HDL Synthesis
Guide

Release 4.2

Copyright

Copyright © 1991-1998 Exemplar Logic, Inc.
All Rights Reserved

Trademarks

Exemplar Logic® and its Logo are registered trademarks of Exemplar Logic, Inc.;
Galileo™, Galileo Extreme™, Leonardo™, Galileo FS™ and MODGEN™ are trademarks
of Exemplar Logic, Inc.; Extreme Technology, FAST Synthesis and Synthesizing the next
Millennium are servicemarks of Exemplar Logic, Inc.

V-System/VHDL™ and V-System/Verilog™ are trademarks of Model Technology, Inc.
Verilog® and Verilog-XL® are registered trademarks of Cadence Design Systems, Inc.
All other trademarks remain the property of their respective owners.

Disclaimer

Although Exemplar Logic, Inc. has tested the software and reviewed the documentation,
Exemplar Logic, Inc. makes no warranty or representation, either express or implied, with
respect to this software and documentation, its quality, performance, merchantability, or

fithess for a particular purpose.

Exemplar Logic, Inc.

6503 Dumbarton Circle
Fremont, CA 94555
Telephone: 800-632-3742
email: info@exemplar.com

Part No. 31315-R

Contents

1. Introductionto VHDL Synthesis 1-1
OVEIVIBW. . . oo 1-1
VHDL and Synthesis. 1-2
InThisManual 1-3
Customer SUPPOIt . . . oo 1-4

2. VHDL Language Features 2-1
Entities and Architectures 2-1

Configuration 2-3
ProCEesSSeS. . .\ o 2-5
Literalso 2-8
YRS . ot 2-9
Enumeration Types 2-10
Syntaxand Semantics o o, 2-10
Synthesis ISSues. 2-11

INteger TYPeS. . . oo 2-17

Syntaxand Semantics o o, 2-17

SynthesisS iSSUesS. 2-18
Floating-point TYpesot i eeeeeee 2-19
Syntax and Semantics 2-19
Synthesis Issues. 2-19
Physical Types 2-20
Syntaxand Semantics o o, 2-20
Synthesis ISsues. 2-21
Array TYPeS. . o 2-21
Syntax and Semantics 2-21
Synthesis Issues. 2-23
Record TYPEeS . ..o 2-24
Syntaxand Semantics 2-24
Synthesis ISSues. 2-25
Subtypes 2-25
Type CONVEISIONSot e 2-27
IEEE 1076 Predefined Types 2-28
IEEE 1164 Predefined Types 2-28
ObjeCtsS . .. 2-30
SIgNals. . .. 2-30
Constants 2-30
Variables 2-31
POrtS . . 2-31
GENEIICS . ottt 2-32

HDL Synthesis Guide

Contents

Loop Variables 2-32

Statements. e 2-33
Conditional Statements 2-33
Selection Statements. 2-34
Loop Statements and Generate Statements. 2-35
Assignment Statements. 2-38

OperalOrS. . o e 2-40
IEEE 1076 Predefined Operators 2-40
IEEE 1164 Predefined Operators. 2-43
Operator Overloading e 2-43

Attributes. 2-44
VHDL Predefined Attributes 2-45
Exemplar Predefined Attributes 2-45
User-Defined Attributes 2-46
Usage Of Attributes 2-46

BIOCKS . . . o 2-48

Functions And Procedures. 2-49

Resolution Functions. 2-52
Syntaxand Semantics e 2-52
SynthesisS ISSUES 2-53

BUS and REGISTER i 2-55

Component Instantiation. 2-58

Packages 2-64

AlBSES. . . 2-65

vi

3. The Art Of VHDL Synthesis. 3-1

Registers, Latchesand Resets 3-1
Level-Sensitive Latch 3-2
Edge-Sensitive Flip-Flops. 3-3

The Event Attribute. 3-3
Synchronous Sets AndResets 3-4
Asynchronous Sets AndResets. 3-5
ClockEnable........ 3-7
Wait Statements 3-8
Variables 3-9
Predefined Flip-flops and Latches. 3-10

Assigning I/O Buffers From VHDL 3-10
Automatic Assignment Using ChipMode. 3-11
Manual Assignment Using The BUFFER_SIG Property 3-11
Buffer Assignment Using Component Instantiation 3-13

Three-state Buffers 3-14

Bidirectional Buffers. 3-17

BUSSES 3-18

State Machines 3-18
General State Machine Description. 3-18
VHDL Coding Style For State Machines 3-20
Power-up And Reset. 3-22
State Encoding e 3-22
Arithmetic And Relational Logic 3-22

HDL Synthesis Guide

Contents

Module Generation i 3-25

Resource Sharing 3-25
Ranged Integers i 3-27
Advanced Design Optimization 3-28
Technology-Specific Macros. 3-29
Multiplexers and Selectors 3-31
ROMs, PLAs And Decoders, 3-32
4. The VHDL Environment 4-1
Entity and Package Handling. 4-1
Loading Entities and Packages (Galileo) 4-1
Loading Entities and Packages (Leonardo) 4-2
Entity Compiled as the Design Root. 4-3
Finding Definitions of Components 4-3
Howto Use Packages, 4-5
Interfacing With Other VHDL Tools. 4-6
VHDL Simulators 4-6
Post-Synthesis Functional Simulation. 4-7
VIeWIOQIC . . .o 4-8
SYNOPSY S . vt e e e 4-9
Mentor Graphics 4-11
The Exemplar Packages. i 4-11
Predefined Types. 4-12
Predefined Attributes 4-12
Predefined Functions. i 4-14
Vi

viii

5.

Predefined Procedures. i 4-20

Flip-flops. 4-20
Latches 4-21
Tristate BUSSES. 4-21
pullup(busname) 4-22
pulldn(busname) 4-22
trstmem(busname). e 4-22
Syntax and Semantic Restrictions. 4-22
Synthesis Tool Restrictions. 4-22
VHDL Language Restrictions. 4-23
After Clause lgnored 4-23
Restrictions on Initialization Values 4-24
Ranges Of Loops Have To Evaluate To Constants During
Compile Time i e 4-24
Restrictions On Edge-Detecting Attributes (‘event) 4-25
Restrictions on Wait Statements 4-26
Restrictions on Multiple Drivers on One Signal 4-26
Introduction to Verilog HDL Synthesis 5-1
Verilog and Synthesis 5-2
Synthesizing the Verilog Design 5-3
Verilog Language Features. i e 6-1
Modules. 6-2
'macromodule’ 6-2
NUMDEIS . . 6-3
HDL Synthesis Guide

Contents

Data TYPeS. . . o 6-4
NetData TYPeS 6-6
wireandtriNets 6-7
Supply Nets. ... 6-7
wand andwor Net Types 6-7
Register Data Typet 6-7
Parameter Data Type. oo e 6-8
Declaration Local to Begin-End Block 6-8

Array of reg and integer Declaration (Memory Declaration) 6-8

Continuous ASSIgNMENTS.ottt 6-9
Net Declaration Assignment., 6-9
Continuous Assignment Statement 6-9

Procedural Assignments i 6-10

Always BIOCKS 6-11

Module Instantiation 6-14
Parameter Override During Instantiation of Module. 6-15
Defparam Statement 6-15
‘'unconnected_drive’ and 'nounconnected_drive’............ 6-17

OperalOrS. . o 6-17
Operands. 6-17

Arithmetic Operators. 6-20
Relational and Equality Operators. 6-20
=== and !== Operators are Treatedas==and != 6-20
Logical Operators« 6-21

Bit-Wise Operatorscciiin.. 6-21

Reduction Operators 6-22
ShiftOperators 6-22
Conditional Operator., 6-22
Concatenation 6-23
‘signed and ‘unsigned Attributes on Operators 6-23
Operator Precedence. 6-24
Statements. 6-24
If-Else Statements. 6-24
Case Statements 6-26
Case Statement and Multiplexer Generation. 6-28
Automatic Full Case Detection 6-29
Automatic Parallel Case Detection 6-30
casex Statement. 6-31
casez Supported. 6-31
‘case’ and 'default’ Statements 6-31
for Statements. 6-32
Disable Statement. 6-33
forever, repeat, while and Generalized Form of for Loop. 6-34
Functionsand Tasks i 6-36
Functions. 6-36
TaSKS . . 6-38
Inout Portsin Task 6-39
Access of Global Variables from Functions and Tasks 6-40

HDL Synthesis Guide

SystemTask Calls. i 6-40

System Function Calls. 6-40
Initial Statement 6-41
Compiler DireCtives 6-41
7. The Artof Verilog Synthesis. 7-1
Registers, Latches,and Resets 7-1
Level-Sensitive Latch 7-2
Edge-Sensitive Flip-flops 7-2
Synchronous SetsandResets 7-3
Asynchronous Setsand Resets 7-4
ClockEnable......... 7-5
Assigning 1/0O Buffers from Verilog 7-5
Automatic Assignment Using ChipMode. 7-6
Manual Assignment Using the Control File 7-7
Buffer Assignment Using Component Instantiation 7-7
Tristate Buffers 7-8
Bidirectional Buffers. 7-10
BUSES. . . 7-10
State Machines 7-12
Moore Machines 7-14
Mealy Machines i 7-18
Issues in State Machine Design. 7-21
State Encoding. 7-21
One-HotEncoding. i 7-22

Contents xi

Xii

10.

Initialization and Power-Up Conditions 7-24

Arithmetic and Relational Logic. 7-25
Module Generation 7-27
Resource Sharing and Common Subexpression Elimination. . .. 7-27
Comparator Designt 7-28

Technology-Specific Macros. 7-29

Synthesis Directives e 7-30
parallel_case and full_case directives 7-30
translate_off and translate_on directives. 7-31
enuUM direCtiVe. 7-31
attribute directive 7-32

Verilog and Synthesisof Logic. 8-1

ComparingWith Xand Z 8-1

Variable Indexing of BitVectors 8-2

Syntax and Semantic Restrictions 8-3
Unsupported Verilog Features., 8-3
Supported Verilog Features (Limited in Usage) 8-4

Supported Verilog Features (Ignored by Exemplar Synthesis) .. 8-4

Introduction to Module Generation. 9-1
Using Module Generation. 10-1
Supported Technologies 10-1
Supported Operators 10-2
Countersand RAMS 10-3
Counter and RAM Inferencing and Module Generation 10-5

HDL Synthesis Guide

Contents

11.

Using Module Generation With Exemplar Synthesis Tools. 10-8

Specifying Module Generation Library. 10-8

Area/Delay Trade-offs Attributes 10-8

Disabling Module Generation. 10-9
Counter and RAM Extraction 10-10
VerilogUsage 10-10
User-Defined Module Generators 11-1
The Module Generator Boundary 11-1
Module Generator Contents i, 11-5
USagE . . oo 11-7

xiii

Xiv HDL Synthesis Guide

Introduction to VHDL Synthesis 1

Overview

VHDL is a high level description language for system and circuit design. The language
supports various levels of abstraction. Whereas regular netlist formats support only
structural description, and a boolean entry system supports only dataflow behavior,
VHDL supports a wide range of description styles. These include structural
descriptions, dataflow descriptions and behavioral descriptions.

The structural and dataflow descriptions show a concurrent behavior. That is, all
statements are executed concurrently, and the order of the statements is not relevant.
On the other hand, behavioral descriptions are executed sequentially in processes,
procedures and functions in VHDL. The behavioral descriptions resemble high-level
programming languages.

VHDL allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic needed,
resulting in a final netlist description in the technology of your choice. The Top-Down
Design Flow enabled by the use of the synthesis tools is shown in Figure 1-1.

1-1

concept

Y

translate to behavior/simulate

Y

synthesize to gate

Y

optimize speed/area

Y

technology map

| Exemplar Synthesis Tools |

Y

physical implementation

Y

CAE simulator

LeoHDL 01

Figure 1-1 Top-Down Design Flow with the Exemplar synthesis tools

VHDL and Synthesis

1-2

VHDL is fully simulatable, but not fully synthesizable. There are a number of VHDL
constructs that do not have valid representation in a digital circuit. Other constructs do,
in theory, have a representation in a digital circuit, but cannot be reproduced with
guaranteed accuracy. Delay time modeling in VHDL is an example.

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL)
circuit descriptions and target a specific technology. Scheduling and allocation
algorithms, which perform circuit optimization at a very high and abstract level, are
not yet robust enough for general circuit applications. Therefore, the result of

HDL Synthesis Manual

1=

synthesizing a VHDL description depends on the style of VHDL that is used. Users of
the Exemplar synthesis tools should understand some of the concepts of synthesis
specific to VHDL coding style at the RTL level in order to achieve the desired circuit
implementation.

Synthesis tools are ideal for solving many of the cumbersome RTL logic optimization
problems that occur during a typical top-down design project.

This manual is intended to give the VHDL designer guidelines to achieve a circuit
implementation that satisfies the timing and area constraints set for a given target
circuit, while still using a high level of abstraction in the VHDL source code. This goal
will be discussed both in the general case for synthesis applications, as well as for the
Exemplar synthesis tools specifically. Examples are used extensively; VHDL rules are
not emphasized.

Knowledge of the basic constructs of VHDL is assumed, although Chapter 2, VHDL
Language Features is dedicated to the discussion of all the constructs in VHDL that are
useful for synthesis. If you need more details about VHDL, a comprehensive
description of VHDL is given in the book/HDL" by Douglas E. Perry

(McGraw-Hill, Inc.), and VHDL related to digital circuits is discussed by Randolph E.
Harr in “Applications of VHDL to Circuit Design” (Kluwer Academic Publishers). In
addition, training on the Exemplar synthesis tools and VHDL for synthesis is available
from Exemplar Logic, and training on VHDL and top-down design in general is
available from a number of different sources.

In This Manual

The VHDL portion of this manual is organized as follows:

A basic description of the most relevant VHDL constructs is given in Chapter 2,
“VHDL Language Features.” Chapter 3, “The Art Of VHDL Synthesis,” discusses
VHDL for synthesis purposes. Within this chapter, a number of common digital
circuits are analyzed, with examples of how to properly code these designs in VHDL.
Chapter 4, “The VHDL Environment,” deals with how the Exemplar synthesis tools
are used together with other VHDL and CAE software, and how non-standard issues,
such as file handling, are implemented. The Exemplar VHDL package is also
presented in this chapter.

Introduction to VHDL Synthesis 1-3

1

Customer Support

If you encounter problems using VHDL or the Exemplar synthesis tools, or if you have
any questions or remarks about this VHDL manual, contact the Exemplar Customer
Support Hot Line at (510) 337-3742, or send e-magupport@exemplar.com

1-4 HDL Synthesis Manual

VHDL Language Features 2

This chapter provides an introduction to the basic language constructs in VHDL:
defining logic blocks, structural, dataflow and behavioral descriptions, concurrent and
sequential functionality, design partitioning and more. The Exemplar synthesis tools
synthesize all levels of abstraction, and minimizes the amount of logic needed,
resulting in a final netlist description in the technology of your choice.

Entities and Architectures

The basic building blocks in VHDL are Entities and Architecturesehiity describes

the boundaries of the logic block. Its ports and its generics are declared here. An
architecturedescribes the contents of the block in structural, dataflow and behavioral
constructs.

2-1

2-2

entity small_block is
port (a,b,c: in bit;
0l: out bit;
02: out bit
)

end small_block ;

architecture exemplar of small_block is
signal s : bit;
begin
ol<=s orc;
s<=a andb;
02<=s Xor C;
end exemplar ;

This VHDL description shows the implementationsofiall_block , a block that
describes some simple logic functions.

The entity describes the boundary. The port list is given with a direction (in this case
in orout), and a typelit) for each port. The entity’s namesmall_block . The
architecture’s name isxemplar and it is linked to the entity via the name
small_block . There can be multiple architectures per entity, but always only one
architecture is executed. By default, the last defined architecture is linked to the entity.

The architecture describes the contents ofsthall_block . The architecture starts
with a declarative region; in this case, the internal signial declared. It also has a
type pit), just like the ports in the entity.

A signalis another form of an object in VHDL. All objects and expressions in VHDL

are strongly typed. This means that all objects are of a defined type and issues an error
message if there is a type mismatch. For example, you cannot assign an integer of type
signal to abit

The architecture contents starts aftertbegin statement. This is called tliataflow
environmentplease refer to the previous example). All statements in the dataflow
environment are executed concurrently, and thus the order of the statements is
irrelevant. This is why it is valid to usebefores is assigned anything. Assignment of
a value to a signal is done with the sign. In the first statemem,l is assigned the
result value ok orc. or is a predefined operator.

HDL Synthesis Manual

2=

Additional details about the various dataflow statements and operators are given in the
following sections.

Configuration

In summary, a configuration declaration provides the mechanism for delayed
component binding specification. The entity name identifies the root entity to be
elaborated. The optional architecture name provides the name of the architecture to be
elaborated.

A configuration declaration can configure each component instantiation individually
with a different entity or architecture. The configuration declaration can also configure
some lower level component instantiation of the current component being configured.

With the help of the configuration declaration, you can try out different possible
bindings of the component instantiations by keeping the basic hierarchical structure of
the top level design intact.

NOTE: If you use “con” for configuration and “ent” for entity then the name of the
hierarchy cell created ixbn_ent ”.

library ieee;
library work;
use ieee.std_logic_1164.all;
package global decl is
type log_arr is array(std_logic) std_logic;
constant std_to_bin : log_arr:=(xX,'X''o,', XX 0, XY,
function to_bin (from : std_logic) return std_logic;
end;
package global decl is
function to_bin (from : std_logic) return std_logic is
begin
return std_to_hin(from);
end;
end;
continued....

VHDL Language Features 2-3

2-4

....continued

library ieee;

library work;

use ieee.std_logic_1164.all;
use work.global_decl.all;

entity enl is port
(a: in std_logic;
b: out std_logic);
end;

architecture arl of enl is
begin

b <= to _bin (a);

end;

architecture ar2 of enl is
begin

b<= not (to _bin (a));
end;

library ieee;

library work;

use ieee.std_logic_1164.all;
use work.global_decl.all;

entity en2 is port
(a: in std_logic;
b,c: out std logic);
end;

architecture arc of en2 is
component enl port
(a: in std_logic;
b: out std_logic);
end component ;
continued....

HDL Synthesis Manual

N
1]

....continued
begin
cl:enl port map (a=>a, b=>h)
c2:enl port map (a=>a, b=>c)
end;

library work;
configuration binding of en2 is
for arc
for cl:enluse entity work.enl (arl);
end for ;
for c¢2:enluse entity work.enl (ar2);
end for ;
end for ;
end binding ;

Processes

Processesre sections of sequentially executed statements, as opposed to the dataflow
environment, where all statements are executed concurrently. In a process, the order of
the statementdoesmatter. In fact, processes resemble the sequential coding style of
high level programming languages. Also, processes offer a variety of powerful
statements and constructs that make them very suitable for high level behavioral
descriptions.

A process can be called from the dataflow area. Each process is a sequentially
executed program, but all processes run concurrently. In a sense, multiple processes
resemble multiple programs that can run simultaneously. Processes communicate with
each other via signals that are declared in the architecture. Also the ports defined in the
entity can be used in the processes.

VHDL Language Features 2-5

il
N

entity experiment is
port (source: in bit_vector(0 to 3) ;
ce: in bit;
wrclk : in bit;
selector : in bit_vector(Oto 1) ;
result : out bit
)i
end experiment;
architecture exemplar of experiment is
signal intreg : bit_vector(0 to 3);
begin -- dataflow environment
writer : process -- process statement
-- declarative region (empty here)
begin -- sequential environment
-- sequential (clocked) statements
wait until wrclk’event and wrclk ='1";

if (ce="1")then
intreg <= source ;
endif ;
end process writer;

reader : process (intreg, selector) -- process statement
-- with sensitivity list
-- declarative region (empty here)
begin
-- sequential (not-clocked) statements
case selector is
when "00" => result <= intreg(0) ;
when "01" => result <= intreg(1) ;
when "10" => result <= intreg(2) ;
when "11" => result <= intreg(3) ;
end case ;
end process reader;
end exemplar ;

2-6 HDL Synthesis Manual

2=

This example describes a circuit that can load a source vector of 4 bits, on the edge of
a write clock wrclk), store the value internally in a registarteg) if a chip

enable ¢e) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signals of two bits.

The description consists of two processes, one to write the value into the internal
register, and one to read from it. The two processes communicate via the register value
intreg.

The first processwriter) includes a wait statement. The wait statement causes the
process to execute only if its condition is true (a further explanation is given later in

the chapter). In this case, the wait statement waits until a positive edge occurs on the
signalwrclk (expressiorwrclk’event and wrclk="1"’). Each time the edge

occurs, the statements below the wait statements are executed. In this case, the value of
the input signal source is loaded into the internal sigie¢g only if ce is1’ . If

ce is0' ,intreg retains its value. In synthesis terms, this translates into a

D-flipflop, clocked onwrclk , and enabled byge.

The second procesee@der) does not have a wait statement. Instead, it has a
sensitivity list, with the signalsitreg andselector there. This construct defines
that the whole process is executed each time dithreg or selector changes. If
the process is executed, the output sigesalilt gets updated with depending on the
values ofintreg andselector . Note that this leads to combinational behavior,
sinceresult depends on onlintreg andselector , and each time either of
these signals changegsult gets updated.

A process has an optional name (in this cagter andreader), a sensitivity list

OR a wait statement, and a declarative region where signals, variables, functions etc.
can be declared which are used only within the process. The next section of the process
is the sequential environment where all statements are made. Each statement is
executed sequentially, as in a programming language.

Not all constructs, or combinations of constructs, in a process lead to behavior that can
be implemented as logic. For more information about synthesizable constructs, refer to
“Syntax and Semantic Restrictions” on page 22.

VHDL Language Features 2-7

il
N

Literals

Constant values in VHDL are given in literalsterals are lexical elements. Below is
an overview, with examples given for each type of literal.

Character Literals: ‘0 X el %'H#

String Literals: “1110100" “XXX” “try me!” “$"&@!"
Bit String Literals: B“0010_0001" X"5F 0“63_07"
Decimal Literals: 27 -54E3 76_562 4.25

Based Literals: 2#1001# 8#65_07" 14#C5H#E+2
Physical Literals: 2ns 50V 15pF

Identifiers: Idle TeSTing a true_story

Literals are used to define types and as constant values in expressions. This list
provides a brief description of their function in VHDL which will be more clear after
the descriptions of types and expressions.

The’_’ in bit string literals, decimal literals and based literals helps to order your
literal, but does not represent a value.

Character literals contain only a single character, and are single quoted.
String literals contain an array of characters, and are double quoted.

Bit String Literals are a special form of string literals. They contain an array of the
characters 0 and 1, and are preceded by one of three representation forms. B is the bit
representation (0 or 1 allowed), X the hexadecimal representation (0 to F allowed) and
O the octal representation (0 to 7 allowed). X"5F" is exactly the same as B"01011111",
which is again the same as the string literal "01011111".

Bit string literals can contain underscores, which are ignored and only inserted for
readability.

Decimal literals arénteger orreal values.

Based literals are aldnteger orreal values, but they are written in a based form.
8#75# is the same as decimal 61. However it is not the same as the bit literal value
0"75" since the bit literal value is an array (of bits) and the based literal is a integer.

Physical literals are sometimes required for simulation. As they are not used in the
synthesized part of the design, we do not go into detail about them.

2-8 HDL Synthesis Manual

2=

Identifiers can be enumeration literals. They are case-insensitive, like all identifiers in
VHDL. Their use becomes more clear with the discussion of VHDL types.

Types

A typeis a set of values. VHDL supports a large set of types, but here we concentrate
on types that are useful for synthesis.

VHDL is a strongly typed language: every object (see “Objects” on page 30) in a
VHDL source needs to be declared and needs to be of a specific type. This allows the
VHDL compiler to check that each object stores a value that is in its type. This avoids
confusion about the intended behavior of the object, and in general allows the user to
catch errors early in the design process. It also allows overloading of operators and
subprograms (“User-Defined Attributes” on pageatl “Resolution Functions” on

page 52). It also make coding in VHDL a look more difficult at first sight, but tends to
produce cleaner, better maintainable code in the end.

VHDL defines four classes of types:
e Scalar types

« Composite types

e Access types

» File types

Access types and File type cannot be applied for logic synthesis, since they require
dynamic resource allocation, which is not possible in a synthesized hardware (see
“VHDL Language Restrictions” on page 23). Therefore, we will not discuss these.

Instead, only scalar types and composite types will be discussed. These are all scalar
types in VHDL:

e Enumeration types.

* Integer types

» Floating-point types

» Physical types

VHDL has two forms of composite types:
* Array types

* Record types.

VHDL Language Features 2-9

il
N

This section will discuss the syntax and semantics of scalar and composite types, and
comment about the synthesizability of objects of these types.

Finally, this section will discuss some of the built-in standard types of the language
(IEEE 1076), and a standardized set of types that are often used for logic synthesis
purposes (IEEE 1164).

Enumeration Types

Syntax and Semantics

An enumeratiortype consists of a set of literals (values). It indicates that objects of
that type cannot contain any other values than the ones specified in the enumeration
type.

An example of an enumeration type is the pre-defined ljjpe This is how the type
bit is declared:

type bit is (0,1);

Any object of typebit can only contain the (literal) valu& and'l’ . The VHDL
compiler will error out (type error) if a different value could be assigned to the object.

Enumeration types are also often used to declare the (possible) states of a state
machine. Here is an example of the declaration of the states of an imaginary state
machine are declared:

type states is (IDLE, RECEIVE, SEND) ;

Once an object of this type is declared, the object can contain only one of these three
‘state’ values.

2-10 HDL Synthesis Manual

N
1]

Synthesis Issues

It is important to understand a logic synthesis tool needs to do state encoding on any
enumeration type. For example, ttates type in the previous section needs at least
two bits to represent the three possible values. This section mainly deals with the
various forms of controlling the enumeration encoding for each enumeration type in
your design.

By default, the synthesis tools perfoomehot encoding on an enumeration type.
With Galileo, any other encoding can be achieved with a global swéobdding).
With Leonardo, other encodings can be achieved by usingrit@ding variable. In
addition both tools support alternate encodings by using any of the following
attributes:

« TYPE_ENCODING_STYLKdefine the encoding style for state machine type
encoding)

« TYPE_ENCODINGdefine the bit-to-bit encoding for state machine type values
manually)

« LOGIC_TYPE_ENCODINGdefine that the type needs to be synthesized into a
single binary value)

These three attributes are declared inekemplar_1164 package. So you do not
need to declare them if you useise exemplar.exemplar_1164.all

statement in your design unifor more information, see “The Exemplar Packages” on
page 11.)

TheLOGIC_TYPE_ENCODINGttribute on an enumeration type will give a hint to the
compiler that any object of the type should be encoded with a single bit, even though
there might be more than two value in the type. An example of a type where
LOGIC_TYPE_ENCODINGs helpful, is the typstd_ulogic in the IEEE 1164

VHDL Language Features 2-11

il
N

package (see “IEEE 1076 Predefined Types” on page 28). The type consists of nine
values, but the synthesis tools should encode any objettl ofilogic as a single
bit value. Here is how the synthesis tools encstdeulogic as a single-bit value:

-- Declare the LOGIC_TYPE_ENCODING attribute :
attribute LOGIC_TYPE_ENCODING : string ;

-- Declare the std_ulogic type :

type std_ulogic is (U/X,0,1,Z,W'/L'H,-);

-- Set the LOGIC_TYPE_ENCODING attribute on the std_ulogic type :
LOGIC_TYPE_ENCODINGof std_ulogic:type is
(X)X,'0,1,Z2 X0, X))

attribute

2-12

LOGIC_TYPE_ENCODING@akes an array of characters, as many as there are values in
the type, and each character states how the synthesis tools should treat the related
value. There are four values that the synthesis tools accepts as legal single bit values
for the LOGIC_TYPE_ENCODINGittribute:'0’,'1’,'X’,’Z’

'0’ : Treat the value as a logic zero.
1’ : Treat the value as a logic one.

X" : Treat the value as either a logic one or a logic zero. The Exemplar synthesis
tools can decide which one, depending on the context it is used in. The synthesis
tools will use this freedom to optimize the circuit as much as it can.

'Z' : Treat the value as a high-Z values. The synthesis tools will generate a three-state
driver if this value is used in an assignment.

The synthesis tools can work with all values of a type with a
LOGIC_TYPE_ENCODINGttribute. Only comparisons of NON-STATIC value
with X’ or’Z" will return FALSE

The TYPE_ENCODIN@NndTYPE_ENCODING_STYLEttributes on an enumeration
type are used to control state-encoding for state-machine descriptions. Normally,
state-machines in VHDL are described by giving a enumeration type that identifies
each possible state of the state machine. The encoding for this enumeration type is
done by the synthesis tools. By default, they BB¢ARY encoding.

HDL Synthesis Manual

2=

The TYPE_ENCODING_STYLBives a hint to the compiler as to what kind of
encoding style to choose. There are four different styles to chooseBIbARY,
GRAY, ONEHOT, RANDOMHere is an example of how to use the

TYPE_ENCODING_STYLIRttribute on a (imaginary) state enumeration type:

-- Declare the TYPE_ENCODING_STYLE attribute

-- (not needed if the exemplar_1164 package is used) :

type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM) ;
attribute TYPE_ENCODING_STYLE : encoding style ;

-- Declare the (state-machine) enumeration type :
type my_state type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the TYPE_ENCODING_STYLE of the state type :

TYPE_ENCODING_STYLEof my_state_type:type is ONEHOT ;

In the above example, the synthesis tools will use one-hot encoding for the values of
my_state type . More specifically, the synthesis tools will use five bits for the type
and will encode the states as follows:

bit4 bit3 bit2 bitl bit0
SEND - - - -1
RECEIVE - - - 1 -
IGNORE - - 1 - -
HOLD - 1r - - -
IDLE T - - - -

The’- value will allow the synthesis tools to only compare a single bit when a state
value is tested for. When a state value is assigrAed,means a 0. This scheme allows

the synthesis tools to eliminate almost all logic when testing for the state machine to be
in a particular state. On the other hand, sidddEHOENCOding requires more bits

than other encoding styles, the number of flip-flops will incre@¢EHOENCOding

can therefore be very beneficial for technologies where flip-flops are not expensive,
but combinational logic is (like in the Xilinx architectures).

VHDL Language Features 2-13

Naming: ForONEHOEnNcoding, the synthesized bits of a state machine will be named
after the bit number in the above table. Here is an example:

signal state : my_state type ;

The signalstate will be synthesized with one-hot encoding style, and the synthesis
tools will generate five bits for it, where each one gets the state number from the above

table:
state(4)
state(3)
state(2)
state(1)

state(0)

corresponds to bit4 in the state table
corresponds to bit3 in the state table
corresponds to bit2 in the state table
corresponds to bitl in the state table

corresponds to bit0 in the state table

2-14

For BINARY encoding (the default) the synthesis tools will use the following state
table:

bit2 bitl bit0
SEND 0 0 O
RECEIVE 0 O
IGNORE 0 1
HOLD 0 1 1
IDLE 1 - -

1
0

BINARY encoding (a&SRAYandRANDOMnNcoding) uses the minimum number of bits
needed to encode all values. In the above case (five vaRIBE)RY encoding needs
three bits. The last value (for IDLE) in the above table indicates séveral The

- (just as thé-’) value is used to reduce the size of comparators needed to test the
state.

HDL Synthesis Manual

2=

Naming: ForBINARY encoding, as well as f@&RAYandRANDOMnNcoding, the
synthesis tools will generate the minimum number of bits needed for an object of the
type. The signastate will now generate three bits, each with the following name:

state(2) corresponds tbit2 in the state table
state(1) corresponds tbitl in the state table
state(0) corresponds tbit0 in the state table

GRAYencoding lets the synthesis tools build a Gray-code encoding. Gray-code
encoding assures that in each successive value, only one single bit changes:

bit2 bitl bit0
SEND 0 0 O
RECEIVE 0 0 1
IGNORE 0 1 1
HOLD 01 0
IDLE 1 1 0

Gray encoding does not use the optimization possible with'thevalue. Gray

encoding reduces glitches in the combinational logic when moving from one value
(state) to its successor. It can be helpful in designs that require very clean logic
switching and state machines that do not perform many jumps to different states.

RANDOMnNcoding will create a random encoding scheme. The state table cannot be
predicted, nor is there any way to let the synthesis tools produce it fORANDOM
encoding is interesting if you would like to see whether or not the circuit size of
performance depends heavily on the state encoding.

