules. 

’macromodule’

The Exemplar synthesis tools support ’macromodule’, which is treated as ’module

module  small_block (a, b, c, o1, o2);
input  a, b, c;
output  o1, o2;
wire  s;

assign  o1 = s || c ;      
assign  s = a && b ;      
assign  o2 = s ^  c ;    

endmodule
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Numbers 

Numbers in Verilog can be either constants or parameters. Constants can be eith
sized or unsized. Either one can be specified in binary, octal, hexadecimal, or dec
format. 

If a prefix is preceded by a number, this number defines the bit width of the num
for instance, 8’b 01010101 . If no such number exists, the number is assumed to
32 bits wide. If no prefix is specified, the number is assumed to be 32 bits decim

The synthesis tools produce a warning when encountering non-synthesizable con
such as float. The value 0 is assumed.

For example, in

x  will evaluate to 8.

Special characters in numbers:

“_” a separator to improve readability. 

’x’, ’X’ unknown value. 

’z’, ’Z’, ’?’ tri-state value.

Examples:

334 32 bits wide decimal number 

’b101 32 bits wide binary number 

3’b11 3 bits wide binary number 

Name Prefix Legal Characters

binary    ’b 01xXzZ_?

octal     ’o        0-7xXzZ_? 

decimal   ’d        0-9_ 

hexcadecimal    ’h        0-9a-fA-FxXzZ_?

x = 2.5 + 8;
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20’h’ff_fff    20 bits wide hexcadecimal number 

10’bZ          10 bits wide all tri-state 

Data Types 

Verilog defines three main data types:

• net 

• register 

• parameter

By default these data types are scalars, but all can take an optional range specific
as a means of creating a bit vector. The range expression is of the following form

[<most significant bit> : <least significant bit>]
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Some of these data types are used in the example below, along with the range 
expression syntax. Further details on the data types are presented in the followin
sections. 

//  This design implements a Manchester Encoder
//
module  manenc (clk , data , load , sdata, ready);
parameter  max_count = 7;
 
input  clk, load;
input  [0:max_count] data;
output  sdata, ready ;
 
reg  sdata, ready ;
reg  [2:0] count;
reg  [0:max_count] sout; 
reg  phase;
 
// Phase encoding
always @ ( posedge  clk)

begin
  sdata = sout[max_count] ^ phase;
  phase = ~phase ;

end
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Net Data Types

The net data types supported by the Exemplar synthesis tools are

• wire  

• tri

• supply0

• supply1

• wand 

• wor  

// Shift data
always  @ ( posedge  phase)
   begin

    if  ((count == 0) & !load) begin
sout[1 : max_count] = sout[0 : max_count - 1];
sout[0] = 1’b0;
ready   = 1’b1;

end  
else  if  ((count == 0) & load ) begin

sout  = data;
count = count + 1;
ready = 1’b0;

end  
else if  (count == max_count) begin

sout[1 : max_count] = sout[0 : max_count - 1];
sout[0]= 1’b0;
count = 0;

end  
else begin

sout[1 : max_count] = sout[0 : max_count - 1];
sout[0]= 1’b0;
count = count + 1;

end
end

endmodule
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These data types are used to represent physical connections between structural e
in the Verilog design, such as a wire between two gates, or a tristate bus. Values c
be assigned to net data types within always  blocks. (tri0 , tri1 , triand , trior  
and trireg  are also net data types, but are not yet supported by the synthesis t

wire and tri Nets

The wire  and tri  net data types are identical in usage (syntax and function). Th
two different names are provided for design clarity. Nets driven by a single gate a
usually declared as wire  nets, as shown in “Modules” on page 2 in this chapter, wh
nets driven by multiple gates are usually declared as tri  nets. 

Supply Nets

The supply1  and supply0  net data types are used to describe the power (VCC) a
ground supplies in the circuit. For example, to declare a ground net with the nam
GND, the following code is used:

wand and wor Net Types

wand and wor statements result into and or logic respectively, since wired logic is
available in all technologies.

Register Data Type

A register, declared with keyword reg , represents a variable in Verilog. Where net 
data types do not store values, reg  data types do. Registers can be assigned only in
always  block, task or function. When a variable is assigned a value in an always  
block that has a clock edge event expression (posedge  or negedge ), a flip-flop is 

supply0  GND ;

wor  out;
out = a&b
out = c&d;
endmodule
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synthesized by the synthesis tools. To avoid the creation of flip-flops for reg  data 
types, separate the combinational logic into a different always  block (that does not 
have a clock edge event expression as a trigger). 

Parameter Data Type

The parameter data type is used to represent constants in Verilog. Parameters ar
declared by using the keyword parameter  and a default value. Parameters can be
overridden when a module is instantiated. 

Declaration Local to Begin-End Block

Local declaration of registers and integers is allowed inside a named begin -end  
block. 

Array of reg and integer Declaration (Memory Declaration) 

Declaration and usage of an array of registers or integers is now allowed.

input  [10:0] data;
always  @ (data)
begin : named_block
integer  i;

parity = 0;
for (i = 0; i < 11; i= i + 1)
parity = parity ^ data[i];

end  //named_block

input  [0:3] address;
input  [0:7] date_in;
output  [0:7] data_out;
reg  [0:7] data_out, mem [0:15];
always  @ (address or date_in or we)

if  (we) mem [address] = date_in;
else  data_out = mem [address];
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Continuous Assignments

A continuous assignment is used to assign values to nets and ports. The nets or
may be either scalar or vector in nature. (Assignments to a bit select or a constan
select of a vector are also allowed.) Because nets and ports are being assigned v
continuous assignments are allowed only in the dataflow portion of the module. A
such, the net or port is updated whenever the value being assigned to it changes

Continuous assignments may be made at the same time the net is declared, or by
the assign  statement. 

Net Declaration Assignment

The net declaration assignment uses the same statement for both the declaration
net and the continuous assignment:

Only one net declaration assignment can be made to a specific net, in contrast to
continuous assignment statement, where multiple assignments are allowed. 

Continuous Assignment Statement

The continuous assignment statement (assign ) is used to assign values to nets and
ports that have previously been declared. 

wire  [0:1]sel = selector ;    
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The following example describes a circuit that loads a source vector of 4 bits on 
edge of a clock (wrclk ), and stores the value internally in a register (intreg ) if the 
chip enable (ce ) is active. One bit of the register output is put on a tristate bus 
(result_int ) based on a bit selector signal (selector ), with the bus output 
clocked through a final register (result ).  

Procedural Assignments

Procedural assignments are different from continuous assignments in that proced
assignments are used to update register variables. Assignments may be made to
complete variable, or to a bit select or part select of the register variable. 

module  tri_asgn (source, ce, wrclk, selector, result) ;
input  [0:3]source ;
input  ce, wrclk ;
input  [0:1]selector ;
output  result ;
reg  [0:3]intreg ;
reg  result ;
// net declaration assignment
wire  [0:1]sel = selector ;     
tri  result_int ;
 
// continuous assignment statement

assign  
result_int = (sel == 2’b00)? intreg[0] : 1’bZ ,
result_int = (sel == 2’b01)? intreg[1] : 1’bZ ,
result_int = (sel == 2’b10)? intreg[2] : 1’bZ ,
result_int = (sel == 2’b11)? intreg[3] : 1’bZ ;

always @( posedge wrclk)
begin

if  (ce)
begin

        intreg = source;
result = result_int ;

end
end  
 
endmodule
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Both blocking and non-blocking procedural assignments are allowed. 

Blocking assignments, specified with the “=” operator, are used to designate 
assignments that must be executed before the execution of the statements that fo
in a sequential block. This means that the value of a register variable in a blockin
assignment is updated immediately after the assignment. 

Non-blocking assignments, specified with the “<=” operator, are used to schedule
assignments without blocking the procedural flow. It can be used whenever regis
assignments within the same time step can be made without regard to order or 
dependence upon each other. Also, in contrast to the blocking assignment, the va
a register variable in a non-blocking assignment is updated at the end of the time
This behavior does not affect assignments done in the dataflow environment, sin
assignments are done concurrently there. However, in a sequential block, such a
always block, the value of the variable in a non-blocking assignment changes on
after the complete execution of the sequential block. 

Refer to the Verilog Language Reference Manual for more information on 
non-blocking procedural assignments. 

Always Blocks 

Always  blocks are sections of sequentially executed statements, as opposed to 
dataflow environment, where all statements are executed concurrently. In an always  
block, the order of the statements DOES matter. In fact, always  blocks resemble the 
sequential coding style of high level programming languages. Also, always  blocks 
offer a variety of powerful statements and constructs that make them very suitabl
high level behavioral descriptions.

An always  block can be called from the dataflow area. Each always  block is a 
sequentially executed program, but all always  blocks run concurrently. In a sense, 
multiple always  blocks resemble multiple programs that can run simultaneously. 
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Always  blocks communicate with each other via variables of type reg  which are 
declared in the module . Also, the ports and wires  defined in the module  can be 
used in the always  blocks.

This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk ), store the value internally in a register (intreg ) if a chip 
enable (ce ) is active, while it produces one bit of the register constantly (not 
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked ou
through the register result. 

The description consists of two always  blocks, one to write the value into the interna
register and clock the output, and one to read from it. The two always  blocks 
communicate via the register values intreg  and result_int . 

module  mux_case (source, ce, wrclk, selector, result);
input  [0:3]source;
input  ce, wrclk;
input  [0:1]selector;
output  result;
reg  [0:3]intreg;     
reg  result, result_int;
 
always @(posedge  wrclk)
begin

if  (ce)
intreg = source;

result = result_int;
end
 
always  @(intreg or selector) 

case  (selector)
2’b00: result_int = intreg[0];
2’b01: result_int = intreg[1];
2’b10: result_int = intreg[2];
2’b11: result_int = intreg[3];

endcase
 
endmodule
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The first always  block is a synchronous block. As is explained later, the always  
block executes only if the event expression at the event control evaluates to true
this case, the event expression evaluates to true when a positive edge occurs on
input wrclk  (event expression posedge  wrclk ). Each time the edge occurs, the 
statements inside the always  statement are executed. In this case, the value of the
input source  is loaded into the internal variable intreg  only if ce  is ’1’ .  If ce  is 
’0’ , intreg  retains its value. In synthesis terms, this translates into a D flip-flop
clocked on wrclk , and enabled by ce . Also, the intermediate output result_int  is 
loaded into the output result  (a D flip-flop clocked on wrclk ). 

The second always  block is a combinational block. In this case, the event express
evaluates to true when either intreg  or selector  changes. When this happens, th
statements inside the always  statement are executed, and the output result_int  
gets updated depending on the values of intreg  and selector . Note that this leads 
to combinational behavior (essentially a multiplexer), since result_int  only 
depends on intreg  and selector , and each time either of these signals changes
result_int  gets updated. 

The reason for separating the two always  blocks is to avoid the creation of a registe
for the variable result_int . result_int  must be of reg  data type, because it is
assigned in an always  block, but it does not need to be registered logic. 

Not all constructs, or combinations of constructs, in an always  block lead to behavior 
that can be implemented as logic. More information about synthesizable Verilog 
constructs is given in Chapter 7, “The Art of Verilog Synthesis.”

The Exemplar synthesis tools support empty always  statements.

Note that constants on the sensitivity list have no effect in simulation or synthesis.
kind of expression inside a sensitivity list is legal in Verilog and is accepted by th
synthesis tools. For synthesis, all the leaf level identifiers of the expression are 
considered to be in the sensitivity list, so some simulation mismatch might be see
after synthesis.

always  @ (inp1[0:2] or 3'b011 or {a, b}) // allowed 
.........
.........
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Module Instantiation

Module instantiation can be used to implement individual gates or cells, macros, 
add hierarchy to your design. Here is an example that generates an address for R
and instantiates the RAM cells:

For this example, if the RAM module RAM_32x1 is a cell or macro in a library, the 
synthesis tools will implement that cell or macro in the output netlist. To do that, 
library in which the cell or macro exists must be specified as the Input Design 
Technology. If no Input Design Technology is specified, the synthesis tools implem
the RAM module as a black box in the output netlist, with inputs and outputs defin
but no functionality.

module  scanner (reset, stop, load, clk, load_value, data) ;
input  reset, stop, load, clk;
input  [3:0]load_value;
output  [3:0]data;
reg  [4:0] addr;
 
//  Instantiate and connect 4 32x1-bit rams

RAM_32x1 U0 (.a(addr), .d(load_value[0]), .we(load), .o(data[0]) );
RAM_32x1 U1 (.a(addr), .d(load_value[1]), .we(load), .o(data[1]) );
RAM_32x1 U2 (.a(addr), .d(load_value[2]), .we(load), .o(data[2]) );
RAM_32x1 U3 (.a(addr), .d(load_value[3]), .we(load), .o(data[3]) );

//  Generate the address for the rams 
always  @( posedge  clk or posedge  reset)
begin

if  (reset) 
addr = 5’b0 ;

else if  (~stop ) 
addr = addr + 5’b1 ;

end  
endmodule
    
module  RAM_32x1 ( a, we, d, o);
input  [4:0] a;
input  we, d ;
output  o;
endmodule
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Note – Galileo and Leonardo use different techniques to indicate which source 
technology to use. Galileo uses the -source= lib_name switch. Leonardo requires 
that you load the source technology by using the load_library  lib_name command 
before reading the design in the database.

The Exemplar synthesis tools support empty named port connections, e.g., 

Parameter Override During Instantiation of Module

Parameter overriding during module instantiation (as shown in the example) is 
supported by the synthesis tools.

Defparam Statement

When using the defparam statement, parameter values can be changed in any m
instance throughout the design, provided the hierarchical name of the parameter 
used.

NOTE:  In the synthesis tool, the hierarchical name is restricted to single level on
This means that when the defparam statement is used, the user will be able to ov
any parameter value of an instance in the current module only.

nd2 x1 (.a(f), .b());

module  top (a, b);
input  [0:3] a;
output  [0:3] b;

do_assign #(4) name (a, b);
endmodule
module  do_assign (a, b);

parameter  n = 2;
input  [0:n-1] a;
output  [0:n-1] b;

assign  b = a;
endmodule
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Example:

module top (a, b);

input  [0:3] a;

output [0:3] b;

wire  top;

do_assign name (a, b);

defparam  name.n = 4;

endmodule

module  do_assign (a, b);

parameter  n = 2;

input  [0:n-1] a;

output  [0:n-1] b;

assign  b = a;

endmodule
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’unconnected_drive’ and ’nounconnected_drive’

These directives are specified as outside modules only. ’unconnected_drive ’ 
takes either pull0  or pull1  as a parameter and causes all the unconnected inpu
ports to be pulled down or up, according to the parameter.  ’nounconnected_ 
drive ’ restores the normal condition (where the unconnected input ports are 
connected to high-Z).

Operators

This section describes the operators available for use in Verilog expressions. Bef
discussing operators, a brief summary of the operands that the operators act on 
appropriate. 

Operands

An operand in an expression can be one of the following:

• Number

• Net (including bit-select and part-select)

• Register (including bit-select and part-select)

• A call to a function that returns any of the above

’unconnected_drive’ pull1
module  with_unconn_port (o, i);
output  o;
input  i;
assign  o = i;
endmodule
’nounconnected_drive’
module  test (i, o1, o2);
input  i;
output  o1, o2;
with_unconn_port I1 (o1,);   // o1 = 1
with_unconn_port I2 (o2, i); // o2 = i
endmodule
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Bit-selects take the value of a specific bit from a vector net or register. Part-select
a set of two or more contiguous bits from a vector net or register. For example:

...
wire  bit_int ;
reg  [0:1] part_int ;
reg  [0:3] intreg;

bit_int = intreg[1] ; // bit-select of intreg assigned to bit_int
part_int = intreg[1:2] ;// part-select of intreg assigned to part_int
...
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The operators supported by the Exemplar synthesis tools are listed in Table 6-1.

Table 6-1  Verilog Language Operators

Operator Description

+     -     *       / arithmetic

<     >     <=    >= relational

== logical equality

!= logic inequality

! logical negation

&& logical and

|| logical or

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

^ bit-wise exclusive or

^~ or ~^ bit-wise equivalence

& reduction and

| reduction or

^ reduction xor

<< left shift

>> right shift

? : conditional

{} concatenation
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Arithmetic Operators

The Exemplar synthesis tools support the following arithmetic operators:

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X
The “/” operator is supported in the case where the divisor is a constant and a pow
two.

Relational and Equality Operators

The Exemplar synthesis tools support the following relational and equality operat

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X

=== and !== Operators are Treated as == and != 

=== and !== operators are treated as == and != for synthesis purposes if either o
the operands is nonconstant. If both the operands are constant, they can be used
compare metalogical values. In simulation, the difference between == and === is
one can compare metalogical characters exactly with ===  but not with ==. Any 
metalogical character causes the output of == to be unknown x. The difference 
between != and !== is the same.

+ - * /

< > <= >= == !=
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Logical Operators

The Exemplar synthesis tools support the following logical operators:

Bit-Wise Operators

The Exemplar synthesis tools support the following bit_wise  operators:

module  triple_eq_neq (in1, in2, O);
output  [0:10] O;
input  [0:2] in1, in2;
assign
   O[0] = 3'b0x0 === 3'b0x0, // output is 1
   O[1] = 3'b0x0 !== 3'b0x0, // output is 0
   O[2] = 3'b0x0 === 3'b1x0, // output is 0
   O[3] = 3'b0x0 !== 3'b1x0, // output is 1O[4]=in1===3'b0x0,

 // LHS is non constant so this
                             // produces warning that comparison
                             // metalogical character is
                             // with zero. output is 0
   O[5] = in1 !== 3'b0x0,    // LHS is non constant so this
                             // produces warning that comparison
                             // with metalogical character is
                             // zero.output is 1,because it
                             // checks for not equality 
   O[6] = in1 === 3'b010,    // normal comparison
   O[7] = in1 !== 3'b010,    // normal comparison
   O[8] = in1 === in2,       // normal comparison
   O[9] = in1 !== in2,       // normal comparison
   O[10] = 3'b00x === 1'bx;  // output is 1
endmodule

!    &&    ||

~ & | ^ ^~ ~^
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These operators perform bit-wise operations on equivalent bits in the operands.  

Reduction Operators

The Exemplar synthesis tools support the following reduction operators:

These operators perform reduction operations on a single operand. Operations a
performed on the first and second bits of the operand, then on the result of that 
operation with the third bit of the operand, until the limit of the vector is reached. T
result is a single bit value. 

The following operators: 

are negations of the “&”, “|”, and “^” operators.

Shift Operators

The Exemplar synthesis tools support the following shift operators:

Conditional Operator

The conditional operator statement has the following syntax:  

& | ^

~& ~| ~^

<< >>

conditional_expression ? true_expression : false_expression
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The result of this operation is true_expression  if conditional_expression  
evaluates to true, and false_expression  if false. In the following example, result 
is assigned the value of intreg[0]  if sel = 2’b00 , otherwise result is 
assignedZ:

Concatenation

The concatenation of bits from multiple expressions is accomplished using the 
characters { and }. For example, the following expressions are equivalent:

 For a = 5’b11010, c = 5’b10101, the result is foo = 5’b11001.  

‘ signed and ‘ unsigned Attributes  on Operators

‘signed  and ‘unsigned  attributes change the type of a particular operator.  
Comparison between two bit vectors are always done unsigned, but if the function
needs to be signed, a ‘signed  attribute can be used just after the comparator.

Similarly, an ‘unsigned  attribute can be used to perform an unsigned operation 
between two integers.

...
output  result ;
reg  [0:3} intreg ;
wire  [0:1] sel ;

assign result = (~sel[0] && ~sel[1]) ? intreg[0] : 1’bZ ;
...

foo = {a[4:3], 1’b0, c[1:0]} ; 
foo = {a[4], a[3], 1’b0, c[1], c[0]} ;

input  [0:3] A, B;
output  o;
assign  o = A < ‘signed B; // Signed comparator.
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The shift operators always do a logical shift. By using the ‘signed  directive, they 
can be made to do an arithmetic shift. Arithmetic right shift shifts in the sign bit a
the left shift shifts in the least significant bit (e.g., 4’b0001  << ‘signed  1 produces 
4’b0011 ).

Operator Precedence

The operator precedence rules determine the order in which operations are perfo
in a given expression. Parentheses can be used to change the order in an expre
The operators supported by the synthesis tools are listed below in order from hig
precedence to lowest, with operators on the same line having the same preceden

Statements

This section presents information on the use of if-else , case  and for  statements 
for specifying designs.  

If-Else Statements

The if-else  conditional construct is used to specify conditional decisions. As an
example, here is the design from “Procedural Assignments,” with the multiplexer 
described with this construct instead of the case  statement: 

+ - ! ~ (unary)
* / (binary)
+ - (binary)
<< >>
< > <= >=
== !=
&
^ ^~ ~^
|
&&
||
? : (ternary)
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This example describes a circuit that can load a source vector of 4 bits, on the ed
a write clock (wrclk ), store the value internally in a register (intreg ) if a chip 
enable (ce ) is active, while it produces one bit of the register constantly (not 
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked ou
through the register result. 

module  mux_case (source, ce, wrclk, selector, result);
input  [0:3]source;
input  ce, wrclk;
input  [0:1]selector;
output  result;
reg  [0:3]intreg;     
reg  result, result_int;
 
always  @( posedge  wrclk)
begin
// if statement for chip enable on register

if  (ce)
intreg = source;

result = result_int;
end

always  @(intreg or  selector) 
begin
// if-else construct for multiplexer functionality

if  (sel == 2’b00)
result_int = intreg[0] ;

else if  (sel == 2’b01)
result_int = intreg[1] ;

else if  (sel == 2’b10)
result_int = intreg[2] ;

else if  (sel == 2’b11)
result_int = intreg[3] ;

end
 
endmodule
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Case Statements

If many conditional clauses have to be performed on the same selection signal, a case  
statement is a better solution than the if-else  construct. The following example 
describes a traffic light controller (state machine with binary encoding):

module  traffic (clock, sensor1, sensor2,
red1, yellow1, green1, red2, yellow2, green2);

input  clock, sensor1, sensor2;
output   red1, yellow1, green1, red2, yellow2, green2;
parameter st0 = 0, st1 = 1, st2 = 2, st3 = 3,

st4 = 4, st5 = 5, st6 = 6, st7 = 7;
reg  [2:0] state, nxstate ;
reg  red1, yellow1, green1, red2, yellow2, green2;
 
always  @( posedge  clock)

state = nxstate;

always  @(state or  sensor1 or  sensor2)
begin

red1 = 1’b0; yellow1 = 1’b0; green1 = 1’b0;
red2 = 1’b0; yellow2 = 1’b0; green2 = 1’b0;

case  (state)
st0: begin

green1 = 1’b1;
red2 = 1’b1;
if  (sensor2 == sensor1) 

nxstate = st1;
else if  (~sensor1 & sensor2) 

nxstate = st2;
 end

st1: begin  
green1 = 1’b1;
red2 = 1’b1;
nxstate = st2;

  end
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st2: begin  
green1 = 1’b1;
red2 = 1’b1;
nxstate = st3;

 end
st3: begin  

yellow1 = 1’b1;
red2 = 1’b1;
nxstate = st4;

 end
st4: begin  

red1 = 1’b1;
green2 = 1’b1;
if (~sensor1 & ~sensor2) 

nxstate = st5;
else if (sensor1 & ~sensor2) 

nxstate = st6;
 end

st5: begin  
red1 = 1’b1;
green2 = 1’b1;
nxstate = st6;

 end
st6: begin  

red1 = 1’b1;
green2 = 1’b1;
nxstate = st7;

 end
st7: begin  

red1 = 1’b1;
yellow2 = 1’b1;
nxstate = st0;

 end
endcase

end
endmodule
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Case Statement and Multiplexer Generation

The case  statement, as defined by the Verilog LRM, is evaluated by order, and th
first expression to match the control expression is executed (during simulation). F
synthesis, this implies a priority encoding. However, in many cases the case  
statement is used to imply a multiplexer. This is true whenever the case  conditions 
are mutually exclusive (the control expressions equals only one condition at any g
time).  

In Verilog, the case items can be non-constants also. In such a situation, the syn
tools cannot detect that the case  statements are parallel. Users can, however, use 
global switch -parallel_case  for Galileo or set the Tcl variable 
parallel_case  to TRUE for Leonardo to inform the tool that all the case  
statements in the design a mutually exclusive.