VHDL Language Features 2-15

il
N

To fully control the state encoding, use théPE_ENCODINGttribute. With the
TYPE_ENCODINGttribute you can define the state table used. Here is an example:

-- Declare the TYPE_ENCODING attribute :

type exemplar_string_array is array (naturalrange <>, natural range <>)
of character ;

attribute array_pin_number : exemplar_string_array ;

attribute TYPE_ENCODING : exemplar_string_array ;

-- Declare the (state-machine) enumeration type :
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE) ;

-- Set the type-encoding attribute :
attribute TYPE_ENCODING of my_state_type:type is
("0001”,"01--"'"0000","11--","0010“) ;

The TYPE_ENCODINGuttribute takes an array of equal-length strings, where each
string defines a row in the state table. TAEPE_ENCODINGuttribute is declared in
theexemplar_1164 package, so if you use that, you do not have to enter the
declaration for it.

This attribute setting will let the synthesis tools to use the following state table:

bit3 bit2 bitl bit0
SEND 0 0 0 1
RECEIVE 0 1 - -
IGNORE 0 0 O O
HOLD 11 - -
IDLE 0 01 0

Note —The number of bits used in ti&/ PE_ ENCODINGttribute value does not have

to be the smallest possible number of bits. Just make sure that you specify as many
strings as there are values in the enumeration type. Also note that you can’dse the
value to let the Exemplar synthesis tools know to not use these bits when testing is the
state machine is in the given state. You can use this to reduce the size of the circuit.

2-16 HDL Synthesis Manual

2=

Right now, the synthesis tools do not have an algorithm to find a good state encoding
for any enumeration type. Still, the various forms of manual state table control
explained in this section should allow you to find a good state encoding for each state
machine in your design.

The attributes described in this section allow you to encode each state machine (each
state-type) individually. Galileo also provides a command line swiwtcoding)

that sets the default encodingINARY) to eitherBINARY, ONEHO,TGRAYor
RANDOMT his command-line switch is useful to quickly switch from one state
encoding style to another on a design with a single state machine. Any of the above
encoding attributes overwrite any default setting. For Leonardo, sehtosling

variable toBINARY (default), ONEHOTGRAYor RANDOMefore reading in a design

to use a different encoding style for the state machines in the design.

An interesting effect of this way of handling encoding for enumeration types in
synthesis of the predefined typbaracter in VHDL. Thecharacter type is

defined in the packag&tandard , as an enumeration of all characters in the 8-bit
ASCII set. WherBINARY encoding (default) is chosen, each character will be
synthesized into seven bits, with exactly its 8-bit ASCII value. So, the synthesis tools
can synthesize characters (and strings) representing them as ASCII values. If a
different default encoding is chosen, the encoding of the character type will change
accordingly.

Integer Types

Syntax and Semantics

When designing arithmetic behavior, it is very helpful to work with integer types. An
integer type defines the set of integer values in its range. This is how an integer type is
defined:

type my_integer is range 0 to 15;

Any object of typemy_integer can only contain integer values in the range
specified. VHDL pre-defines an integer type calletbger , that at least covers a
range of integer values that can be represented in two’s complement with 32 bits:

type integer is range -2147483647 to 2147483647,

VHDL Language Features 2-17

2-18

Actually, VHDL 1076 does not define the maximum bounds of the predefined type
integer nor of any other integer type, it just states that it should at least include this
range.

Synthesis issues

The Exemplar synthesis tools can synthesize with any integer type that contains no
values outside the range -2147483648 to 2147483647. The reason is that the synthesis
tools store integer values (constant ones) using (32 bit) integers internally. If more than
32 bits are needed for a particular circuit design, you should use arrays to represent
them. It is not wise to use integer types that exceed the above range in general, since
many other VHDL tools have the same restriction as the Exemplar synthesis tools.

The synthesis tools need to do encoding for integer types, since an integer range
requires multiple bits to represent. The synthesis tools will analyze the range of an
integer type and calculate the number of bits needed to represent it.

If there are no negative values in the integer range, the synthesis tools will create an
unsigned representation. For example, consider the following object of the type
my_integer from the previous section:

signal count: my_integer ;

The signalcount will be represented as unsigned, consisting of four bits. When
synthesized, the four bits will be named as elements of a bus in the resulting netlist:

count(0) the LSB bit
count(1)
count(2)
count(3) the MSB bhit

If the range includes negative numbers, the synthesis tools will use two’s-complement
representation of the integer values. For example, any object of the predefined type
integer will be represented with 32 bits where the MSB bit represents the sign bit.

Example:

signal big_value : integer ;

HDL Synthesis Manual

N
1]

Now, the synthesis tools will represent the sidrigl value as 32 bits:

big_value(0) the LSB bit
big_value(1)

big_value(30) the MSB bit
big_value(31) the sign bit

Floating-point Types

Syntax and Semantics

As any high-level programming language, VHDL defines floating-point types.
Floating-pointtypes approximate the real numbers.

Here is an example of the declaration of a floating-point type:

type my real is range 0.0 to 1.0;

VHDL pre-defines a very general floating-point type calledl.

type real is range -1.0E38 to 1.0E38;

Just as with the integer types, maximum bounds of any floating-point type is not
defined by the language. Still, any floating-point type should but should at least
include -1.0E38 to 1.0E38.

Nothing in the language defines anything about the accuracy of the resolution of the
floating-point type values.

Synthesis Issues

In general, since the resolution of floating-point types is not defined by the language,
it is difficult to come up with a good rule for encoding floating-point types. While in a
regular (software) compilers floating-point types are represented in 32, 64 or 128 bits,
the floating-point operations just require time. In hardware compilers like a logic

VHDL Language Features 2-19

il
N

synthesis tool, floating-point operations would require massive amounts of actual
synthesized hardware, unless the resolution and bounds of the floating-point type are
kept under very close control.

For the above reasons, the Exemplar synthesis tools do not currently support synthesis
of floating point objects.

Floating-point types and objects can however be used in constant expression.

For example, an attribute could get a (compile time constant) floating-point expression,

and the synthesis tools will calculate the expression and set the floating-point value on
the attribute.

Physical Types

Syntax and Semantics

VHDL allows the definition of physical typeBhysicaltypes represent relations between
guantities. A good example of a physical type is the predefineditype:

type time is range -2147483647 to 2147483647
units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;
end units;

Objects of physical types can contain physical values of the quantities specified in the
type, as long as the values do not exceed the type’s rangetifyeis often used in
VHDL designs to model delay.

2-20 HDL Synthesis Manual

N
1]

Synthesis Issues

Physical types, objects and values are normally only used for simulation purposes.
Objects and values of tygane are used irafter clauses to model delay.

The Exemplar synthesis tools attempt to synthesize any physical value that is within
the range of the type. The encoding follows the encoding for integer types, and
expresses the value with respect to the base quafstityn(the typetime). It is not
common practice however to synthesize logic circuitry to model physical values.

The synthesis tools handles constant expressions of physical values without any
problems. For example, attributes of tyjpme can receive constant values of type
time . This is often used to model arrival time and required time properties in the
design. (For more information, see “The Exemplar Packages” on page 11.)

Array Types

Syntax and Semantics

An array type in VHDL specifies a collection of values of the same type. There are
constrained and unconstrained array types.

For an constrained array type, the number of elements and the name of the elements (the
index) is defined and fixed.

Example:

type byte is array (7 downto 0) of bit;

In this example, typbyte defines an array of 8 element, each of tgpe . The
elements are named with indexes ranging from 7 (for the left most element in the array)
downto O (for the right most element in the array). Example of an array object:

constant seven : byte := "00000111";

VHDL Language Features 2-21

il
N

2-22

Individual elements of the array object can now be referred to using indexing:

seven(0) is the name of the right most element in arsayen . Its value is the
bit literal '1’

seven(7) is the name of the left most element in arsayen . Its value is the bit
literal '0’

Parts of the array can be retrieved using slicing:

seven(3 downto 0) is the name of the right most four elements in array
seven . The value is an array of four bit92111" . The indexes of this array range
from 3 down toO.

For an unconstrained array type, the number of elements and the name of the elements in
not yet defined. An example is the pre-defined tyjpievector

type bit_vector is array (natural range <>) of bit;

Here, the array type defines that the element typtis and that the index type is
type natural . Typenatural is a integer subtype that include all non-negative
integer. The meaning of this is that the index value for any object of type
bit_vector can never be negative.

By defining an unconstrained array type, you defer specifying a size for the array. Still,
in order to define a valid object of an unconstrained array type, we need to constraint the
index range. This is normally done on the object declaration:

constant eight : bit_vector (7 downto 0) :="00001000";

Unconstrained array types are very important, since they allow to declare many
different-size objects to be declared and used through each other, without introducing
type conflicts.

The type of the element of an (constrained or unconstrained) array type is not restricted
to enumerated typleit as in the examples above. Actually, an array element type can
be any type but an unconstrained array type.

So you could define an array of integers, an array of 6-bit arrays, an array of records
etc. But you cannot declare an array of (the unconstrained arraybiypegctor

HDL Synthesis Manual

2=

If you want an unconstrained array type where you need more indexes to remain
unconstrained, you need a multi-dimensional array type:

type matrix is array (natural range <>, natural range <>) of bit;

Multi-dimensional (constrained and unconstrained) array type are handy when
modeling RAMs, ROMs and PLAs in VHDL. The section “Edge-Sensitive Flip-Flops”

on page 3 gives some examples. Indexes and slices of multi-dimensional arrays need to
specify all index dimensions, separated by a comma. Again, “Edge-Sensitive
Flip-Flops” on page 3 gives examples.

Finally, the index type of an array type does not have to be an integer (sub)type. It can
also be an enumeration type.

Synthesis Issues

There are no synthesis restrictions in the Exemplar synthesis tools on using arrays. The
synthesis tools support arrays of anything (within the language rules),
multi-dimensional arrays, array types with enumeration index type. Negative indexes
are also allowed.

Naming of array objects is straightforward. The synthesis tools append the index for
each element after the array name. If the element type consists of multiple bits, the
synthesis tools append the element indexes to the array name with its index.

It is important to understand that there is no Most Significant Bit (MSB) or Least
Significant Bit (LSB) defined in an array type or array object. The semantics of what
is interpreted as MSB or LSB is defined by the operations on the array. In the example
of objectseven above, the user probably meant the left most bit to be the MSB, and
the right most bit the LSB. However, this is not defined by the language, just by the
user.

Additions, subtractions, and multiplications have to be defined by the user. Most
synthesis tool vendors define (arithmetic) operations on arrays in packages that are
shipped with the product. Most of these packages assume that leftmost bit is the MSB
and the rightmost bit is the LSB. As an example of this, the paclegasplar and
exemplar_1164 (see “The Exemplar Packages” on page 11) define arithmetic
operators théit_vector and the IEEE 1164 array equivalent

std_logic_vector type. In these packages, the leftmost bit is assumed to be the
MSB.

VHDL Language Features 2-23

il
N

Record Types

Syntax and Semantics
A record type defines a collection of values, just like the array type.

All elements of an array must be of the same type. Elements of a record can be of
different types:

type date is
record
day : integer range 1 to 31;
month : month_name ;
year : integer range 0 to 4000 ;
end record ;

The element typemonth_name in this example could be an enumeration type with all
names of the months as literals.

The elements of a record type can again be of any type, but cannot be an unconstrained
array.

Consider the following object of typdate :

constant my_birthday : date := (29, june, 1963) ;

Note —An aggregate is used here to initialize the constant. Aggregates are discussed in
the section “IEEE 1076 Predefined Operators” on page 40.

Individual elements of a record object can be accessed with a selected name. A
selected name consists of the object name, followed by a dot (.) and the element name:

my_birthday.year selects thgrear field out of my_birthday and returns
the integer valud993.

2-24 HDL Synthesis Manual

N
1]

Synthesis Issues

The Exemplar synthesis tools impose no restrictions (apart from the language rules) on
record types and record objects.

Naming of the individual bits that result after synthesizing a record object follow the
selected naming rule of the language: Each bit in a record object get the record name
followed by a dot, followed by the element name. If the element synthesizes into
multiple bits, the index of the bits in each element are appended to that. As an
example, the five bits that represent ttay field in my_birthday will be named as
follows:

my_birthday.day(0) LSB in my_birthday.day
my_birthday.day(1)
my_birthday.day(2)
my_birthday.day(3)
my_birthday.day(4) MSB in my_birthday.day

Subtypes

A subtypeis a type with a constraint.

subtype <subtype name> is <base_ type> [<constraint>] ;

A subtype allows you to restrict the values that can be used for an object without actually
declaring a new type. This speeds up the debugging cycle, since the simulator will do a
run-time check on values being out of the declared range. Declaring a new type would
cause type conflicts. Here is an example:

type big_integer is range 0 to 1000 ;
type small_integer is range0to 7 ;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ; <- type error occurs because
big_integer and small_integer are
NOT the same type

VHDL Language Features 2-25

2-26

With a type-conversion (see next section), you can 'cast’ one integer into another one to
avoid the above error. Still, it is cleaner to use a subtype declaration for the (more
constrainedsmall_integer type:

type big_integer is range0 to 1000 ;
subtype small_integer is big_integer range 0 to 7;

signal intermediate : small_integer ;
signal final : big_integer ;

final <= intermediate * 5 ;<-NOtype erroroccurs ! because
big_integer and small_integer
have the same base-type
(big_integer).

Subtypes can be used to constraint integer types (as in the above example),
floating-point type, and unconstrained arrays.

Declaring a subtype that constraints an unconstrained array type is exactly the same as
declaring a constrained array type:

type bit_vector is array (natural range <>) of bit;
subtype eight_bit_vector is bit_vector (0 to 7);

has the same effect as:

type eight_bit vector is array (O to 7) of bit;

Just as in the integer type example above, subtypes of one and the same unconstrained
base-type are compatible (will not cause type errors), but when two constrained array
types are used, they will cause type errors if objects of both types are intermixed in
expressions. Type conversion is then the only possibility to let objects of the two types
be used together in expressions without type errors (see next section).

There are no synthesis restrictions on the use of subtypes.

HDL Synthesis Manual

N
1]

Type Conversions

In cases where it is not possible to declare one type and one subtype instead of two
separate types, VHDL has the concept of type conver§ige conversiolis similar to

type 'casting’ in high level programming languages. To cast an expression into a type,
use the following syntax:

<type>(<expression>)

Type conversion is allowed between 'related’ types. There is a long and detailed
discussion in the VHDL LRM about what related types are, but in general, if it is
obvious to you that the compiler should be able to figure out how to translate values of
one type to values of another type, the types are probably related. For example, all
integer types are related, all floating-point types are related and all array types of the
same element type are related.

So, the problem of type error between two different types in example of the previous
section could be solved with a type conversion:

type big_integer is range 0 to 1000 ;
type small_integer is range0 to 7;

intermediate : small_integer ;
final : big_integer ;

final <= big_integer(intermediate * 5) ;<- NO type error occurs now,

since the compiler knows how to
translate 'small_integer’ into
big_integer with the type
conversion.

VHDL Language Features 2-27

il
N

IEEE 1076 Predefined Types

The VHDL IEEE 1076 standard predefines a number of types. Listed below are the ones
which are most important for synthesis:

type bit is (0,1);

type bit_vector isarray (integer range <>) of bit ;
type integer isrange MININT to MAXINT ;
subtype positive is integer range 1 to MAXINT ;
subtype natural is integer range 0 to MAXINT ;
type boolean is (TRUE,FALSE);

The Exemplar synthesis tools also understand the predefinedG@yp&RACTER

STRING, SEVERITY_LEVEL TIME, REALandFILE . For more information on
synthesis restrictions for these object types, see “Syntax and Semantic Restrictions” on
page 22.

IEEE 1164 Predefined Types

A problem with the 1076 standard is that it does not specify any multi-valued logic
types for simulation purposes, but rather left this to the user and/or tool vendor. The
IEEE 1164 Standard specifies a 9-valued logic. The Exemplar synthesis tools support
these types, although some restrictions apply to the values you can use for synthesis.
These restrictions are discussed in the section “Syntax and Semantic Restrictions” on
page 22.

The meaning of the different type values of the IEEE 1164 standard are given below.

‘U’ Uninitialized
X’ Forcing Unknown
{0} Forcing Low

1 Forcing High

A High Impedance
W Weak Unknown
L Weak Low

2-28 HDL Synthesis Manual

N
1]

1H1

Weak High

Dont Care

The weak values on a node can always be overwritten by a forcing value. The high
impedance state can be overwritten by all other values.

Most of these values are meaningful for simulation purposes only. Some restrictions
apply if you want to use these values for synthesis. Only the values

0)Y X) and’Z’ have a well-described meaning for synthesis. For details
see “Syntax and Semantic Restrictions” on page 22.

Some examples of IEEE 1164 type statements are:

type std_ulogic

|S (’U,,,X,,,O,,,1’,’2,,’W,,,L’,’H,,,',) '

type std_ulogic_vector
subtype std_logic
type std_logic_vector

is array
is resolution_func std_ulogic ;
is (natural range <>)

(natural range <>)

of std_ulogic ;

of std_logic;

subtype X01z

is resolution_func std_ulogic
-- includes X,0,1,Z

range ‘X' to 'Z;

The identifierresolution_func is a function that defines which value should be
generated in case multiple values are assigned to an object of the same type. This is
called the resolution function of the type. Resolution functions are supported as long as
they do not return any metalogical values. For details, refer to “Syntax and Semantic
Restrictions” on page 22.

To use the IEEE 1164 types you must load the IEEE package into your VHDL
description. This is done with the following statements:

library ieee;
use ieee.std_logic_1164.all ;

Details about how the synthesis tools handle packages are explained in the section
“Entity and Package Handling” on page 1.

VHDL Language Features 2-29

il
N

Objects

Objectsin VHDL (signals, variables, constants, ports, loop variables, generics) can
contain values. Values can be assigned to objects, and these values can be used
elsewhere in the description by using the object in an expression. All objects except
loop variables have to be declared before they are used. This section describes the
various objects in VHDL and their semantics.

Signals

Signalsrepresent wires in a logic circuit. Here are a few examples of signal declarations:

signal foo : bit_vector (0 to 5):=B"000000";
signal aux: bit;
signal max_value : integer ;

Signals can be declared in all declarative regions in VHDL except for functions and
procedures. The declaration assigns a name to the sigaa); @ type, with or without

a range restrictionb{t_vector(0 to 5)); and optionally an initial (constant)
value. Initial values on signals are usually ignored by synthesis (For details, see
“Restrictions on Initialization Values” on page 24.)

Signals can be assigned values using an assignment statement

(e.g.,aux <='0" ;). If the signal is of an array type, elements of the signal’s
array can be accessed and assigned using indexing or slicing. For more information,
see “Statements” on page 33.

Assignments to signals are not immediate, but scheduled to be executed after a delta
delay. (This effect is an essential difference between variables and signals.) This is
discussed in detail in “Usage Of Attributes” on page 46.

Constants

2-30

Constants can not be assigned a value after their declaration. Their only value is the
initial constant value. Initialization of a constant is required. An example of declaring a
constant is:

constant ZEE_8: std_logic_vector (0 to 7) :="Z2Z2Z7Z7" ;

HDL Synthesis Manual

N
1]

Variables

Variables can not be declared or used in the dataflow areas or in packages, only in
processes, functions and procedures.

An example of declaring a variable is:

variable temp : integer range 0to 10 :=5;

Assignments to a variable are immediate. This effect is an essential difference between
variables and signals. This is discussed in detail in “Usage Of Attributes” on page 46.

The initial assignment to a variable is optional. The initial assignment to a variable in
a process is usually ignored by synthesis. (For more information, see “Restrictions on
Initialization Values” on page 24.)

Ports

A port is an interface terminal of an entity. A port represents an ordinary port in a netlist
description. Ports in VHDL are, just like other objects, typed and can have an initial
value. In addition, a port has a “direction.” This is a property that indicates the possible
information flow through the port. Possible directionsiargout , inout and

buffer , whereinout andbuffer indicate bidirectional functionality.

entity adder is
port (
input_vector : in bit_vector (0 to 7);
output_vector : out bit_vector (O to 7)
)
end adder ;

After declaration, a port can be used in the architecture of the entity as if it were a
normal signal, with the following restrictions: first, you cannot assign to a port with
direction in, and second, you cannot use a port of direction out in an expression.

VHDL Language Features 2-31

il
N

Generics

A genericis a property of an entity. A good example of a generic is the definition of the
size of the interface of the entity. Generics are declared in a generic list.

entity increment is
generic (size : integer :=8);
port (ivec : in bit_vector (0O to size-1);
ovec: out bit_vector (0 to size-1));
end increment ;

The genericsize can be used inside the entity (e.g., to define the size of ports) and in
the architecture that matches the entity. In this example, the geimricis defined as

an integer with an initial valu®. The sizes of the input and output ports of the entity
increment are set to be 8 bits unless the value of the generic is overwritten by a generic
map statement in the component instantiation of the entity.

inst_1 : increment generic map (size=>16)
port map (ivec=>invec, ovec=>outvec) ;

Here, a 16-bit incrementer is instantiated, and connected to the siyweds and
outvec . “Component Instantiation” on page 58 explains more about how to use
generics when instantiating components.

The Exemplar synthesis tools fully support generics and generic map constructs and
imposes no restriction on the type of the generic. Generics are very useful in
generalizing your VHDL description for essential properties like sizes of interfaces or
for passing timing information for simulation to instantiated components.

Loop Variables

A loop variableis a special object in the sense that it does not have to be declared. The
loop variable gets its type and value from the specified range in the iteration scheme.

for i in 0O to 5 loop
a(i) <= b(i) and ena;
end loop ;

2-32 HDL Synthesis Manual

2=

In this code fragment, becomes an integer with values 0,1,2...5 respectively, when
the loop statements are executed 6 times. A loop variable can only be used inside the
loop, and there can be no assignments to the loop variable. For synthesis, the range
specified for the loop variable must be a compile-time constant, otherwise the
construct is not synthesizable.

Statements

This section briefly discusses the basic statements that can be used in VHDL
descriptions.

Conditional Statements

signal a: integer;
signal output_signal, X, y, z : bit_vector (0 to 3) ;

if a=1 then
output_signal <=x ;
elsift a=2 then
output_signal <=y ;
elsift a=3 then
output_signal <=z ;
else
output_signal <= "0000";
endif ;

This code fragment describes a multiplexer function, implemented with an if-then-else
statement. This statement can only be used in a sequential environment, such as a
process, procedure or a function.

VHDL Language Features 2-33

il
N

The same functionality in the dataflow environment is accomplished with the use of the
conditional signal assignment statement:

signal a: integer;
signal output_signal, x, y, z : bit_vector (0 to 3);

output_signal <= x when a=1 else
y whena=2 else

z whena=3 else

"0000" ;

Selection Statements

If many conditional clauses have to be performed on the same selection signal, a case
statement is a better solution than ihethen -else construct:

signal output_signal, sel, x, y, z : bit_vector (0 to 3);

case sel is
when "0010" => output_signal <=x ;
when "0100" => output_signal <=y ;
when "1000" => output_signal <=z ;

when "1010" | "1100" | "0110" => output_signal <=x and y and z;
when others => output_signal <= "0000";
end case ;

The “|” sign indicates that particular case has to be entered if any of the given choices
is true (or functionality). Each case can contain a sequence of statements.

2-34 HDL Synthesis Manual

2=

The case statement can only be used in a sequential environment. In the dataflow
environment, the selected signal assignment statement has the equivalent behavior:

signal output_signal, sel, x, y, z : bit_vector (0 to 3);

with sel select
output_signal <= x when "0010",
y when "0100",
z when "1000",
x andy andz when"1010"|"1100"
|"0110", "0000" when others ;

Loop Statements and Generate Statements

In many cases, especially with operations on arrays, many statements look alike, but
differ only on minor points. In that case, you might consider using a loop statement.

signal result, input_signal : bit_vector (0 to 5);
signal ena: bit;

for i in O to 5loop
result(i) <= ena and input_signal(i) ;
endloop ;

In this code fragment, each bit of a input signal is “anded” with a single bit enable
signal, to produce an output array signal. The loop varialllees not have to be
declared. It holds an integer value since the loop range is an integer range.

The previous example showedan loop. VHDL also has ahile loop. Here is an

example:
variable i:integer;
i:=0;
while (i < 6) loop
result(i) <= ena ANDinput_signal(i) ;
i=i+1;
end loop ;

VHDL Language Features 2-35

il
N

The Exemplar synthesis tools can synthesizefany loop. Awhile loop, however,

can be synthesized only if thhile condition evaluates to a constant (as in the
example above). If thevhile condition does not evaluate to a run-time constant, then
the synthesis tools do not know how many times the loop should be executed, and thus
cannot define how must hardware to generate for the statements inside the while loop.
A while loop with a non-constant condition could be synthesized if there were a

wait statement inside the loop. However, this implies multipdét statements in a
process, which is not supported by the synthesis tools.

Both a for-loop and a while-loop supp®&XIT or NEXT statements. AEXIT
statement tells the synthesis tools to leave the loop, &EXa statement tells it to go
to the next iteration.

For example, we could write the abowkile loop as follows:

i=-1;
while (TRUE) loop
i=i+1;

exit if (i>5);

if (input_signal(i) ='0") then
result(i) <='0";
next ;
endif ;
result(i) <= ena ;
end loop ;

This example is just to indicate how tBXIT andNEXT statements work. We do not
want to advise you to use the exit and next statement like this. The synthesis tools
however, do synthesize this description into the same logic as the ofminar

while loop. The synthesis tools are extremely good in analyzing constant
expressions, and that is why this example works.

2-36 HDL Synthesis Manual

2=

The loop statement can only be used inside sequential environments. Its equivalent
statement in the dataflow environment is ¢femerate statement:

signal result, input_signal : bit_vector (0 to 5) ;
signal ena: bit;

Gl: for i in Oto5 generate
result(i) <= ena and input_signal(i) ;
end generate

Note —The generate statement is preceded by a labBlL). A label is required in
the generate statement but is optional in the loop statement.

Thegenerate statement does not alloBXIT andNEXT statements. The reason is
that the statements inside thenerate statement are executed concurrently. So there
is no way to know when to exit. Tlgenerate statement has nohile equivalent,

for the same reason. Instead however, therdfis aquivalent in thgenerate

statement:

i=-1;
while (TRUE) loop
i=i+1;

exit if (i>5);
if (input_signal(i) ='0") then
result(i) <='0";
next ;
endif ;
result(i) <=ena;
end loop ;

The condition must evaluate to a run-time constant. That is a language requirement.

Note —There is ncelse part possible in generate statement. We consider this a
flaw in the language, but the Exemplar synthesis tools has to comply with it.

The synthesis tools have no synthesis restrictions fogeherate statement.

VHDL Language Features 2-37

2-38

Assignment Statements

Assignments can be done to signals, ports and variables in VHDL. Assignments to
signals and ports are done with #we operator.

signal o, a, b : std_logic_vector (0 to 5);

o<=a xor b;

In this code fragmend gets assigned the value of the vector-XOR (bit by bit) of
vectorsa andb. The type of the object on the left hand side of the assignment should
always match the type of the value on the right hand side of the assignment. Signal
assignments can be used both in dataflow environment and sequential environments.

Assignments to variables are done with ttve ™ sign.

variable o: std_logic_vector (0 to 5);
signal a, b : std_logic_vector (0 to 5);

o:=a ANDNOTb;

Variable assignments can only be used in sequential environments. Types on left and
right hand side of the:£ ” sign should match.

There is one important difference between assignments to signals and assignments to
variables: when the values are updated. The value of a variable in a variable
assignment is updated immediately after the assignment. The value of a signal in a
signal assignment is not updated immediately, but gets “scheduled” until after a delta
(delay) time. This delay time is not related to actual time, but is merely a simulation
characteristic. This behavior of the signal assignment does not have any effect for
signal assignments in a dataflow environment, since assignments are done concurrently
there. However, in a process, the actual value of the signal changes only after the
complete execution of the process.

HDL Synthesis Manual

2=

The following example illustrates this effect. It shows the description of a multiplexer
that can select one bit out of a four bit vector using two select signals.

entity mux is

port (s1,s2: in bit;
inputs : in bit_vector (0 to 3);
result : out bit
)
end mux ;
architecture wrong of mux is
begin
process (s1,s2,inp)
signal muxval : integer range 0 to 3;
begin
muxval <=0 ;
if (s1="1") then muxval <=muxval+1;
if (s2="1) then muxval <= muxval+2 ;
-- use muxval as index of array ’inputs’
result <= inputs (muxval) ;
end process ;
end wrong ;

This description does not behave as intended. The problem is becaxsal is a

signal; the value ofmuxval is not immediately set to the value defined by hitsnd

b. Insteadmuxval still has the same value it had when the process started when the
if statement is executed. All assignmentsniaxval are scheduled until after the
process finishes. This means thatxval still has the value it got from the last time

the process was executed, and that value is used to select the bit from the input vector.

VHDL Language Features 2-39

il
N

The solution to this problem is to makeixval a variable. In that case, all assignments
done tomuxval are immediate, and the process works as intended.

entity mux is

port (s1,s2: in bit;
inputs : in bit_vector (0 to 3);
result : out bit) ;
end mux ;
architecture right of mux is
begin
process (s1,s2,inp)
variable muxval : integer range 0 to 3;
begin
muxval := 0 ;
if (s1="1") then muxval:=muxval+1;
if (s2="1") then muxval :=muxval+2;
-- Use muxval as index of array 'inputs’
result <= inputs (muxval) ;
end process ;
end right ;

As a general rule, if you use signal assignments in processes, do not use the value of
the signal after the assignment, unless you explicitly need the previous value of the
signal. Alternatively, you can use a variable instead.

Operators

IEEE 1076 Predefined Operators

VHDL predefines a large number of operators for operations on objects of various
types. The following is an overview:

Relational operators on ALL types (predefined or not):

= <=
/= >
< >=

2-40 HDL Synthesis Manual

N
1]

Logical operators on pre-defined types BIT and BOOLEAN:

AND NOR
OR XOR
NAND NOT

Arithmetic operators on all integer types:

+ mod

- rem
* abs
/

*%k

Concatenation of elements into an array of elements:

& ()

Relational operators operate on any type. The basis of comparing two values is derived
from the order of definition. For example in thiel_logic type the valueU’ is

smaller than the valud’ becausélU’ is defined first in the order of values in the

type. The comparison of two arrays is accomplished by comparing each element of the
array. The left most element is the most significant one for comparisons.

signal a: bit_vector (7 downto 0);
signal b : bit_vector (5t0 9) ;

In this examplea(7) is the most significant bit for comparisons with vecoiand
b(5) is the most significant bit for comparisons with vedtor

Logical operators work in a straightforward manner and do the appropriate operations
on typesBIT andBOOLEANand also for one-dimensional arraysBsT and

BOOLEANInN the latter case, the logical operation is executed on each element of the
array. The result is a array with the same size and type as the operands.

VHDL Language Features 2-41

il
N

Arithmetic operators work on integers and on all types derived from integers. The
Exemplar synthesis tools support arithmetic operators on vectors, described in the
exemplar package. “The Exemplar Packages” on page 11 presents more details about
operations on vectors.

Concatenation operators can group elements of the same type into an array of that type.
Consider the following examples:

signal a, b, c: bit;
signal x: bit_vector (5 downto 0);
signal vy : bit_vector (0 to 3);

-- using concatenation operator

x<=a &b & c &B"00" &'0;
-- using an aggregate

y<=(1,'0, b, c);

This description is the same as the following one:

signal a, b, c: bit;
signal x : bit_vector (5 downto O0);
signal vy : bit_vector (0 to 3);

x(5) <=a;

X(4) <=b;

X(3) <=c;

x(2 downto 0)<="000";
y(0) <="1";

y(1) <="0";

y(2) <=b;

y@) <=c;

The aggregate operator in VHDL is especially useful when assigning to a vector of
unknown or large size:

signal o : bit_vector (0 to 255);

0 <= (0=>1’, others =>'0’);

2-42 HDL Synthesis Manual

2=

In this examplep(0) is assignedl’ and all other elements of (independent of its
size) get value’

IEEE 1164 Predefined Operators

The IEEE 1164 standard logic package describes a set of new types for logic values.
However, the binary operators that are predefined in VHDL only operate on bit and
boolean types, and arrays of bits and booleans. Therefore, the IEEE standard logic type
package redefines the logical operators (and, or, not, etc.) for thestgbésgic ,
std_ulogic and the array typestd_logic_vector and

std_ulogic_vector

Operator Overloading

The operators +, -, *, mod, abs, < ,>, etc. are predefined for integer and floating-point
types, and the operators and, or, not etc. are predefined on thstty@ndboolean .

If you want to use an operator that is not pre-defined for the types you want to use, use
operator overloading in VHDL to define what the operator should do. Suppose you want
to add an integer and a bit according to your own semantics, and you want to use the “+”
operator:

function “+” (a: integer; b: bit) return integer is
begin
if (b="1") then
return a+1;
else
return a;
endif ;
end “+";
signal o, t: integer range 0to 255;
signal b : bit;
t<=0+5+b;

The first “+ " in the assignment to t is the pre-defined “+” operator on integers. The
second “+” is the user defined overloaded operator that adds a bit to an integér. The
character around the “+” operator definition is needed to distinguish the operator

definition from a regular function definition (see “Resolution Functions” on page 52).

VHDL Language Features 2-43

il
N

Attributes

2-44

Operator overloading is also necessary if you defined your own logic type and would
like to use any operator on it.

If you want to do arithmetic operations (+, -, etc.) on the array tygjpegector or
std_logic_vector , it will be more efficient for synthesis to use the pre-defined
operators from thexemplar and theexemplar_1164 packages. For details of

these packages operations and their use, see “The Exemplar Packages” on page 11.

The Exemplar synthesis tools fully support operator overloading as described by the
language.

In VHDL, attributes can be set on a variety of objects, such as signals and variables,
and many other identifiers, like types, functions, labels etc.

An attribute indicates a specific property of the signal, and is of a defined type. Using
attributes at the right places creates a very flexible style of writing VHDL code. An
example of this is given at the end of this section.

HDL Synthesis Manual

N
1]

VHDL Predefined Attributes

VHDL pre-defines a large set of attributes for signals. The following example shows the
definition of two vectors and the values of the VHDL predefined attributes for them.

signal vector_up : bit_vector (4 to 9) ;
signal vector_dwn : bit_vector (25 downto 0) ;

vector_up’LEFT-- returns integer 4
vector_dwn’'LEFT-- returns integer 25
vector_up’RIGHT-- returns integer 9
vector_dwn'RIGHT-- returns integer O
vector_up’HIGH-- returns integer 9
vector_dwn’HIGH-- returns integer 25
vector_up’LOW-- returns integer 4
vector_dwn’'LOW-- returns integer O
vector_up’LENGTH-- returns integer 6
vector_dwn'LENGTH-- returns integer 26
vector_up’RANGE -- returns range 4 to 9
vector_dwn’RANGE-- returns range 25t0 0
vector_up’REVERSE_RANGE-- returns range 9 to 4
vector_dwn’'REVERSE_RANGE-- returns range 0 to 25

The attributes do not have to be written in capitals; VHDL is case-insensitive for
identifiers.

An important predefined attribute for synthesis is EMENTattribute. Its value
reveals edges of signals. For more informatbout theEVENTattribute, see
“Edge-Sensitive Flip-Flops” on page 3

Exemplar Predefined Attributes

Apart from the VHDL predefined types, Exemplar also supplies a set of predefined
attributes that are specifically helpful for guiding the synthesis process or controlling
down-stream tools. For details of these attributes, see “Predefined Attributes” on
page 12.

VHDL Language Features 2-45

il
N

User-Defined Attributes

Attributes can also be user defined. In this case, the attribute first has to be declared, with
a type, and then its value can be set on a signal or other object. This value can then be
used with the “’ ” construct. The following is an example:

signal my_vector : bit_vector (0 to 4);
attribute MIDDLE : integer ;
attribute MIDDLE of my_vector : signal is my_vectorLENGTH/2 ;
my_vectorMIDDLE -- returns integer 2
Usage Of Attributes
To indicate where attributes in a VHDL description are useful, consider the following
example.
entity masked_parity is
port (source: in bit_vector (0 to 5);
mask : in bit_vector (O to 5);
result : out bit
)
end masked_parity ;
architecture soso of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (0 to 5) ;

begin
masked_source := source and mask ;
tmp := masked_source(0) ;
for i in 1 to 5 loop
tmp:=tmp XORmasked_source(i);
endloop

result <=tmp ;
end process ;
end soso ;

2-46 HDL Synthesis Manual

2=

This example calculates the parity of the bits of a source vector, where each bit can be
masked. This VHDL description is correct, but is not very flexible. Suppose the
application changes slightly and requires a different size input. Then the VHDL
description has to be modified significantly, since the range of the vector affects many
places in the description. The information is not concentrated, and there are many
dependencies. Attributes can resolve these dependencies.

Here is an improved version of the same example, where attribiateg RIGHT, and
RANGHlIefine the dependencies on the size of the vector.

entity masked_parity is
generic (size : integer :=5) ;
port (source : in bit_vector (0 to size);
mask : in bit_vector (source’RANGE) ;
result : out bit
)
end masked_parity ;
architecture better of masked_parity is
begin

process (source, mask)
variable tmp : bit ;
variable masked_source : bit_vector (source’RANGE) ;
begin
masked_source := source and mask ;
tmp := masked_source(source’LEFT) ;
for i in source’LEFT+1 to source’RIGHT loop
tmp :=tmp xor masked_source(i) ;
end loop ;
result <=tmp ;
end process ;
end better ;

If the application requires a different size parity checker, this time we only have to
modify the source vector range, and the attributes ensure that the rest of the description
gets adjusted accordingly. Now the information is concentrated.

VHDL Language Features 2-47

il
N

Blocks

When using processes and dataflow statements it is possible to use VHDL as a high
level hardware description language. However, as the descriptions get more and more
complicated, some form of design partitioning, or hierarchy, is required or desirable.

VHDL offers a variety of methods for design partitioning. One form of partitioning is
to divide a description into various processes. In the following sections four more
forms of partitioning are discussed: blocks, subprograms (functions and procedures),
components and packages.

A blockis a method to cluster a set of related dataflow statements. Signals, subprograms,
attributes, etc. that are local to the block can be defined in a block declarative region. All
statements in a block are executed concurrently, and thus define a dataflow environment.

architecture xxx of yyy is
signal global_sig ,g1,g2,c bit;
begin
B1l: block --block declarativeregion
signal local_sig : bit ;
begin -- block concurrent statements
local_sig <= global_sig ;
-- Block in a block
B2: block (c="1) -- Block has “GUARD” expression
port (01,02 : out bit) -- Block port declarations
port map (ol=>gl,02=>g2);
begin
0l <= guarded local_sig ;
02 <= global_sig ;
end block ;
end block ;
end Xxx ;
Blocks can be nested, as in the example above.
Signals, ports and generics declared outside the block can be used inside the block,
either directly (aglobal_sig is used in blockB2), or via a port map (agl is
connected tw1 in blockB2) or generic maps (for generics). There is no real
difference between the two methods, except that the port (generic) map construct is a
cleaner coding style which could reduce errors when using or assigning to global
objects.
2-48 HDL Synthesis Manual

2=

A block can also have @UARDexpressiong='1" in block B2). In that case, an
assignment inside the block that contains the keyV@WJARDEvill only be executed
when theGUARDExpression is TRUE. In the example aba/E,only gets the value of
local_sig whenc="1" . GUARDEDIocks and assignments provide a interesting
alternative to construct latches or flip-flops in the synthesized circuit. For examples,
refer to “Registers, Latches and Resets” on page 1.

The Exemplar synthesis tools fully support blocks, with port/generic lists and
port/generic maps and tl@UARDbptions of blocks.

Functions And Procedures

Subprograms (function and procedures) are powerful tools to implement functionality
that is repeatedly useBunctionstake a number of arguments that are all inputs to the
function, and return a single valueroceduresake a number of arguments that can be
inputs, outputs or inouts, depending on the direction of the flow of information through
the argument. All statements in functions and procedures are executed sequentially, as
in a process. Also, variables that are local to the subprogram can be declared in the
subprogram. Local signals are not allowed.

As an example, suppose you would like to add two vectors. In this case, you could define
a function that performs the addition. The following code fragment shows how an
addition of two 6-bit vectors is done.

function vector_adder (X : bit_vector(0 to 5); y: bit_vector(0 to 5))
return bit_vector(0 to 5) is
-- declarative region
variable carry : bit;

variable result : bit_vector(0 to 5);
begin
-- sequential statements

carry :='0;
for i in Otob5 loop

result (i) := x(i) xor y(i) Xor carry ;

carry :=carry AND(x(i) ORy(i)) ORX(i) ANDy(i) ;
end loop ;

return result;
end vector_adder ;

VHDL Language Features 2-49

Note —That vector addition, implemented this way, is not very efficient for synthesis.
The packagesxemplar andexemplar_1164 provide vector additions that can
implement efficient/fast adders more easily. For more information, see “The Exemplar
Packages” on page 11.

An example of a procedure is shown below. The procedure increments a vector only if an
enable signal is high.

procedure increment(vect: inout bit_vector(0 to 5);ena: in bit:="1")
is
begin

if (ena='1) then

end if ;
end increment ;

vect := vector_adder (vect, "000001") ;

2-50

This incrementer procedure shows the behavior of an inout port. The paraeuter

is both set and used in this procedure. Also, the procedure statements use a call to the
previously definedrector_adder function. If an input of a function or a procedure

is not connected when it is used, that input will get the initial value as declared on the
interface list.

For example, inpuéna will get (initial) value’l’ if it is not connected in a
procedure call to the procedurerement . It is an error if an input is not connected
and also does not have an initial value specified.

One important feature of subprograms in VHDL is that the arguments can be unbound.
The given examples operate on vectors of 6 bits. If you want to use the subprograms for
arbitrary length vectors, you could specify the length-dependencies with attributes and

HDL Synthesis Manual

2=

not specify a range on the parameters (leave them unbound). Here is a redefinition of
both the vector addition function and the incrementer procedure for arbitrary length

vectors.
function vector_adder(x:bit_vector;y:bit_vector) return bit_vector
is
variable carry : bit:='0";
variable result : bit_vector(xRANGE) ;
begin
for i in XRANGE loop
result (i) := x(i) XORy(i) XORcarry ;
carry :=carry AND(x(i) ORy(i)) ORX(i) ANDy(i) ;
end loop ;

return result ;
end vector_adder ;

procedure increment (vect : inout bit_vector; ena: in bit:="1) is
begin
if (ena='1) then
vect ;= vector_adder (x=>vect, "000001") ;
endif ;
end increment ;

In the procedure increment example, name association was added in the parameter list
of thevector_adder call. The name association (e.x=>vect) is an alternative

way to connect a formal paramete) ¢o its actual parametevéct). Name

associations (as well as positional associations) are helpful if the number of parameters
is large.

Subprograms can be called from the dataflow environment and from any sequential
environment (processes and other sub-programs). If a procedure output or inout is a
signal, the corresponding parameter of the procedure should also be declared as a
signal.

Subprograms can be overloaded. That is, there could be multiple subprograms with the
same name, but with different parameter list types or return types. The synthesis tools
perform the overlaod resolution.

VHDL Language Features 2-51

il
N

In the last example, the variable carry was initialized in when it was declared. This is
a more compact way of setting the starting value of a variable in a function or
procedure. The initial value does not have to be a constant. It could be a nonconstant
value also (like the value of one of the parameters).

The Exemplar synthesis tools fully support all VHDL language features of functions
and procedures.

Resolution Functions

Syntax and Semantics

In a concurrent area in VHDL (see the section “Entities and Architectures” on page 1),
all statements happen concurrently. That means that if there are two assignments to one
and the same signal, that the final value of the signal needs to be resolved. In VHDL,
you can only have multiple concurrent assignments to a signal if the type of the signal is
resolved . A resolvedtype is a type with a resolution function. A good example of a
resolved type is the typed logic from the IEEE 1164 package:

subtype std_logic is resolved std_ulogic ;

The wordresolved in this declaration refers to a resolution function called
resolved . Here is how it is specified in thetd_logic_1164 package:

function resolved (s : std_ulogic_vector) return std_ulogic is
variable result: std_ulogic :='Z’; -- weakest state default
attribute synthesis_return of result; variable is “WIRED_THREE_STATE";
begin

-- the test for a single driver is essential otherwise the
-- loop would return X’ for a single driver of ’-" and that
-- would conflict with the value of a single driver unresolved

-- signal.

if (SLENGTH=1) then return s(s’LOW);

else

for i in s range loop result := resolution_table(result, s(i));
end loop ;

end if return result;

end resolved;

2-52 HDL Synthesis Manual

2=

The resolution function of typstd_logic takes a vector of the (unresolved)
base-type oftd_logic : std_ulogic . It returns a singlstd_ulogic

Now if you have two concurrent assignments to any signal ofgigdogic , the
resolution function will be called to determine the final value of the signal. The
resolution function will be called with a vector with two elements, where each element
contains the value of a concurrent assignment. Inside the resolution function, the final
value of the signal is defined, based on the two assignment values.

Synthesis Issues

Resolution functions are especially useful when you want to model nets with multiple
drivers (like busses with three-state drivers). However, VHDL lets you define a
resolution function freely, without any special restrictions. The resolution function is
thus just another function, only it gets called wherever there are multiple assignments
to a signal of the (sub)type it is attached to.

The Exemplar synthesis tools synthesize resolution functions without restriction.

You can define a resolution function and attach it to a subtype, and the synthesis tools
will synthesize the circuitry it implies for each multiple assignment.

In many cases, the resolution function mimics a certain electrical behavior for the
simulator. In the case of the IEEE typiel logic , and its resolution function

resolved (described above), the resolution function resembles tri-states being wired
together. Therefore, the synthesis directive attribsyathesis_result) is set to
WIRED_THREE_STATEThis synthesis directive is a hint to the synthesis tools to
interpret the elements of the incoming vector as parallel three-state assignments, where
the three-state condition is derived from the assignment. That way, any three-state
drivers can be created with multiple assignments (For more information, see
“Three-state Buffers” on page 14).

VHDL Language Features 2-53

Let's go through one example step by step, to show what the resolution function is

doing:
entity test_resolver is
port (a, b: bit;
0 : out bit) ;

end test_resolver ;
architecture exemplar
signal tmp : bit ;
begin
tmp <=a;
tmp<=b;
o<=tmp;
end exemplar ;

of test_resolver

is

When the above example is executed, the synthesis

tools will give the following error:

file,line 9: Error, multiple sources on unresolved signal TMP; also line 10.

This message is obvious, since you did not explain what should happeravamneli
force (different) values concurrently onto sigidliP For that, write a resolution
function. Suppose you want the concurrent assignmentsAdBed Then you should
write a resolution function that performs AhNDoperation of the elements of its input

vector.

Also attach the resolution function TMP You could do that in two ways:

1. Create a subtype it , say,rbit

subtype, just as we did for the typal_logic

, and attach the resolution function to that

Directly attach the resolution function to the sighisllP This is the easiest way, and

it is useful if there are not many signals that need the resolution function.

2-54

HDL Synthesis Manual

N
1]

The second method is used below:

entity test_resolver is
port (a, b: bit;
0 : out bit) ;

end test_resolver ;

architecture exemplar of test resolver is

-- Write the resolution function that ANDs the elements:

function my_and_resolved (a : bit_vector) return bit is
variable result: bit:='1";

begin
for i in arange loop

result := result ANDa(i) ;

end loop ;

return result;
end my_and_resolved ;

-- Declare the signal and attach the resolution function to it:
signal tmp : my_and_resolved bit ;
begin
tmp<=a;
tmp<=b;
o<=tmp;
end exemplar ;

The synthesis tools will synthesize this description g becomes théNDof
a andb.

BUS and REGISTER

In the previous section, multiple concurrent assignments were discussed. Each
concurrent assignment to a signal in VHDL creates what is called a ‘driver’ to the
signal, and the resolution function resolves the values of the (multiple) drivers on the
signal.

VHDL Language Features 2-55

il
N

Now it is possible to (temporarily) switch-off drivers to a signal. Lets investigate an
example:

process (c,d)
begin
if (c="1) then
o<=d;
else
0 <= NULL ;
end if ;
end process

In this examplep gets a driver from (concurrent) process statement. Howewerisif
not'l’ , the NULL value is assigned tm The NULL value is called a ‘disconnection
statement’. In VHDL this means that the drivercof switched off ifc is not'l” . A
VHDL simulator will NOT include the driver value as an element in the input vector of
the resolution function as long as the driver is switched off.

Since drivers can be switched off, we have to consider the case that ALL drivers are
switched off. For that particular reason, VHDL defines what is called an entity class
for a signal. There are two entity classes: BUS and REGISTER.

If the entity class is BUS, and all drivers on the signal are switched off, then VHDL
defines that the resolution function should still be called, but with a vector of zero
elements (a NULL vector).

If the entity class is REGISTER, and all drivers on the signal are switched off, then
VHDL defines that the signal should hold its previous value.

Signals of BUS or REGISTER entity class are called resolved signals. A resolved
signal always needs a resolution function.

2-56 HDL Synthesis Manual

N
1]

Here is the full example wheregets a BUS entity class:

-- include the IEEE 1164 package to use type std_logic.
library ieee;

use ieee.std_logic_1164. all ;
-- An entity with a BUS entity-class signal
entity test bus is

port (c,d: std_logic;
o0 : out std_logic BUS) ;
end test_bus;

architecture exemplar of test bus is
begin
process (c,d)
begin
if (c="1) then
o<=d;
else
0 <= NULL ;
end if ;

end process ;
end exemplar ;

In this examplep is of entity class BUS, and thus the resolution function of

std_logic will be executed if all drivers oo are switched off. That means ttwat

will get the’Z’ value. That means that the synthesis tools will synthesize a three-state
driver foro.

If o would be declared with the REGISTER entity class, the synthesis tools would
synthesize a LATCH for it, since should retain its value if all drivers are off.

Switching off drivers can also be done witicBl ARDEDIock, or with a disconnection
statement in a concurrent signal assignment. The Exemplar synthesis tools support all
these statements.

The synthesis tools synthesizes BUS and REGISTER entity classes according to the
semantics described above with the following restrictions. The Exemplar synthesis
tools guarantee ONLY behavior compliant with VHDL language for BUS and
REGISTER signals if the resolution function containsWW&RED_THREE_STATE
synthesis directive. Also, multiple concurrent assignments to REGISTER entity class
signals is not supported right now.

VHDL Language Features 2-57

2

Component Instantiation

Componentaire a method of introducing structure in a VHDL description. A component
represents a structural module in the design. Using components, it is possible to describe
a netlist in VHDL. Components are instantiated in the dataflow environment. Here is an
example of a structural VHDL description where four one-bit rams and a counter module
are instantiated.

entity scanner is

port (reset : in bit;
stop : in bit;
load : in bit;
clk : in bit;
load_value : in bit_vector (O to 3) ;
data : out bit_vector (0 to 3)
);

end scanner ;
architecture exemplar of scanner is

component RAM_32x1
port (a0, al, a2, a3, a4 :inbit;
we, d : in bit;
o: out bit
)

end component ;

component counter
generic (size : integer :=4);

port (clk: in bit;

enable : in bit;

reset : in bit;

result: out bit_vector(0to4)
)

end component
signal ena: bit;
signal addr : bit_vector (0 to 4) ;

2-58 HDL Synthesis Manual

N
1]

begin
for i in O to 3 generate
ram : RAM_32x1 port map (a0=>addr(0), al=>addr(1),
a2=>addr(2), a3=>addr(3), a4=>addr(4), d=>data(i),
we=>load, o=>data(i)) ;
end generate

ena<= not stop;
count : counter generic map (size=>addr’length)
port map(clk=>clk, enable=>ena,
reset=>reset, result=>addr) ;
end exemplar ;

The generate statement is used here to instantiate the four RAMs.

Components have to be declared before they can be used. This is done in the
declaration area of the architecture, or in a package (see next section). The declaration
defines the interface of the component ports with their type and their direction.
Actually this example is just a netlist of components. We added one dataflow statement
(the assignment tena) to show that structure and behavior can be mixed in VHDL.

The ports of the component are connected to actual signals (or ports) with the port map
construct. The generics of the component are connected to actual values with the
generic map construct. In this example the gersre is set to 4 with the attribute
length on the arragddr . If no generic value was set $ize (or if the generic map
construct was completely abserdgize gets value 4, as indicated by the initial value
onsize in the generic list of the component. It is an error if a generic (or input port)

is not connected in a generic map (or port map) construct and there is no initial value
given in the component generic (or port) list.

In the example above, the input ports of the compoR&M _32x1 are individual bits
(a0, al, a2, a3, a4). If the input would have been declared astavector (O to
4), then the individual bits could be connected with indexed formal names:

.. port map (a(0) => addr(0), a(1) => addr(1), a(2) => addr(2),
a(3) => addr(3), a(4) => addr(4), ...

VHDL Language Features 2-59

il
N

2-60

or with a sliced formal name:

.. port map (a(0 to 4) => addr(0 to 4),

or simply with a full identifier association:

.. port map (a => addr,

The Exemplar synthesis tools support any form of slicing or indexing of formal
parameter names, as long as the VHDL language rules are obeyed (formal name should
be static).

The synthesis tools also support type-transformation functions in port and generic
associations as long as they are synthesizable. Type transformation functions are not
very often used and so are not explained here.

The definition of the components counter &8M_32x1 are not yet given in the
example. The process of giving a contents definition for a component is loaitidg

in VHDL. With the Exemplar synthesis tools, there are four ways to do component
binding:

1. Specify an entity with the same name as the component and an architecture for it.
This way, the component gets bound to the entity with the same name. This is
called 'default binding’ in VHDL.

2. Specify a configuration specification. Here you can bind a component to an entity
with a different name, and you can even connect component ports to entity ports
with a different name.

3. Use a source technology in the synthesis tools that contains a cell with the same
name as the component. The synthesis tools will bind the component to the
technology cell (and include functional, timing and area information for it).

4. Do not specify any entity for the component. This way, the synthesis tools will issue
a warning and create a black-box for the component.

HDL Synthesis Manual

N
1]

The component counter is a good example of the first option:

entity counter is
generic (size : integer) ;

port (clk: in bit;
enable : in bit;
reset : in bit;
result : out bit_vector (0 to size-1)
)
end counter ;
architecture exemplar of counter s
begin
process (clk,reset)
begin
if (reset="1") then
result <= (others=>'0") ;
elsif (clk’event and clk="1") then
if (enable="1") then
result <=result + "1" ;
endif ;
endif ;

end process ;
end exemplar ;

This description only includes behavior. There is no component instantiated, although

it is possible, and it makes hierarchical design possible.

Note that in this case the overloaded '+’ operator is used on vectors, as defined in the
exemplar package. (See “The Exemplar Packages” on page 11 for details.) Also note
that an asynchronous reset construction is used to reset the counter value. For details
about various synthesizable forms of reset, see “Registers, Latches and Resets” on

page 1.

VHDL Language Features

2-61

il
N

The second option gives more freedom to bind an entity to a component. Suppose you
have a counter entity that does exactly what you need, but it is named differently, and
(or) has differently named ports and generics:

entity alternative is
generic (N : integer) ;
port (clock:in bit;
ena : bit :
reset : bit ;
output : out bit_vector (0 to N-1)) ;
end alternative ;
architecture ex of alternative is
begin

In our example, the following configuration specification could be used to bind the
componentcounter to the entityalternative , for a particular or all instances of
thecounter component. The configuration specification is added aftecdheter
component declaration:

component counter
generic (size : integer) ;
port (clk :in bit;
enable :in bit;
reset :in bit;
result : out bit_vector(0 to 4)) ;
end counter ;
for all :counter use entity work.alternative(ex) generic map (N=>size)
port map (clock=>clk, ena=>enable,
reset=>reset,output=>result) ;

This configuration specification binddl instances of componenbunter to an

entity calledalternative (architectureex) in thework library, and it connects the
generics and ports of the entity to differently named generics and ports in the
component. If the ports and generics have the same name in the entity and the
architecture, the generic map and port map don’t have to be given. If there is only one
architecture of the entitglternative then the architectureeX) does not have to

2-62 HDL Synthesis Manual

2=

be given either. If not all, but just one or two instances of the compopanter
should be bound to the entifjternative , then replacall by a list of instance
(label) names.

Configuration specifications are a very powerful method to quickly switch definitions
of components to a different alternative.

Core fully supports all forms of configuration specifications that are allowed in the
language.

If no configuration specification is given, the synthesis tools use the default binding as
explained in the first option.

For the third option, use a source technology in the synthesis tools that includes the
componenRAM_32x1 If the source technology I&_name the synthesis tools
recognize the component in tlie_namelibrary, and instantiates it in the design. In
this caseRAM_32x1is a RAM cell, and the synthesis tools cannot really optimize
that behavior (an®AM32x1shows up in the netlist as a hard macro). But if the macro
contained combinational logic, the synthesis tools would include that logic in the
optimization process, and map it to other target technology cells.

Note —Galileo and Leonardo use different techniques to indicate which source
technology to use. Galileo uses ts®urce= lib_nameswitch. Leonardo requires
that you load the source technology by usinglolae_library lib_namecommand
before reading the design in the database.

The fourth option, omitting any entity for the component, is helpful when hierarchy

has to be preserved. This technique can be effectively used in Galileo to maintain
hierarchy. The synthesis tools generate an empty module for each component it cannot
find in the present file as an entity or as a library cell in the source technology. Empty
modules show up as blocks in the final netlist. They are not touched by the synthesis
and optimization process. Components without a definition can also help to isolate a
particular difficult or user-defined part of the design from the synthesis operations.
Clock generators or other asynchronous circuits or time-critical user-defined modules
are an example of this.

VHDL Language Features 2-63

il
N

Packages

A packages a cluster of declarations and definitions of objects, functions, procedures,
components, attributes etc. that can be used in a VHDL description. You cannot define
an entity or architecture in a package, so a package by itself does not represent a
circuit.

A package consists of two parts. The package header, with declarations, and the
package body, with definitions. An example of a packagedslogic_1164 | the

IEEE 1164 logic types package. It defines types and operations on types for 9-valued
logic.

To include functionality from a package into a VHDL description,ube clause is
used.

library ieee;
use ieee.std_logic_1164.all ;

entity xxx is
port (x:std_logic ; -- type std_logic is known since it is
-- defined in package
-- std_logic_1164

This example shows how the IEEE 1164 standard logic types and functions become
accessible to the description in entiyx .

This is the general form to include a package in a VHDL description:

library lib;
use lib.package.selection

Theuse clause is preceded byliarary clause. The predefined librarie®rk and
std do not have to be declared ifilarary clause before they are used inse
clause. All other libraries do need to be declared.

The selectioncan consist of only one name of a object, component, type or
subprogram that is present in the package, or the word all, in which case all
functionality defined in the package is loaded into the synthesis tools, and can be used
in the VHDL description.

2-64 HDL Synthesis Manual

N
1]

Aliases

An alias is an alternate name for an existing object. By using an alias of an object, you
actually use the object to which it refers. By assigning to an alias, you actually assign to
the object to which the alias refers.

signal vec : std_logic_vector (4 downto 0) ;
alias mid_bit : std_logic is vec(2);
-- Assignment :

mid_bit <='0";

-- is the same as

vec(2) <='0";

Aliases are often useful in unbound function calls. For instance, if you want to make a
function that takes thANDoperation of the two left most bits of an arbitrary array
parameter. If you want to make the function general enough to handle arbitrary sized
arrays, this function could look like this:

function left_and (arr: std_logic_vector) return std_logic is
begin

return arr(arr’left) and arr(arr’left-1) ;
end left_and ;

-- Function does not work for ascending index ranges of arr.

VHDL Language Features 2-65

il
N

This function will only work correctly if the index range afr is descending

(downto). Otherwisearr’left-1 is not a valid index number. VHDL does not have
a simple attribute that will give the one-but-leftmost bit out of an arbitrary vector, so it
will be difficult to make a function that works correctly both for ascending and
descending index ranges. Instead, you could make an alas pfvith a known index
range, and operate on the alias:

function left_and (arr : std_logic_vector) return std_logic is
alias aliased_arr: std_logic_vector (0 to arr'length-1) is arr;
begin
return aliased_arr(0) and aliased_arr(1) ;
end left_and ;
-- Function works for both ascending and descending index
-- ranges of arr.

The Exemplar synthesis tools fully support aliases.

2-66 HDL Synthesis Manual

The Art Of VHDL Synthesis

w
1]

Registers,

This chapter explains the relationship between constructs in VHDL and the logic
which is synthesized. It focuses on coding styles with the best performance for
synthesis. Actual synthesis restrictions on VHDL are discussed in the section, Syntax
and Semantic Restrictions.

Latches and Resets

VHDL synthesis produces registered and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. The style of coding combinational behavior, sudh athen -else

andcase statements, has some effect on the final circuit result, but the style of coding
sequential behavior has significant impact on your design.

The purpose of this section is to show how sequential behavior is produced with
VHDL, so that you understand why registers are generated at certain places and not in
others.

Most examples explain the generation of these modules with short VHDL descriptions
in a process. If you are not working in a process, but just in the dataflow area of an
architecture in VHDL, it is possible to generate these modules using predefined
procedures in thexemplar.vhd packageFor details about this package, refer to

the section The Exemplar Packages.

3-1

3-2

Level-Sensitive Latch

This first example describes a level-sensitive latch:

signal input_foo, output_foo, ena : bit ;

process (ena, input_foo)
begin
if (ena='1) then
output_foo <= input_foo ;
endif ;
end process

In this example, the sensitivity list is required, and indicates that the process is
executed whenever the signaisa or input_foo change. Also, since the
assignment to the global sigmaltput_foo is hidden in a conditional clause,
output_foo cannot change (will preserve its old valuegiifa is’0’ . If ena is
"1’ , output_foo is immediately updated with the valueioput_foo , whenever
it changes. This is the behavior of a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synthesis
tools translate the initially generated latches to the gate-equivalent of the latch, using a
combinational loop.

Latches can also be generated in dataflow statements, using a guarded block:

bl: block (ena='1)
begin

output_foo <= GUARDEIMput_foo ;
end block ;

HDL Synthesis Manual

W
1]

Edge-Sensitive Flip-Flops

The Event Attribute

An edge triggered flip-flop is generated from a VHDL description only if a signal
assignment is executed on the leading (or on the falling) edge of another signal. For
that reason, the condition under which the assignment is done should include an
edge-detecting mechanism. TE¥ENTattribute on a signal is the most commonly
used edge-detecting mechanism.

The EVENTattribute operates on a signal and returns a boolean. The result is always
FALSE, unless the signal showed a change (edge) in value. If the signal started the
process by a change in value, tBf¢ENTattribute is TRUE all the way through the
process.

Here is one example of the event attribute, used in the condition clause in a process.
The synthesis tools recognize an edge triggered flip-flop from this behavior, with
output foo updated only on the leading edgecti .

signal input_foo, output_foo, clk : bit ;

process (clk)
begin
if (clk'event and clk="1") then
output_foo <= input_foo ;
endif ;
end process

The attributeSTABLE s the boolean inversion of ti&VENTattribute. Hence,
CLK'EVENT is the same aNOT CLK'STABLE. The Exemplar synthesis tools
support both attributes.

Flip-flops and registers can also be generated with dataflow statements (as opposed to
from a process) using @QUARDEDIlock.

b2 : block (clk’event and clk="1")
begin

output_foo <= GUARDEIMput_foo ;
end block ;

The Art Of VHDL Synthesis 3-3

By adding theGUARDEDBtatement option, a flip-flop will be inserted in between
input_foo andoutput_foo , since theoutput foo expression of the block
specifies a clock edge.

Synchronous Sets And Resets

All conditional assignments to signalitput_foo inside the if clause translate into
combinational logic in front of the D-input of the flip-flop. For instance, we could
make a synchronous reset on the flip-flop by doing a conditional assignment to
output_foo

signal input_foo, output_foo, clk, reset : bit ;

process (clk)

begin
if (clk’event and clk ='1") then
if reset="1 then
output_foo <='0";
else
output_foo <= input_foo ;
endif ;

endif ;
end process

Note —Signalsreset andinput_foo do not have to be on the sensitivity list
(although it is allowed) since a change in their values does not result in any action
inside the process.

Alternatively, dataflow statements could be used to specify a synchronous reset, using
a GUARDEDDIlock and a conditional signal assignment.

b3: block (clk’event and clk="1")
begin

output_foo<= GUARDED’ whenreset="1 else input_foo;
end block ;

HDL Synthesis Manual

W
1]

Asynchronous Sets And Resets

If the reset signal should have immediate effect on the output, but the assignment to
output_foo frominput_foo should happen only on the leading clock edge, an
asynchronous reset is required. Here is the process:

signal input_foo, output_foo, clk, reset : bit ;

process (clk,reset)

begin
if (reset="1") then
output_foo <="0";
elsif (clk’event and clk ='1") then

output_foo <= input_foo ;
endif ;
end process

Now reset HAS TO BE on the sensitivity list! If it were not there, VHDL semantics
require that the process should not start if reset changes. It would only sthrt if
changes. That means that if reset becotles output foo would be set t&0’ if

clk either goes up, or goes down, but not before any chand& ofThis behavior
cannot be synthesized into logic. The synthesis tools issue an error message that
reminds you to put reset on the sensitivity list.