For example, the following Verilog code:

results in the equation: 

If parallel case is used, the following equation will be synthesized: 

This equation is simpler than the first. For a bigger case  statement the amount of 
logic reduction can be significant. This can not be determined automatically since
case items are nonconstants.

Note – The use of this option can cause simulation differences between behaviora
post-synthesis netlists.

case  (1’b1)
s[0]: o = a;
s[1]: o = b;

endcase

o = s[0] * a  + !s[0] * s[1] * b;

o = s[0] * a  + s[1] * b;
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Automatic Full Case Detection

The casex  statement below is full case (it covers all possible values 000 to 111). 
default statement is not necessary and is ignored by the synthesis tools, resulting
warning message. The synthesis tools also do full-case detection for normal case  and 
casez  statements. 

The synthesis tools do full coverage analysis for the if -then -else  structure. The 
following example is considered a full if -then -else . The last else  is ignored and 
a warning is issued.

input  [0:2] sel;
casex  (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default : ....

endcase

wire  [0:1] data;
if  (data == 2)
  ...........
else if  (data == 1)
  ...........
else if  (data == 3)
  ...........
else if  (data == 0)
  ...........
else
 // Ignored for synthesis purpose
endmodule
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Automatic Parallel Case Detection

casex  statements are priority-encoded by definition. The Exemplar synthesis too
automatically detect parallel case and produce a warning message saying that ca
conditions are mutually exclusive. The following case  statement is treated as paralle
case.

The synthesis tools do parallel case detection for case  and casez  statements. It also 
extracts the parallelism of a mutually exclusive if -then -else  structure as shown 
below.

input  [0:2] sel;
casex  (sel)

3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default : ....

endcase

wire  [0:1] data;
if  (data == 2)
  ...........
else if  (data == 1)
  ...........
else if  (data == 3)
  ...........
else if  (data == 0)
  ...........
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casex Statement

The casex  statement is used when comparison to only a subset of the selection s
is desired. For example, in the following Verilog code only the three least significa
bits of vect  are compared to 001 . The comparison ignores the three most significa
bits. 

For more information on comparisons to X and Z, refer to Chapter 8, “Verilog and
Synthesis of Logic.” 

casez Supported

casez  is used in Verilog to specify “don't care” bits of the case tags. The ’z’ s in the 
case tags are not compared when a comparison between the case expression sel  and 
the tags is done.

’case’ and ’default’ Statements

The Exemplar synthesis tools allow the default statement to appear anywhere in 
case , casez , or casex  statement, and supports the case  statement with only one 
default entry. 

casex  (vect)
6’bXXX001 : <statement> ;

// this statement is executed if vect[2:0] = 3’b001 
endcase

...
casez  (sel)

3'b10z: ...
3'bz10: ...
3'bz11: ...
3'b00z: ...
default : ....

endcase
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for  loops are used for repetitive operations on vectors. In the following example, e
bit of an input signal is ANDed with a single bit enable signal to produce the resu

for  loops are supported on if they are bounded by constants.

...
input  clk ;
reg  [4:0] input_signal, result ;
reg  enable ;
 
always  @ ( posedge  clk)

for  (i = 0; i < 5; i = i + 1)
result[i] = enable & input_signal[i] ;

...
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Disable Statement 

The disable statement disables a named block or a task. Disabling of one block f
another block is supported only if the second block is contained in the first one. Be
is an example of disabling a named block. 

module  add_up_to (up_to_this, the_out);
input  [0:3] up_to_this;
output  the_out;
reg  [0:7] the_out;
integer  i;

always  @ (up_to_this)
begin : blk

the_out = 0;
for  (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if  (i == up_to_this) disable  blk;

end
end
endmodule

//Below  is an example of disabling a task.
module  add_up_to (up_to_this, the_out);
input  [0:3] up_to_this;
output  the_out;
reg  [0:7] the_out;

always  @ (up_to_this)
begin

add_upto_this (up_to_this, the_out);
end
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forever, repeat, while and Generalized Form of for Loop

forever , repeat , while , and the generalized form of the for  loop are supported 
as long as they are bounded by constants. In the following forever  example, the 
system counts the number of 1s in the input vector. 

Note – The forever  loops only twice (which can be determined during compilatio

task   add_upto_this;
input  [0:3] up_to_this;
output  [0:7] the_out;
integer  i;
begin

the_out = 0;
for  (i = 0; i < 16; i = i + 1)
begin

the_out = the_out + i;
if  (i == up_to_this) disable  add_upto_this;

end
end
endtask
endmodule

module  forever_example (in, out);
input  [0:1] in;
output  out;
reg  [0:1] out;
 
always  @ (in)
begin :label
integer  tmpcount;
reg  [0:1] in_tmp;
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Note – If any loop construct is NOT bound by constants, the synthesis tools issue
“iteration limit reached” error.

always  @ (in)
begin :label
integer  tmpcount;
reg  [0:1] in_tmp;
 

out = 0;
in_tmp = in;
tmpcount = 0;
forever  
begin

if  (in_tmp[1])
out = out + 1;

in_tmp = in_tmp >> 1;
tmpcount = tmpcount +1;
if  (tmpcount == 2) disable label;

end
end
endmodule

module  repeat_example (i, o);
input  i;
output  o;
reg  o;
 
always  @ (i)
begin

o = i;
repeat  (4'b1011)

o = ~o; // o = ~i
end
endmodule
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Functions and Tasks

Pieces of Verilog can be grouped together in functions and tasks, which can then
used as subprograms in the Verilog code. This is useful for repeated code, or for
readability of the main module.

Tasks and functions appear similar, but are used in different ways. A task is a 
subprogram with inputs and outputs, and replaces any piece of verilog code in a 
module. Expressions in a task can be both combinational and sequential.

Functions have only inputs and returns a value by its name. Functions are purely
combinational.

Functions

Functions are defined inside a module and can be freely used once they are defi
Functions are always used in an expression, behavioral or dataflow:

or

assign  y = func(a,b);

x = func(z);
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An example of a function is given below.  

module  calculator ( a, b, clk, s, operator );
input  [7:0] a, b;
input  clk;
input  [1:0] operator;
output  [7:0] s;
reg  [7:0] s;
parameter  ADD = 2’b00, SUB = 2’b01, MUL = 2’b10;

 
function  [15:0] mult;

input  [ 7:0] a, b ;
reg  [15:0] r;
integer  i;

begin
if  (a[0] == 1) 

r = b;
else

r = 0;
for  (i = 1; i < 7; i = i + 1) begin

if  (a[i] == 1 )
r = r + b << i ;

end  
mult = r;

end
endfunction
 
always  @ ( posedge  clk) 
begin

case  (operator)
ADD: s = a + b ;
SUB: s = a - b ;
MUL: s = mult(a,b);

endcase  
end
endmodule
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Tasks

Tasks are always displayed as statements:

The Exemplar synthesis tools support empty tasks.

An example of a task is presented below.

my_task(a,b,c,d);

task  demux ( state, load, bait, enable, ready, write, read );
input  [2:0] state;
output  load, bait, enable, ready, write, read;
parameter   LOAD = 3’b000, WAIT = 3’b100, ENAB = 3’b110, 

READ = 3’b111, WRIT = 3’b011, STRO = 3’b001; 
 

case (state)
        LOAD: 

{state, load, bait, enable, ready, write, read} = 6’b100000;
        WAIT: 

{state, load, bait, enable, ready, write, read} = 6’b010000;
        ENAB: 

{state, load, bait, enable, ready, write, read} = 6’b001000;
READ: 

{state, load, bait, enable, ready, write, read} = 6’b000100;
WRIT: 

{state, load, bait, enable, ready, write, read} = 6’b000010;
STRO: 

{state, load, bait, enable, ready, write, read} = 6’b000001;
endcase

endtask
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Inout Ports in Task

The Exemplar synthesis tools support inout ports in a task  statement. Any value 
passed through inout ports can be used and modified inside the task . 

module  inoutintask (i, o1, o2);
input  i;
output  o1, o2;
reg  r, o1, o2;
task  T ;
inout  io;
output  o;
begin

o = io;
io = ~io;

end
endtask
always  @ (i)
begin

r = i;
T (r, o1); // o1 = i, r = ~i
o2 = r;   // o2 = ~i;

end
endmodule
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Access of Global Variables from Functions and Tasks

Global variables can be accessed for both reading and writing.

System Task Calls

The Exemplar synthesis tools accept system task calls. System task calls are ign
and a warning is issued. 

System Function Calls

The Exemplar synthesis tools accept system function calls. The value 0 is assume
system function calls, and a warning is issued.

module  x (clk, reset, i1, i2, o);
input  clk, reset, i1, i2;
output  o;
reg  o;
reg  [0:1] state;

 task  T; //without any port
begin
    case  (state)
      2'b00: o = i1;
      2'b01: o = i2;
      2'b10: o = ~i1;
      2'b11: o = ~i2;
    endcase
    state  = state + 1; // next state
end
endtask
 
always  @ (posedge clk or  posedge reset)
if (reset) begin
    state = 0;
    o = 0;
end
 else  T;
endmodule
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Initial Statement

The Exemplar synthesis tools accept initial  statements. The actual value is 
ignored.

Compiler Directives

Verilog supports a large list of compiler directives. Most of them are useful for 
simulation, but are meaningless for synthesis purposes. A few directives are supp
by the synthesis tools, and those directives have to do with macro substitution an
conditional compilation. Following is a list of these directives:

Note – The symbol exemplar  is predefined by the synthesis tools.

Therefore, the statement: 

will always be true, and the else part will always be false. This is useful if some p
need to be excluded from synthesis, but used by simulation or other tools. For 
example:

‘define 
‘ifdef
‘else
‘endif
‘include
‘signed
‘unsigned
‘unconnected_drive
‘nounconnected_drive

‘ifdef exemplar 
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‘ifdef exemplar
// do nothing here when running simulator
‘else
initial 
// do all initialization here. This will be ignored by the synthesis 
tools.
‘endif
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This chapter explains how particular logic constructs can be synthesized with Ver
restrictions taken into account. 

Registers, Latches, and Resets 

Verilog synthesis produces registers and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optim
automatically. Hence, the style of coding combinational behavior, like if -then -else  
and case  statements, has little affect on the final circuit result, but the style of cod
sequential behavior has significant impact on your design.

This section shows how sequential behavior is produced with Verilog, so that you
understand why registers are generated at certain places and why not in others.

Most examples explain the generation of these modules with short Verilog descrip
in an always  block. 
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 Level-Sensitive Latch

This first example describes a level-sensitive latch:

The sensitivity list is required, and indicates that the always  block is executed 
whenever the signals ena  or input_foo  change. Also, since the assignment to the
register output_foo  is hidden in a conditional clause, output_foo  cannot change 
(preserves its old value) if ena  is 0. If ena  is 1, output_foo  is immediately 
updated with the value of input_foo , whenever that changes. This is the behavior 
a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synt
tools translate the initially generated latches to the gate equivalent of the latch, us
combinational loop.

Edge-Sensitive Flip-flops

An edge triggered flip-flop is generated from a Verilog description if a variable 
assignment is executed only on the leading (or only on the trailing) edge of anoth
variable. For that reason, the condition under which the assignment is done must
include an edge-detecting construct. There are a number of edge detecting attribu
Verilog. The two most commonly constructs are posedge  and negedge . 

The posedge  construct detects transitions (is true) for 0 to 1. The negedge  
construct detects transitions from 1 to 0. 

...  
input  input_foo, ena ; 
reg  output_foo ;
...  
always  @ (ena or  input_foo)   

if  (ena)   
output_foo = input_foo ;       

...
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Here is one example of the posedge  construct, used in the condition clause in an 
always  block. The synthesis tools generate an edge-triggered flip-flop out of this
behavior, with output_foo  updated only if clk  shows a leading edge.

If the posedge  construct is not in the sensitivity list of the always  block, a warning 
is issued that input_foo  is not on the sensitivity list.

 Synchronous Sets and Resets

All conditional assignments to variable output_foo  inside the if  clause translate 
into combinational logic in front of the D-input of the flip-flop. For instance, we ca
make a synchronous reset on the flip-flop by doing a conditional assignment to 
output_foo :  

Variables reset  and input_foo  should not be included on the sensitivity list 
executing this block should not occur when they change. 

....  
input  input_foo, clk ;  
reg  output_foo ;
....  
always  @ ( posedge  clk)   

output_foo = input_foo ; 
....  

...
input  input_foo, clk, reset ;
reg  output_foo ;
...
always  @ ( posedge  clk)

if  (reset) 
output_foo = 1’b0 ;

else  
output_foo = input_foo ;

...
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Asynchronous Sets and Resets

If we want the reset signal to have immediate effect on the output, but still let the
assignment to output_foo  from input_foo  only happen on the leading clock 
edge, we require the behavior of an asynchronous reset. 

Now reset  HAS TO BE on the sensitivity list. If it is not there, Verilog semantics
require that the always  block will not execute if reset  changes. It will execute only 
if a positive change in clk  is detected. 

Asynchronous set and reset can both be used. This results in combinational logic
driving the set and reset input of the flip-flop of the target signal. The following co
fragment shows the structure of such a process: 

There can be several asynchronous else if  clauses, but the synchronous 
assignments have to be the last one in the if  clause. A flip-flop is generated for each
signal that is assigned in the synchronous signal assignment. The asynchronous c
result in combinational logic that drives the set and reset inputs of the flip-flops. 

...  
input  input_foo, clk, reset ;
reg  output_foo ;
...
always  @ (posedge clk or posedge reset)

if  (reset) 
output_foo = 1’b0 ;

else  
output_foo = input_foo ;

...

always  @(<edge of clock> or <edge_of_asynchronous_signals> )    
if  (<asynchronous_signal>)    

 <asynchronous signal_assignments>        
else if  (<asynchronous_signal>)    

 <asynchronous signal_assignments>    
...

else     
 <synchronous signal_assignments>        
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Clock Enable

It is also possible to specify an enable signal in a process. Some technologies 
(specifically Xilinx) have a special enable pin on their basic flip-flop. The synthes
tools recognize the function of the enable from the Verilog description and genera
flip-flop with an enable signal from the following code fragment: 

If an enable pin does not exist in the target technology a multiplexer is generated
front of the data input of the flip-flop. 

Assigning I/O Buffers from Verilog 

There are three ways to assign I/O buffers to your design from Verilog: 

• Run the synthesis tools in “chip” mode

• Use the buffer_sig  command

• Use component instantiation in Verilog of the buffer you require. 

The buffer_sig  command or the direct component instantiation will overwrite an
default buffer assignment that the synthesis tools would do in “chip” mode. 

The buffer_sig  command is implemented differently for Galileo and Leonardo. 
For Galileo, you put the command in the control file. For Leonardo, you use the 
buffer_sig  procedure. 

...  
input  input_foo, clk, enable ;
reg  output_foo ;
...
always  @ ( posedge  clk)
  if (enable) 

output_foo = input_foo ;
...
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These approaches can be used together by specifying certain I/O buffers in the Ve
source description and others in the control file, with the remaining buffers assign
automatically by the synthesis tools. The order the buffers are inserted in the des
important:

1. Components in the Verilog source are instantiated from the source technology

2. Buffers are added by using the buffer_sig  command from the target technology

3. Terminals without identifiable I/O gates have buffers inserted from the target 
technology. 

In all cases, the names of the original I/O terminals are preserved.

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to run the synthesis tools in chip mode. (T
the default.) This automatically assigns appropriate input, output, tristate, or 
bidirectional buffers to the ports in your module definition. For example, 

generates an INPUT_BUFFER for inp , and an OUTPUT_BUFFER for outp . outp  
becomes a TRISTATE_BUFFER if it was assigned in the following fashion: 

The above example also holds for buses. The sections “Tristate Buffers” on page
“Bidirectional Buffers” on page 10 in this chapter provide more details on how to 
generate tristate buffers and bidirectional buffers from Verilog.

module  buffer_example (inp, outp, inoutp) ;    
input  inp ;
output  outp ;
inout  inoutp;
endmodule  

tri  outp ;
assign outp = ena ? inp : 1’bZ
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Manual Assignment Using the Control File

Special buffers, e.g., <gate> , can be assigned using the control file. The comman

where <gate>  is the name of a gate on the target technology, connects signal clk  to 
the input of the external clock buffer <gate> . An intermediate node called 
clk_manual  appears on CLOCK_BUFFER’s output. Gates specified in the control 
file are searched for in the target technology library. 

Use of the control file together with chip mode, to manually control only critical 
buffers, is accepted procedure when using the synthesis tools.

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the Verilog source file with component 
instantiation. In particular, if you want a specific input or output buffer to be prese
on a specific input or output, component instantiation is a very powerful method: 

In this example, component instantiation forces an OUTPUT_FF buffer (complex I/O 
output/flip-flop buffer) on the bidirectional pin inoutp. Also an input buffer 
INPUT_BUFFER is specified to pick up the value from inp to be used internally. 

In the case of component instantiation of I/O buffers, a source technology must b
specified to assure that the synthesis tools take the instantiated I/O buffer from th
right library. If no source library is specified, an error is issued. If the source 

BUFFER_SIG <gate> clk

module  special_buffer_example (inp, clk, outp, inoutp) ; 
input  inp, clk ;
output  outp ;
inout  inoutp ;
wire  intern_in, intern_out, io_control ;

OUTPUT_FF A1(.c(clk), .d(intern_out), .t(io_control),.o(inoutp));
INPUT_BUFFER A2(.i(inp), .o(intern_in)) ;

endmodule
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technology is specified, the components are instantiated from this library, which 
automatically gives them the right functionality. The synthesis tools recognize that
I/O pin is properly buffered, and does not add default buffers around it.

Tristate Buffers 

Tristate buffers and bidirectional buffers (covered in the next section) are very eas
generate from a Verilog description. 

Example 1:  

Example 2: 

// conditional expression
assign  o1 = oe1 ? d1 : 1’bz;
assign  x = oe2 ? d2 : 1’bz;
assign  o1 = x;
        
// if statement
always  @ (oe3 or d3)

if  (oe3)
o2 = d3;

else
o2 = 1’bz;

        
// case statement
always  @ (oe4 or d4)

case  (oe4)
default  : o2 = 1’bz;
1’b1    : o2 = d4;

endcase

module  tristate (input_signal, ena, output_signal) ;
input  input_signal, ena ;             
output  output_signal ;
 

assign  output_signal = ena ? input_signal :  1’bz ;    
 
endmodule  
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Note that in the conditional clause of the assign statement, both input_signal  and 
ena  can be full expressions. The Exemplar synthesis tools generate combination
logic driving the input or the enable of the tristate buffer for these expressions.

However, it is illegal to use the ’z’  value in an expression. It is also illegal to use th
’z’  value in any form inside a clocked always  block.

Example 3: 

Normally, simultaneous assignment to one signal in Verilog is not allowed for 
synthesis, since it would cause data conflicts. However, if a conditional ’Z’  is 
assigned in each assignment, simultaneous assignment resembles multiple trista
buffers driving the same bus.  

You can still introduce a data conflict with these simultaneous assignments to 
output_signal , by making both ena_1  and ena_2 1’b1 . The synthesis tools do 
not check for a possible bus conflict. Make sure that you can never have that 
possibility by carefully generating the enable signals for the tristate conditions.

These examples show assignments to outputs. However, it is certainly possible to
the assignments to an internal wire as well. This might be used for generating bu
and is discussed in “Buses” on page 10 in this chapter.

If the target technology does not have any internal three-state drivers, Galileo ca
transform the three-state buffers into regular logic with the -tristate  option. 
Leonardo performs this transformation when the tristate_map  variable is set to 
TRUE.

assign   output_signal = input_signal & 1’bz;

module  tristate_example_2 (input_signal_1, input_signal_2, ena1, ena2, 
output_signal) ;
input  input_signal_1, input_signal_2, ena1, ena2 ;
output  output_signal ;
 

assign  output_signal = ena1 ? input_signal_1 : 1’bz ;
assign  output_signal = ena2 ? input_signal_2 : 1’bz ;

endmodule
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Bidirectional Buffers 

Bidirectional I/O buffers can be coded in Verilog as follows: 

The difference with the previous examples is that in this case, the output itself is 
again internally. For that reason, the port bidir_port  is declared to be inout.

The enable signal ena  could also be generated inside the module instead of being
primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technolog
library. If there is no bidirectional buffer available, it selects a combination of a trist
buffer and an input buffer.

Buses

The examples given above all use single bits as signals. In reality, buses (arrays o
with tristatable (multiple) drivers) are often used. Buses are used both internally to
design and as I/O. For internal tristate buses, the bus signal should be declared 
tri  net. 

module  bidirectional (bidir_port, ena, ...) ; 
input  ena ;     
inout  bidir_port ;             
 

assign  bidir_port = ena ? internal_output : 1’bZ ;       
assign  internal_input = bidir_port ;
...  
// use internal_input       
...  
// generate internal_output    

endmodule  
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The following example describes a circuit that loads a source vector of 4 bits on 
edge of a clock (wrclk ), and stores the value internally in a register (intreg ) if the 
chip enable (ce ) is active. One bit of the register output is put on a tristate bus 
(result_int ), based on a 2-bit selector signal (selector ), with the bus output 
clocked through a final register (result ). For more information, refer to “Continuous
Assignments” on page 9.   

module  tri_asgn (source, ce, wrclk, selector, result) ;
input  [0:3]source ;
input  ce, wrclk ;
input  [0:1]selector ;
output  result ;
reg  [0:3]intreg ;
reg  result ;
wire  [0:1]sel = selector ;     
tri  result_int ;

// assignment to internal tristate bus
assign 

result_int = (~sel[0] && ~sel [1]) ? intreg[0] : 1’bZ ,
result_int = (sel[0] && ~sel [1])  ? intreg[1] : 1’bZ ,
result_int = (~sel[0] && sel [1])  ? intreg[2] : 1’bZ ,
result_int = (sel[0] && sel [1])   ? intreg[3] : 1’bZ ;

always  @( posedge  wrclk)
begin

 if  (ce)
intreg = source;

result = result_int ;
end 

endmodule
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In the following example of a tristate bus used for output, a source is loaded into
register (tbuf_in ) whose output is a set of tristate buffers.  

State Machines 

There are basically two forms of state machines, Mealy machines and Moore 
machines. In a Moore machine, the outputs do not directly depend on the inputs,
on the present state. In a Mealy machine, the outputs depend directly on the pre
state and the inputs. 

In general, a description of a state machine consists of descriptions of the state 
transitions, the output functions and a register function. Because of the register 
function, an always  block in Verilog is an appropriate way to describe a state 
machine. if -else -if  or case  statements in an always  block perform the state 
transition and output function descriptions.

module  tri_bus (d, clk, en, tbuf_out) ;
parameter  n = 8 ;
parameter  triZ = 8’bZ ;
input  [(n-1):0] d ;
input  clk, en ;
output  [(n-1):0] tbuf_out ;
reg  [(n-1):0] tbuf_in ;
 
assign tbuf_out = en ? tbuf_in : triZ ;
 
always  @ ( posedge  clk)

tbuf_in = d ;

endmodule
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In the following sections, the DRAM interface state machine shown in Figure 7-1 
used to illustrate state machine design using Verilog. 

 

Figure 7-1 DRAM Interface with Refresh
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Moore Machines

An example of a Moore machine is: 

module  moore (clk, cs, refresh, ras, cas, ready) ; 
input  clk, cs, refresh ;
output ras, cas, ready ;
 
parameter  s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;
reg  [2:0] present_state ;
reg  ras, cas, ready ;
 
always  @ (posedge clk)
begin

case  (present_state)
s0 : begin

if  (refresh) 
present_state = s3 ;

else  if  (cs) 
present_state = s1 ;

else             
present_state = s0 ;

  end
s1 : begin  

present_state = s2 ; 
  end

s2 : begin  
if  (~cs) 

present_state = s0 ; 
else       

present_state = s2 ;
  end

s3 : begin  
present_state = s4 ; 

  end
s4 : begin

present_state = s0 ;
  end
7-14 HDL Synthesis Manual



7

t it 

 split 
 be 
  

There are two always  blocks in the state machine description. The first is 
synchronized with the clock clk  and describes the state transitions. This block 
depends on the present state and the inputs. The second is not synchronized, bu
reacts immediately if there is a change in present_state . This second always  
block describes the functions of the outputs depending on the present state. The
into two processes is not absolutely necessary. The same functional behavior can
generated by merging the two always blocks into one. However, the logic that is 
generated is somewhat different, as explained below.

default : begin
present_state = s0 ;

  end
endcase  

end  
always  @ (present_state)
begin  

case  (present_state) 
s0 : begin  

ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;
  end

s1 : begin  
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

  end
s2 : begin  

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
  end

s3 : begin  
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

  end
s4 : begin  

ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;
  end

default : begin  
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

  end
endcase  

end  
endmodule
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Below is exactly the same Moore machine description, but this time it consists of 
one always block. In the first description, the outputs ras , cas  and ready  were 
assigned in an asynchronous (not clocked) always block as a function of 
present_state . They therefore appear as purely combinational logic. In the 
description below, the same outputs are generated in a clocked always block. 
Therefore, the outputs ras , cas  and ready  appear at the Q-output of flip-flops with
the combinational logic computing the value of these signals at the D-inputs of th
same flip-flops. 