The Art Of VHDL Synthesis 3-5

3-6

Asynchronous set and reset can both be used. It is also possible to have expressions
instead of the fixed0” or’l’ in the assignments wutput_foo in the reset and

set conditions. This results in combinational logic driving the set and reset input of the
flip-flop of the target signal. The following code fragment shows the structure of such
a process:

process (clock asynchronously_used_signals
begin
if (boolean_expressign then
asynchronoussignal_assignments
elsif (boolean_expressign then
asynchronoussignal_assignments
elsif (clocKevent and clock= constanf) then
synchronoussignal_assignments
endif ;
end process

There can be several asynchronelsif clauses, but the synchronous elsif clause (if
present) has to be the last one in the if clause. A flip-flop is generated for each signal
that is assigned in the synchronous signal assignment. The asynchronous clauses result
in combinational logic that drives the set and reset inputs of the flip-flops. If there is

no synchronous clause, all logic becomes combinational.

HDL Synthesis Manual

W
1]

Clock Enable

It is also possible to specify an enable signal in a process. Some technologies have a
special enable pin on their basic building blocks. The synthesis tools recognize the
function of the enable from the VHDL description and generates a flip-flop with an
enable signal from the following code fragment:

signal

process (clk)
begin

end if
endif ;
end process

input_foo, output_foo, enable, clk : bit ;

if (clk’event and clk="1")
if (enable="1")

then
then
output_foo <= input_foo ;

In dataflow statements, a clock enable can be constructed WGthARDEDIock and
a conditional signals assignment.

b4: block
begin

(clk’event
output_foo <=

end block ;

else output foo ;

and clk="1")

GUARDEIMput_foo when enable="1"’

The Art Of VHDL Synthesis

3-7

3-8

Wait Statements

Another way to generate registers is by usingwhi until statement. Thevait

until clause can be used in a process, and is synthesizable if it is the first statement
in the process. “Syntax and Semantic Restrictions” on page 22 gives more details about
the synthesis restrictions of the wait statement. The following code fragment generates
an edge triggered flip-flop between sigigbut foo andoutput_foo

signal input_foo, output_foo, clk : bit ;

process

begin
wait until clk’event and clk="1";
output_foo <= input_foo ;

end process

Note —There is no sensitivity list on this process. In VHDL, a process can have a
sensitivity listor a wait statement, but not both. In this example, the process is
executed if clk changes since clk is present in the wait condition. Also, the wait
condition can be simplified teait until clk="1" ; , since the process only
starts ifclk changes, and thudk’event is always true.

The Exemplar synthesis toa® not support asynchronous reset behavior with wait
statements. A synchronous reset remains possible however, by describing the reset
behavior after the wait statement.

HDL Synthesis Manual

W
1]

Variables

Variables (like signals) can also generate flip-flops. Since the variable is defined in the
process itself, and its value never leaves the process, the only time a variable generates
a flip-flop is when the variable is used before it is assigned in a clocked process. For
instance, the following code segment generates a three-bit shift register.

signal

begin

process (clk)

end process

input_foo, output_foo, clk : bit ;

variable a, b: bit;

if (clk’'event and clk="1") then
output_foo<=b;
b:=a;
a = input_foo ;

endif ;

In this case, the variablesandb are used before they are assigned. Therefore, they
pass their values from the last run through the process, which is the assigned value
delayed by one clock cycle. If the variables are assigned before they are used, you will
get a different circuit:

signal

begin

process (clk)

end process

input_foo, output_foo, clk : bit ;

variable a, b: bit;

if (clk’event and clk="1")
a = input_foo ;
b:=a;
output_foo<=b;

endif ;

then

The Art Of VHDL Synthesis

3-9

Here,a andb are assigned before used, and therefore do not generate flip-flops.
Instead, they generate a single wire. Only one flip-flop remains in between
input_foo andoutput foo because of the signal assignment in the clocked
process.

Predefined Flip-flops and Latches

Flip-flops and latches can also be generated by using predefined procedures from the
exemplar package. These procedure calls cause the synthesis tools to instantiate the
required flip-flop or D-latch. There are various forms of these procedures available,
including versions with asynchronous preset and clear. For details of the procedures,
see “Predefined Procedures” on page 20.

Assigning I/0O Buffers From VHDL

There are three ways to assign I/O buffers to your design from VHDL:
* Run the synthesis tools in “chip” mode.

» Use thebuffer_sig attribute on a port in the VHDL source

» Use thebuffer_sig command.

» Use direct component instantiation in VHDL of the buffer you require.

The buffer_sig attribute or the direct component instantiation will overwrite any
default buffer assignment that the synthesis tools would do in “chip” mode.

The buffer_sig command is implemented differently for Galileo and Leonardo.
For Galileo, you put the command in the control file. For Leonardo, you use the
buffer_sig procedure.

It is important to realize that if you specify buffer names in the VHDL source, the
synthesis tools will check the source technology library to find the buffer you
requested. If you specify buffers in the control file, the synthesis tools will check the
target technology library for a matching buffer.

3-10 HDL Synthesis Manual

W
1]

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to use¢hg option in the synthesis tools.
(For Galileo, run the tool with thechip option, or choose “Chip” mode from the
Graphical User Interface. For Leonardo, use-tthép option with theoptimize
command.) This automatically assigns appropriate input, output, three-state, or
bidirectional buffers to the ports in your entity definition. For instance,

entity example is

port (inp,clk : in std_logic;
outp out std_logic;
inoutp : inout std_logic

)i

end example;

targeted to the Actel technology translates intdNBUF for inp andclk , an
OUTBUHor outp , and aBIBUF for inoutp (if it is both used and assignedutp
would become §RIBUFF if it was assigned to a three-state value under a condition:

outp <=inp when ena ="’ else 'Z';

The above example also holds for buses, of course. The sections “Three-state Buffers”
on page 14 and “Bidirectional Buffers” on page 17 give more details on how to
generate three-state buffers and bidirectional buffers from VHDL.

Manual Assignment Using The BUFFER_SIG Property

For Galileo only, special buffers, e.g. clock buffers, can be assigned using the
buffer_sig property. This can be done in the control file, with B\l¢FFER_SIG
command. Here is an example:

BUFFER_SIG CLOCK_BUFFER clk

For Leonardo, special buffers can be assigned by usinBUli-ER_SIGprocedure.
After reading in a design, use the comm&uFFER_SIG CLOCK_BUFFER
net_names

The Art Of VHDL Synthesis 3-11

Thebuffer_sig property can also be set on a port usingotiniéer_sig attribute
in the VHDL source.

entity example is

port (inp,clk : in std_logic;
outp : out std_logic;
inoutp : inout std_logic
)i

attribute buffer_sig : string ;
attribute buffer_sig of clk: signal is “CLOCK_BUFFER”;

end example;

Portclk will be connected to the input of the external clock buBeOCK_BUFFER

An intermediate node calledanual_clk appears oitLOCK_BUFFER output.

Gates specified in the control file are searched for in the target technology library.
Gates specified in the VHDL source are searched for in the source technology library.

3-12 HDL Synthesis Manual

W
1]

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the VHDL source file with component
instantiation. In particular, if you want a specific complex input or output buffer to be
present on a specific input or output, component instantiation is a very powerful

method:
entity special is
port (inp: in std_logic ;
clk : in std_logic ;
outp: out std_logic;
inoutp : inout std_logic
)
end special ;
architecture exemplar of special is
component OUTPUT_FLIPFLOP
port (cdt: in std_logic ;

0: out std_logic
)
end component ;
component INPUT_BUFFER
port (i: in std_logic;
0: out std_logic
)
end component ;
signal intern_in, intern_out, io_control : std_logic ;
begin
bl : OUTPUT_FLIPFLOP port map (c=>clk, d=>intern_out,
t=>io_control,0=>inoutp);
b2 : INPUT_BUFFER portmap (i=>inoutp, o=>intern_in);

end exemplar ;

In this example, component instantiation force© QAT PUT_FLIPFLOPbuffer on the
bidirectional pininoutp . Also an input buffetNPUT_BUFFERIs specified to pick
up the value from this pin to be used internally.

The Art Of VHDL Synthesis 3-13

The synthesis tools will look for definitions of VHDL instantiated components in the
source library. Make sure that you specify a source libragu¢ce=lib_name) or

set the attributdlOBUFFon the 1/O pin of the instantiated buffer, otherwige

synthesis tools will consider the buffer to be a user-defined block and will add a buffer
from the target technology.

Three-state Buffers

Three-state buffers and bidirectional buffers (covered in the next section) are very easy
to generate from a VHDL description.

A disabled three-state buffer will be in a high-impedance state. VHDL itself does not

predefine a high-impedance state, but the IEEE 1164 standard logic package defines
the'Z’ character literal to have a behavior that exactly resembles the behavior of the
high-impedance state of a three-state buffer. A signal (a port or an internal signal) of

the standard logic type can be assignéd a value. The synthesis tools recognize the

'Z' value and creates a three-state buffer from a conditional assignmenZ'with

entity three-state is
port (input_signal : in std_logic ;
ena: in std_logic;
output_signal : out std_logic
)

end three-state ;
architecture exemplar of three-state is
begin

output_signal<=input_signalwhenena="1"else’Z’;
end exemplar ;

Note —In the when clause, bothput_signal and the conditiomna='1" can be
full expressions. The synthesis tools generate combinational logic driving the input or
the enable of the three-state buffer for these expressions.

3-14 HDL Synthesis Manual

3=

Normally, simultaneous assignment to one signal in VHDL is not allowed for

synthesis, since it would cause data conflicts. However, if a conditidnals

assigned in each assignment, simultaneous assignment resembles multiple three-state
buffers driving the same bus.

entity three-state is
port (input_signal_1, input_signal 2 : in std_logic ;
ena_1,ena 2: in std_logic ;
output_signal : out std_logic
)
end three-state ;
architecture exemplar of three-state is
begin

output_signal <= input_signal_1 when ena_1 ="1" else 'Z’;
output_signal <= input_signal_2 when ena_2 ='1" else 'Z’;
end exemplar ;

Note —The synthesis tools do not check for bus-conflicts on three-state assignments.
Therefore, make sure that the enable signals of the three-state drivers are never
simultaneously active. In this exampina_1 andena_2 should never bé&l’
simultaneously.

These examples show assignments to output ports (device ports). It is also possible to
do the assignments to an internal signal. This will create internal busses in such a case.

The Art Of VHDL Synthesis 3-15

Three-state buffers can also be generated from process statements:

driverl : process (ena_1, input_signal_1) begin
if (ena_1=1") then
output_signal <= input_signal_1 ;

else
output_signal <='Z";
endif ;
end process
driver2 : process (ena_2, input_signal_2) begin

if (ena_2="1") then
output_signal <= input_signal_2 ;
else
output_signal <='Z";
endif ;
end process

If the target technology does not have any internal three-state drivers, Galileo can

transform the three-state buffers into regular logic with-tfistate option.
Leonardo performs this transformation when ttigtate_map variable is set to
TRUE.

3-16 HDL Synthesis Manual

W
1]

Bidirectional Buffers

Bidirectional I/O buffers will be created by the synthesis tools if an external port is
both used and assigned inside the architecture. Here is an example:

entity bidir_function is
port (bidir_port: inout std_logic ;
ena: in std_logic;
)
end bidir_function ;
architecture exemplar of bidir_function is
signal internal_signal, internal_input : std_logic ;
begin
bidir_port <= internal_signal when ena ='1' else 'Z' ;

internal_input <= bidir_port ;
-- use internal_input

-- generate internal_signal
end exemplar ;

The difference with the previous example is that in this case, the output itself is used
again internally. Note that for that reason, the jbidtr _port is declared to be
inout

The enable signana could also be generated from inside the architecture, instead of
being a primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technology
library. If there is no bidirectional buffer available, it selects a combination of a
three-state buffer and an input buffer.

The Art Of VHDL Synthesis 3-17

=3

Busses

The examples in the previous sections all use single bits as signals. In reality, busses
are often used: arrays of bits with (multiple) three-state drivers. In that case, the type

of the bus signal should t&d_logic_vector . All examples given still apply for
busses, although tH&’ character literal now has to be a string literal. Here is one
example:
entity three-state is
port (input_signal_1, input_signal_2 : in
std_logic_vector (0 to 7) ;
ena_1,ena 2: in std_logic ;
output_signal: out std_logic_vector(0to7)
)
end three-state ;
architecture exemplar of three-state is
begin
output_signal <= input_signal_1 whenena_1="7
else “z2z7777777";
output_signal <= input_signal_2 when ena_2="1’

else “2z27727777";
end exemplar ;

This generates two set of eight three-state buffers, two on each line of the bus
output_signal

As with single three-state drivers, busses can be internal signal, or ports. Similarly,
busses can be created using processes.

State Machines

This section describes a basic form of a general state machine description. VHDL
coding style, power-up and reset, state encoding and other issues will be discussed.

General State Machine Description

There are various ways to describe a state machine in VHDL. This section will only
show the most commonly used description.

3-18 HDL Synthesis Manual

3=

The possible states of the state machine are listed in an enumerated type. A signal of
this type present_state) defines in which state the state machine appears. In a
case statement of one process, a second signal (next_state) is updated depending on
present_state and the inputs. In the saas® statement, the outputs are also updated.
Another process updates present_state with next_state on a clock edge, and takes care
of the state machine reset.

Here is the VHDL code for such a typical state machine description. This design
implements a RAS-CAS controller for DRAM refresh circuitry.

entity ras_cas is
port (clk, cs, refresh, reset : in bit;
ras, cas, ready : out bit);
end ras_cas;

architecture exemplar of ras_cas is
-- Define the possible states of the state machine
type state_type is (s0,sl1,s2,s3,s4);
signal present_state, next_state : state_type ;
begin

registers : process (clk, reset)
begin
-- process to update the present state
if (reset="1’) then
present_state <=s0;
elsif clk’event and clk ="1’ then
present_state <= next_state;
endif ;
end process

The Art Of VHDL Synthesis 3-19

3-20

transitions : process (present_state, refresh, cs)
begin
-- process to calculate the next state and the outputs
case present_state is

when s0 =>
ras<='1";cas<='l";ready <='1";
if (refresh="1" then
next_state <=s3;
elsif (cs='1) then
next_state <=sl1
else
next_state <=s0;
endif ;
when s1 =>

ras<='0";cas<='1";ready<="0’";
next_state <=s2;
when s2 =>
ras<='0";cas<='0";ready<='0’;
if (cs='0) then
next_state <=s0;
else
next_state <=s2;
endif ;
when s3 =>
ras<='1";cas<='0";ready<="0";
next_state <=s4;
when s4 =>
ras<='0";cas<="0"; ready <='0";
next_state <=s0;
end case ;
end process
end exemplar ;

VHDL Coding Style For State Machines

There are various issues of coding style for state-machines that might affect

performance of the synthesized result.

HDL Synthesis Manual

3=

A first issue is the form of state machine that will be created. There are basically two
forms of state machines, Mealy machines and Moore machines. In a Moore machine,
the outputs do not directly depend on the inputs, only on the present state. In a Mealy
machine, the outputs depend directly on the present state and the inputs.

In the RAS-CAS state machine described in the previous section, the outputs ras, cas
and ready only depend on the valugpodsent_state . This means that the

description implements a Moore machine. If the outputs would be set to different
values under the input conditions in tifie statements inside tlease statement, a

Mealy machine would have been created. In a Moore machine, there is always a
register in between the inputs and the outputs. This does not have to be the case in
Mealy machines.

A second issue in coding style is tb@se statement that has been used to test the
present_state . A case statement is more efficient than a

if -then -elsif -else statement, since that would build a priority encoder to test the
state (which could mean more logic in the implementation). It is also important to note
that there is n@THERSentry in thecase statement. ATDTHERSentry could create

extra logic if not all the states are mentioned indage statement. This extra logic

will have to determine if the machine is in any of the already mentioned states or not.
Unless there are a number of states where the state machine behaves exactly the same
(which is not likely since then you could reduce the state machine easiy)JldERS

entry is not beneficial and will, in general, create more logic than is required.

A third issue is the assignments to outputs mexk_state in the state transition
process. VHDL defines that any signal that is not assigned anything should retain its
value. This means that if you forget to assign something to an output (or

next_state) under a certain condition in tloase statement, the synthesis tools

will have to preserve the value. Since the state transition process is not clocked, latches
will have to be generated. You could easily forget to assign to an output if the value
does not matter. The synthesis tools will warn you about this, since it is a common user
error in VHDL:

"file.vhd", line xx : Warning, latches might be needed for XXX.

Make sure to always assign somethingéat _state and the state machine outputs
under every condition in the process to avoid this problem. To be absolutely sure, you
could also assign a value to the signal at the very beginning of the process (before the
start of thecase statement).

The Art Of VHDL Synthesis 3-21

3-22

Note —Graphical state-machine entry tools often generate state machine descriptions
that do not always assign values to the outputs under all conditions. The Exemplar
synthesis tools will warn about this, and you could either manually fix it in the VHDL
description, or make sure you fully specify the state machine in the graphical entry
tool. The synthesis tools cannot fill in the missing specifications, since it is bounded by
the semantics of VHDL on this issue.

Power-up And Reset

For simulation, the state machine will initialize into the leftmost value of the
enumeration type, but for synthesis it is unknown in which state the machine powers
up. Since the Exemplar synthesis tools do state encoding on the enumeration type of
the state machine (see “State Encoding” below), the state machine could even power
up in a state that is not even defined in VHDL. Therefore, to get simulation and
synthesis consistency, it is very important to supply a reset to the state machine.

In the example state machine shown in “General State Machine Description” on

page 18, an asynchronous reset is used, but a synchronous reset would be possible.
“Registers, Latches and Resets” on page 1 explains more about how to specify resets
on registers in VHDL.

State Encoding

The Exemplar synthesis tools have a variety of methods to control state encoding for
state machines that use an enumeration type for the declaration of the states.
“Enumeration Types” on page Miscusses all forms of state encoding in detail

Arithmetic And Relational Logic

This section gives an overview of how arithmetic logic is generated from VHDL, what
the synthesis tools do with this logic and how to avoid getting into combinational
explosion with large amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing “random” combinational
behavior, but has problems with logic which is arithmetic in nature. Often special
precautions have to be taken into consideration to avoid ending up with inefficient
logic or excessive run times. Alternatively, macros may be used to implement these
functions. For more information see “Technology-Specific Macros” on page 29.

HDL Synthesis Manual

3=

The Exemplar synthesis tools support the overloaded operators “+”, “-", “*" and
“abs.” These operators work on integers (and on arrays; with the exemplar package).

If you use overloaded operators to calculate compile time constants, the synthesis tools
will not generate any logic for them. For example, the following code segments do not
result in logic, but assign a constant integer 13 to sifgroal

function add_sub (a: integer, b: integer, add : boolean)
return integer is
begin
if (add = TRUE) then
return a+b;
else
return a-b;
endif ;
end my_adder ;
signal foo s integer ;
constant left: integer := 12 ;

foo <= add_sub (left,6, TRUE) - 5 ;-- Expression evaluates to 13

If you are not working with compile time constant operands, arithmetic logic is
generated for arithmetic operators.

The pre-defined “+” on integers generates an adder. The number of bits of the adder
depends on the size of the operands. If you use integers, a 32 bit adder is generated. If
you use ranged integers, the size of the adder is defined so that the entire range can be
represented in bits. For example, if variakdeandb do not evaluate to constants, the
following code segment:

variable a, b, ¢ : integer ;
c:=a+b;

generates a 32-bit (signed) adder, but

variable a, b, ¢ : integer range 0 to 255 ;
c:=a+b;

The Art Of VHDL Synthesis 3-23

generates an 8-bit (unsigned) adder.

If one of the operands is a constant, initially a full-sized adder is still generated but
logic minimization eliminates much of the logic inside the adder, since half of the
inputs of the adder are constant.

The pre-defined “-” on integers generates a subtracter. Same remarks apply as with the
“+" operator.

The pre-defined “*” multiplication on integers generates a multiplier. Full
multiplication is supported when a module generator is used. S&ytiieesis and
Technology Reference Guifter information on module generators supported for
specific technologies. You can also define your own technology specific multiplier.

The pre-defined “/” division on integers generates a divider. Only division by a power
of two is supported. In this case, there is no logic generated, only shifting of the
non-constant operand. With module generation you could define your own
technology-specific divider.

The predefined “**” exponentiation on integers is only supported if both operands are
constant.

“=7 =70k s "= and “>=" generate comparators with the appropriate
functionality.

Operations on integers are done in two-complement implementation if the integer
range extends below 0. If the integer range is only positive, an unsigned
implementation is used.

There are a number of other ways to generate arithmetic logic. The predefined
exemplar functionadd, add2, sub, sub2, +, and- onbit_vector and
std_logic_vector types are examples of functions which do this. For
descriptions of these functions, see “Predefined Functions” on page 14.

By default, the synthesis tools will generate “random” logic for all pre-defined
operators. Alternatively, if a module generator for a particular target technology is
supplied, the synthesis tools will generate technology specific solutions (e.g., hard
macros) instead of random logic.

3-24 HDL Synthesis Manual

W
1]

Module Generation

When arithmetic and relational logic are used for a specific VHDL design, the
synthesis tools provide a method to synthesize technology specific implementations for
these operations. Generic modules (for bit-sizes > 2) have been developed for many of
the FPGAs supported by the Exemplar synthesis tools to make the most efficient
technology specific implementation for arithmetic and relational operations.

For Galileo, use themodgen= modgen_libraryoption to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a user VHDL design. For Leonardo, use the
modgen_read modgen_librarycommand to load the module generation library into

the HDL database. Since these modules have been designed optimally for a target
technology, the synthesis result is, in general, smaller and/or faster and takes less time
to compile.

If you want to define your own module generator for a specific technology, you can do
so by describing a module generator in VHDL. For more information on module
generation, see Chapter 9-Chapter 11.

Resource Sharing

The synthesis tools perform automatic common subexpression elimination for
arithmetic and boolean expressions. The following example has two adders in the code,
but they are adding the same numbarsndb.

signal a,b,c,d: integer range O to 255 ;

process (a,b,c,d) begin
if (atb=c) then <statements>
elsif (a+b=d) then <more_statements>
endif ;

end process

The Art Of VHDL Synthesis 3-25

3-26

After automatic common subexpression elimination, only one adder will be used in the
final circuit. Thus, it would create the same logic as the following example.

process (a,b.c.d)

variable tmp : integer
begin

tmp :=a+b;

if (tmp=c)

elsif (tmp=4d)

endif ;
end process

range 0 to 255;

then <statements>
then <more_statements>

Proper use of parentheses guide the synthesis tools in eliminating common
subexpressions. The following code segment, for example, can be properly modified to

share an adder.

ol<=a+b+c;
02<=b+c+d;

Using parentheses, the logic can share an adder for ihpansic, as shown below.

ol<=a+(b+c);
02<=(b+c)+d;

The synthesis tools automatically perform a limited amount of resource sharing of

arithmetic expressions that are mu

tually exclusive. Consider the following example:

process (a,b,c,test) begin
if (test=TRUE) then
o<=a+b;
else
o<=a+c;
end if ;
end process

HDL Synthesis Manual

3=

Initially, two adders and a multiplexer are created, but after the automatic resource
sharing one adder is reduced, and the final circuit is same as would be created from the
following code:

process (a,b,c,test) begin
variable tmp : integer range 0 to 255;
begin
if (test=TRUE) then
tmp:=b;
else
tmp:=c;
endif ;

o<=a+tmp;
end process

The limitations of automatic resource sharing are as follows:
» Complex operators must drive the same signal.

» Complex operators must be of the same type (for example, two adders) and have the
same width (for example, 8-bit adders).

Ranged Integers

It is best to use ranged integers instead of “unbound” integers. In VHDL, an unbound
integer (integer with no range specified) is guaranteed to include the range
-2147483647 to +2147483647. This means that at least 32 bits are needed to
implement an object of this type. The synthesis tools have to generate large amounts of
logic in order to perform operations on these objects. Some of this logic may become
redundant and get eliminated in the optimization process, but the run time is slowed
down considerably. If you use integers as ports, all logic has to remain in place and
synthesis algorithms are faced with a complex problem. Therefore, if you do not need
the full range of an integer, specify the range that you need in the object declaration:

signal small_int : integer range 255 downto O ;

small_int only uses eight bits in this example, instead of the 32 bits if the range
was not specified.

The Art Of VHDL Synthesis 3-27

Advanced Design Optimization

Module generation, resource sharing and the use of ranged integers are all examples of
how a particular design can be improved for synthesis without changing the
functionality. Sometimes it is possible to change the functionality of the design

slightly, without violating the design specification constraints, and improve the
implementation for synthesis. This requires understanding of VHDL and what kind of
circuitry is generated, as well as understanding of the specifications of the design. One
example of this is given, in the form of a loadable loop counter.

Often, applications involve a counter that counts up to a input signal value, and if it
reaches that value, some actions are needed and the counter is reset to O.

process begin
wait until clk’event and clk="1";
if (count = input_signal) then
count<=0;
else
count <=count + 1 ;
end if ;
end process ;

In this example, the synthesis tools build an incrementer and a full-size comparator
that compares the incoming signal with the counter value.

In this example, a full comparator has to be created since the VHDL description
indicates that the comparison has to be done each clock cycle. If the specification
allows that the comparison is only done during the reset, we could re-code the VHDL
and reduce the overall circuit size by loading the counter witlinfhe_signal ,

and then counting down to zero:

process begin
wait until clk’event and clk="1";

if (count=0) then
count <= input_signal ;
else
count <=count-1;
end if ;

end process ;

3-28 HDL Synthesis Manual

3=

Here, one decrementer is needed plus a comparison to a constant (0). Since
comparisons to constants are a lot cheaper to implement, this new behavior is much
easier to synthesize, and results in a smaller circuit.

This is a single example of how to improve synthesis results by changing the
functionality of the design, while staying within the freedom of the design
specification. However, the possibilities are endless, and a designer should try to use
the freedom in the design specification to get truly optimal synthesis performance.

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros and soft
macros that perform specific arithmetic logic functions. These macros are optimized
for the target technology and have high performance.

This section will explain how to instantiate technology specific macros in the VHDL
source to assure full control over the synthesized logic. The VHDL description will
become technology dependent.

Note that the Exemplar synthesis tools do automatic inference of technology specific
macros from standard (technology independent) arithmetic and relational operators
when Module Generation is used. The section “Resource Sharing” on page 25 explains
more about this and details can be found in Chapter 9—Chapter 11. However, if a
particular hard-macro is required, or there is no Module Generator available for the
your technology, manual instantiation will be needed.

With the Exemplar synthesis tools, it is possible to use component instantiation of soft
macros or hard macros in the target technology, and use these high performance
macros. An added benefit is that the time needed for optimization of the whole circuit
can be significantly reduced since the synthesis tools do not have to optimize the
implementation of the dedicated functions anymore.

The Art Of VHDL Synthesis 3-29

As an example, suppose you would like to build an 8-bit counter in the device family
FPGAX. There is a hard-macro available in HRGAXlibrary that will do this. Call it

the COUNTS8In order to directly instantiate this macro in VHDL, declare a component
COUNT®8&and instantiate it with a component instantiation statement.

component COUNTS8

end component

-- clock, count_enable, reset, load, load_data and output are signals
-- in the VHDL source

counter_1: COUNTS8 port map (c=>clock, ce=>count_enable,

port (pe,c,ce,rd: in std_logic ;
d: in std_logic_vector (7 downto 0);
q: out std_logic_vector (7 downto 0)

rd=>reset, pe=>load, d=>load_data, g=>output) ;

3-30

The synthesis tools will synthesize this component as a black-box, since there is no
entity/architecture description for it. It will appear in the output file as a symbol.

If you use hard-macros in a VHDL description, specify a source technology so the
synthesis tools can include area and timing information. For this example, you would
use the optionsource=fpgax with Galileo. With Leonardo, you would use the
load_library fpgax command to load the source library into the design database.

If simulation is required on the source VHDL design, you have to supply an entity and
architecture folCOUNT8In that case, make sure to set the attriN@OPTio TRUE

on the componenfOUNT8 so that the synthesis tools treat the component as a
black-box, otherwise they will synthesiZ®UNT8nto general logic. For more
information about setting thdOOPTattribute on a component, see the section
“Finding Definitions of Components” on page 3.

Using technology specific macro instantiation can speed-up the synthesis and
optimization process considerably. It also often leads to more predictable area and
delay costs of the design. The VHDL description however becomes technology
dependent.

HDL Synthesis Manual

W
1]

Multiplexers and Selectors

From acase statement, the synthesis tools create either muxes or selector circuits. In
the following example, a selector circuit is created.

case test_vector is
when “000" => o0 <=bus(0) ;
when “001" | "010" | “100" => o <= bus(1) ;
when “011" | "101" | “110" => o <= bus(2) ;
when “111"=> o0<=bus(3);

end case ;

If the selector value is the index to be selected from an array, the selector will resemble
a multiplexer. It is still possible to express this inage statement, but it is also

possible to use a variable indexed array. For example, if an integer value defines the
index of an array, a variable indexed array will create the multiplexer function:

signal vec : std_logic_vector (0 to 15);
signal o: std_logic ;

signal i :integer range 0 to 15;

o <=vec(i) ;

selects bit out of the vectorec . This is equivalent to the more complex writing
style with acase statement:

case i is
when 0 => o0 <= vec(0) ;
when 1 => o0 <=vec(1) ;
when 2 => 0 <= vec(2) ;
when 3 => 0 <=vec(3) ;

end case ;

For the prior description, the synthesis tools create the same multiplexers as they do
for the variable-indexed array.

The Art Of VHDL Synthesis 3-31

The Exemplar synthesis tools fully support variable-indexed arrays, including index
values that are enumerated types rather then integers, and index values that are
expressions rather then singe identifiers.

ROMSs, PLAs And Decoders

There are many ways to express decoder behavior from a ROM or PLA table. The
clearest description of a ROM would bease statement with the ROM addresses in
the case conditions, and the ROM data indhge statements. In this section, two
other forms are discussed:

1. Decoder as a constant array of arrays.
2. Decoder as a constant two-dimensional array.

Here is an example of a ROM implemented with an array of array type. The ROM
defines a hexadecimal to 7-segment decoder:

type seven_segment isarray (6 downto 0);
type rom_type is array (natural range <>) of seven_segment;
constant hex_to_7:rom_type (0 to 15) :=

(“0111111",--0

“0011000", -- 1

“1101101", -- 2 Display segment index numbers :

“1111100", -- 3 2

“1011010", -- 4 1 3

“1110110", --5 6

“1110111", -6 0 4

“0011100", -- 7 5

“1111111", -- 8

“1111110", -9

“1011111", -- A

“1110011", -- B

“0100111", -- C

“1111001", -- D

“1100111", -- E

“1000111"); - F
-- Now, the ROM field can be accessed via a integer index
display_bus <= hex_to_7 (i) ;

3-32 HDL Synthesis Manual

3=

The ROM with array of array implementation has the advantage that it can be accessed
via a simple integer value as its address. A disadvantage is that each time another
ROM is defined, a new element typgeyen_segment) and a new ROM type

(rom_type) have to be defined.

PLA descriptions should allow’X’ or’-’ dont-care value in the input field, to
indicate a product lines’ insensitivity for a particular input. You cannot usse
statement for a PLA with dont cares in the input field since a comparison with a value
that is not0’ or’'l’ will return FALSE in a case condition (as opposed to just
ignoring the input). Instead, a small procedure or function is needed that explicitly
defines comparisons X’ or’-> . The following example describes such a
procedure. First, a general 2-dimensional PLA array type is declared.

type std_logic_pla is array (natural range <>, natural range <>)
of std_logic;
procedure pla_table (constant invec: std_logic_vector;
signal outvec: out std_logic_vector;
constant table: std_logic_pla) is
variable x : std_logic_vector (table’'range(1)) ; -- product lines
variable vy :std_logic_vector (outvec’range) ; -- outputs
variable b : std_logic ;
begin
assert (invec’length + outvec’length = table’length(2))
report “Size of Inputs and Outputs do not match table size”
severity ERROR;

The Art Of VHDL Synthesis 3-33

-- Calculate the AND plane

X = (others =>1");
for i in table’'range(1) loop
for j in invec’range loop

b := table (i,table’left(2)-invec’left+j) ;
if (b="1") then

x(i) == x(i) ANDinvec (j) ;
elsif (b="0") then

x(i) = x(i) AND NOTinvec(j) ;
end if

--Ifbis not’0’ or '1’ (e.g. ’-") product line is insensitive to
invec(j)

end loop
end loop
-- Calculate the OR plane
y = others =>'0");
for i in table’range(1) loop
for j in outvec'range loop

b := table(i,table’right(2)-outvec’right+j) ;
if (b="1") then

y() =y() ORX(i);

endif ;

endloop ;

end loop ;
outvec <=y ;
end pla_table ;

3-34

HDL Synthesis Manual

3=

Once the two-dimensional array type and the PLA procedure are defined, it is easy to
generate and use PLAs (or ROMs). As a simple example, here is a PLA description of
a decoder that returns the position of the fitst in an array. The PLA has five

product lines (first dimension) and seven IOs (four inputs and three outputs) (second
dimension).

constant pos_of fist_one: std_logic_pla (4 downto 0,6 downto O0):=
(“1---000",-- first '1’ is at position 0
“01--001",-- first’1’ is at position 1
“001-010",-- first "1’ is at position 2
“0001011",-- first'1’ is at position 3
“0000111") ;-- Thereis no "1’ in the input
signal test_vector : std_logic_vector (3 downto 0);
signal result_vector : std_logic_vector (2 downto 0);

-- Now use the pla table procedure with PLA pos_of first one
-- test_vector is the input of the PLA, result_vector the output.

pla_table (test_vector, result_vector, pos_of first one) ;

The PLA could have been defined in a array-of-array type also, just as the ROM
described above. A procedure or function for the PLA description will always be
necessary to resolve the dont-care information in the PLA input field.

Note —The synthesis tools will do a considerable amount of compile-time constant
propagation on each call to the procedpla table . This does not affect the final
circuit result at all. It just adds the possibility to specify dont-care information in the
PLA input table. In fact, a ROM described with an array-of-array type and a variable
integer index as its address will produce the same circuit as the ROM specified in a
two-dimensional array and using thka_table procedure. If the modeled ROM or
PLA becomes large, consider a technology-specific solution by directly instantiating a
ROM or PLA component in the VHDL description. Many FPGA and ASIC vendors
supply ROM and/or PLA modules in their library for this purpose.

The Art Of VHDL Synthesis 3-35

3-36 HDL Synthesis Manual

The VHDL Environment 4

This chapter discusses the Exemplar synthesis tools and the VHDL tool environment,
including search paths, interfacing with other VHDL tools, and the Exemplar package.

Entity and Package Handling

Loading Entities and Packages (Galileo)

Packages and entities in VHDL are stored in libraries. VHDL tools often have the
possibility to load VHDL files (with packages and entities) separately into a directory
that is assigned to a library. Galileo does not have the ability to pre-load VHDL files
into libraries. Instead, all VHDL sources need to be specified for each run of Galileo.

Galileo can get VHDL source from three different areas:
1. Predefined VHDL package files
2. Optionally included VHDL files

3. The source (input) VHDL file for the run of the tool

4-1

4-2

An example of a predefined package is the package STANDARD (which is
pre-defined for VHDL), that Galileo loads from figandard.vhd in
$EXEMPLAR/data/packages.syn . Other packages are available both in that
directory, and ifSEXEMPLAR/data .

-vhdl_file= filename

With the-vhdl_file=<filename> option, it is possible to load a VHDL file into
Galileo before the source VHDL file is read. In the Graphical User Interface, use the
“VHDL Files” option in the Input Options menu. Multiplehdl_file options

allow you to load multiple files. The order in which the files are included is important.
If you use a package A in file B, make sure that the file in which A is defined is loaded
before file B.

After all the-vhdl_file options are executed, and their corresponding VHDL files
are loaded into Galileo, the source VHDL file is read.

Galileo can handle either VHDL IEEE 1076-1987 or IEEE 1076-1993 dialects of
VHDL. The default is 87. To run 93-style VHDL, use the switch -vhdl_93 on the
command line, or use the “VHDL Style” option the (VHDL) input options menu on the
GUL.

Galileo does not handle all 93 style features. They support the most commonly used
features of the '93 extension: shifter and rotator operators, xnor operator and extended
identifiers.

Loading Entities and Packages (Leonardo)

If there is only design file, you can read the file directly into Leonardo. If the design is
split into multiple source files, however, you need to analyze them in the proper order
so that all terms are defined before they are used in the design. For example, if there is
a package declaration in one file that must be used by the whole design, that file must
be analyzed first. In Leonardo, all the design units are stored in the HDL database, and
you can analyze as many of them as you want.

HDL Synthesis Manual

AN
1]

Entity Compiled as the Design Root

When the VHDL source is loaded, Galileo will start compiling the top level entity and
start the synthesis process. By default, Galileo uses the last entity found in the source
file as the top-level entity. This behavior can be changed, however.

-entity= entity_name

The option-entity= entity_name on the command line will let Galileo find the
entity specified and consider that the root of the design. In the Graphical User
Interface, use the “Top Entity” option in the VHDL Input Options window. An entity
from an included VHDL file can be specified as the root of the design.

-architecture= architecture_name

After the root entity is found, Galileo will try to find a matching architecture for it. By
default, the tools will choose the LAST architecture described in the source VHDL file
that matches the top-level entity. Use thechitecture= architecture_naméo
overwrite this default. In the Graphical User Interface, use the option “Top
Architecture” in the VHDL Input Options window.

By default, Leonardo assumes that the last entity or configuration analyzed is the root
entity. By default, the LAST architecture analyzed for the root entity is compiled. You
can use thelaborate command with-entity entity_nameand

-architecture arch_namearguments to selectively compile a particular
entity-architecture pair.

Finding Definitions of Components

In order to instantiate an entity into a VHDL description, you must first declare a
component for it. If you use a component instantiation in your VHDL design, the
synthesis tools try to find the definition of that component. There are three
possibilities.

1. The component is a cell in a source technology library.
2. The component has a matching (named) entity in the VHDL source

3. The component has no definition.

The VHDL Environment 4-3

4-4

If a source technology is specified, the synthesis tools try to find the component in the
source technology library. This is especially helpful if the component represents a
particular macro in the source technology. For an example, see “Technology-Specific
Macros” on page 29.

If the component is not present in the source technology, the synthesis tools try to find
an entity and architecture for it. The entity (and architecture) could be present in the
same file, or in an included VHDL file.

If the synthesis tools cannot find a matching entity for the component, they issue the
following warning and leave the contents component undefined:

Warning, component component_namleas no definition

Working with components without a definition can be useful if a particular module of
the design is not synthesizable. A clock generator or a delay-module is an example of
this. The contents of that module should be provided separately to the physical
implementation tools. Leaving components undefined is also useful in two other
cases:

« With Galileo, to preserve hierarchy through the synthesis process.

* With all the Exemplar synthesis tools, for using hard and soft macros in the target
technology (see “Technology-Specific Macros” on page 29).

It is possible to explicitly leave the contents of a component empty, even though there
is a entity/architecture for it or a cell in the source technology library. In that case,
specify the boolean attributéOOPTon the component, or on its corresponding entity,

or use thenoopt =entity _nameoption (for Galileo only) as described below. This can

be useful when only a part of the hierarchy of a design has to be synthesized or if a
user-defined simulatable but not synthesizable block is run through the synthesis tools.
Here is an example of how to set th@opt attribute:

component clock_gen

end component

attribute noopt : boolean ;

attribute noopt of clock _gen: component is TRUE;

HDL Synthesis Manual

4=

Components with aocopt attribute or undefined components will be handled as black
boxes by the synthesis tools, and will show up as cells in the target netlist. Supplying
the technology-specific contents of these cells is left to the user. It is also possible to
only noopt a particular instance of a component by setting the noopt attribute on the
label of the component instantiation statement. This will have the same effect as if the
attribute was added to the underlying entity.

How to Use Packages

A functionality described in a VHDL package is included into the VHDL design using
the use clause. This is the general form of the use clause:

library lib;
use lib. package selection;

The use clause is preceded by a library clause. There are predefined livoakies
andstd that do not have to be declared in a library clause before they are used in a
use clause. All other libraries do need top be declared. Lilstdryis normally only

used to include packages predefined in VHDL1076, but libremk is free to be used

for any user-defined packages. User-defined library names are also allowed.

If a particular package is not found in the specified library, the synthesis tools perform
the following steps to find the package:

1. The currenwork library is searched for the package.

2. If it is not there, it searches for a file with the ngmaekagevhd in the present
working directory. The present working directory is the directory where a synthesis
tool is running.

3. If the file is not there, the synthesis tools try to find it in§EXEMPLAR/data or
the SEXEMPLAR/data/packages.syn directory to check if it is a pre-defined
package.

4. If the file is not there, the synthesis tools issue an error message that the package
can not be found.

The selectioncan consist of only one name of an object, component, type or
subprogram that is present in the package, or the albrd in which case all

functionality defined in the package is loaded into the synthesis tools and can be used
in the VHDL description.

The VHDL Environment 4-5

As an example, the IEEE 1164d_logic_1164 package (that defines the
multi-valued logic types that are often used for circuit design), is included with the
following statements:

library ieee;
use ieee.std_logic_1164.all ;

This package is loaded from tB&EXEMPLAR/data/packages.syn file. This file
contains only the declarations of the functions ofdtuke logic_1164 package.

The bodies of the functions are built into the Exemplar synthesis tools for synthesis
efficiency.

Note —The contents of the package you include witlsa clause becomes visible

and usable only within the scope where you useutfee clause. It would be beyond

the scope of this manual to explain the VHDL scoping rules, but if you start a new
entity (and architecture), always make sure that you include the packages you need
with use clauses just before the entity.

Interfacing With Other VHDL Tools

4-6

The VHDL parsers in the Exemplar synthesis tools are compliant with the IEEE
VHDL 1076-1987 standard. Hence, apart from the VHDL restrictions for synthesis,
interfacing with tools that generate VHDL or operate on VHDL should not introduce
compatibility problems.

However, since VHDL 1076 does not define file handling, there might be mismatches
in the way the tools handle files. Many VHDL simulators incorporate a directory
structure to store separately compiled VHDL files. The synthesis tools do not use
separate compilation of VHDL files. Therefore, all packages and components that are
used for a VHDL design description should be identified before running the synthesis
tools, as explained in the previous section.

VHDL Simulators

Always make sure to load the packages and entities in your design into the simulator
prior to simulating your root entity. For simulation, teeemplar and

exemplar_1164 packages can be found in thREXEMPLAR/data directory. For

details on using these packages, see “The Exemplar Packages” on page 11.

HDL Synthesis Manual

AN
1]

Post-Synthesis Functional Simulation

If desired, post-synthesis functional simulation can be performed using the structural
VHDL output from the synthesis tools. In your design flow, choose the appropriate
netlist output for the target technology. Then use-#ifrt=reformat switch

(with Galileo) to produce structural VHDL for simulation. The flow with Galileo is,
assuming an ASIC as the target technology for this example,

1. VHDL synthesis with Galileo:

galileo my_design.vhd my_design.edf -target=asic
-effort=exhaustive -report=2

2. Produce VHDL netlist:

galileo my_design.edf my_test.vhd -source=asic
-target=asic -effort=reformat -report=2

This produces the structural VHDL filay _test.vhd , which may now be simulated.

The synthesis tools synthesize all port types into single-bit values. These get written
out in VHDL as ports of typstd_logic . The original port types are not preserved.

In Leonardo, the same design can be written into multiple files in multiple formats.
After optimization, choose the appropriate netlist output format for the target
technology; then, you can write a VHDL description of the same synthesized design.
By using a simulatable library of the target technology, this VHDL output can be
simulated. The sequence of synthesis statements should be similar to the following:

load_lib asic

read original.vhd

optimize -tar asic <other options>

write synthesized.edf -- required for target technology
write synthesized.vhd -- can be used for simulation.

The VHDL Environment 4-7

4-8

When doing synthesis from a VHDL description, one goal of post-synthesis VHDL
simulation is to simulate the design with the original set of ports (same type, io mode
etc.). With Galileo, thevhdl_wrapper= filenameoption is used for that. On the

GUI, you can find the wrapper option in the "VHDL Input Options’ menu. With
Leonardo, use thereate_wrapper =~ command to create the wrapper file.

The wrapper consists of an architecture (that connects to the original entity) that
instantiates a component that refers to the synthesized description. Type-conversion
functions connect ports of the synthesized description to the ports of the original
description. Since both the synthesized description and the original description have
the same name, we need to store the synthesized description into a different library (in
the simulator) than the original one.

Load the synthesized VHDL description in a library cakbgdthesis in your
simulator. Then load the wrapper architecture into the work library. It will link with the
originally compiled entity of the original VHDL description. The wrapper file uses
type transformation functions from a package caligetran to translate the port
types. This packages in the fl EXEMPLAR/vhdl/typetran.vhd . You have to

load this package into the simulator before you load the wrapper description.

Now, the original entity can be simulated with the wrapper architecture. Since the
wrapper instantiates the synthesized description, simulation will be done of the
synthesized design by using the original entity (ports), and thus the original test
vectors can be used to simulate.

Viewlogic

Users with VHDL files originally written for the Viewlogic synthesis or simulation
systems will be using theack1076 andstdsynth packages. Galileo supports all
behavior from these packages, as long as they are included according to VHDL rules
with ause clause. Viewlogic accepts descriptions withoutuke clause.

-viewlogic

To avoid having to re-code the VHDL files from Viewlogic to Exemplar, Galileo
accepts an option\(iewlogic) that triggers the VHDL parser to adjust to the
Viewlogic semantics of VHDL. In the Graphical User Interface, use the manual
options line in the Global Options window to set thiezwlogic option. This

option also makes sure that the search path for packages is changed according to the

HDL Synthesis Manual

4=

Viewlogic rules. This search path includes the current working directory, and the
[lib/behv , ./vhdllibs/ lib, $WDIR lib/behv and$WDIR/vhdllibs/ lib
directories.

Note —The Exemplar synthesis tools do not support the old Viewlogic package
synth . Only the packagesack1076 andstdsynth are supported and recognized
as the packages that define Viewlogic's synthesis functions and types.

To use Viewlogic VHDL files with Leonardo, you must set the variable
viewlogic_vhdl to TRUE

Synopsys

Users that have existing VHDL files for Synopsys VHDL Compiler will rely on one or
more of the Synopsys pre-defined VHDL packages. The Exemplar synthesis tools
support all these packagesuse clause includes them into your design. The

Exemplar versions of these packages cause an implementation that is efficient for the
Exemplar synthesis tools to be used.

The Synopsys packages define a set of types and functions that contain Synopsys
progamas that VHDL Compiler uses as synthesis directives. These pragmas are
correctly interpreted by the following Exemplar tools:

pragma translate_on
pragma translate_off
synopsys translate _on
synopsys translate_off
synopsys synthesis_on
synopsys synthesis_off

Apart from ause clause for each Synopsys package that you need in your VHDL file,
you should NOT have to load any Synopsys package into the Exemplar synthesis tools.
They will search for the packages that you want to use in the directory
$EXEMPLAR/data . Here is the list of files with the packages they contain:

The VHDL Environment 4-9

4-10

File Name Package Name
syn_ari.vhd ARITHMETIC
syn_attr.vhd ATTRIBUTES
syn_type.vhd TYPES

syn_arit.vhd STD_LOGIC_ARITH
syn_misc.vhd STD_LOGIC_MISC
syn_unsi.vhd STD_LOGIC_UNSIGNED
syn_sign.vhd STD_LOGIC_SIGNED

It is very important that you let the synthesis tools find these packages themselves
(from the use clause in your VHDL description). The synthesis tools should load any
of the files above from th8EXEMPLAR/data directory, or it will probably read a

file without the synthesis directives. Without the synthesis directives, the synthesis
tools can NOT efficiently synthesize any of the Synopsys packages.

The synthesis tools assume that the Synopsys libraries are called from either the
VHDL library SYNOPSY®r the VHDL librarylEEE (this is where Synopsys advises
its packages to be stored). If you store your Synopsys library (on your VHDL
simulator) somewhere else than in these libraries, they you have to manually include
the (package) files needed from IEEXEMPLAR/data directory, since the synthesis
tools will not recognize them as Synopsys packages. For Galileo, the technique to
manually include such packages is to use the option

-vhdl_file= libname: filenameto include the files (packages) you need into the
library you want. For Leonardo, use thralyze libname filenameommand and
argument. Make sure again that you use the files fron$SE¥EMPLAR/data

directory (with synthesis directive attributes in there).

HDL Synthesis Manual

AN
1]

Mentor Graphics

The Exemplar synthesis tools are source-code compatible with the latest version of
Autologic II. Therefore, you should not encounter any problems when running VHDL
designs from Mentor Graphics. The Exemplar synthesis tools support two VHDL
packages from Autologic II, both of which are stored in$BXEMPLAR/data

directory:

File Name Package Name
std_arit.vhd STD_LOGIC_ARITH
gsim_logic.vhd QSIM_LOGIC

These files will be automatically read when you specify the package names in a use
clause in your VHDL description.

The Exemplar Packages

There are a number of operations in VHDL that occur regularly. An example is
translation of vectors to integers and back. For this reason, Exemplar provides
packages that define attributes, types, functions and procedures that are often used.
Using the functions and procedures reduces the amount of initial circuitry that is
generated, compared to writing the behavior explicitly in a user-defined function or
procedure. This reduces the cpu-time for compilation and also could result in a smaller
circuit implementation due to improved optimization.

This section discusses all the defined functionality in the Exemplar packages
exemplar andexemplar_1164 . The package bodies are not read by the synthesis
tools; the functions are built-in. The packages are used for simulation only, and editing
them will NOT change the synthesized logic. The VHDL source for these packages is
given in the filesexemplar.vhd andex_1164.vhd , respectively in the
$EXEMPLAR/data directory.

Theexemplar_1164 package defines the same functionality of the exemplar
package, but operates on the IEEE 1164 multi-valued logic types.

If you are using the IEEE 1164 types in your VHDL description, include the IEEE
standard logic type definition into your VHDL description with a use clause. The
VHDL source of the IEEE 1164 types package is in thesfide 1164.vhd in the

The VHDL Environment 4-11

—
$EXEMPLAR/data directory. For detailabout the IEEE 1164 types, see “IEEE 1164
Predefined Types” on page 28. If you also want to use the Exemplar functions that
operate on these types, include the paclkagd 164 with ause clause.
If you do not use the IEEE 1164 types, but still want to use the Exemplar functions,
just include the package exemplar in your VHDL description with a use clause. All
functions are then defined on the predefined types andbit_vector , and on the
four-valued type®lbit andelbit_vector

Predefined Types
Theexemplar package defines a four-valued type cakdoit and its array
equivalentelbit_vector . Theelbit type includes the bit valueg’ ,’'1" ,'X
and’z’ .
Exemplar recommends that you use the IEEE 1164 standard logic types, and the
exemplar_1164 package. The Exemplar data types are included only for backward
compatibility with Galileo releases prior to 1.2.
Predefined Attributes

The Exemplar synthesis tools use attributes to control synthesis of the described
circuit. With Galileo, these attributes can be set in the control file. With Leonardo, you
can use theet_attribute command to set object attributes within the hierarchical
database.
In many cases, though, it is more convenient to define attributes in the VHDL source.
The following attributes are recognized by the VHDL parser, and declared in both the
exemplar and theexemplar_1164 package:
Attribute Type Description
required_time time Set required time on output
arrival_time time Setarrival_time on input
output_load real Specify load set on output
max_load real Specify max load allowed on input
clock_cycle time Specify clock length on clock pin
pulse_width time Specify pulse width on clock pin
input_drive time Specify delay/unit load for input

4-12 HDL Synthesis Manual

Attribute Type Description
nobuf boolean Reject buffer insertion for a input
pin_number string Specify location of input or output pin

array_pin_number 1

preserve_signal
buffer_sig

modgen_sel

array of strings
boolean
string

modgen_select

Specify location for each bit of a bus
Signal’s function will survive synthesis
Specify explicit buffer on a pin

Specify time requirement for module

generators driving this signal

1. This attribute can be satlyin the VHDL source.

In order to set a particular attribute on a signal (or port) in VHDL, use the normal
attribute specification statement in VHDL. Here are some examples:

library exemplar;
use exemplar.exemplar. all ; --Include the 'exemplar’ package
entity test is
port (my_input: in bit;
my_output : out bit_vector (5 downto 0);
)
attribute pin_number of my_input: signal is"P15";
attribute array_pin_number of my_output:signal is
("P14","P13","P12","P11","P10","P9") ;
attribute required_time of my_output:signal is 5ns;
end test ;

architecture

begin

exemplar of test s
signal internal_signal : bit ;
attribute preserve_signal of internal_signal: signal is TRUE;
attribute modgen_sel of internal_signal: signal is FAST;

The VHDL Environment

Since variables do not represent one unique node in the circuit implementation (they
represent a different circuit node after each assignment) the attributes will be effective
on all circuit nodes the variable represents. This could lead to unexpected behavior. So
be careful using the exemplar attributes on variables.

4-13

4-14

All attributes work both on single-bit signals and on arrays of bits. In the case an
attribute is set on a signal that is an array of Itis yector , elbit_vector or
std_logic_vector) the value of the attribute is set to all circuit nodes in the
vector. An exception is thgin_number attribute which only operates on single bit
ports. Use tharray_pin_number attribute to set pin numbers on all bits of a bus.

Predefined Functions

The package exemplar defines a set of functions that are often used in VHDL for
synthesis. First of all, the package defines the overloaded opeaatbyNAND or ,

nor , xor , andnot for the typeslbit andelbit_vector , as well a for
elbit_matrix , a two-dimensional array type efbit values.

The Exemplar package defines a large set of functions for both the stéitdaahd
bit_vector types. For backwards compatibility, these functions are also defined for
elbit andelbit_vector types. These functions are discussed below.

All functions are also defined with the IEEE 1164 typas logic , std_ulogic
std_logic_vector , andstd_ulogic_vector in the packagex_1164 in file
ex_1164.vhd

bool2elb (I: boolean) return std_logic;
Takes a boolean, and returnstd_logic bit. Boolean value TRUE will become
std_logic value'l’ , FALSE will become0’

elb2bool (I: std_logic) return boolean;
Takes astd_logic value and returns a boolean. T$id_logic value’l’ will
become TRUE, all other values become FALSE.

int2boo (I: integer) return boolean;

Takes an integer and returns a boolean. Integer ¥@luewill return FALSE, all other
integer values return TRUE.

HDL Synthesis Manual

4=

boo2int (l: boolean) return integer;
Takes a boolean and returns an integer. Boolean value TRUE will detihlLSE

will return 0.

evec2int (l: std_logic_vector) returninteger;

Takes a vector of bits and returns the (positive) integer representation. The left most bit
in the vector is assumed the MSB for the value of the integer. The vector is interpreted
as an unsigned representation.

int2evec (l: integer, size : integer := 32) return std_logic_vector;

Takes a integer and returns the vector representation. The size of the vector becomes
equal to the value of an optional second argument (size). If this argument is not
specified, the size of the return vector defaults to 32. The left most bit in the resulting
vector is the MSB of the returned value. If the integer value of the first parameter is
negative, the MSB is the sign bit.

Note —The second parameter in th#2evec function is new. Prior to Galileo 2.1,
int2evec took only a single parameter. This created simulator-synthesis
inconsistencies that have been eliminated with the introduction of the second
parameter. In some cases this means that Galileo 2.1 will give an array-size error on a
design that used to run fine under older versions of Galileo. Make sure you add the
second parameter to return the right-sized array.

elb2int (I: std_logic) return integer;

Takes astd_logic value and returns an integer. Tétel_logic ~ value’l’ will
return integer valué, all other values will return integer valGe

For all shifter functions that follow, the shift amount (r) could either be a compile time
constant or not. If it is, the synthesized circuit will only consist of a re-ordering of the
wires in the array. Otherwise, the synthesis tools will synthesize a shifter circuit.

The VHDL Environment 4-15

4-16

sl (I: std_logic_vector; r: integer) returnstd_logic_vector;

Takes a vectorand an integer and returns a vector. The resulting vector is the same
size ad, but all bits ofl are shifted left places. The bits on the right side of the result
vector are zero-filled. The integemust be non-negative.

sl2 (I: std_logic_vector; r: integer) returnstd_logic_vector;

Same asl , but the vectol is treated as a 2-complement (signed) representation. Sign
bit is the left most bit in vector. Bits on the right are zero-filled.

sr (l: std_logic_vector; r: integer) return std_logic_vector;

Same asl , but bits are shifted to the right side of the vector. Bits on left side are
zero-filled.

sr2 (I: std_logic_vector; r: integer) returnstd_logic_vector;

Same asr , but the vector is treated as a 2-complement representation. Sign bit is the
left most bit in vector. Bits on the left side are sign-bit filled.

add (op_I, op_r:std_logic_vector) returnstd_logic_vector;

Takes two vectors and returns a vector. The resulting vector is one bit larger than the
largest of the input vectors, and represents the addition of the input vectors, including
the carry bit. The left most bit is assumed to be the MSB. The add function is a vector
addition of two unsigned vectors. The smallest input vectt¥ is, extended on the

MSB side to the size of the largest input vector before addition is performed.

add ("1011","0100") result: "01111" (add (11,4) ==15)
add ("0011","100") result : "00111" (add (3,4) == 7)

HDL Synthesis Manual

4

add2 (op_|I, op_r:std_logic_vector) returnstd_logic_vector;

Same asdd, but now the vectors are assumed to be in 2-complement representation.
Sign bit is the left most bit in the vectors. The smallest input vector is sign-bit
extended on the MSB side to the size of the largest vector before addition is
performed.

add2 ("1011","0100") result: "00001" (add2 (-5,4) == 1)
add2 ("0011","100") result:"11111" (add2 (3,-4)==-1)

sub (op_I, op_r:std_logic_vector) returnstd_logic_vector;

Same asdd, but the subtraction function is implemented on unsigned vedprsis
subtracted fronop_|.

sub ("1011","0100"result:"00111" (sub (11,4)==7)
sub ("0011","100") result : "11111" (sub(3,4) == 31)

Actually this is an under-flow of unsigned !

sub2 (op_I, op_r: std_logic_vector) return std_logic_vector;

Same asdd2, but the subtraction function is implemented on 2-complement
representation vectorep_ris subtracted fronop_1

sub2 ("1011","0100") result : "10111" (sub2(-5,4) == -9)
sub2 ("1011", "100") result: "11111" (sub2(-5,-4) ==-1)

The VHDL Environment 4-17

4-18

extend (op_I: std_logic_vector; op_r: integer)
return std_logic_vector;

Takes a vectoop_| and an integeop_r and returns a vector. The vectp_|is

extended in size up top_r elements. The input vectop_lis zero-extended on the

MSB side. The left most bit in the vector is assumed the MSB. There is also a version
of extend that takes a singlstd_logic) value and extends it to a vector of size

op_r.

extend ("1001",7) result : "001001"
extend ('1',3) result : "001"
extend ("011001001", 4) result : "1001" -- Truncation

extend2 (op_I: std_logic_vector; op_r: integer)
return std_logic_vector;
Same agxtend , but the vector is in 2's-complement representation. The input vector

is sign-bit extended. There is also a version of extend?2 that takes a single (std_logic)
value and sign-extends it to a vector of siper.

extend2 ("1001",7) result : "1111001"
extend2 ('1',3) result : "111"
extend2 ("011001001",4) result: "1001" -- Truncation

comp2 (op: std_logic_vector) return std_logic_vector;

Takes a vector and returns a vector of the same size. This function assumes the input
vector to be in 2-complement representation and will return the complement (negative)
value of the input value. The right most bit is assumed to be the LSB.

comp?2 ("1001") result : "0111" (comp2 (-7) ==7)

HDL Synthesis Manual

4=

"+ (op_I, op_r: std_logic_vector) return std_logic_vector;

Takes two vectors and returns a vector. As add, but now the carry bit is not saved. The
resulting vector is the same size as the largest input vector. Overflow wraps around.
This function implements addition of unsigned vectors.

"10110" + "101"
result: "11011" (22 +5==27)

"-"(op_l, op_r: std_logic_vector) returnstd_logic_vector;

Same as+”", only the subtraction function is performezp_ris subtracted fronop_|.
This function implements subtraction of unsigned vectors.

"10110" - "101"
result : "10001" (22 -5 ==17)

"mult" (op_I, op_r: std_ulogic_vector) returnstd_ulogic_vector;

Takes two vectors and returns a vector. The size of the resulting vector is the size of
both input vectors added. In each vector, the left most bit is the MSB. The mult
function performs UNSIGNED multiplication of the two input vectors. In case of
unequal-length input vectors, the smallest vector is zero-extended on the MSB side to
the size of the largest input vector before the multiplication is performed.

mult ("1011", "0100") result: "00101100" (mult(11,4)==44)
mult ("1", "1111") result: "00001111" (mult(1,15)==15)

"mult2" (op_I, op_r: std_ulogic_vector) returnstd ulogic_vector;

Like mult , but now the vectors are assumed to be in 2-complement representation.
The sign bit is the left most bit in each vector. In case of unequal-length input vectors,
the smallest vector is sign-bit extended on the MSB side to the size of the largest input
vector before the multiplication is performed.

The VHDL Environment 4-19

=4

4-20

Predefined Procedures

There are various ways to generate flip-flops and d-latches with VHDL, such as using
processes and specifying behavior that represents the behavior of flip-flops and
dlatches. However, in some cases it is useful to instantiate technology independent
flip-flops or dlatches in the VHDL dataflow environment immediately. A more
structural oriented VHDL style will be possible that way. The exemplar package
includes the definition of procedures that represent flip-flops or dlatches with various
set or reset facilities that operate on single bits or vectors (to create registers).

Theexemplar package defines these procedures on signals ofbiype

bit_vector , elbit andelbit_vector , While the packagexemplar_1164
defines the same procedures for the IEEE 1164 tgfmedogic , std_ulogic
std_logic_vector andstd_ulogic_vector . In the description below only

examples fobit andbit_vector are given, but the full definition of the
procedures, for the types listed above, is available for simulation purposes in the files
exemplar.vhd andexemplar_1164.vhd

Flip-flops

dff[_v](data, clock, q)

dffc[_v](data, clear, clock, q)
dffp[_v](data, preset, clock, q)
dffpc[_v](data, preset, clear, clock, q)

Heredff is the single bit D flip-flop andff_v is the vectored D flip-flopdff has

no preset or clear inputdffc has an active-high asynchronous clear ¢sti '0’)

input, dffp has an active-high asynchronous presetdqset'1’) input, anddffpc

has both a preset and a clear input. If both preset and clear are asp&stedt

defined. All inputs are active high, the clock input is positive edge triggered. For the
vectored dffs, the number of flip-flops that will be instantiated is defined by the size of
the input (1) and outputd) vectors of thalff# v instantiation. (The size af andq
vectors must be the same.)

If g is a port of the VHDL entity, it must be declared as an INOUT port, sjnse
used bidirectionally in each of these functions.

HDL Synthesis Manual

AN
1]

Latches

dlatch[_v](data, enable, q)
dlatchc[_v](data, clear, enable, q)
dlatchp[_v](data, preset, enable, q)
dlatchpc[_v](data, preset, clear, enable, q)

These define a level sensitive D-type latch with an enable. The latch is enabled
(transparent) when the enable input is 1, disabled when the inpulled¢h has no
preset or clear capabilitglatchc has an asynchronous active-high clear ¢std

'0’) input, dlatchp has an asynchronous active-high preset| (&etl’), and

dlatchpc has both preset and clear. If both preset and clear are asseitauht
defined.dlatch_v creates the vector equivalent procedures to generate registers of
dlatches.

Tristate Busses

When a signal is assigned in multiple concurrent statements, the synthesis
implementation requires that in each statement the signal is assigf@iedvalue

under at least one condition. A tristate gate is created in this case, with the enable of
the gate corresponding to the inverse of the condition whefg’thés assigned in the
model. This is the only case where multiple assignments to a signal in different
concurrent statements is allowed.