The subtle differences between the two descriptions result in trading off timing 
behavior and logic circuitry. The first description builds a circuit where the outputs
ripple through logic after the clock edge. In the second description, the outputs ch
glitch-free at the clock-edge, and are stable immediately after that, but at the cost 
additional flip-flop for each output. 

module  moore_example_2 (clk, cs, refresh, reset, ras, cas, ready) ; 
input  clk, cs, refresh, reset ;
output  ras, cas, ready ;
 
parameter  s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;
 
reg  [2:0] present_state ;
reg  ras, cas, ready ;
 
always  @ ( posedge  clk or posedge  reset)
begin

if  (reset)  // asynchronous reset
begin

present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end  
else
begin

case (present_state)
s0 : 

if  (refresh) 
begin

present_state = s3 ;
ras = 1’b1; cas = 1’b0 ; ready = 1’b0 ;

end
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else if  (cs) 
begin

present_state = s1 ;
ras = 1’b0; cas = 1’b1 ; ready = 1’b0 ;

end
else             
begin

present_state = s0 ;
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
s1 :

begin  
present_state = s2 ; 
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s2 : 

begin  
if  (~cs) 
begin

present_state = s0 ; 
ras = 1’b1; cas = 1’b1 ; ready = 1’b1 ;

end
else       // cs = 1’b1
begin

present_state = s2 ;
ras = 1’b0; cas = 1’b0 ; ready = 1’b0 ;

end
end

s3 : 
begin  

present_state = s4 ; 
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
s4 :

begin  
present_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
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Note – This example also added an asynchronous reset to the design. 

Mealy Machines

So far, we have shown a number of examples of Moore machines. In a Mealy mac
outputs depend on both the present state and the inputs. Below is the state mach
again, but now in a Mealy machine form. Notice that the behavior changes slightl
since the inputs affect the outputs immediately, without waiting for the new state t
generated.

In the Moore machine example, it was possible to merge the two processes into 
synchronized with a clock, since all activity was happening on the clock edge. In 
Mealy machine example, however, the outputs are updated even when there is no
edge. Thus, in this case, it is not possible to merge the two processes into one. 

A Mealy machine is, in general, described with two always blocks, where one blo
does all combinational functionality and the other just updates the present state w
the next state, on the clock edge.

default:
begin

present_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

end
endcase  

end
end
endmodule  
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This code shows an example of a Mealy machine. 

module  mealy (clk, cs, refresh, ras, cas, ready) ; 
input  clk, cs, refresh ;    
output  ras, cas, ready ; 
 
parameter  s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4 ;
 
reg  [2:0] present_state, next_state ;
reg  ras, cas, ready ;
 
always  @ (posedge clk)
begin      

// always block to update the present state
present_state = next_state ;     

end  
 
always  @ (present_state or  refresh or  cs)
begin    

// always block to calculate the next state and the outputs
next_state = s0 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;
case  (present_state)    

s0 : begin        
if  (refresh)  
begin  

next_state = s3 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if  (cs)  
begin  

next_state = s1 ;         
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;

end
else    
begin  

next_state = s0 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
  end
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Combinational loops can be generated easily (and are in most cases unwanted) 
Mealy machine description. If nothing is assigned to a signal in one or more cases
instance because you do not care what the value is going to be), Verilog semanti
require that the value of the signal is preserved. In an asynchronized always  block as 
the one shown above, this means that synthesis must generate a combinational lo
a level-sensitive latch to preserve the value.  

For more information on how to avoid unwanted loops, refer to “Operators” on 
page 17. 

s1 : begin        
next_state = s2 ;     
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ; 

  end
s2 : begin       

if  (~cs) 
begin   

next_state = s0 ;         
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else   
begin

next_state = s2 ; 
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
  end

s3 : begin       
next_state = s4 ;     
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ; 

  end
s4 : begin       

next_state = s0 ;     
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;  

  end  
endcase      

end  
endmodule
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Issues in State Machine Design

This section discusses several issues regarding the design of synthesizable state
machines:

• State encoding

• One-hot encoding

• Initialization of the state machine

• Power-up conditions

• Semantics of the case statement

State Encoding

States must be explicitly specified by the user. This can be done by explicitly using
bit pattern (e.g., 3’b101 ), or by defining a parameter (e.g., parameter s3 = 
3’b101 ) and using the parameter as the case item. 
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One-Hot Encoding

In order to achieve a different style of encoding, for example a one-hot encoding,
slightly different style of Verilog is required. As an example, here is the Verilog 
description for a one-hot encoded state machine with the same functionality as th
example shown above. 

module  one_hot_mealy (clk, cs, refresh, reset, ras, cas, ready) ; 
input  clk, cs, refresh, reset ;    
output  ras, cas, ready ; 
 
reg  [4:0] present_state, next_state ;
reg  ras, cas, ready ;
 
always  @ ( posedge  clk)
begin      

// always block to update the present state
if  (reset)

present_state = 5’b00001 ;
else

present_state = next_state ;     
end  

always  @ (present_state or  refresh or  cs)
begin    

// always block to calculate the next state and the outputs
next_state = 5’b00000 ;
ras = 1’bX ; cas = 1’bX ; ready = 1’bX ;

if   (present_state[0])  
begin        

if  (refresh)  
begin  

next_state = 5’b01000 ;
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ;

end
else if  (cs)  
begin  

next_state = 5’b00010 ;         
ras = 1’b0 ; cas = 1’b1 ; ready = 1’b0 ;
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end
else    
begin  

next_state = 5’b00001 ;
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
end

if  (present_state[1])
begin  

next_state = 5’b00100 ;     
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ; 

end
if  (present_state[2]) 
begin       

if  (~cs) 
begin   

next_state = 5’b00001 ;         
ras = 1’b1 ; cas = 1’b1 ; ready = 1’b1 ;

end
else   
begin

next_state = 5’b00100 ;        
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;

end
end
if  (present_state[3]) 
begin       

next_state = 5’b10000 ;     
ras = 1’b1 ; cas = 1’b0 ; ready = 1’b0 ; 

end
if  (present_state[4]) 
begin       

next_state = 5’b00001 ;     
ras = 1’b0 ; cas = 1’b0 ; ready = 1’b0 ;  

end
end  
endmodule
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Some key points from this one-hot state machine are:

• The case  statement should not be used for one-hot state machine design. Whe
casex  statement is used for state comparisons, the comparisons must be don
only one bit of the state vector. If the whole vector is used for comparison, then
binary encoding logic is synthesized. Also, the case  statement needs to be 
compiled as parallel_case .

• The else if  construct should not be used to do the state comparisons, since
introduces additional constraints on the values of each state. Using else if  
means that this code is only entered if the all previous conditions are false. In 
case of one-hot encoding, it is certain that all previous conditions are false alre

This state machine description works fine, as long as the machine can never app
a state with more than one ’1’  in the state vector. In order to assure that condition, t
need for a reset becomes inevitable in the one-hot case. The use of resets is dis
in greater detail in the next section.

Initialization and Power-Up Conditions

In synthesis, if the total number of states is not a power of two, the state signal c
power-up in a state that has not been defined, if binary encoding is used. In this 
situation, it is essential that the Verilog description does an assignment to the ou
variables and the state variable under all conditions.

This can be done in two ways:

• Do a default assignment to the outputs and state variable before the case  statement 
that updates the state machine. This method is used in the first Moore and the
Mealy machine examples from the previous sections. It assures that outputs a
state variable always get a value assigned regardless of the state of the state 
machine.

• Do the default assignment in the default  clause of the case  statement, as was 
shown in the second Moore machine example. This has the same effect; output
states always get a value regardless of the state of the machine.

If you do not do a default assignment, the state machine could power-up in a unde
state. Verilog semantics require that if there is no assignment to a signal, the pre
value has to be preserved. In case the state transitions are defined in an asynch
always block, latches would be generated by the synthesis tools to preserve the 
value.
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If one-hot or another state encoding is used, the number of undefined states cou
even larger. Consider that in one-hot encoding, the specification of the state mac
has to rely on the fact that only one single state bit of the state vector is 1. That m
that the designer has to provide a special feature that takes care of the power-up
conditions. 

One possibility might be to include a special detection function that sets the state
valid one the moment it occurs in a invalid one. However, it would require too mu
logic to implement this functionality, making the use of one-hot encoding unattract
In most cases, it is much more cost effective to include the possibility of a reset 
function. The reset can be defined to be synchronous or asynchronous, dependin
what you want. The details about implementing resets are given in the section 
“Registers, Latches, and Resets” on page 1 in this chapter.

Arithmetic and Relational Logic 

This section gives an overview of how arithmetic logic is generated from Verilog, w
the synthesis tools do with it and how to avoid getting into combinational explosio
with large amounts of arithmetic behavior. 

In general, logic synthesis is very powerful in optimizing random combinational 
behavior, but has problems with logic which is arithmetic in nature. Often special 
precautions have to be taken into consideration to avoid ending up with inefficien
logic or excessive run times. Alternatively, macros may be used to implement the
functions (see “Technology-Specific Macros” on page 29 in this chapter). 

The synthesis tools support the operators “+”, “-”, “==”, “!=”, “<”, “>”, “>>”, “<<”, 
“*”,“/”, “<=”,  and “>=”. 

If you use these operators to calculate compile time constants, there is no restricti
problem in using them. For example, the following division does not result in a an
logic, but replaces signal foo  with a constant 3’d133 . 

...
integer  largest ;   
integer  divider ;
assign  largest = 800 ;
asign  divider = 6 ;
assign  foo <= largest / divider ;
...
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If you are not working with constant operands, arithmetic logic is generated.

The operator “+” generates an adder. The number of bits of the adder depends o
size of the operands. If you use integers, a 32 bit adder is generated. If you add v
and integers, the size of the adder is defined to the range of the vector in bits. Fo
example:  

generates a 32-bit adder but:  

generates an 8-bit adder. 

If one of the operands is a constant, initially a full-sized adder is still generated b
logic minimization eliminates much of the logic inside the adder because half of t
inputs of the adder are constant.

The operator “-” generates a subtracter. Same remarks as with the “+” operator.

The operator “*” generates a multiplier. Multiplication by a constant power of two 
implemented as a shift operation. In all other cases ModGen (generic or technolo
specific) is required to implement the multiplier.

The operator “/” generates a divider. Only division by a power of two is supported
hence no logic here, only shifting the non-constant operand.

The operators “==”, “!=”, “<”, “>”, “>>”, “<<”, “<=”,  and “>=” generate comparators 
with the appropriate functionality. Same remarks apply as for the “+” operator.

• Operations on integers are done in twos-complement implementation.

...
integer  a, b, c ;
assign  c = a + b ;
...

...
input  [7:0] a ;
output  [7:0] c ;
integer  b ;
assign  c = a + b ;
...
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All arithmetic behavior is translated into logic functions and is part of the logic 
optimization process. The result is that depending on area and timing criteria and
constraints set, the final logic circuit can include, for example, carry lookahead or
ripple carry adder implementation. If the design is getting large, run-time and mem
requirements increase rapidly. Some large designs can run forever without any 
improvement, if any solution is produced at all. The reason is that the logic synth
optimization algorithms try too many possible circuit implementations from the 
exponentially growing search space. Good design practices are needed to help a
this problem. 