It is also possible for the user to specify what to do in the case where none of the
drivers of the bus are enabled. To address this situation, three pre-defined procedures
have been declared to handle the three standard tristate bus conéitibhsiR
PULLDNandTRSTMEMThese drive an otherwise undriven bus to the valué®s or

retain the current value , respectively. Only one of these functions may be
specified for a given bus. The synthesis tools will build the appropriate logic to
implement the specified function in the technology. If the technology includes pull-up
or pull-down resistors or repeater cells on internal busses these will be used. If they are
not available, an additional tristate gate, whose enable is the NOR of all the other
enables and whose input is either VCC, GND or the value on the bus will be created to
implement the specified function. The synthesis tools also know what the default state
for a bus is in the technology, and if that matches the specified function, no extra logic
is created. If no termination is specified, then its undriven value depends on the
technology used.

The VHDL Environment 4-21

The tristate bus procedures defined below may be used with signals difittype
elbit , (packagexemplar) std_logic andstd_ulogic (packageex_1164).

pullup(busname)

When a bus is not driven, this procedure will pull the bus up to 1.

pulldn(busname)

When a bus is not driven, this procedure will pull the bus down to 0.

trstmem(busname)

When a bus is not driven, this procedure will drive the bus to its last driven state.

Syntax and Semantic Restrictions

4-22

VHDL as the IEEE Standard 1076 is a extended language with many constructs that
are useful for simulation. However, during the initial development of the language,
logic synthesis was not taken into account. Therefore, a number of constructs or
combination of constructs cannot be implemented in actual circuits. VHDL 1076 is
fully simulatable, but not fully synthesizable.

Synthesis Tool Restrictions

This section discusses the syntax and semantic restrictions of the VHDL parsers of the
Exemplar synthesis tools.

» Operations on files not supported. Files in VHDL could behave like ROMs or
RAMs, but the synthesis tools do not support using file (types). The synthesis tools
will ignore, but accept, file (type) declarations.

» Operations on objects ofal types are not supported. Objectsredl types
have no defined bit-resolution. The synthesis tools will ignore, but accept,
declarations of (objects ofal types.

» Operations on objects @iccess types are not supported, since they lead to
unsynthesizable behavior. The synthesis tools will ignore, but accept, declarations
of (objects of)access types.

HDL Synthesis Manual

4

AttributesBEHAVIOR STRUCTURHA.AST_EVENTLAST_ACTIVE, and
TRANSACTIONare not supported.

Configurations are ignored; default component binding (by name) is assumed.

Global, non-constant signals are not supported, that is, signals declared in a
package.

Allocators are not supported, because they perform dynamic allocation of resources,
which is not synthesizable.

Configuration declarations are ignored. The synthesis tools allow only entities or
components as the main building blocks of the design. Configuration specifications
(binding a component (instance) to an entity) ARE supported.

REGISTERandBUSsignal declarations are not supported. Only resolution
functions with a synthesis directive are allowed (see the section “BUS and
REGISTER” on page 55).

VHDL Language Restrictions

Apart from these restrictions, which are mostly tool-related, there are some basic
restrictions that apply to VHDL descriptions for synthesis. Since they occur quite
often, additional descriptions are presented here to clarify the problems involved for
synthesis. Here is the list:

after clause ignored.

Restrictions on Initialization values.

Ranges of loops have to evaluate to constants during compile time.
Restrictions on edge-detecting attributes (EVENT and STABLE).
Restrictions on wait statements.

Restrictions on multiple drivers on one signal.

A more detailed description of these restrictions follows below:

After Clause Ignored

Theafter clause refers to delay in a signal. Since delay values cannot be guaranteed
in synthesis, they are ignored by the synthesis tools after they issue a warning.

The VHDL Environment 4-23

4-24

Restrictions on Initialization Values

Initialization values are allowed in a number of constructs in VHDL:
1. Initial value of a signal in a signal declaration.

2. Initial value of a variable in a variable declaration in a process.

3. Initial value of a variable in a variable declaration in a subprogram (procedure or
function).

4. Initial value of a generic or port in a component declaration.
5. Initial value of a parameter in a subprogram interface list.

The problem with initialization values for synthesis is that some initial values define
the initial value of an object before actual simulation is done. This behavior
corresponds to controlling the power-up state of a device that would be synthesized
from the VHDL description. Since synthesis cannot control the power-up state of a
device, this kind of initial value cannot be synthesized. However, if after initialization
there is never an change of value, the behavior can be synthesized, and resembles a
simple constant value.

The synthesis tools fully support initialization values, except for initializing objects
that can change their value after initialization. That is, the following form of
initialization values are NOT supported because they imply power-up behavior of the
synthesized device:

1. Initial values of a signal in a signal declaration.
2. Initial value of a variable in a variable declaration in a process.
3. Initial value of an OUTPUT or INOUT port in an interface list.

All other forms of initialization values are supported by the synthesis tools.

Ranges Of Loops Have To Evaluate To Constants During Compile
Time

Loops with no compile time bounds (especially infinite loops) have no RTL logic
representation. Therefore, make sure that the loop bounds depend on “constant” values

like the bounds of a vector or ordinary decimal literals. The attriBuUEEST |
'RIGHT , 'RANGE, etc. are normally sufficient to indicate bounds of a loop.

HDL Synthesis Manual

AN
1]

Restrictions On Edge-Detecting Attributes ("event)

Most restrictions on VHDL to assure correct compilation into a logic circuit are on the
constructs that define edges or changes on signalSEMENT attribute is the best
example of thissignalEVENT is TRUE only ifsignal changes. Then it is TRUE for
one simulation delta of time. In all other cases it is FALSE. ShABLE attribute is

the boolean inversion &VENT

There are two restrictions for synthesis on usage oEW#eNTand theSTABLE
attribute:

1. An EVENTor STABLE attribute can be used only to specify a leading or falling
clock edge. For example:

clk’event and clk="1’ -- Leading edge of clk

clk’event and clk="0’ -- Falling edge of clk

NOT clk’'stable and clk="0" -- Falling edge of clk

clk’event and clk -- Leading edge of (boolean) clk

2. Clock edge expressions can only be used as conditions. For example:

if (clk’'event and clk="1") then ...
wait until NOT clk’stable and clk="0" ;
wait until clk="1"; --Implicit clock edge due to
--VHDL semantics of 'wait’
block (clk’event and clk="1"... --Block GUARD condition

These restrictions originate from the fact that binary logic circuits have a restricted
number of elements that are active ONLY during signal edges. Basically, only
(set/resettable) edge triggered flip-flops show that behavior. Within these restrictions,
the synthesis tools allow free usage of the clock edge conditions, either in guarded
blocks, processes or subprograms.

The VHDL Environment 4-25

4-26

Restrictions on Wait Statements

All state-of-the-art VHDL synthesis tools on the market right now have strong
restrictions with respect to wait statements and use of edge-detecting attributes
('event and’stable). Here are the (informal) restrictions for the wait statement:

* Only one wait (until) statement is allowed in a process.

e That wait (until) statement (if present) must be the first or last statement in the
process.

» The expression in the “until” condition must specify a leading or falling single
clock edge. (Examples are shown above inER&NTattribute section.)

All assignments inside the process result in the creation of registers. Each register
(flip-flop) is clocked with the single clock signal.

There are a number of cases where multiple waits are synthesizable and resemble
state-machine behavior. In the Exemplar synthesis tools, however, multiple waits are
not supported. State machine behavior, however, can always be re-writteaste a
statement and register process, as explained in “State Machines” on page 18.

Restrictions on Multiple Drivers on One Signal

VHDL does not allow multiple drivers on a signal of an unresolved type. For signals of
resolved types, VHDL defines that a (user-defined) resolution function defines what
the signal value is going to be in case there are multiple driver (simultaneous
assignments) to the signal.

A resolution function with meta-logical valueZ’(, 'X’ , etc.) in general leads to
behavior that is not synthesizable (since logic circuits cannot produce meta-logical
values). Therefore, in general, VHDL synthesis tools do not allow multiple drivers on
a signal. However, if the resolution function defines the behavior of multiple
three-state drivers on a bus, multiple drivers of a signal could represent synthesizable
behavior.

The'Z’ value is in general used to identify three-state behavior. The resolution
function of the IEEEstd_logic (resolved) type is written so that multiple drivers on
a signal ofstd_logic =~ do resemble multiple three-state drivers on a bus. Therefore,
the synthesis tools accept multiple assignments to the same signal as long as each
assignment is conditionally set to tt2 value. The synthesis tools allow free usage

HDL Synthesis Manual

4=

of '’Z" assignments (either from dataflow statements, process statements or from
within procedures). The synthesis tools will implement three-state drivers to mimic the
three-state behavior.

It is important to note that the synthesis tools do not check if there could be a
bus-conflict on the driven bus. In this case, the simulation would just call the
resolution function again to resolve the value (normally producing a meta-logical
value), but the behavior for synthesis is not defined. Avoiding bus conflicts is the
responsibility of the user.

The VHDL Environment 4-27

4-28 HDL Synthesis Manual

Introduction to Verilog HDL Synthesis 5

Verilog HDL is a high level description language for system and circuit design. The
language supports various levels of abstraction. Where a regular netlist format supports
only structural description, Verilog supports a wide range of description styles. This
includes structural descriptions, data flow descriptions and behavioral descriptions.

The structural and data flow descriptions show a concurrent behavior. All statements
are executed concurrently, and the order of the statements does not matter. On the other
hand, behavioral descriptions are executed sequentially in always blocks, tasks and
functions in Verilog. The behavioral descriptions resemble high-level programming
languages.

Verilog allows a mixture of various levels of design entry. The Exemplar synthesis
tools synthesize all levels of abstraction, and minimizes the amount of logic needed,
resulting in a final netlist description in the technology of your choice.

5-1

The high level design flow enabled by the use of the Exemplar synthesis tools is
shown in Figure 5-1.

concept

Y

translate to behavior/simulate

Y

synthesize to gate

Y

optimize speed/area

Y

technology map

| Exemplar Synthesis Tools |

Y

physical implementation

Y

CAE simulator

LeoHDL 01

Figure 5-1 Top-Down Design Flow with Exemplar Synthesis Tools

Verilog and Synthesis

Verilog is completely simulatable, but not completely synthesizable. There are a
number of Verilog constructs that have no valid representation in a digital circuit.
Other constructs do, in theory, have a representation in a digital circuits, but cannot be
reproduced with guaranteed accuracy. Delay time modeling in Verilog is an example of
that.

5-2 HDL Synthesis Manual

S=

State-of-the-art synthesis algorithms can optimize Register Transfer Level (RTL)
circuit descriptions and target a specific technology. Scheduling and allocation
algorithms, that perform circuit optimization at a very high and abstract level, are not
yet available for general circuit applications. Therefore, the result of synthesis of a
Verilog description depends on the style of Verilog that is used. Users of the Exemplar
synthesis tools should understand some of the concepts of synthesis specific to Verilog
coding style at the RTL level, in order to achieve the desired circuit implementation.

What synthesis tools do best then is to automatically solve many of the cumbersome
RTL logic optimization problems that occur during a typical top-down design project.

This manual is intended to give the Verilog designer guidelines to achieve a circuit
implementation that satisfies the timing and area constraints that are set for the target
circuit, while still using a high level of abstraction in the Verilog source code. This
goal will be discussed both in the general case for synthesis applications, as well as for
the Exemplar synthesis tools specifically. Examples are used extensively; Verilog rules
are not emphasized.

Knowledge of the basic constructs of Verilog is assumed, although one chapter is
dedicated to the discussion of all the constructs in Verilog that are useful for synthesis.
For more information on the Verilog language, refer to\teglog Hardware

Description Language Reference Manualiblished by Open Verilog International.

Synthesizing the Verilog Design

Using the Exemplar synthesis tools to synthesize your Verilog design is easy. If you
run Galileo from the command line, use the following option:

-input_format=verilog

If you run Leonardo from the command line, use the following command and
argument:

read -format verilog file_name

If using the graphical user interface, use the interface to choose “Verilog as the Input
Format.” Target technology and other options are chosen as usual with the synthesis
tools.

Introduction to Verilog HDL Synthesis 5-3

5-4

HDL Synthesis Manual

\erilog Language Features 6

This chapter provides an introduction to the basic language constructs in Verilog:
defining logic blocks:

» Data flow and behavioral descriptions
« Concurrent and sequential functionality

* Numbers and data types.

The Exemplar synthesis tools synthesize all levels of abstraction and minimizes the
amount of logic needed resulting in a final netlist description in the technology of your
choice.

6-1

il
o

Modules

A basic building block in Verilog is a module. The module describes both the
boundaries of the logic block and the contents of the block, in structural, data flow and
behavioral constructs.

module small_block (a, b, c, 01, 02);

input a, b, c;
output 01, 02;
wire s;

assign ol=s||c;

assign s=a &&b;

assign 02=s “c;
endmodule

This Verilog description shows the implementatiorsofall_block , a block that
describes some simple logic functions.

The port list is declared, the port directions are specified, then an intérealis
declared. Awire in Verilog represents physical connection in hardware. It can
connect betweemodules or gates, and does not store a valuavife can be used
anywhere inside theodule , but can only be assigned by:

» Connecting it to an output of a gate omadule .

« Assigning to it using a continuous assignment.

This module contains only dataflow behavior. Dataflow behavior is described using
continuous assignments. All continuous assignments are executed concurrently, thus
the order of these assignments does not matter. This is why it is valid sobefere

s is assigned. In the first statemexit is assigned the result of the logical ORsadnd

c. "] |" denotes the logical OR operation.

More details about the various dataflow statements and operators are given in the
following sections.

The Exemplar synthesis tools support empty top level modules.

'macromodule’

The Exemplar synthesis tools support ‘'macromodule’, which is treated as 'module’.

6-2 HDL Synthesis Manual

o
1]

Numbers

Numbers in Verilog can be either constants or parameters. Constants can be either
sized or unsized. Either one can be specified in binary, octal, hexadecimal, or decimal

format.

Name Prefix Legal Characters
binary b 01xXzZ_?

octal ‘0 0-7xXzZ_?
decimal 'd 0-9
hexcadecimal 'h 0-9a-fA-FxXzzZ_*?

If a prefix is preceded by a number, this number defines the bit width of the number,
for instance8’b 01010101 . If no such number exists, the number is assumed to be
32 bits wide. If no prefix is specified, the number is assumed to be 32 bits decimal.

The synthesis tools produce a warning when encountering non-synthesizable constants
such as float. The value 0 is assumed.

For example, in

Xx=25+8;

x will evaluate to 8.
Special characters in numbers:
v a separator to improve readability.

X, X unknown value.

'z’,'Z,’?" tri-state value.

Examples:
334 32 bits wide decimal number
'b101 32 bits wide binary number
3'bll 3 bits wide binary number

Verilog Language Features 6-3

il
o

20'n’ff_fff 20 bits wide hexcadecimal number
10’bz 10 bits wide all tri-state
Data Types
Verilog defines three main data types:
* net
e register

* parameter

By default these data types are scalars, but all can take an optional range specification
as a means of creating a bit vector. The range expression is of the following form:

[<most significant bit> : <least significant bit>]

6-4 HDL Synthesis Manual

6=

Some of these data types are used in the example below, along with the range
expression syntax. Further details on the data types are presented in the following
sections.

/I This design implements a Manchester Encoder
1

module manenc (clk , data , load , sdata, ready);
parameter max_count =7;

input clk, load;
input [0:max_count] data;
output sdata, ready ;

reg sdata, ready ;

reg [2:0] count;

reg [0:max_count] sout;
reg phase;

/l Phase encoding
always @ (posedge clk)
begin
sdata = sout[max_count] * phase;
phase = ~phase ;
end

Verilog Language Features 6-5

6-6

/I Shift data
always @ (posedge phase)
begin
if ((count ==0) & !load) begin
sout[1:max_count] =sout[0: max_count-1];
sout[0] = 1'b0;
ready = 1'bl,;
end
else if ((count==0) & load) begin
sout = data;
count = count + 1;
ready = 1'b0;
end
elseif (count == max_count) begin
sout[1:max_count] =sout[0: max_count-1];
sout[0]= 1'bO0;
count = 0;
end
else begin
sout[1:max_count] =sout[0: max_count-1];
sout[0]= 1'bO0;
count = count + 1;
end
end
endmodule
Net Data Types
The net data types supported by the Exemplar synthesis tools are
e wire
o tri
* supplyO
* supplyl
» wand
e wor

HDL Synthesis Manual

6=

These data types are used to represent physical connections between structural entities
in the Verilog design, such as a wire between two gates, or a tristate bus. Values cannot
be assigned to net data types withlways blocks. ¢ri0 , tril , triand |, trior

andtrireg are also net data types, but are not yet supported by the synthesis tools).

wire and tri Nets

Thewire andtri net data types are identical in usage (syntax and function). The
two different names are provided for design clarity. Nets driven by a single gate are
usually declared asire nets, as shown in “Modules” on page 2 in this chapter, while
nets driven by multiple gates are usually declarettias nets.

Supply Nets

Thesupplyl andsupplyO net data types are used to describe the power (VCC) and
ground supplies in the circuit. For example, to declare a ground net with the name
GND, the following code is used:

supply0 GND ;

wand and wor Net Types

wand and wor statements result into and or logic respectively, since wired logic is not
available in all technologies.

wor out;
out = a&b
out = c&d;
endmodule

Register Data Type

A register, declared with keywomrgg , represents a variable in Verilog. Where net
data types do not store valuesg data types do. Registers can be assigned only in an
always block, task or function. When a variable is assigned a value atwaays

block that has a clock edge event expresspmsédge or negedge), a flip-flop is

Verilog Language Features 6-7

il
o

synthesized by the synthesis tools. To avoid the creation of flip-flopgdordata
types, separate the combinational logic into a diffeedwtlys block (that does not
have a clock edge event expression as a trigger).

Parameter Data Type

The parameter data type is used to represent constants in Verilog. Parameters are
declared by using the keywophrameter and a default value. Parameters can be
overridden when a module is instantiated.

Declaration Local to Begin-End Block

Local declaration of registers and integers is allowed inside a nbegd -end
block.

input [10:0] data;
always @ (data)
begin : named_block
integer i;
parity = 0;
for(i=0;i<11;i=i+1)
parity = parity ~ data[i];
end //named_block

Array of reg and integer Declaration (Memory Declaration)

Declaration and usage of an array of registers or integers is now allowed.

input [0:3] address;

input [0:7] date_in;

output [0:7] data_out;

reg [0:7] data_out, mem [0:15];

always @ (address or date_in or we)
if (we) mem [address] = date_in;
else data_out = mem [address];

6-8 HDL Synthesis Manual

o
1]

Continuous Assignments

A continuous assignment is used to assign values to nets and ports. The nets or ports
may be either scalar or vector in nature. (Assignments to a bit select or a constant part
select of a vector are also allowed.) Because nets and ports are being assigned values,
continuous assignments are allowed only in the dataflow portion of the module. As
such, the net or port is updated whenever the value being assigned to it changes.

Continuous assignments may be made at the same time the net is declared, or by using
theassign statement.
Net Declaration Assignment

The net declaration assignment uses the same statement for both the declaration of the
net and the continuous assignment:

wire [0:1]sel = selector ;

Only one net declaration assignment can be made to a specific net, in contrast to the
continuous assignment statement, where multiple assignments are allowed.

Continuous Assignment Statement

The continuous assignment statemessign) is used to assign values to nets and
ports that have previously been declared.

Verilog Language Features 6-9

il
o

The following example describes a circuit that loads a source vector of 4 bits on the
edge of a clockwirclk), and stores the value internally in a regisietrég) if the

chip enablede) is active. One bit of the register output is put on a tristate bus
(result_int) based on a bit selector signaélector), with the bus output

clocked through a final registeregult).

module tri_asgn (source, ce, wrclk, selector, result) ;
input [0:3]source ;

input ce, wrclk ;

input [0:1]selector ;

output result;

reg [0:3]intreq ;

reg result;

/I net declaration assignment

wire [0:1]sel = selector ;

tri result_int;

/I continuous assignment statement
assign
result_int = (sel == 2'b00)? intreg[0] : 1'bZ ,
result_int = (sel == 2'b01)? intreg[1] : 1'bZ ,
result_int = (sel == 2'b10)? intreg[2] : 1'bZ ,
result_int = (sel == 2'b11)? intreg[3] : 1'bZ ;
always @(posedge wrclk)

begin

if (ce)

begin

intreg = source;
result = result_int ;

end
end
endmodule

Procedural Assignments

Procedural assignments are different from continuous assignments in that procedural
assignments are used to update register variables. Assignments may be made to the
complete variable, or to a bit select or part select of the register variable.

6-10 HDL Synthesis Manual

o
1]

Both blocking and non-blocking procedural assignments are allowed.

Blocking assignments, specified with the “=" operator, are used to designate
assignments that must be executed before the execution of the statements that follow it
in a sequential block. This means that the value of a register variable in a blocking
assignment is updated immediately after the assignment.

Non-blocking assignments, specified with the “<=" operator, are used to schedule
assignments without blocking the procedural flow. It can be used whenever register
assignments within the same time step can be made without regard to order or
dependence upon each other. Also, in contrast to the blocking assignment, the value of
a register variable in a non-blocking assignment is updated at the end of the time step.
This behavior does not affect assignments done in the dataflow environment, since
assignments are done concurrently there. However, in a sequential block, such as an
always block, the value of the variable in a non-blocking assignment changes only
after the complete execution of the sequential block.

Refer to theverilog Language Reference Manual more information on
non-blocking procedural assignments.

Always Blocks

Always blocks are sections of sequentially executed statements, as opposed to the
dataflow environment, where all statements are executed concurrentlyalways

block, the order of the statements DOES matter. In &etays blocks resemble the
sequential coding style of high level programming languages. Ala@ys blocks

offer a variety of powerful statements and constructs that make them very suitable for
high level behavioral descriptions.

An always block can be called from the dataflow area. Ealelays block is a
sequentially executed program, butallvays blocks run concurrently. In a sense,
multiple always blocks resemble multiple programs that can run simultaneously.

Verilog Language Features 6-11

il
o

6-12

Always blocks communicate with each other via variables of tgge which are
declared in thenodule . Also, the ports andiires defined in themodule can be
used in thealways blocks.

module mux_case (source, ce, wrclk, selector, result);
input [0:3]source;

input ce, wrclk;

input [0:1]selector;

output result;

reg [0:3]intreg;

reg result, result_int;

always @(osedge wrclk)
begin
if (ce)
intreg = source;
result = result_int;
end

always @(intreg or selector)
case (selector)
2'b00: result_int = intreg|0];
2'b01: result_int = intreg[1];
2'b10: result_int = intreg[2];
2’b11: result_int = intreg[3];
endcase

endmodule

This example describes a circuit that can load a source vector of 4 bits, on the edge of
a write clock (rclk), store the value internally in a registertieg) if a chip

enable ¢e) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked out
through the register result.

The description consists of tvadways blocks, one to write the value into the internal
register and clock the output, and one to read from it. Theatways blocks
communicate via the register valuetreg andresult_int

HDL Synthesis Manual

6=

The firstalways block is a synchronous block. As is explained later aflaeys

block executes only if the event expression at the event control evaluates to true. In
this case, the event expression evaluates to true when a positive edge occurs on the
inputwrclk (event expressioposedge wrclk). Each time the edge occurs, the
statements inside thEways statement are executed. In this case, the value of the
inputsource is loaded into the internal variakiltreg only if ce is'l’ . Ifce is

‘0’ ,intreg retains its value. In synthesis terms, this translates into a D flip-flop,
clocked orwrclk , and enabled bge . Also, the intermediate outprgsult_int is
loaded into the outpuesult (a D flip-flop clocked onwrclk).

The seconalways block is a combinational block. In this case, the event expression
evaluates to true when eithetreg or selector = changes. When this happens, the
statements inside tr@ways statement are executed, and the outpsitilt_int

gets updated depending on the valuemtég andselector . Note that this leads

to combinational behavior (essentially a multiplexer), siesailt_int only
depends ofntreg andselector , and each time either of these signals changes,
result_int gets updated.

The reason for separating the talways blocks is to avoid the creation of a register
for the variableresult_int . result_int must be ofeg data type, because it is
assigned in amlways block, but it does not need to be registered logic.

Not all constructs, or combinations of constructs, imlarays block lead to behavior
that can be implemented as logic. More information about synthesizable Verilog
constructs is given in Chapter 7, “The Art of Verilog Synthesis.”

The Exemplar synthesis tools support emgityays statements.

Note that constants on the sensitivity list have no effect in simulation or synthesis. Any
kind of expression inside a sensitivity list is legal in Verilog and is accepted by the
synthesis tools. For synthesis, all the leaf level identifiers of the expression are
considered to be in the sensitivity list, so some simulation mismatch might be seen
after synthesis.

always @ (inpl1[0:2] or 3'b011 or {a, b}) // allowed

Verilog Language Features 6-13

6

Module Instantiation

Module instantiation can be used to implement individual gates or cells, macros, or to
add hierarchy to your design. Here is an example that generates an address for RAM
and instantiates the RAM cells:

reg

module scanner (reset, stop, load, clk, load_value, data) ;
input reset, stop, load, clk;

input [3:0]load_value;

output [3:0]data;

/I Instantiate and connect 4 32x1-bit rams

/I Generate the address for the rams
always @(posedge clkor posedge reset)

begin
if (reset)
addr =5'b0 ;
else if (~stop)
addr = addr + 5’b1 ;
end
endmodule

module RAM_32x1 (a, we, d, 0);
input [4:0] &;

input we, d;

output o;

endmodule

[4:0] addr;

RAM_32x1 U0 (.a(addr), .d(load_value[Q]), .we(load), .o(data[0]));
RAM_32x1 U1 (.a(addr), .d(load_value[1]), .we(load), .o(data[1]));
RAM_32x1 U2 (.a(addr), .d(load_value[2]), .we(load), .o(data[2]));
RAM_32x1 U3 (.a(addr), .d(load_value[3]), .we(load), .o(data[3]));

6-14

For this example, if the RAM moduRAM_32x1is a cell or macro in a library, the
synthesis tools will implement that cell or macro in the output netlist. To do that, the
library in which the cell or macro exists must be specified as the Input Design
Technology. If no Input Design Technology is specified, the synthesis tools implement
the RAM module as a black box in the output netlist, with inputs and outputs defined,
but no functionality.

HDL Synthesis Manual

6

Note —Galileo and Leonardo use different techniques to indicate which source
technology to use. Galileo uses Hseurce= lib_nameswitch. Leonardo requires
that you load the source technology by usingltiael_library lib_namecommand
before reading the design in the database.

The Exemplar synthesis tools support empty named port connections, e.g.,

nd2 x1 (.a(f), .b();

Parameter Override During Instantiation of Module

Parameter overriding during module instantiation (as shown in the example) is
supported by the synthesis tools.

module top (a, b);

input [0:3] a;

output [0:3] b;
do_assign #(4) name (a, b);

endmodule

module do_assign (a, b);
parameter n = 2;
input [0:n-1] a;
output [O:n-1] b;

assign b =ga;
endmodule

Defparam Statement

When using the defparam statement, parameter values can be changed in any module
instance throughout the design, provided the hierarchical name of the parameter is
used.

NOTE: In the synthesis tool, the hierarchical name is restricted to single level only.
This means that when the defparam statement is used, the user will be able to override
any parameter value of an instance in the current module only.

Verilog Language Features 6-15

il
o

6-16

Example:

module top (a, b);

input [0:3] a;
output [0:3] b;
wire top;

do_assign name (a, b);
defparam name.n = 4;

endmodule

module do_assign (a, b);
parameter n = 2;

input [0:n-1] a;

output [0:n-1] b;

assign b = a;
endmodule

HDL Synthesis Manual

o
1]

'unconnected_drive’ and 'nounconnected_drive’

These directives are specified as outside modules amlgohnected_drive '

takes eithepull0 orpulll as a parameter and causes all the unconnected input
ports to be pulled down or up, according to the parameterunconnected

drive ' restores the normal condition (where the unconnected input ports are
connected to high-z).

‘'unconnected_drive’ pulll

module with_unconn_port (o, i);
output o;

input i

assign o =i,

endmodule

'nounconnected_drive’

module test (i, 01, 02);

input i

output 01, 02;

with_unconn_port I1 (01,); //ol=1
with_unconn_port 12 (02, i); // 02 =i
endmodule

Operators

This section describes the operators available for use in Verilog expressions. Before
discussing operators, a brief summary of the operands that the operators act on is
appropriate.

Operands

An operand in an expression can be one of the following:
* Number

* Net (including bit-select and part-select)

» Register (including bit-select and part-select)

« A call to a function that returns any of the above

Verilog Language Features 6-17

il
o

Bit-selects take the value of a specific bit from a vector net or register. Part-selects are
a set of two or more contiguous bits from a vector net or register. For example:

wire bit_int;
reg [0:1] part_int;
reg [0:3]intreg;

bit_int = intreg[1] ; // bit-select of intreg assigned to bit_int
part_int = intreg[1:2] ;// part-select of intreg assigned to part_int

6-18 HDL Synthesis Manual

6=

The operators supported by the Exemplar synthesis tools are listed in Table 6-1.

Table 6-1 Verilog Language Operators

Operator Description
+ - * / arithmetic
< > <= >= relational

== logical equality

I= logic inequality

! logical negation

&& logical and

| logical or

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

A bit-wise exclusive or
A~ or ~1 bit-wise equivalence
& reduction and

| reduction or

A reduction xor
<< left shift

>> right shift

?: conditional
{ concatenation

Verilog Language Features 6-19

6-20

Arithmetic Operators

The Exemplar synthesis tools support the following arithmetic operators:

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X'.
The “/” operator is supported in the case where the divisor is a constant and a power of
two.

Relational and Equality Operators

The Exemplar synthesis tools support the following relational and equality operators:

If the bit value of any operand is ‘X’ (unknown), then the entire resulting value is ‘X'

=== and !== Operators are Treated as == and !=

=== and !== operators are treated as == and != for synthesis purposes if either one of
the operands is nonconstant. If both the operands are constant, they can be used to
compare metalogical values. In simulation, the difference between == and === is that
one can compare metalogical characters exactly with === but not with ==. Any
metalogical character causes the output of == to be unknown x. The difference
between != and !== is the same.

HDL Synthesis Manual

module triple_eq_neq (in1, in2, O);
output [0:10] O;
input [0:2]inl, in2;
assign
O[0] = 3'b0x0 === 3'b0x0, // output is 1
O[1] = 3'b0x0 == 3'b0x0, // output is O
0O[2] = 3'b0x0 === 3'b1x0, // output is O
OI[3] = 3'b0x0 !== 3'b1x0, // output is 10[4]=in1===3'b0x0,
/[LHS is non constant so this
/l produces warning that comparison
/I metalogical character is
/[with zero. output is 0
O[5] =inl == 3'b0x0, // LHS is non constant so this
/I produces warning that comparison
/I with metalogical character is
/I zero.output is 1,because it
/I checks for not equality
O[6] =inl1 === 3'b010, // normal comparison
O[7] =inl == 3'b010, // normal comparison

O[8] =inl ===in2, /l normal comparison

0O[9] =inl !==in2, /l normal comparison

O[10] = 3'b00x === 1'bx; // outputis 1
endmodule

Logical Operators

The Exemplar synthesis tools support the following logical operators:

Io&& ||

Bit-Wise Operators

The Exemplar synthesis tools support the followlitgwise operators:

~ & | N N ~N

Verilog Language Features

6-21

il
o

These operators perform bit-wise operations on equivalent bits in the operands.

Reduction Operators

The Exemplar synthesis tools support the following reduction operators:

& | A

These operators perform reduction operations on a single operand. Operations are
performed on the first and second bits of the operand, then on the result of that
operation with the third bit of the operand, until the limit of the vector is reached. The
result is a single bit value.

The following operators:

~& _._l ~N

are negations of the “&”, “|", and “*" operators.

Shift Operators

The Exemplar synthesis tools support the following shift operators:

<< >>

Conditional Operator

The conditional operator statement has the following syntax:

conditional_expression ? true_expression : false_expression

6-22 HDL Synthesis Manual

6 |
|
|
The result of this operation irue_expression if conditional_expression
evaluates to true, arfdlse_expression if false. In the following example, result
is assigned the value daitreg[0] if sel = 2’b00 , otherwise result is
assigned:

output result;
reg [0:3}intreg ;
wire [0:1] sel;
assign result = (~sel[0] && ~sel[1]) ? intreg[0] : 1'bZ ;

Concatenation

The concatenation of bits from multiple expressions is accomplished using the
characters { and }. For example, the following expressions are equivalent:

foo = {a[4:3], 1'b0, c[1:0]};
foo = {a[4], a[3], 1'bO, c[1], c[0]} ;

For a = 5'b11010, c = 5'b10101, the result is foo = 5’b11001.

‘ signed and unsigned Attributes on Operators

‘signed and‘unsigned attributes change the type of a particular operator.
Comparison between two bit vectors are always done unsigned, but if the functionality
needs to be signed,'signed attribute can be used just after the comparator.

input [0:3] A, B;
output o;
assign o = A < ‘signed B; // Signed comparator.

Similarly, an‘unsigned attribute can be used to perform an unsigned operation
between two integers.

Verilog Language Features 6-23

The shift operators always do a logical shift. By using‘sigmed directive, they

can be made to do an arithmetic shift. Arithmetic right shift shifts in the sign bit and
the left shift shifts in the least significant bit (e4h0001 << ‘signed 1 produces
4’0011).

Operator Precedence

The operator precedence rules determine the order in which operations are performed
in a given expression. Parentheses can be used to change the order in an expression.
The operators supported by the synthesis tools are listed below in order from highest
precedence to lowest, with operators on the same line having the same precedence.

+ - ! ~ (unary)
* / (binary)

+ - (binary)

<< >>

< > <= >=
== 1=

&

N N ~N

I

&&

|

?: (ternary)

Statements

6-24

This section presents information on the usd-efse , case andfor statements
for specifying designs.
If-Else Statements

Theif-else conditional construct is used to specify conditional decisions. As an
example, here is the design from “Procedural Assignments,” with the multiplexer
described with this construct instead of tlese statement:

HDL Synthesis Manual

o
1]

module mux_case (source, ce, wrclk, selector, result);
input [0:3]source;

input ce, wrclk;

input [0:1]selector;

output result;

reg [0:3]intreg;

reg result, result_int;

always @(posedge wrclk)
begin
/I if statement for chip enable on register
if (ce)
intreg = source;
result = result_int;
end

always @(intreg or selector)
begin
/I if-else construct for multiplexer functionality
if (sel ==2'b00)
result_int = intreg[0] ;
else if (sel == 2'b01)
result_int = intreg[1] ;
else if (sel == 2'b10)
result_int = intreg[2] ;
else if (sel == 2'b11)
result_int = intreg[3] ;
end

endmodule

This example describes a circuit that can load a source vector of 4 bits, on the edge of
a write clock (rclk), store the value internally in a registertieg) if a chip

enable ¢e) is active, while it produces one bit of the register constantly (not
synchronized). The bit is selected by a selector signal of 2 bits, and is clocked out
through the register result.

Verilog Language Features 6-25

il
o

Case Statements

If many conditional clauses have to be performed on the same selection siasa, a
statement is a better solution than thelse construct. The following example
describes a traffic light controller (state machine with binary encoding):

module traffic (clock, sensorl, sensor2,

redl, yellowl, greenl, red2, yellow2, green2);
input clock, sensorl, sensor2;
output redl, yellowl, greenl, red2, yellow2, green2;
parameter st0=0,stl=1, st2 =2, st3 =3,

St4 =4, st5 =5, st6 = 6, st7 =7,

reg [2:0] state, nxstate ;
reg redl, yellowl, greenl, red2, yellow2, green2;

always @(posedge clock)
state = nxstate;

always @(state or sensorl or sensor2)
begin
redl = 1'b0; yellowl = 1’b0; greenl = 1'b0;
red2 = 1'b0; yellow2 = 1’b0; green2 = 1'b0;

case (state)

st0: begin
greenl = 1'b1;
red2 = 1'b1;

if (sensor2 == sensorl)
nxstate = stl;

elseif (~sensorl & sensor2)
nxstate = st2;

end
stl: begin
greenl = 1'b1;
red2 = 1'b1;
nxstate = st2;
end

6-26 HDL Synthesis Manual

o
1]

end
endmodule

st2:

st3:

st4:

stb:

St6:

St7:

endcase

begin
greenl = 1'b1;
red2 = 1'b1;
nxstate = st3;
end
begin
yellowl = 1'b1;
red2 = 1'b1;
nxstate = st4;
end
begin
redl = 1'b1;
green2 = 1'b1;

if (~sensorl & ~sensor2)
nxstate = stb;

else if (sensorl & ~sensor2)
nxstate = st6;

end
begin
redl = 1'bl;
green2 = 1'b1;
nxstate = st6;
end
begin
redl = 1'bl;
green2 = 1'b1;
nxstate = st7;
end
begin
redl = 1'bl;
yellow2 = 1'b1;
nxstate = stO;
end

Verilog Language Features

6-27

6-28

Case Statement and Multiplexer Generation

The case statement, as defined by the Verilog LRM, is evaluated by order, and the
first expression to match the control expression is executed (during simulation). For
synthesis, this implies a priority encoding. However, in many casesatiee

statement is used to imply a multiplexer. This is true whenevegase conditions

are mutually exclusive (the control expressions equals only one condition at any given
time).

In Verilog, the case items can be non-constants also. In such a situation, the synthesis
tools cannot detect that tltase statements are parallel. Users can, however, use the
global switch-parallel_case for Galileo or set the Tcl variable

parallel_case to TRUE for Leonardo to inform the tool that all thase

statements in the design a mutually exclusive.

For example, the following Verilog code:

case (1'bl)
s[0]: 0 = &;
S[1]: o = b;
endcase

results in the equation:

o=s[0]*a +Is[0] * s[1] * b;

If parallel case is used, the following equation will be synthesized:

o=s[0]*a +s[1]*b;

This equation is simpler than the first. For a biggase statement the amount of
logic reduction can be significant. This can not be determined automatically since the
case items are nonconstants.

Note —The use of this option can cause simulation differences between behavioral and
post-synthesis netlists.

HDL Synthesis Manual

o
1]

Automatic Full Case Detection

Thecasex statement below is full case (it covers all possible values 000 to 111). The
default statement is not necessary and is ignored by the synthesis tools, resulting in a
warning message. The synthesis tools also do full-case detection for iwagaabknd

casez statements.

input [0:2] sel;

casex (sel)
3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default ...

endcase

The synthesis tools do full coverage analysis forithghen -else structure. The
following example is considered a fifll -then -else . The lastelse is ignored and
a warning is issued.

wire [0:1] data;

if (data==2)

else if (data==1)

else if (data == 3)

else if (data == 0)

else

/l'lgnored for synthesis purpose
endmodule

Verilog Language Features 6-29

il
o

Automatic Parallel Case Detection

casex statements are priority-encoded by definition. The Exemplar synthesis tools
automatically detect parallel case and produce a warning message saying that case
conditions are mutually exclusive. The followingse statement is treated as parallel
case.

input [0:2] sel;

casex (sel)
3'b10x: ...
3'bx10: ...
3'bx11: ...
3'b00x: ...
default ...

endcase

The synthesis tools do parallel case detectiortdse andcasez statements. It also
extracts the parallelism of a mutually exclusifze-then -else structure as shown
below.

wire [0:1] data;

if (data==2)

else if (data==1)
else if (data == 3)

else if (data == 0)

6-30 HDL Synthesis Manual

o
1]

casex Statement

Thecasex statement is used when comparison to only a subset of the selection signal
is desired. For example, in the following Verilog code only the three least significant
bits ofvect are compared t801. The comparison ignores the three most significant
bits.

casex (vect)

6'bXXX001 : <statement> ;
/I this statement is executed if vect[2:0] = 3'b001
endcase

For more information on comparisons to X and Z, refer to Chapter 8, “Verilog and
Synthesis of Logic.”

casez Supported

casez is used in Verilog to specify “don't care” bits of the case tags.Zrhs in the
case tags are not compared when a comparison between the case expet¢ssiod
the tags is done.

casez (sel)
3'b10z: ...
3'bz10: ...
3'bz11: ...
3'b00z: ...
default ...

endcase

‘case’ and 'default’ Statements

The Exemplar synthesis tools allow the default statement to appear anywhere in a
case , casez , orcasex statement, and supports tt@se statement with only one
default entry.

Verilog Language Features 6-31

il
o

for Statements

for loops are used for repetitive operations on vectors. In the following example, each
bit of an input signal is ANDed with a single bit enable signal to produce the result:

input clk;
reg [4:0] input_signal, result ;
reg enable;

always @ (posedge clk)
for (i=0;i<5;i=i+1)
result[i] = enable & input_signal[i] ;

for loops are supported on if they are bounded by constants.

6-32 HDL Synthesis Manual

o
1]

Disable Statement

The disable statement disables a named block or a task. Disabling of one block from
another block is supported only if the second block is contained in the first one. Below
is an example of disabling a named block.

module add_up_to (up_to_this, the_out);
input [0:3] up_to_this;

output the_out;

reg [0:7] the_out;

integer i;
always @ (up_to_this)
begin : blk
the_out=0;
for (i=0;i<16;i=i+1)
begin
the_out = the_out + i;
if (i==up_to_this) disable blk;
end
end
endmodule

/[Below is an example of disabling a task.
module add_up_to (up_to_this, the_out);
input [0:3] up_to_this;
output the_out;
reg [0:7] the_out;

always @ (up_to_this)
begin

add_upto_this (up_to_this, the_out);

end

Verilog Language Features 6-33

6-34

task add_upto_this;
input [0:3] up_to_this;
output [0:7] the_out;
integer i;
begin
the_out = 0;
for (i=0;i<16;i=i+1)
begin
the_out = the out + i;
if (i==up_to_this) disable add_|
end
end
endtask
endmodule

upto_this;

forever, repeat, while and Generalized Form of for Loop

forever ,repeat , while , and the generalized form of thar
as long as they are bounded by constants. In the follofoieyer
system counts the number of 1s in the input vector.

loop are supported
example, the

Note —Theforever

loops only twice (which can be determined during compilation).

module forever_example (in, out);
input [0:1]in;

output out;

reg [0:1] out;

always @ (in)
begin :label
integer tmpcount;
reg [0:1]in_tmp;

HDL Synthesis Manual

o
1]

always @ (in)
begin :label
integer tmpcount;
reg [0:1]in_tmp;

out = 0;
in_tmp =in;
tmpcount = 0;
forever
begin
if (in_tmp[1])
out = out + 1,
in_tmp =in_tmp >> 1,
tmpcount = tmpcount +1;
if (tmpcount == 2) disable label,
end
end
endmodule

module repeat_example (i, 0);
input i
output o;
reg o;
always @ (i)
begin
o=i
repeat (4'b1011)
0=-~0;/l0="~i
end
endmodule

Note —If any loop construct is NOT bound by constants, the synthesis tools issue the
“iteration limit reached” error.

Verilog Language Features 6-35

6

Functions and Tasks

6-36

Pieces of Verilog can be grouped together in functions and tasks, which can then be
used as subprograms in the Verilog code. This is useful for repeated code, or for
readability of the main module.

Tasks and functions appear similar, but are used in different ways. A task is a
subprogram with inputs and outputs, and replaces any piece of verilog code in a
module. Expressions in a task can be both combinational and sequential.

Functions have only inputs and returns a value by its name. Functions are purely
combinational.

Functions

Functions are defined inside a module and can be freely used once they are defined.
Functions are always used in an expression, behavioral or dataflow:

assign y = func(a,b);

or

x = func(z);

HDL Synthesis Manual

o
1]

An example of a function is given below.

module calculator (a, b, clk, s, operator);
input [7:0] a, b;
input clk;
input [1:0] operator;
output [7:0]s;
reg [7:0]s;

function [15:0] mult;
input [7:0]a, b;

reg [15:0]r;
integer i;
begin

if (a[0] ==1)
r="b;

else
r=0;

for (i=1;i<7;i=i+1)
if (afil==1)

r=r+b<<i;
end
mult=r;

end
endfunction

always @ (posedge clk)

begin
case (operator)
ADD:s=a+b;
SUB:s=a-b;
MUL: s = mult(a,b);
endcase
end
endmodule

parameter ADD = 2'b00, SUB = 2'b01, MUL = 2'b10;

begin

Verilog Language Features

6-37

il
o

Tasks

Tasks are always displayed as statements:

my_task(a,b,c,d);

The Exemplar synthesis tools support empty tasks.

An example of a task is presented below.

task demux (state, load, bait, enable, ready, write, read);

input [2:0] state;

output load, bait, enable, ready, write, read;

parameter LOAD = 3'b000, WAIT = 3'b100, ENAB = 3'b110,
READ = 3'b111, WRIT = 3'b011, STRO = 3'b001;

case (state)
LOAD:
{state, load, bait, enable, ready, write, read} = 6’b100000;
WAIT:
{state, load, bait, enable, ready, write, read} = 6’b010000;
ENAB:
{state, load, bait, enable, ready, write, read} = 6’b001000;
READ:
{state, load, bait, enable, ready, write, read} = 6’b000100;
WRIT:
{state, load, bait, enable, ready, write, read} = 6’b000010;
STRO:
{state, load, bait, enable, ready, write, read} = 6’b000001;
endcase
endtask

6-38 HDL Synthesis Manual

Inout Ports in Task

The Exemplar synthesis tools support inout ports tas&k statement. Any value

passed through inout ports can be used and modified insidasthe

module inoutintask (i, 01, 02);

input i

output o1, 02;

reg r,0l, o2;

task T;

inout io;

output o;

begin
0 =io;
io = ~io;

end

endtask

always @ (i)

begin
r=i
T(r,o0l);//ol=ir=~i
02=r; /lo2=~i

end

endmodule

Verilog Language Features

6-39

il
o

Access of Global Variables from Functions and Tasks

Global variables can be accessed for both reading and writing.

module x (clk, reset, i1, i2, 0);
input clk, reset, i1, i2;
output o;

reg o;

reg [0:1] state;

task T; //without any port
begin
case (state)
2'b00: 0 = i1;
2'b01: 0 =i2;
2'b10: 0 = ~i1;
2'bl11: 0 = ~i2;
endcase
state = state + 1;// next state
end
endtask

always @ (posedge clk or posedge reset)
if (reset) begin
state = 0;
0=0;
end
else T;
endmodule

System Task Calls

The Exemplar synthesis tools accept system task calls. System task calls are ignored,
and a warning is issued.

System Function Calls

The Exemplar synthesis tools accept system function calls. The value 0 is assumed for
system function calls, and a warning is issued.

6-40 HDL Synthesis Manual

o
1]

Initial Statement

The Exemplar synthesis tools accaptial statements. The actual value is
ignored.

Compiler Directives

Verilog supports a large list of compiler directives. Most of them are useful for
simulation, but are meaningless for synthesis purposes. A few directives are supported
by the synthesis tools, and those directives have to do with macro substitution and
conditional compilation. Following is a list of these directives:

‘define

‘ifdef

‘else

‘endif

‘include

‘signed

‘unsigned
‘unconnected_drive
‘nounconnected_drive

Note —The symbolexemplar is predefined by the synthesis tools.

Therefore, the statement:

‘ifdef exemplar

will always be true, and the else part will always be false. This is useful if some parts
need to be excluded from synthesis, but used by simulation or other tools. For
example:

Verilog Language Features 6-41

il
o

‘ifdef exemplar

I/l do nothing here when running simulator

‘else

initial

/l do all initialization here. This will be ignored by the synthesis
tools.

‘endif

6-42

HDL Synthesis Manual

The Art of Verilog Synthesis 4

Registers,

This chapter explains how particular logic constructs can be synthesized with Verilog
restrictions taken into account.

Latches, and Resets

Verilog synthesis produces registers and combinational logic at the RTL level. All
combinational behavior around the registers is, unless prohibited by the user, optimized
automatically. Hence, the style of coding combinational behavioriflikthen -else
andcase statements, has little affect on the final circuit result, but the style of coding
sequential behavior has significant impact on your design.

This section shows how sequential behavior is produced with Verilog, so that you
understand why registers are generated at certain places and why not in others.

Most examples explain the generation of these modules with short Verilog descriptions
in analways block.

7-1

Level-Sensitive Latch

This first example describes a level-sensitive latch:

input input_foo, ena ;
reg output_foo ;

always @ (ena or input_foo)
if (ena)
output_foo = input_foo ;

The sensitivity list is required, and indicates thatdlveays block is executed
whenever the signalna orinput_foo change. Also, since the assignment to the
registeroutput_ foo is hidden in a conditional clausaytput_foo cannot change
(preserves its old value) &na is 0. If ena is 1, output_foo is immediately

updated with the value afput_foo , whenever that changes. This is the behavior of
a level-sensitive latch.

In technologies where level-sensitive latches are not available, the Exemplar synthesis
tools translate the initially generated latches to the gate equivalent of the latch, using a
combinational loop.

Edge-Sensitive Flip-flops

An edge triggered flip-flop is generated from a Verilog description if a variable
assignment is executed only on the leading (or only on the trailing) edge of another
variable. For that reason, the condition under which the assignment is done must
include an edge-detecting construct. There are a number of edge detecting attributes in
Verilog. The two most commonly constructs aesedge andnegedge .

The posedge construct detects transitions (is true) for O to 1. égedge
construct detects transitions from 1 to O.

HDL Synthesis Manual

1=

Here is one example of tippsedge construct, used in the condition clause in an
always block. The synthesis tools generate an edge-triggered flip-flop out of this
behavior, withoutput_foo updated only itlk shows a leading edge.

input input_foo, clk ;
reg output_foo;

always @ (posedge clk)
output_foo = input_foo ;

If the posedge construct is not in the sensitivity list of taevays block, a warning
is issued thainput_foo is not on the sensitivity list.

Synchronous Sets and Resets

All conditional assignments to variabdeitput foo inside theif clause translate
into combinational logic in front of the D-input of the flip-flop. For instance, we can
make a synchronous reset on the flip-flop by doing a conditional assignment to
output_foo

input input_foo, clk, reset ;
reg output_foo ;

always @ (posedge clk)
if (reset)
output_foo =1'b0 ;
else
output_foo = input_foo ;

Variablesreset andinput foo should not be included on the sensitivity list
executing this block should not occur when they change.

The Art of Verilog Synthesis 7-3

7-4

Asynchronous Sets and Resets

If we want the reset signal to have immediate effect on the output, but still let the
assignment toutput_foo frominput_foo only happen on the leading clock
edge, we require the behavior of an asynchronous reset.

input input_foo, clk, reset ;
reg output_foo ;

always @ (posedge clk or posedge reset)
if (reset)
output_foo =1'b0 ;
else
output_foo = input_foo ;

Now reset HAS TO BE on the sensitivity list. If it is not there, Verilog semantics
require that th@lways block will not execute ifeset changes. It will execute only
if a positive change iolk is detected.

Asynchronous set and reset can both be used. This results in combinational logic
driving the set and reset input of the flip-flop of the target signal. The following code
fragment shows the structure of such a process:

always @(<edge of clock> or <edge_ of asynchronous_signals>)
if (<asynchronous_signal>)
<asynchronous signal_assignments>
else if (<asynchronous_signal>)
<asynchronous signal_assignments>

else
<synchronous signal_assignments>

There can be several asynchronetse if clauses, but the synchronous

assignments have to be the last one initheclause. A flip-flop is generated for each
signal that is assigned in the synchronous signal assignment. The asynchronous clauses
result in combinational logic that drives the set and reset inputs of the flip-flops.

HDL Synthesis Manual

\l
1]

Clock Enable

It is also possible to specify an enable signal in a process. Some technologies
(specifically Xilinx) have a special enable pin on their basic flip-flop. The synthesis
tools recognize the function of the enable from the Verilog description and generates a
flip-flop with an enable signal from the following code fragment:

input input_foo, clk, enable ;
reg output_foo ;

always @ (posedge clk)
if (enable)
output_foo = input_foo ;

If an enable pin does not exist in the target technology a multiplexer is generated in
front of the data input of the flip-flop.

Assigning I/O Buffers from Verilog

There are three ways to assign 1/0O buffers to your design from Verilog:
* Run the synthesis tools in “chip” mode
» Use thebuffer_sig command

» Use component instantiation in Verilog of the buffer you require.

The buffer_sig command or the direct component instantiation will overwrite any
default buffer assignment that the synthesis tools would do in “chip” mode.

The buffer_sig command is implemented differently for Galileo and Leonardo.
For Galileo, you put the command in the control file. For Leonardo, you use the
buffer_sig procedure.

The Art of Verilog Synthesis 7-5

7-6

These approaches can be used together by specifying certain 1/O buffers in the Verilog
source description and others in the control file, with the remaining buffers assigned
automatically by the synthesis tools. The order the buffers are inserted in the design is
important:

1. Components in the Verilog source are instantiated from the source technology.
2. Buffers are added by using theffer_sig command from the target technology.

3. Terminals without identifiable 1/0 gates have buffers inserted from the target
technology.

In all cases, the names of the original I/O terminals are preserved.

Automatic Assignment Using Chip Mode

The easiest way of assigning buffers is to run the synthesis tools in chip mode. (This is
the default.) This automatically assigns appropriate input, output, tristate, or
bidirectional buffers to the ports in your module definition. For example,

module buffer_example (inp, outp, inoutp) ;
input inp;

output outp;

inout inoutp;

endmodule

generates alNPUT_BUFFERfor inp , and anOUTPUT_BUFFERr outp . outp
becomes ARISTATE_BUFFERIf it was assigned in the following fashion:

tri outp;
assign outp=ena?inp:1bzZ

The above example also holds for buses. The sections “Tristate Buffers” on page 8 and
“Bidirectional Buffers” on page 10 in this chapter provide more details on how to
generate tristate buffers and bidirectional buffers from Verilog.

HDL Synthesis Manual

\l
1]

Manual Assignment Using the Control File

Special buffers, e.gsgate> , can be assigned using the control file. The command

BUFFER_SIG <gate> clk

where<gate> is the name of a gate on the target technology, connects slgnab
the input of the external clock buffegate> . An intermediate node called
clk_manual appears ol€LOCK_BUFFER output. Gates specified in the control
file are searched for in the target technology library.

Use of the control file together with chip mode, to manually control only critical
buffers, is accepted procedure when using the synthesis tools.

Buffer Assignment Using Component Instantiation

It is also possible to instantiate buffers in the Verilog source file with component
instantiation. In particular, if you want a specific input or output buffer to be present
on a specific input or output, component instantiation is a very powerful method:

module special_buffer_example (inp, clk, outp, inoutp) ;
input inp, clk;

output outp ;

inout inoutp ;

wire intern_in, intern_out, io_control ;

OUTPUT_FF A1(.c(clk), .d(intern_out), .t(io_control),.o(inoutp));
INPUT_BUFFER A2(.i(inp), .o(intern_in)) ;

endmodule

In this example, component instantiation forceSOARTPUT_FFouffer (complex I/O
output/flip-flop buffer) on the bidirectional pin inoutp. Also an input buffer
INPUT_BUFFERIs specified to pick up the value from inp to be used internally.

In the case of component instantiation of I/O buffers, a source technology must be
specified to assure that the synthesis tools take the instantiated 1/0 buffer from the
right library. If no source library is specified, an error is issued. If the source

The Art of Verilog Synthesis 7-7

1]
\l

technology is specified, the components are instantiated from this library, which
automatically gives them the right functionality. The synthesis tools recognize that the
I/0O pin is properly buffered, and does not add default buffers around it.

Tristate Buffers

Tristate buffers and bidirectional buffers (covered in the next section) are very easy to
generate from a Verilog description.

Example 1:

/l conditional expression
assign o0l =o0el?dl: 1bz
assign x=o0e2?d2:1bz;
assign 0l =x;

Il if statement
always @ (oe3 or d3)

if (0e3)

02 =d3;
else

02 = 1'bz;

/I case statement
always @ (oe4 or d4)

case (oed)
default :02=1bz;
1'bl :02=d4,
endcase
Example 2:

module tristate (input_signal, ena, output_signal) ;
input input_signal, ena ;
output output_signal ;
assign output_signal=ena?input_signal: 1'bz;

endmodule

7-8 HDL Synthesis Manual

v

Note that in the conditional clause of the assign statement,rimih signal and
ena can be full expressions. The Exemplar synthesis tools generate combinational
logic driving the input or the enable of the tristate buffer for these expressions.

However, it is illegal to use thHe’' value in an expression. It is also illegal to use the
'z’ value in any form inside a clockedways block.

Example 3:

assign output_signal = input_signal & 1'bz;

Normally, simultaneous assignment to one signal in Verilog is not allowed for
synthesis, since it would cause data conflicts. However, if a conditidnais

assigned in each assignment, simultaneous assignment resembles multiple tristate
buffers driving the same bus.

module tristate_example_2 (input_signal_1, input_signal_2, enal, ena2,
output_signal) ;

input input_signal_1, input_signal_2, enal, ena2 ;

output output_signal ;

assign output_signal = enal ? input_signal_1:1'bz ;
assign output_signal = ena2 ? input_signal_2: 1'bz ;

endmodule

You can still introduce a data conflict with these simultaneous assignments to
output_signal , by making bottena_1 andena_2 1'bl . The synthesis tools do
not check for a possible bus conflict. Make sure that you can never have that
possibility by carefully generating the enable signals for the tristate conditions.

These examples show assignments to outputs. However, it is certainly possible to do
the assignments to an internal wire as well. This might be used for generating buses,
and is discussed in “Buses” on page 10 in this chapter.

If the target technology does not have any internal three-state drivers, Galileo can
transform the three-state buffers into regular logic with-tfistate option.
Leonardo performs this transformation when thgtate_map variable is set to
TRUE.

The Art of Verilog Synthesis 7-9

v

Bidirectional Buffers

Bidirectional I/O buffers can be coded in Verilog as follows:

module bidirectional (bidir_port, ena, ...) ;
input ena;
inout bidir_port ;

assign bidir_port=ena?internal_output:1'bZ;
assign internal_input = bidir_port ;

/I use internal_input

/I generate internal_output
endmodule

The difference with the previous examples is that in this case, the output itself is used
again internally. For that reason, the ploidir_port is declared to be inout.

The enable signana could also be generated inside the module instead of being a
primary input as in this example.

The synthesis tools select a suitable bidirectional buffer from the target technology
library. If there is no bidirectional buffer available, it selects a combination of a tristate
buffer and an input buffer.

Buses

The examples given above all use single bits as signals. In reality, buses (arrays of bits
with tristatable (multiple) drivers) are often used. Buses are used both internally to the
design and as I/O. For internal tristate buses, the bus signal should be declared as a
tri net.

7-10 HDL Synthesis Manual

1=

The following example describes a circuit that loads a source vector of 4 bits on the

edge of a clockwirclk), and stores the value internally in a regisietrég) if the
chip enable de) is active. One bit of the register output is put on a tristate bus

(result_int), based on a 2-bit selector signs¢léctor

), with the bus output

clocked through a final registere§ult). For more information, refer to “Continuous

Assignments” on page 9.

module tri_asgn (source, ce, wrclk, selector, result) ;
input [0:3]source ;

input ce, wrclk ;

input [0:1]selector ;

output result;

reg [0:3]intreg ;

reg result;

wire [0:1]sel = selector ;

tri result_int;

[/l assignment to internal tristate bus
assign

result_int = (~sel[0] && ~sel [1]) ? intreg[0] : 1'bZ ,
result_int = (sel[0] && ~sel [1]) ? intreg[1]: 1'bZ
result_int = (~sel[0] && sel [1]) ? intreg[2]: 1'bZ ,

result_int = (sel[0] && sel [1]) ? intreg[3]: 1'bZ ;

always @(posedge wrclk)

begin
if (ce)
intreg = source;
result = result_int ;
end
endmodule

The Art of Verilog Synthesis

7-11

1]
\l

In the following example of a tristate bus used for output, a source is loaded into a
register {ouf_in) whose output is a set of tristate buffers.

module tri_bus (d, clk, en, tbuf _out) ;
parameter n=38;

parameter triZ =8bZ;

input [(n-1):0]1d;

input clk, en;

output [(n-1):0] tbuf out ;

reg [(n-1):0] tbuf_in;

assign tbuf_out = en ? tbuf _in : triZ ;

always @ (posedge clk)
tbuf in=d;

endmodule

State Machines

There are basically two forms of state machines, Mealy machines and Moore
machines. In a Moore machine, the outputs do not directly depend on the inputs, only
on the present state. In a Mealy machine, the outputs depend directly on the present
state and the inputs.

In general, a description of a state machine consists of descriptions of the state
transitions, the output functions and a register function. Because of the register
function, analways block in Verilog is an appropriate way to describe a state
machineif -else -if orcase statements in aalways block perform the state
transition and output function descriptions.

7-12 HDL Synthesis Manual

1=

In the following sections, the DRAM interface state machine shown in Figure 7-1 is
used to illustrate state machine design using Verilog.

‘ rasl'bl cas=1'bl readyzl'bl‘

¢s=1'b0 refresh=1'bl

rasl'bl cas=1'b0 ready=1'b0
refresh=1'b1

ras1'b0 cas=1'b1 ready=1'b0

cs=1'b1 refresh=1'b0

rasl'bl cs=1'b0
cas=1'bl -
ready=1'b1| |raslbl
cas=1bl ras1'b0 cas=1'b0 ready=1'b0
ras1'b0 cas=1b0 ready=1'b0| ready=1'b1

cs=1'bl
ras1'b0 cas=1'b0 ready=1b0

Altera 04

Figure 7-1 DRAM Interface with Refresh

The Art of Verilog Synthesis 7-13

1]
\l

Moore Machines

An example of a Moore machine is:

module moore (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;
output ras, cas, ready ;

parameter s0=0,s1=1,s2=2,s3=3,54=4,
reg [2:0] present_state ;
reg ras, cas, ready ;

always @ (posedge clk)
begin
case (present_state)
sO: begin
if (refresh)
present_state = s3 ;
else if (cs)
present_state = sl ;
else
present_state = s0O ;
end
sl: begin
present_state =s2 ;
end
s2: begin
if (~cs)
present_state = s0 ;
else
present_state =s2 ;
end
s3: begin
present_state = s4 ;
end
s4: begin
present_state = s0 ;
end

7-14 HDL Synthesis Manual

\l
1]

default : begin
present_state = s0 ;
end
endcase
end
always @ (present_state)
begin
case (present_state)
sO: begin
ras=1'bl;cas=1'bl;ready=1b1;
end
sl: begin
ras=1'b0;cas=1'bl;ready=1b0;
end
s2: begin
ras=1'b0;cas=1'b0;ready=1'b0;
end
s3: begin
ras=1'bl;cas=1'b0;ready=1'b0;
end
s4: begin
ras=1'b0;cas=1'b0;ready=1'b0;
end
default : begin
ras=1'bX;cas=1bX;ready=1bX;
end
endcase
end
endmodule

There are twalways blocks in the state machine description. The first is
synchronized with the cloc&lk and describes the state transitions. This block
depends on the present state and the inputs. The second is not synchronized, but it
reacts immediately if there is a changepimesent_state . This seconalways

block describes the functions of the outputs depending on the present state. The split
into two processes is not absolutely necessary. The same functional behavior can be
generated by merging the two always blocks into one. However, the logic that is
generated is somewhat different, as explained below.

The Art of Verilog Synthesis 7-15

1]
\l

Below is exactly the same Moore machine description, but this time it consists of only
one always block. In the first description, the outpais , cas andready were
assigned in an asynchronous (not clocked) always block as a function of
present_state . They therefore appear as purely combinational logic. In the
description below, the same outputs are generated in a clocked always block.
Therefore, the outputss , cas andready appear at the Q-output of flip-flops with

the combinational logic computing the value of these signals at the D-inputs of the
same flip-flops.

The subtle differences between the two descriptions result in trading off timing
behavior and logic circuitry. The first description builds a circuit where the outputs
ripple through logic after the clock edge. In the second description, the outputs change
glitch-free at the clock-edge, and are stable immediately after that, but at the cost of an
additional flip-flop for each output.

module moore_example_2 (clk, cs, refresh, reset, ras, cas, ready) ;

input clk, cs, refresh, reset ;
output ras, cas, ready ;

parameter s0=0,s1=1,s2=2,s3=3,s4=4,;

reg [2:0] present_state ;
reg ras, cas, ready ;

always @ (posedge clk or posedge reset)
begin
if (reset) // asynchronous reset
begin
present_state = sO ;
ras=1'bl;cas =1bl;ready =1'b1l;

end
else
begin
case (present_state)
sO :
if (refresh)
begin
present_state = s3;
ras = 1'b1; cas = 1'b0 ; ready = 1'b0 ;
end

7-16

HDL Synthesis Manual

\l
1]

sl:

s2:

s3:

s4 .

else if (cs)
begin
present_state = sl ;
ras = 1'b0; cas = 1'b1 ; ready = 1'b0 ;

end
else
begin
present_state = s0 ;
ras = 1'bl; cas =1'bl ; ready = 1'b1 ;
end
begin
present_state =s2 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
begin
if (~cs)
begin
present_state = s0 ;
ras =1'bl1; cas = 1'bl ; ready = 1'b1;
end
else Il cs =1'b1
begin
present_state =s2 ;
ras = 1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
end
begin

present_state = s4 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end

begin

present_state = s0 ;

ras =1'bl;cas=1bl;ready =1'b1;
end

The Art of Verilog Synthesis

7-17

1]
\l

end
end
endmodule

default:
begin
present_state = s0 ;
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;
end
endcase

Note —This example also added an asynchronous reset to the design.