Below are some guidelines that have helped users to achieve a good synthesis r

Module Generation

When arithmetic and relational logic are used for a specific Verilog design, the 
Exemplar synthesis tools provide a method to synthesize technology specific 
implementations for these operations. Generic modules (for bit-sizes > 2) have b
developed for many of the CPLDs supported by the Exemplar synthesis tools to m
the most efficient technology specific implementation for arithmetic and relational
operations. 

For Galileo, use the -modgen= modgen_library option to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a design. For Leonardo, use the modgen_read  
modgen_library command to load the module generation library into the HDL 
database. Since these modules have been designed optimally for a target techno
the synthesis result is, in general, smaller and/or faster and takes less time to com

You may define your own module generator for a specific technology. 

Resource Sharing and Common Subexpression Elimination

The synthesis tools automatically do CSE. For the following example, it will creat
only one adder (a+b)  and use it for both the if  conditions. For bigger expressions 
user need to use parentheses properly to direct the synthesis tool for CSE, e.g., y = 
a+(b-c), z = d+(b-c), (b-c)  is shared.
The Art of Verilog Synthesis 7-27



7

 if it 
 

Comparator Design

Often, applications involve a counter that counts up to an input signal value, and
reaches that value, some actions are needed and the counter is reset to 0. 

...
reg  a, b, c, d ;
 
always  @ (a or  b)      
begin  

if  ( a+b == c ) //This adder will be shared
...            

else if  ( a+b == d) // with this one.
...            

else            
... 

end  ;
...

 ...
begin   

if  (count == input_signal)      
...            
count = 0 ;          

else         
count = count + 1 ;          

end  ;
...
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In this example the synthesis tools build an incrementer and a full-size comparato
compares the incoming signal with the counter value. It is usually better to prese
counter to the input_signal  and count down, until zero is reached. 

Now, one decrementer is needed plus a comparison to a constant (0). Since 
comparisons to constants are a lot cheaper to implement, this new behavior is m
easier to synthesize, and results in a smaller circuit.

Even better results can be obtained with the use of hard macros and soft macros 
target technology, as well as the use of hierarchy in the design. The following two
sections explain this in more detail. 

Technology-Specific Macros 

In many cases, the target technology library includes a number of hard macros an
macros that perform specific arithmetic logic functions. These macros are optimiz
for the target technology and have high performance. 

With the Exemplar synthesis tools, it is possible to use component instantiation of
macros or hard macros in the target technology. An added benefit is that the time
needed for optimization of the whole circuit can be significantly reduced since the
synthesis tools do not have to optimize the implementation of the dedicated funct
any more.

Suppose you want to add two 8 bit vectors, and there is an 8 bit adder macro ava
in your target technology. You could use the “+” operator to add these two vectors.
alternative is to define a component that has the same name and inputs and outp
the hard macro you want to use. Instantiate the component in your Verilog descrip

...
begin   

if  (count == 0)      
...            
count = input_signal ;          

else         
count = count - 1 ;          

end  ;
...
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and connect the inputs and output to the their appropriate signals. The synthesis
instantiate the hard macro without having to bother with the complicated optimiza
of the internal logic implemented by the macro. 

This speeds up the optimization process considerably. In the netlist produced by 
synthesis tools, the macro appears as a “black box” that the downstream place a
route tools recognize. 

If your arithmetic functions cannot be expressed in hard macros or soft macros 
immediately (for instance if you need a 32 bit adder, but only have an 8 bit adder
macro), you could write a Verilog description that instantiates the appropriate num
of these macros.

Synthesis Directives

parallel_case and full_case  directives

parallel_case  and full_case directives are allowed as synthesis directive o
case by case basis. The synthesis tool detects the true full and parallel cases 
automatically. However, there are cases (like onehot encoded state machine) tha
not inherently parallel/full, but the environment guarantees that the case statemen
parallel and/or full. In such a condition the following two synthesis directives are v
useful.

  

input  [0:3] inp_state;
// example of onehot encoded machine
case  (1'b1) // exemplar parallel_case full_case
  inp_state[0]: .......
  inp_state[1]: .......
  inp_state[2]: .......
  inp_state[3]: .......
endcase
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translate_off and translate_on directives

translate_off  and translate_on  synthesis directives are allowed to commen
out a portion of code that you may want to retain for some purpose other than 
synthesis.

  

enum directive

The enum  synthesis directive is supported for user convenience when trying out 
different encoding on a state machine. With the synthesis directive, the synthesis
becomes sensitive to the global state encoding switch (-encoding ), and the 
enumeration values are encoded according to the setting of that option (onehot , 
gray , binary,  or random ).

Using the enum synthesis directive, a set of parameters can be treated as enume
values; resources like wire and reg can be declared as that enumerated type. Th
synthesis tool puts some restrictions on these enumerated types. Elements are a
with enumerated objects areas in the following instances:

In case statements: The enum type of case expression should match with the 
tags. For comparison of the enumerated types with each other, assigning 
enumerated types to each other (type should match).

These objects are treated as strongly typed so they cannot be mixed with the obj
any other type. Any boolean or arithmetic operations are considered to be in erro
enumerated objects. The synthesis tool gives an appropriate error when any one
these rules is violated. In such cases, you may not use the enum  synthesis directive.

The encoding style of the enumeration can be selected from boolean (default), 
onehot,gray,  or random  using the global -encoding  option on the synthesis 
tool mainline, or using the state encoding selection on the Verilog input options di
of the user interface.

// code for synthesis
// exemplar translate_off
$display (.....); // not for synthesis
// exemplar translate_on
// code for synthesis
endmodule
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State and S0, S1, S2, S3 are of enum type ee1. They cannot be used for any boolea
or arithmetic operation. Bit or part select from state or its values is also considere
error. Enumerated type module parts are not allowed.

attribute directive

The user can set some simple attributes on signals/instances to enhance the syn
efficiency of the Exemplar synthesis tool. For example, by setting the 
modgen_select attribute to fastest  on a signal on a critical path of a design, 
the user can improve the timing performance of the design. The synthesis of this
directive is as follows:

// exemplar attribute  <object_name><attribute_name><attribute_value>

module  state_mc (clk, reset, o, i1, i2, i_state);
input  clk, reset, i1, i2;
output  o, i_state;
reg  o;
parameter  [0:1] /* exemplar enum ee1 */S0=1,S1=2,S2=3,S3=0;
reg  [0:1] /* exemplar enum ee1 */ state;
assign i_state = (state == S1 | state == S3); // legal.
always @ ( posedge clk or posedge reset)
if  (reset) begin
  o = 0;
  state  = S0; // Note state = 1, will cause a type mismatch 
error
end
else
    case (state) // No need of full and parallel case
      S0: begin o = i1;  state = S1; end
      S1: begin o = ~i1; state = S2; end
      S2: begin o = i2;  state = S3; end
      S3: begin o = ~i2; state = S0; endNote case tag 0: 
would cause type 
mismatch error
endcase
endmodule
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//example
module  expr (a, b, c, out1, out2);
input [0:15] a, b, c;
output  [0:15] out1, out2;
 

assign  out1 = a + b;
assign  out2 = b + c;

// exemplar atribute out1 modgen_sel fastest
endmodule
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Verilog is a language that has been developed for simulation purposes. Synthesis
not an issue in the development of the language. As a result, there are a number
Verilog constructs that cannot be synthesized. There has been very little written t
explains which constructs cannot be synthesized into logic circuits and why. 

This chapter provides explanations on why certain Verilog constructs cannot be 
synthesized into logic circuits and what changes have to be made to reach the int
behavior to obtain a synthesizable Verilog description. 

Some obvious restrictions of the language are first presented, followed by a list 
summarizing Verilog syntax and semantic restrictions for the Exemplar synthesis to
In addition, some guidelines are presented that should enable you to write Verilog
is easy to synthesize and give you a feeling for synthesis complexity problems yo
might introduce when you write your Verilog design.

Comparing With X and Z 

Consider the Verilog modeling case where an if clause should be entered if a par
vector has a particular value. The rest of the vector does not really matter. You m
want to write this as follows: 

if  (vect == 6’bXXX001) begin  ...
8-1
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The user intention is to do a comparison to 001  (the right most three bits) and forget 
about the left three bits. However, Verilog defines comparison on vectors as the A
of comparison of each individual element. Also, comparison of two elements is on
true if both elements have exactly the same value. This means that in order for th
condition to be true, the three left most bits have to be ’X’. But in logic synthesis, a
can only be ’0’  or ’1’ , so the condition is always be false. In fact, this condition i
not doing what was intended for simulation as well, since if any of the left most th
bits does not have the value ’X’ explicitly, the result is false. 

However, comparison to ’X’ is allowed using the casex  construct. This is 
implemented in the following manner: 

In this case, only the three least significant bits of vect are compared to “001". Th
comparison ignores the three most significant bits. 

Variable Indexing of Bit Vectors

The Exemplar synthesis tools support variable indexing of a vector. The limitation
that only variable indexing of the form ’bit select’ is supported. Or more specifical
variable indexing of the form ’part select’ is not supported because it is not a 
synthesizable construct.

casex  (vect)
6’bXXX001 :  <statement> ;

endcase
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The semantics of variable indexing varies depending on whether the variable inde
is done on the left hand side of an assignment or on the right hand side of the 
assignment. The right-hand side variable indexing generates a multiplexer contro
by the index. The left-hand variable indexing generates a de-multiplexer controlle
the index. set of decoders enabling. The following example shows both examples

Syntax and Semantic Restrictions

This section provides a summary of the syntax and semantic restrictions of the 
Exemplar synthesis tools’ Verilog HDL parser. 

Unsupported Verilog Features

• UDP primitives

• specify  block

• real  variables and constants

• initial  statement

• tri0 , tri1 , tri1 , tri1 , tri1 , net types

• time  data type

module  tryit (input_bus, in_bit, control_input, output_bus, out_bit);
input  [3:0] input_bus ;
input   [1:0] control_input ;
input   in_bit ;
output  [3:0] output_bus ;
output  out_bit ;
 
reg  [1:0] control_input ;
reg  [3:0] input_bus, output_bus ;
reg  in_bit, out_bit ;
 
always @ (control_input or  input_bus or  in_bit)
begin  

out_bit = input_bus [control_input] ;  
output_bus [control_input] = in_bit ; 

end  
endmodule
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• Named events and event triggers

• The following gates: pulldown , pullup , nmos, mmos, pmos, rpmos , cmos, 
rcmos , tran , rtran , tranif0 , rtranif0 , tranif1 , rtranif1

• wait  statements

• Parallel block, join  and for .

• System task enable and system function call

• force  statement

• release  statement

• Blocking assignment with event control

• Named port specification (not to be confused with passing arguments by name
which is supported)

• Concatenation in port specification

• Bit selection in port specification

• Procedural assign and de-assign

Supported Verilog Features (Limited in Usage)

• Edge triggers on sensitivity list must be single bit variables. 

• Indexing of parameters is not allowed.

• Loops must be bounded by constants.

Supported Verilog Features (Ignored by Exemplar Synthesis)

• Delay and delay control.

• ’vectored’ declaration.
8-4 HDL Synthesis Manual



Introduction to Module Generation 9
lly 
r 

 “>”, 

 
dule 

s,” 

+”, 
 
ific 

uld 
Arithmetic and relational logic, commonly known as data path logic, has traditiona
been difficult to synthesize with logic synthesis software. This is especially true fo
FPGAs, where each target technology has a different way to optimally utilize 
resources. 

Exemplar Logic’s Module Generation capability provides VHDL and Verilog HDL 
designers with a mechanism to overload data path operators, such as “+”, “-” and
with technology-specific implementations.  

This chapter introduces the concept of Module Generation and describes how to make
optimal use of this feature of the Exemplar synthesis tools. Chapter 10, “Using Mo
Generation,” focuses on how to use Module Generation to improve performance for 
VHDL and Verilog HDL design files. Chapter 11, “User-Defined Module Generator
provides a detailed description of how to create your own module generators.  

Module Generation provides a mechanism that matches behavioral operators like  “
“-”, and “>”, with pre-designed implementations. This allows designers to describe
logic in a purely behavioral fashion, while making optimal use of technology-spec
hard or soft macros. As an example, consider the following VHDL statement:

When implementing this VHDL statement in an FPGA architecture, designers wo
like to utilize vendor-provided adder hard macros, dependent on the size of n.  

signal  a, b, s : std_logic_vector(n downto  0); 
s <= a + b;
9-1
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In HDLs, the user can explicitly instantiate a desired component (using compone
instantiation in VHDL or module instantiation in Verilog).

Three drawbacks exist with using component/module instantiation:

• The design methodology is no longer behavioral.

• The HDL source becomes technology dependent.

• Component instantiation is not allowed in operator or function definitions.

However, if neither component/module instantiation nor module generation is use
the synthesis tools generate logic without any knowledge of an optimal implementa
for the target technology. This typically produces sub-optimal results.

Module Generation solves this problem by matching certain data path operators w
pre-designed implementations from a side library. Whenever a supported operato
encountered in the source design, a technology-specific module generation library is 
consulted for a matching implementation. If an implementation is found, it is used
the network. If no technology dependent implementation is found, the synthesis t
default to a generic logic implementation, which is applicable for a CMOS gate ar
implementation, for the operator (ripple carry for the above adder).

Figure 9-1 shows the general flow of data in the Exemplar Synthesis Tool/Module
Generation environment. After the HDL source code is successfully parsed, it is pa
on to an inference engine that matches supported operators (like addition) with 
preferred implementations in the module generation library.
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Figure 9-1 Exemplar Synthesis Tool/Module Generation Environment

As examples of the benefits of Module Generation, Figure 9-2 presents the average 
area reduction achieved when Module Generation is used for synthesis targeting
FPGAs, while Figure 9-3 presents the average delay reduction achieved.
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Figure 9-2 Using Module Generation Results in Area Reduction When Adders Are Requi

Figure 9-3 Using Module Generation Results In Delay Reduction When Adders Are Requ
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This chapter presents information on the use of Module Generation: which operators 
are supported, using Module Generation with the Exemplar synthesis tools, and 
invoking Module Generation from both VHDL and Verilog design sources. It focuse
on using Module Generation for the technologies that are supported in the synthesi
tools. 

Supported Technologies

A list of currently supported technologies is presented in the Release Notes 
accompanying this manual. Also, performance information for the module genera
are presented in the appropriate chapter in the Synthesis and Technology Guide. These 
data show how Module Generation implementation improves area or timing for 
arithmetic and relational operations, as compared to random logic implementation
10-1
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Supported Operators

The following operations are recognized by the synthesis tools for matching with 
module generation libraries:

Verilog VHDL ’87 Operation

"+" "+" addition

"-" "-" binary subtraction, unary 
negation

"+ 1" "+ 1" increment

"- 1" "- 1" decrement

"==" "=" equal

"!=" "\=" not equal

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power

"%" "mod" modulo

N/A "rem" remainder

N/A "abs" absolute value
10-2 HDL Synthesis Manual
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From VHDL, the synthesis tools recognize these operations for operators on the 
predefined type integer . It also recognizes these operations from operators for th
bit_vector  and std_logic_vector  types, as long as the package exemplar  
or numeric_std package is included with a use  clause. For Verilog HDL, the 
synthesis tools recognize these operations from all (predefined) supported operat
the Verilog HDL language.

Counters and RAMs

Both Leonardo and Galileo can recognize counter and RAM behavior in a VHDL 
Verilog HDL description and infer module generators. Counters are positive 
edge-triggered with optional clock enable and/or count enable, asynchronous clea
and/or set, synchronous clear, and synchronous load. Up, down, and up-down cou
are supported. The following example is recognized as an 8-bit loadable down-co
with asynchronous clear and clock enable:

Verilog VHDL ’93 Operation

">>" "sra" shift right logical

"<<" "sla" shift left logical

N/A "sra" shift right arithmetic

N/A "sla" shift left arithmetic

N/A "rol" rotate left

"!=" "ror" rotate right

">" ">" greater than

"=>" "=>" greater than or equal

"<" "<" less than

"<=" "<=" less than or equal

"*" "*" multiplication

"/" "/" division

N/A "**" power
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Example 

library  ieee, exemplar;
use  ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity  cnt_dn_ac_sl_en is
   port  (clk, clk_en, aclear, sload: in  std_logic;
      data: in  std_logic_vector(7 downto  0);
      q: out  std_logic_vector(7 downto  0));
end  cnt_dn_ac_sl_en;

architecture  ex of  cnt_dn_ac_sl_en is
   signal  q_int: std_logic_vector(q'range);
begin
   process  (clk, aclear)
      begin
         if  (aclear = '1') then
          q_int <= (q_int'range => '0');
       elsif  (clk'event and  clk'last_value = '0' and  clk = '1')  then
          if  (clk_en = '1') then
             if  (sload = '1') then
               q_int <= data;
             else
               q_int <= q_int - "1";
             end if ;
          end  if ;
       end  if ;
      end process ;
   q <= q_int;
end  ex;
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Counter and RAM Inferencing and Module Generation

There are two basic types of RAM Module Generators: a single-port RAM with 
separate input and output data lines, and a single-port RAM with bidirectional da
lines. Both of these RAM types support synchronous or asynchronous read and w
operation. Synchronous writes use a positive edge-triggered clock to latch the 
write-enable, address, and data signals. The inferencing process distinguishes be
RAMs that perform the read operation with an address that is clocked or not cloc
with the write clock. 

The RAM output signals may also be latched by the same or a different positive 
edge-triggered clock. The following two VHDL examples demonstrate the differen
between synchronous RAMs that do or do not clock the read address with the wr
clock. The first example, ram_example1 , does clock the read address, while the 
second example, ram_example2 , does not clock the read address.

Most technologies only support one of these types. In addition, particular technol
Modgen libraries may not contain module generators for all types of RAMs recogn
by Leonardo and Galileo. Information concerning which types are supported by a
particular technology can be found in the Leonardo Synthesis and Technology Gu
and the Galileo Synthesis and Technology Guide.
Using Module Generation 10-5
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Example 1

library ieee, exemplar;
use ieee.std_logic_1164.all;
use  exemplar.exemplar_1164.all;

entity  ram_example1 is
   port  (data: in  std_logic_vector(7 downto  0);

      address: in  std_logic_vector(5 downto 0);

      we, inclock, outclock: in  std_logic;

      q: out  std_logic_vector(7 downto  0));

end  ram_example1;

architecture  ex1 of ram_example1 is
   type  mem_type is  array (63 downto  0) of

      std_logic_vector (7 downto 0);

   signal  mem: mem_type;

begin
   l 0: process  (inclock, outclock, we, address) begin

      if  (inclock = '1' and inclock'event) then

         if  (we = '1') then

            mem(evec2int(address)) <= data;

end if ;

end  if ;

      if  (outclock = '1' and  outclock'event) then  

q <= mem(evec2int(address));

      end if ;

   end  process ;

end  ex1;
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Example 2

library  ieee, exemplar;
use  ieee.std_logic_1164.all;
use  exemplar.exemplar_1164.all;

entity  ram_example2 is
   port  (data: in  std_logic_vector(7 downto  0);

      address: in  std_logic_vector(5 downto  0);

      we, inclock, outclock: in  std_logic;

      q: out  std_logic_vector(7 downto  0));

   end  ram_example2;

architecture  ex2 of  ram_example2 is
   type  mem_type is  array (63 downto  0) of

      std_logic_vector (7  downto  0);

   signal  mem: mem_type;

   signal  address_int: std_logic_vector(5 downto  0);

begin
   l0: process  (inclock, outclock, we, address) begin

      if (inclock = '1' and inclock'event) then

address_int <= address;

         if  (we = '1') then

            mem(evec2int(address)) <= data;

end  if ;

end  if ;

      if  (outclock = '1' and  outclock'event) then  

q <= mem(evec2int(address_int));

end  if ;

   end process ;

end  ex2;
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Using Module Generation With Exemplar Synthesis Tools

Specifying Module Generation Library

Module Generation is invoked by including a module generation library during logic 
synthesis. 

From the command line for Galileo, use the -modgen= modgen_library option to 
include a module generation library of the specified technology and infer the requ
arithmetic and relational operations of the required size from a user VHDL design.
Leonardo, use the modgen_read  modgen_library command to load the module 
generation library into the HDL database. Since these modules have been design
optimally for a target technology, the synthesis result is, in general, smaller and/o
faster and takes less time to compile. 

The module generation library can have any name, without an extension. All the 
module generator files provided by Exemplar Logic are named lib_base_name.vhd , 
where lib_base_name is the technology library base name. These files can be found
the directory $EXEMPLAR/data/modgen . Since the directory is in the search path
for the synthesis tools, if you specify a module generation library, the synthesis to
will read the file with the matching technology name. These files are encrypted.

The Exemplar synthesis tools do not validate the generator. If, for instance, an A
technology is specified as the target technology, but accidentally a Xilinx module 
generation library is specified, Xilinx macros will appear in the output netlist.

Area/Delay Trade-offs Attributes

Implementations of area and delay trade-offs may vary between module generato
packages. Galileo will choose a smaller or faster implementation, depending on t
area/delay switch in the GUI, or -area  versus -delay  option in the command line. 
With Leonardo, the method for choosing between smaller and faster implementat
is to use the -area  or -delay  options to the optimize  command.

Specific implementations can be configured in the VHDL file through attributes on
specific signals. The attribute modgen_sel  is used for this purpose. modgen_sel  is 
an attribute of enumerated type modgen_select , with four values: smallest , 
small , fast , fastest . This attribute controls which implementation of a module
generator is used. By default, the synthesis tools use small  if the global optimization 
criteria is -area . The synthesis tools choose fast  if the -delay  switch is set. The 
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user can overwrite these defaults by specifying the attribute modgen_sel  on a target 
signal or variable that is driven by an expression that calls module generators. He
an example:

In this example, for both adders that drive s , Module Generation will choose the 
smallest implementation possible. In essence, the modgen_sel  attribute is passed to 
the module generator inference engine where a different implementation, other tha
default, is selected.   

The type modgen_select  and the attribute modgen_sel  are declared in the 
packages exemplar  and exemplar_1164 . Hence, if you use one of these 
packages, declaring them is not required in the user code.

Disabling Module Generation

Once the -modgen  option is specified, Module Generation is enabled for all 
arithmetic and relational operators in the design. Module Generation can be switched 
off for all operator calls driving a particular signal, by setting the boolean 
use_modgen  to FALSE.

In this case, for both adders that drive s , Module Generation is disabled and the adders
will be implemented in random logic. Disabling Module Generation for specific 
signals or variables can be useful when large portions of the operators can be 
eliminated during the boolean optimization and synthesis process. This often hap
for user defined type-transformation functions, where the operators implement 
simulation behavior, but for synthesis the function should implement a simple set

type  modgen_select is  (smallest, small, fast, fastest) ;
attribute  modgen_sel : modgen_select ;
signal  a,b,c,s : bit_vector (7 downto  0) ;
attribute  modgen_sel of  s: signal  is  smallest ;
...
s <= a + b + c ;

attribute  use_modgen : boolean ;
signal  a,b,c,s : bit_vector (7 downto  0) ;
attribute  use_modgen of  s: signal  is  FALSE ;
--
s <= a + b + c ;
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wires. Using Module Generation for such function would generate a large amount o
arithmetic logic when it is not required. The attribute use_modgen  is defined in the 
exemplar  and exemplar_1164  packages. If one of these packages is used, 
declaring the attribute is not required in the user code.

Counter and RAM Extraction

In Galileo, counters and RAMs are recognized and extracted by default. In Leona
the pre_optimize  command with the -extract  option must be executed.

Verilog Usage

Verilog usage of Module Generation is completely straightforward. Module Generation 
will infer the arithmetic and relational operators from Verilog descriptions and 
implement them accordingly. 
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Apart from the module generators that have been developed by Exemplar to sup
the standard FPGA technologies, a user can build his/her own module generator.

The purpose of this chapter is to set guidelines and boundary conditions on how t
the module generation environment to produce user-defined module generators w
the intended functionality.

Module generators are described in VHDL, regardless of the actual HDL input de
language.

User-defined module generators, as opposed to using overloaded functions, allow
use of technology specific macros (with component instantiation) for operators in 
VHDL or Verilog HDL.  

The Module Generator Boundary

Since all operators in VHDL are defined for various sized vectors and integers, e
module generator description for a particular operator should be an entity with 
generics.

Only one generic affects the amount of inputs and outputs that have to be genera
This is the integer generic size . The amount of inputs and outputs generated by a
modgen description should exactly match the amount required by size . Any 
discrepancy will be labeled as an error. Of course, the functionality inside the mod
description is the responsibility of the modgen description designer. It is relatively e
to let a "+"  in VHDL work as a "-"  with this amount of freedom.
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Since the function of some operators is defined both for unsigned integers (or vec
and for signed integers, a boolean generic signed  is supplied to indicate that a signed
or unsigned function needs to be generated.

Table 11-1 on page 3 states which VHDL operators are supported in the Module 
Generation environment, which generics are required, how many inputs are needed
each (of the two) parameters of the operator and how many outputs should be 
generated.

Note that the generic signed  is not required for arithmetic operations. The reason 
that there is no difference between signed and unsigned arithmetic functions if th
input parameters and the output all have the same size , and thus the carry bit is not 
used. The synthesis tools will make sure that this always happens.

In general, the module description should have two input vectors (one for each 
parameter of the operator it represents), and one output vector. 
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Table 11-1 Supported Operators, Their Module Generators And An Overview Of Boundary 
Conditions For Correct Matching Of Operators And Module Generation

VHDL’87 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits

"+" modgen_add size size size size

"-" modgen_sub size size size size

"-" modgen_umin size size n/a size

"+ 1" modgen_inc size size n/a size

"- 1" modgen_dec size size n/a size

"*" modgen_mult size size size size

"/" modgen_div size size size size

"=" modgen_eq size size size 1 bit

"/=" modgen_ne size size size 1 bit

"<" modgen_lt size, signed size size 1 bit

">" modgen_gt size, signed size size 1 bit

"<=" modgen_le size, signed size size 1 bit

"=>" modgen_ge size, signed size size 1 bit

"**" modgen_power size size size size

"mod" modgen_mod size size size size

"rem" modgen_rem size size size size

"abs" modgen_abs size size n/a size

VHDL ’93 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits

"sll" sll size size size size

"srl" srl size size size size

"sla" sra size size size size

"sra" sra size size size size

"ror" ror size size size size

"rol" rol size size size size
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As an example, the entity VHDL description for a module generator that implemen
“<=” operator should look like this:

Below are some important facts to keep in mind when defining module generator

• The initial assignments to both signed  and size  are optional. These two generics
are required for the "<="  operator and therefore are always inferred by the 
synthesis tools for each call of a "<="  operator in VHDL.

• The types of the ports should represent arrays of bit values or single bit values
type std_logic_vector  for vector types and std_logic  for bit values are 
advised because they comply with the IEEE 1164 standard type definitions. M
sure you include the IEEE 1164 package in your description. Use the following
statement before each new entity:

• The names of the ports can be chosen freely. The associations are order depe
The first input port (x  in this example) will be associated with the parameter on t
left of the operator. The second port mentioned in the port interface list will be
associated with the parameter on the right of the operator.

• The output port mentioned (there can be only one) will be associated with the r
of the operator function.

entity  modgen_le is
generic  ( 

size : integer := 8 ;   
signed : boolean := FALSE                         

) ;
port  (

x, y : std_logic_vector (size-1 downto  0) ;
result : out  std_logic

) ;
end  modgen_le ;

library  ieee ;
use  ieee.std_logic_1164. all  ;
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• The ’weight’ of the bits in a port which is a vector is also order dependent. The
LEFT most bit in the array range definition of the port is the MSB. In this examp
x  is defined with a range size-1 downto 0  and therefore x(size-1)  is 
MSB, and x(0)  is LSB. If the range would have been defined as 
(0 to size-1) , x(0)  would have been MSB.

• If signed operation is required (signed is TRUE), the Module Generation 
environment expects the MSB bit to be the sign bit, and the bit next to it will be
new MSB.

Module Generator Contents 

The VHDL entity for a module generator is relatively fixed for each module genera
as shown in the previous section. This is needed to provide a guaranteed interfa
between the module generators and VHDL operators they implement.

The contents of the module generators (the VHDL architecture) is completely left u
the user. You can use all VHDL constructs as long as they do not violate the VHD
synthesis restrictions.

Typically, component instantiations of technology specific macros will be used in 
module generators. Some guidelines should be considered when making module
generators:

1. Make sure that the module generator has a definition for each generic ’size’ th
could be used from a user HDL description.

2. The synthesis tools do not check the functionality of the module generator. It w
be fairly easy to implement subtractor functionality for the modgen_add  module 
generator. In that case, each "+"  operator in VHDL will build a subtractor circuit. 
Make sure you verify the module generators for each generic size they could 
implement. 

3. If you use operators inside a module generator description, the synthesis tools
NOT try to infer a module generator for these. Instead, the default random-log
implementation for the operator will be chosen. This prevents infinite recursion
from occurring (module generators calling themselves). It also allows the user 
utilize a specific implementation operator for just a few sizes, and rely on the 
default implementation for all others.

Below is an example of a module generator that implements an ADDER8 hard-macro if 
the size of the required adder is between 4 and 8. 
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library ieee ;
use  ieee.std_logic_1164. all  ;    -- Include IEEE 1164 type 

  -- definition
library exemplar ;
use  exemplar.exemplar_1164. all  ; -- Include functions ’extend’, "+" 

   -- etc.
entity  modgen_add is

    generic  (size : integer) ;
    port  (x, y : std_logic_vector (size-1 downto  0) ;

      o : out  std_logic_vector (size-1 downto  0)) ;
end  modgen_add ;

architecture  exemplar of  modgen_add is
    -- Declare the Hard Macro
   component  ADDER8 
      port  (a, b: in  std_logic_vector(7 downto  0);
                add: in  std_logic;
                s: out  std_logic_vector(7 downt o 0);
                ofl: out  std_logic);
   end component ;
    -- Declare internally used signals
   signal  intern_a, intern_b, intern_o :

 std_logic_vector (7 downto  0) ;
   constant  pwr : std_logic := ’1’ ;
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This is the description of a full definition of a module generator that instantiates a
ADDER8 hard macro (generic name, not from any specific library, used for this 
example) for adders between 4 and 8 bits. A default implementation (random logi
provided for all sizes of adders that should not generate a hard macro.

Usage

To include a module generator description into Galileo, use the 
-modgen= modgen_library option to include a module generation library of 
the specified technology and infer the required arithmetic and relational operation
of the required size from a user VHDL design. For Leonardo, use the 
modgen_read modgen_library command to load the module generation library 
into the HDL database.

--ADDER8 hard macro example (cont.)
begin

   
l1 : if  size>=4 and  size <=8 generate

-- Adjust the inputs to the size of the hard macro
     intern_a <= extend (x,8) ;
      intern_b <= extend (y,8) ;        
      

-- Instantiate the Hard Macro
      i1 : ADDER8 port map  (a=>intern_a, b=>intern_b,     

add=>pwr,
s=>intern_o, ofl=> OPEN) ;

      -- For the output :pick-up the LSB bits from the hard macro       
      o <= intern_o (size-1 downto  0) ;  

  end generate  ;

  -- Default "+" for all other sizes :
  l2 : if  size<4 or  size>8 generate
       o <= x + y ;
   end generate ;

end  exemplar ;
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The search path for these files is:

1. The current working directory

2. The $EXEMPLAR/data/modgen  directory

3. The $EXEMPLAR/data  directory

Multiple module generator files can be included. If there is an overlap of operator
two included files, the operator from the last included file will be resolved. In any 
case, for each operator resolved, Galileo reports the file that was used. Therefore
will be clear which operator has been resolved from which modgen file.
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A
alias, 2-65
architectures, 2-1
arithmetic and relational logic, 3-22

advanced design optimization, 3-28
module generation, 3-25
ranged integer, 3-27
resource sharing, 3-25

array type, 2-9, 2-21
syntax and semantics, 2-21
synthesis issue, 2-23

assignment statement, 2-38
signal, 2-38
variable, 2-38

attribute, 2-44
exemplar predefined attribute, 2-45
usage of attribute, 2-46
user-defined attribute, 2-46
vhdl predefined attribute, 2-45
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B
bidirectional buffer, 3-17
block, 2-48
bus, 3-18
bus class, 2-55
C
case statement, 2-34
clock

clock enable, 3-7

component instantiation, 2-58
conditional statement, 2-33
constant, 2-30

D
decoder, 3-32
design root, 4-3

E
entity and package, 4-1

loading in Galileo, 4-1
loading in Leonardo, 4-2
usage, 4-5

exemplar package, 4-11
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predefined function, 4-14
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F
finding definition of component, 4-3
flip-flop, 3-3

asynchronous sets and reset, 3-5
clock enable, 3-7
predefined procedure, 4-20
synchronous set and reset, 3-4

floating-point type, 2-19
for loop, 2-35, 2-36
function, 2-49

G
generate statement, 2-35
generic, 2-32

I
I/O buffer, 3-10

automatic assignment, 3-11
component instantiation, 3-13
manual assignment, 3-11

IEEE 1076, 2-28

IEEE 1076-1993, 4-2
IEEE 1164, 2-28
integer, 2-17

L
latch, 3-1, 3-2, 3-10
literal, 2-8
loop variable, 2-32

M
Mentor Graphics, 4-11
multiplexer, 3-31

N
next statement, 2-36

O
object, 2-30

constant, 2-30
generic, 2-32
loop variable, 2-32
port, 2-31
signal, 2-30
variable, 2-31, 3-9

operator, 2-40
IEEE 1076 predefined operator, 2-40
IEEE 1164 predefined operator, 2-43

operator overloading, 2-43

P
package, 2-64
physical type, 2-20

pla, 3-32
port, 2-31
post-synthesis functional simulation, 4-7
predefined flip-flops and latches, 3-10
procedure, 2-49

processes, 2-5

R
record, 2-24
register, 3-1
register class, 2-55
resolution function, 2-52
rom, 3-32

S
selector, 3-31
signal, 2-30

State, 3-22
state machine, 3-18

general state machine description, 3-18
power-up and reset, 3-22
state encoding, 3-22
vhdl coding style for state machine, 3-20

statement, 2-33
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assignment statement, 2-38
conditional statement, 2-33
generate statement, 2-35
loop statement, 2-35
selection statement, 2-34

std_logic, 2-29, 2-41, 2-52, 2-53
subtype, 2-25
Synopsys integration and packages, 4-9
syntax and semantic restriction, 4-22

synthesis tool restrictions, 4-22
VHDL language Restriction, 4-23

T
technology-specific macro, 3-29
three-state buffer, 3-14
type, 2-9

array type, 2-21
enumeration type, 2-10
floating-point type, 2-19
IEEE 1076 predefined type, 2-28
IEEE 1164 predefined types, 2-28
integer type, 2-17
physical type, 2-20
record type, 2-24
subtype, 2-25
type conversion, 2-27

V
variable, 3-9
VHDL environment, 4-1

interfacing with other VHDL tools, 4-6
Viewlogic integration and packages, 4-8

W
wait statement, 3-8
while loop, 2-35
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compiler directive,6-41
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net declaration assignment,6-9

D
data type,6-4

net data type,6-6
parameter data type,6-8
register data type,6-7

directives

parallel_case and full_case,7-30
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disable statement,6-33

E
encoding style,7-31
enum synthesis directive,7-31

F
flip-flop, 7-2

asynchronous set and reset,7-4
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clock enable,7-5
synchronous set and reset,7-3

for statement,6-32
function, 6-36

I
I/O buffer, 7-5

automatic assignment,7-6
component instantiation,7-7
manual assignment,7-7

if-else statement,6-24

L
latch, 7-1

M
module, 6-2
module generation,7-27
module instantiation,6-14

parameter override,6-15

N
net data type,6-6

supply net,6-7
wand and wor net,6-7
wire and tri net,6-7
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one-hot encoding,7-22
operand,6-17
operator,6-17

arithmetic operator,6-20
bit-wise operator,6-21

concatenation,6-23
conditional operator,6-22
logical operator,6-21
reduction operator,6-22
relational and equality operator,6-20
shift operator,6-22
signed and unsigned attribute,6-23

R
register,7-1
reset,7-1

S
state encoding,7-21
state machine,7-12

issues in state machine design,7-21
Mealy machine,7-18
Moore machine,7-14

syntax and semantic restrictions,8-3
synthesis directives

attribute, 7-32
enum, 7-31
parallel_case and full_case,7-30
translate_off and translate_on,7-31

T
task, 6-38
technology-specific macro,7-29
tristate buffer,7-8

V
variable indexing of bit vector,8-2
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