Mealy Machines

7-18

So far, we have shown a number of examples of Moore machines. In a Mealy machine,
outputs depend on both the present state and the inputs. Below is the state machine
again, but now in a Mealy machine form. Notice that the behavior changes slightly,
since the inputs affect the outputs immediately, without waiting for the new state to be
generated.

In the Moore machine example, it was possible to merge the two processes into one,
synchronized with a clock, since all activity was happening on the clock edge. In this
Mealy machine example, however, the outputs are updated even when there is no clock
edge. Thus, in this case, it is not possible to merge the two processes into one.

A Mealy machine is, in general, described with two always blocks, where one block
does all combinational functionality and the other just updates the present state with
the next state, on the clock edge.

HDL Synthesis Manual

\l
1]

This code shows an example of a Mealy machine.

module mealy (clk, cs, refresh, ras, cas, ready) ;
input clk, cs, refresh ;

output ras, cas, ready ;

parameter s0=0,s1=1,s2=2,s3=3,54=4,

reg [2:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)

begin
/I always block to update the present state
present_state = next_state ;
end
always @ (present_state or refresh or cs)
begin

/I always block to calculate the next state and the outputs
next_state =s0 ;
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;
case (present_state)
sO: begin
if (refresh)
begin
next_state = s3;
ras=1'bl; cas =1'b0 ; ready = 1'b0 ;
end
else if (cs)
begin
next_state = s1 ;
ras=1'b0; cas = 1'bl ; ready = 1'b0 ;
end
else
begin
next_state =s0 ;
ras=1'bl;cas =1'bl;ready =1'b1;
end
end

The Art of Verilog Synthesis

7-19

1]
\l

sl: begin
next_state =s2 ;
ras = 1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
s2: begin
if (~cs)
begin
next_state =s0 ;
ras=1'bl;cas=1'bl;ready =1'b1;
end
else
begin
next_state =s2 ;
ras =1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
end
s3: begin
next_state =s4 ;
ras=1'bl; cas =1'b0 ; ready = 1'b0 ;
end
s4: begin
next_state =s0 ;
ras =1'b0 ; cas = 1'b0 ; ready = 1'b0 ;
end
endcase
end
endmodule

Combinational loops can be generated easily (and are in most cases unwanted) in a
Mealy machine description. If nothing is assigned to a signal in one or more cases (for
instance because you do not care what the value is going to be), Verilog semantics
require that the value of the signal is preserved. In an asynchratxays block as

the one shown above, this means that synthesis must generate a combinational loop or
a level-sensitive latch to preserve the value.

For more information on how to avoid unwanted loops, refer to “Operators” on
page 17.

7-20 HDL Synthesis Manual

\l
1]

Issues in State Machine Design

This section discusses several issues regarding the design of synthesizable state
machines:

State encoding

One-hot encoding

Initialization of the state machine
Power-up conditions

Semantics of the case statement

State Encoding

States must be explicitly specified by the user. This can be done by explicitly using the
bit pattern (e.g.3'b101), or by defining a parameter (e.garameter s3 =
3'b101) and using the parameter as the case item.

The Art of Verilog Synthesis 7-21

1]
\l

One-Hot Encoding

In order to achieve a different style of encoding, for example a one-hot encoding, a
slightly different style of Verilog is required. As an example, here is the Verilog
description for a one-hot encoded state machine with the same functionality as the
example shown above.

module one_hot_mealy (clk, cs, refresh, reset, ras, cas, ready) ;
input clk, cs, refresh, reset ;
output ras, cas, ready ;

reg [4:0] present_state, next_state ;
reg ras, cas, ready ;

always @ (posedge clk)

begin
/I always block to update the present state
if (reset)
present_state = 5’'b00001 ;
else
present_state = next_state ;
end
always @ (present_state or refresh or cs)
begin

/I always block to calculate the next state and the outputs
next_state = 5'b00000 ;
ras = 1'bX ; cas = 1'bX ; ready = 1'bX ;

if (present_state[0])

begin
if (refresh)
begin
next_state = 5’b01000 ;
ras=1'bl; cas =1'b0 ; ready = 1'b0 ;
end
else if (cs)
begin

next_state = 5’b00010 ;
ras=1'b0; cas = 1'bl ;ready = 1'b0 ;

7-22 HDL Synthesis Manual

\l
1]

end

else

begin
next_state = 5’b00001 ;
ras=1bl;cas =1'bl;ready =1'b1;

end

end
if (present_state[1])

begin
next_state = 5’00100 ;
ras =1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
if (present_state[2])
begin
if (~cs)
begin
next_state = 5’b00001 ;
ras=1'bl;cas =1bl;ready =1'b1;
end
else
begin
next_state = 5’b00100 ;
ras =1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
end
if (present_state[3])
begin
next_state = 5’10000 ;
ras=1'bl; cas =1'b0 ; ready = 1'b0 ;
end
if (present_state[4])
begin
next_state = 5’b00001 ;
ras =1'b0; cas = 1'b0 ; ready = 1'b0 ;
end
end
endmodule

The Art of Verilog Synthesis 7-23

1]
\l

7-24

Some key points from this one-hot state machine are:

» Thecase statement should not be used for one-hot state machine design. When the
casex statement is used for state comparisons, the comparisons must be done on
only one bit of the state vector. If the whole vector is used for comparison, then full
binary encoding logic is synthesized. Also, ttase statement needs to be
compiled agparallel_case

* Theelse if construct should not be used to do the state comparisons, since that
introduces additional constraints on the values of each state. elsmdgf
means that this code is only entered if the all previous conditions are false. In the
case of one-hot encoding, it is certain that all previous conditions are false already.

This state machine description works fine, as long as the machine can never appear in
a state with more than onE in the state vector. In order to assure that condition, the
need for a reset becomes inevitable in the one-hot case. The use of resets is discussed
in greater detail in the next section.

Initialization and Power-Up Conditions

In synthesis, if the total number of states is not a power of two, the state signal can
power-up in a state that has not been defined, if binary encoding is used. In this
situation, it is essential that the Verilog description does an assignment to the output
variables and the state variable under all conditions.

This can be done in two ways:

» Do a default assignment to the outputs and state variable befarasthestatement
that updates the state machine. This method is used in the first Moore and the
Mealy machine examples from the previous sections. It assures that outputs and
state variable always get a value assigned regardless of the state of the state
machine.

* Do the default assignment in tdefault clause of thease statement, as was
shown in the second Moore machine example. This has the same effect; outputs and
states always get a value regardless of the state of the machine.

If you do not do a default assignment, the state machine could power-up in a undefined
state. Verilog semantics require that if there is no assignment to a signal, the previous
value has to be preserved. In case the state transitions are defined in an asynchronous
always block, latches would be generated by the synthesis tools to preserve the state
value.

HDL Synthesis Manual

1=

If one-hot or another state encoding is used, the number of undefined states could be
even larger. Consider that in one-hot encoding, the specification of the state machine
has to rely on the fact that only one single state bit of the state vector is 1. That means
that the designer has to provide a special feature that takes care of the power-up
conditions.

One possibility might be to include a special detection function that sets the state to a
valid one the moment it occurs in a invalid one. However, it would require too much
logic to implement this functionality, making the use of one-hot encoding unattractive.
In most cases, it is much more cost effective to include the possibility of a reset
function. The reset can be defined to be synchronous or asynchronous, depending on
what you want. The details about implementing resets are given in the section
“Registers, Latches, and Resets” on page 1 in this chapter.

Arithmetic and Relational Logic

This section gives an overview of how arithmetic logic is generated from Verilog, what
the synthesis tools do with it and how to avoid getting into combinational explosion
with large amounts of arithmetic behavior.

In general, logic synthesis is very powerful in optimizing random combinational
behavior, but has problems with logic which is arithmetic in nature. Often special
precautions have to be taken into consideration to avoid ending up with inefficient
logic or excessive run times. Alternatively, macros may be used to implement these
functions (see “Technology-Specific Macros” on page 29 in this chapter).

The synthesis tools support the operators “+7, “-", “==" “I=" “<” “>" “>>" ‘<<
u*n,u/n, u<:u’ and u>:n.

If you use these operators to calculate compile time constants, there is no restriction or
problem in using them. For example, the following division does not result in a any
logic, but replaces sign&bo with aconstant 3'd133

integer largest;

integer divider ;

assign largest =800 ;

asign divider =6 ;

assign foo <= largest / divider ;

The Art of Verilog Synthesis 7-25

1]
\l

If you are not working with constant operands, arithmetic logic is generated.

The operator “+” generates an adder. The number of bits of the adder depends on the
size of the operands. If you use integers, a 32 bit adder is generated. If you add vectors
and integers, the size of the adder is defined to the range of the vector in bits. For
example:

integer a,b,c;
assign c=a+b;

generates a 32-bit adder but:

input [7:0] a;
output [7:0]c;
integer b;

assign c=a+b;

generates an 8-bit adder.

If one of the operands is a constant, initially a full-sized adder is still generated but
logic minimization eliminates much of the logic inside the adder because half of the
inputs of the adder are constant.

The operator “-” generates a subtracter. Same remarks as with the “+” operator.

The operator “*” generates a multiplier. Multiplication by a constant power of two is
implemented as a shift operation. In all other cases ModGen (generic or technology
specific) is required to implement the multiplier.

The operator “/” generates a divider. Only division by a power of two is supported,
hence no logic here, only shifting the non-constant operand.

The operators “==", “I=", “<”, “>" “>>" “<<” “<=", and “>=" generate comparators
with the appropriate functionality. Same remarks apply as for the “+” operator.

» Operations on integers are done in twos-complement implementation.

7-26 HDL Synthesis Manual

1=

All arithmetic behavior is translated into logic functions and is part of the logic
optimization process. The result is that depending on area and timing criteria and
constraints set, the final logic circuit can include, for example, carry lookahead or
ripple carry adder implementation. If the design is getting large, run-time and memory
requirements increase rapidly. Some large designs can run forever without any
improvement, if any solution is produced at all. The reason is that the logic synthesis
optimization algorithms try too many possible circuit implementations from the
exponentially growing search space. Good design practices are needed to help avoid
this problem.

Below are some guidelines that have helped users to achieve a good synthesis result.

Module Generation

When arithmetic and relational logic are used for a specific Verilog design, the
Exemplar synthesis tools provide a method to synthesize technology specific
implementations for these operations. Generic modules (for bit-sizes > 2) have been
developed for many of the CPLDs supported by the Exemplar synthesis tools to make
the most efficient technology specific implementation for arithmetic and relational
operations.

For Galileo, use themodgen= modgen_libraryoption to include a module generation
library of the specified technology and infer the required arithmetic and relational
operations of the required size from a design. For Leonardo, useothgen_read
modgen_librarycommand to load the module generation library into the HDL
database. Since these modules have been designed optimally for a target technology,
the synthesis result is, in general, smaller and/or faster and takes less time to compile.

You may define your own module generator for a specific technology.

Resource Sharing and Common Subexpression Elimination

The synthesis tools automatically do CSE. For the following example, it will create
only one addefa+b) and use it for both thi# conditions. For bigger expressions
user need to use parentheses properly to direct the synthesis tool for CSEre.qg.,
a+(b-c), z = d+(b-c), (b-c) is shared.

The Art of Verilog Synthesis 7-27

1]
\l

reg a,b,c,d;

always @ (a or b)

begin
if (at+b==c)//This adder will be shared
elseif (atb==d)// with this one.
else

end ;

Comparator Design

Often, applications involve a counter that counts up to an input signal value, and if it
reaches that value, some actions are needed and the counter is reset to 0.

begin
if (count == input_signal)
count=0;
else
count=count+1;
end ;

7-28 HDL Synthesis Manual

1=

In this example the synthesis tools build an incrementer and a full-size comparator that
compares the incoming signal with the counter value. It is usually better to preset the
counter to thenput_signal and count down, until zero is reached.

begin
if (count==0)

count = input_signal ;
else
count =count-1;
end ;

Now, one decrementer is needed plus a comparison to a constant (0). Since
comparisons to constants are a lot cheaper to implement, this new behavior is much
easier to synthesize, and results in a smaller circuit.

Even better results can be obtained with the use of hard macros and soft macros of the
target technology, as well as the use of hierarchy in the design. The following two
sections explain this in more detail.

Technology-Specific Macros

In many cases, the target technology library includes a number of hard macros and soft
macros that perform specific arithmetic logic functions. These macros are optimized
for the target technology and have high performance.

With the Exemplar synthesis tools, it is possible to use component instantiation of soft
macros or hard macros in the target technology. An added benefit is that the time
needed for optimization of the whole circuit can be significantly reduced since the
synthesis tools do not have to optimize the implementation of the dedicated functions
any more.

Suppose you want to add two 8 bit vectors, and there is an 8 bit adder macro available
in your target technology. You could use the “+” operator to add these two vectors. The
alternative is to define a component that has the same name and inputs and outputs as
the hard macro you want to use. Instantiate the component in your Verilog description

The Art of Verilog Synthesis 7-29

1]
\l

and connect the inputs and output to the their appropriate signals. The synthesis tools
instantiate the hard macro without having to bother with the complicated optimization
of the internal logic implemented by the macro.

This speeds up the optimization process considerably. In the netlist produced by the
synthesis tools, the macro appears as a “black box” that the downstream place and
route tools recognize.

If your arithmetic functions cannot be expressed in hard macros or soft macros
immediately (for instance if you need a 32 bit adder, but only have an 8 bit adder
macro), you could write a Verilog description that instantiates the appropriate number
of these macros.

Synthesis Directives

7-30

parallel_case and full_case directives

parallel_case andfull_case directives are allowed as synthesis directive on
case by case basis. The synthesis tool detects the true full and parallel cases
automatically. However, there are cases (like onehot encoded state machine) that are
not inherently parallel/full, but the environment guarantees that the case statement is
parallel and/or full. In such a condition the following two synthesis directives are very
useful.

input [0:3] inp_state;
/I example of onehot encoded machine
case (1'bl) // exemplar parallel_case full_case
inp_state[0]:
inp_state[1]:
inp_state[2]:
inp_state[3]:
endcase

HDL Synthesis Manual

\l
1]

translate off and translate_on directives

translate_off andtranslate_on synthesis directives are allowed to comment
out a portion of code that you may want to retain for some purpose other than
synthesis.

Il code for synthesis

/I exemplar translate_off
$display (.....); // not for synthesis
/I exemplar translate_on

/I code for synthesis

endmodule

enum directive

The enum synthesis directive is supported for user convenience when trying out
different encoding on a state machine. With the synthesis directive, the synthesis tool
becomes sensitive to the global state encoding swigsitdding), and the

enumeration values are encoded according to the setting of that aptietmof |,

gray , binary, orrandom).

Using theenum synthesis directive, a set of parameters can be treated as enumerated
values; resources like wire and reg can be declared as that enumerated type. The
synthesis tool puts some restrictions on these enumerated types. Elements are allowed
with enumerated objects areas in the following instances:

In case statements: The enum type of case expression should match with the case
tags. For comparison of the enumerated types with each other, assigning
enumerated types to each other (type should match).

These objects are treated as strongly typed so they cannot be mixed with the object of
any other type. Any boolean or arithmetic operations are considered to be in error for
enumerated objects. The synthesis tool gives an appropriate error when any one of
these rules is violated. In such cases, you may not usentira synthesis directive.

The encoding style of the enumeration can be selected from boolean (default),
onehot,gray, orrandom using the globalencoding option on the synthesis

tool mainline, or using the state encoding selection on the Verilog input options dialog
of the user interface.

The Art of Verilog Synthesis 7-31

1]
\l

module state_mc (clk, reset, o, i1, i2, i_state);
input clk, reset, i1, i2;
output o, i_state;
reg o;
parameter [0:1] /* exemplar enum eel */S0=1,51=2,52=3,S3=0;
reg [0:1] /* exemplar enum eel */ state;
assign i_state = (state == S1 | state == S3); // legal.
always @ (posedge clk or posedge reset)
if (reset) begin
0=0;
state = S0;// Note state = 1, will cause a type mismatch
error
end
else
case (state) // No need of full and parallel case

S0: begin o = i1; state = S1; end

S1: begin o = ~il; state = S2; end

S2: begin o = i2; state = S3; end

S3: begin o = ~i2; state = SO; endNote case tag O:
would cause type
mismatch error
endcase
endmodule

State and SO, S1, S2, S3 areenfim type eel. They cannot be used for any boolean
or arithmetic operation. Bit or part select from state or its values is also considered an
error. Enumerated type module parts are not allowed.

attribute directive

The user can set some simple attributes on signals/instances to enhance the synthesis
efficiency of the Exemplar synthesis tool. For example, by setting the

modgen_select attribute tofastest on a signal on a critical path of a design,

the user can improve the timing performance of the design. The synthesis of this
directive is as follows:

/I exemplar attribute <object_name><attribute_name><attribute_value>

7-32 HDL Synthesis Manual

\l
1]

llexample

module expr (a, b, ¢, outl, out2);
input [0:15] a, b, c;

output [0:15] outl, out2;

assign outl =a+b;
assign out2=b +c¢;

/I exemplar atribute outl modgen_sel fastest
endmodule

The Art of Verilog Synthesis

7-33

1]
\l

7-34

HDL Synthesis Manual

Verilog and Synthesis of Logic 8

Verilog is a language that has been developed for simulation purposes. Synthesis was
not an issue in the development of the language. As a result, there are a number of
Verilog constructs that cannot be synthesized. There has been very little written that
explains which constructs cannot be synthesized into logic circuits and why.

This chapter provides explanations on why certain Verilog constructs cannot be
synthesized into logic circuits and what changes have to be made to reach the intended
behavior to obtain a synthesizable Verilog description.

Some obvious restrictions of the language are first presented, followed by a list
summarizing Verilog syntax and semantic restrictions for the Exemplar synthesis tools.
In addition, some guidelines are presented that should enable you to write Verilog that
is easy to synthesize and give you a feeling for synthesis complexity problems you
might introduce when you write your Verilog design.

Comparing With X and Z

Consider the Verilog modeling case where an if clause should be entered if a part of a
vector has a particular value. The rest of the vector does not really matter. You might
want to write this as follows:

if (vect ==6bXXX001) begin

8-1

The user intention is to do a comparisorota (the right most three bits) and forget
about the left three bits. However, Verilog defines comparison on vectors as the AND
of comparison of each individual element. Also, comparison of two elements is only
true if both elements have exactly the same value. This means that in order for this
condition to be true, the three left most bits have to be 'X’. But in logic synthesis, a bit
can only be0’ or’1l’ , so the condition is always be false. In fact, this condition is
not doing what was intended for simulation as well, since if any of the left most three
bits does not have the value "X’ explicitly, the result is false.

However, comparison to 'X’ is allowed using tbasex construct. This is
implemented in the following manner:

casex (vect)
6’bXXX001 : <statement> ;
endcase

In this case, only the three least significant bits of vect are compared to “001". The
comparison ignores the three most significant bits.

Variable Indexing of Bit Vectors

8-2

The Exemplar synthesis tools support variable indexing of a vector. The limitation is
that only variable indexing of the form ’bit select’ is supported. Or more specifically,
variable indexing of the form ’part select’ is not supported because it is not a
synthesizable construct.

HDL Synthesis Manual

8=

The semantics of variable indexing varies depending on whether the variable indexing
is done on the left hand side of an assignment or on the right hand side of the
assignment. The right-hand side variable indexing generates a multiplexer controlled
by the index. The left-hand variable indexing generates a de-multiplexer controlled by
the index. set of decoders enabling. The following example shows both examples.

module tryit (input_bus, in_bit, control_input, output_bus, out_bit);
input [3:0] input_bus ;

input [1:0] control_input ;

input in_bit;

output [3:0] output_bus ;

output out_bit;

reg [1:0] control_input ;
reg [3:0]input_bus, output_bus ;
reg in_bit, out_bit ;

always @ (control_input or input_bus or in_bit)
begin
out_bit = input_bus [control_input] ;
output_bus [control_input] = in_bit ;
end
endmodule

Syntax and Semantic Restrictions

This section provides a summary of the syntax and semantic restrictions of the
Exemplar synthesis tools’ Verilog HDL parser.

Unsupported Verilog Features
* UDP primitives
» specify block
+ real variables and constants
* initial statement
e tri0 ,tril ,tril ,tril ,tril , nettypes

e time data type

Verilog and Synthesis of Logic 8-3

* Named events and event triggers

» The following gatespulldown , pullup , nmos, mmos pmos, rpmos , cmos,
rcmos , tran |, rtran , tranif0 , rtranifO , tranifl | rtranifl

* wait statements

e Parallel blockjoin andfor .

» System task enable and system function call
» force statement

+ release statement

» Blocking assignment with event control

* Named port specification (not to be confused with passing arguments by name,
which is supported)

» Concatenation in port specification
» Bit selection in port specification

e Procedural assign and de-assign

Supported Verilog Features (Limited in Usage)
» Edge triggers on sensitivity list must be single bit variables.
» Indexing of parameters is not allowed.

» Loops must be bounded by constants.

Supported Verilog Features (Ignored by Exemplar Synthesis)
« Delay and delay control.

» 'vectored’ declaration.

HDL Synthesis Manual

Introduction to Module Generation 9

Arithmetic and relational logic, commonly known as data path logic, has traditionally
been difficult to synthesize with logic synthesis software. This is especially true for
FPGAs, where each target technology has a different way to optimally utilize
resources.

Exemplar Logic’'sModule Generatiortapability provides VHDL and Verilog HDL
designers with a mechanism to overload data path operators, such as “+”, “-”" and “>",
with technology-specific implementations.

This chapter introduces the conceptMddule Generatiorand describes how to make
optimal use of this feature of the Exemplar synthesis tools. Chapter 10, “Using Module
Generation,” focuses on how to ug®dule Generatiorto improve performance for
VHDL and Verilog HDL design files. Chapter 11, “User-Defined Module Generators,”
provides a detailed description of how to create your own module generators.

Module Generatiomprovides a mechanism that matches behavioral operators like “+”,
“" and “>", with pre-designed implementations. This allows designers to describe
logic in a purely behavioral fashion, while making optimal use of technology-specific
hard or soft macros. As an example, consider the following VHDL statement:

signal a, b, s: std_logic_vector(n downto 0);
s<=a+b;

When implementing this VHDL statement in an FPGA architecture, designers would
like to utilize vendor-provided adder hard macros, dependent on the size of

9-1

9-2

In HDLs, the user can explicitly instantiate a desired component (using component
instantiation in VHDL or module instantiation in Verilog).

Three drawbacks exist with using component/module instantiation:
» The design methodology is no longer behavioral.
e The HDL source becomes technology dependent.

« Component instantiation is not allowed in operator or function definitions.

However, if neither component/module instantiation nor module generation is used,
the synthesis tools generate logic without any knowledge of an optimal implementation
for the target technology. This typically produces sub-optimal results.

Module Generatiorsolves this problem by matching certain data path operators with
pre-designed implementations from a side library. Whenever a supported operator is
encountered in the source design, a technology-specific module genéitationis
consulted for a matching implementation. If an implementation is found, it is used in
the network. If no technology dependent implementation is found, the synthesis tools
default to a generic logic implementation, which is applicable for a CMOS gate array
implementation, for the operator (ripple carry for the above adder).

Figure 9-1 shows the general flow of data in the Exemplar Synthesis Tool/Module
Generation environment. After the HDL source code is successfully parsed, it is passed
on to an inference engine that matches supported operators (like addition) with
preferred implementations in the module generation library.

HDL Synthesis Manual

©
1]

HDL source
code

HDL parser

v

module generation generics
inference engine |

v

synthesis,
optimization,
and mapping

FPGA
netlist

Figure 9-1 Exemplar Synthesis Tool/Module Generation Environment

module
generation
library

As examples of the benefits bfodule GenerationFigure 9-2 presents the average
area reduction achieved when Module Generation is used for synthesis targeting
FPGAs, while Figure 9-3 presents the average delay reduction achieved.

Introduction to Module Generation 9-3

100
S 80
&
E 40
s 20
g
< 0

0 10 20 30 40 S0
W|dth (b'ts) Altera 06

Figure 9-2 Using Module Generation Results in Area Reduction When Adders Are Required

100
S g0 - x
S x X X X
= 60
£ <1 x
D 40
o
E 20
8 0
0 10 20 30 40 50
Width (bits)
Altera 07

Figure 9-3 Using Module Generation Results In Delay Reduction When Adders Are Required

HDL Synthesis Manual

Using Module Generation 10=

This chapter presents information on the us#loflule Generationwhich operators
are supported, usinglodule Generatiowith the Exemplar synthesis tools, and
invoking Module Generatiorfrom both VHDL and Verilog design sources. It focuses
on usingModule Generatiorfor the technologies that are supported in the synthesis
tools.

Supported Technologies

A list of currently supported technologies is presented in the Release Notes
accompanying this manual. Also, performance information for the module generators
are presented in the appropriate chapter irSymhesis and Technology Guiddese

data show howModule Generationmplementation improves area or timing for

arithmetic and relational operations, as compared to random logic implementation.

10-1

=10

Supported Operators

The following operations are recognizedthg synthesis tools for matching with

module generation libraries:

Verilog VHDL '87 Operation

R " addition

- - binary subtraction, unary

negation

+1" +1 increment

-1 "-1 decrement

f==" = equal

1= "\=" not equal

> "> greater than

=" "=>" greater than or equal
< < less than

REN =" less than or equal

* h multiplication

/ / division

N/A R power
"%" "mod" modulo

N/A "rem" remainder
N/A "abs" absolute value

10-2

HDL Synthesis Manual

10=

Verilog VHDL '93 Operation

">>" "sra" shift right logical
33 "sla" shift left logical

N/A "sra" shift right arithmetic
N/A "sla" shift left arithmetic
N/A “rol" rotate left

=" “ror" rotate right

"> "> greater than

"=>" =" greater than or equal
"t "t less than

RN =" less than or equal
e h multiplication

" " division

N/A Rt power

From VHDL, the synthesis tools recognize these operations for operators on the
predefined typénteger . It also recognizes these operations from operators for the
bit_vector andstd_logic_vector types, as long as the packagemplar

or numeric_std package is included withase clause. For Verilog HDL, the
synthesis tools recognize these operations from all (predefined) supported operators in
the Verilog HDL language.

Counters and RAMs

Both Leonardo and Galileo can recognize counter and RAM behavior in a VHDL or
Verilog HDL description and infer module generators. Counters are positive
edge-triggered with optional clock enable and/or count enable, asynchronous clear
and/or set, synchronous clear, and synchronous load. Up, down, and up-down counters
are supported. The following example is recognized as an 8-bit loadable down-counter
with asynchronous clear and clock enable:

Using Module Generation 10-3

=10

Example

library ieee, exemplar;
use ieee.std logic_1164.all;
use exemplar.exemplar_1164.all;

entity cnt_dn_ac_sl_en is
port (clk, clk_en, aclear, sload: in std_logic;
data: in std_logic_vector(7 downto 0);
q: out std_logic_vector(7 downto 0));

end cnt_dn_ac_sl_en;

architecture ex of cnt_dn_ac_sl en is
signal g_int: std_logic_vector(g'range);
begin
process (clk, aclear)
begin
if (aclear ='1") then
g_int <= (g_int'range => '0";
elsif ~ (clk'event and clk'last_value ='0
if (clk_en ="1" then
if (sload ='1") then
g_int <= data;
else
g_int <= qg_int - "1";
end if
end if ;
end if ;
end process
q <= q_int;
end ex;

and clk ='1" then

10-4

HDL Synthesis Manual

10=

Counter and RAM Inferencing and Module Generation

There are two basic types of RAM Module Generators: a single-port RAM with
separate input and output data lines, and a single-port RAM with bidirectional data
lines. Both of these RAM types support synchronous or asynchronous read and write
operation. Synchronous writes use a positive edge-triggered clock to latch the
write-enable, address, and data signals. The inferencing process distinguishes between
RAMSs that perform the read operation with an address that is clocked or not clocked
with the write clock.

The RAM output signals may also be latched by the same or a different positive
edge-triggered clock. The following two VHDL examples demonstrate the difference
between synchronous RAMs that do or do not clock the read address with the write
clock. The first exampleam_examplel , does clock the read address, while the
second exampleam_example2 , does not clock the read address.

Most technologies only support one of these types. In addition, particular technology
Modgen libraries may not contain module generators for all types of RAMs recognized
by Leonardo and Galileo. Information concerning which types are supported by a
particular technology can be found in the Leonardo Synthesis and Technology Guide
and the Galileo Synthesis and Technology Guide.

Using Module Generation 10-5

10

Example 1

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_examplel is
port (data: in std_logic_vector(7 downto 0);
address: in std_logic_vector(5 downto 0);
we, inclock, outclock: in std_logic;
q: out std_logic_vector(7 downto 0));
end ram_examplel;

architecture exl of ram_examplel is
type mem_type is array (63 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
begin
I 0: process (inclock, outclock, we, address) begin
if (inclock =1 and inclock'event) then
if (we ="'1" then
mem(evec2int(address)) <= data;
end if ;
end if ;
if (outclock ='1' and outclock'event) then
g <= mem(evec2int(address));
end if ;
end process ;
end exl;

10-6 HDL Synthesis Manual

10=

Example 2

library ieee, exemplar;
use ieee.std_logic_1164.all;
use exemplar.exemplar_1164.all;

entity ram_example2 s

port (data: in std_logic_vector(7 downto 0);
address: in std_logic_vector(5 downto 0);
we, inclock, outclock: in std_logic;

q: out std_logic_vector(7 downto 0));

end ram_example2;

architecture ex2 of ram_example2 is
type mem_type is array (63 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
signal address_int: std_logic_vector(5 downto 0);
begin
10: process (inclock, outclock, we, address) begin
if (inclock = '1' and inclock'event) then
address_int <= address;
if (we ="1" then
mem(eveczint(address)) <= data;
end if ;
end if ;
if (outclock ="'1' and outclock'event) then
g <= mem(evec2int(address_int));
end if ;
end process
end ex2;

Using Module Generation 10-7

=10

Using Module Generation With Exemplar Synthesis Tools

10-8

Specifying Module Generation Library

Module Generations invoked by including a module generation lilgrduring logic
synthesis.

From the command line for Galileo, use theodgen= modgen_libraryoption to

include a module generation library of the specified technology and infer the required
arithmetic and relational operations of the required size from a user VHDL design. For
Leonardo, use thmodgen_read modgen_librarycommand to load the module
generation library into the HDL database. Since these modules have been designed
optimally for a target technology, the synthesis result is, in general, smaller and/or
faster and takes less time to compile.

The module generation library can have any name, without an extension. All the
module generator files provided by Exemplar Logic are naibebase_namehd ,
wherelib_base_namés the technology library base name. These files can be found in
the directory$EXEMPLAR/data/modgen . Since the directory is in the search path
for the synthesis tools, if you specify a module generation library, the synthesis tools
will read the file with the matching technology name. These files are encrypted.

The Exemplar synthesis tools do not validate the generator. If, for instance, an Actel
technology is specified as the target technology, but accidentally a Xiladule
generation library is specified, Xilinx macros will appear in the output netlist.

Area/Delay Trade-offs Attributes

Implementations of area and delay trade-offs may vary between module generator
packages. Galileo will choose a smaller or faster implementation, depending on the
area/delay switch in the GUI, earea versus-delay option in the command line.
With Leonardo, the method for choosing between smaller and faster implementations
is to use thearea or-delay options to theoptimize command.

Specific implementations can be configured in the VHDL file through attributes on
specific signals. The attributeodgen_sel is used for this purposmodgen_sel is

an attribute of enumerated typeodgen_select , with four valuessmallest ,

small , fast , fastest . This attribute controls which implementation of a module
generator is used. By default, the synthesis toolsmusdl if the global optimization
criteria is-area . The synthesis tools choofast if the -delay switch is set. The

HDL Synthesis Manual

10=

user can overwrite these defaults by specifying the attrilpodgen_sel on a target
signal or variable that is driven by an expression that calls module generators. Here is
an example:

type modgen_select is (smallest, small, fast, fastest) ;
attribute modgen_sel : modgen_select ;

signal a,b,c,s : bit_vector (7 downto 0);
attribute modgen_sel of s: signal is smallest;

s<=a+b+c;

In this example, for both adders that driveModule Generatiowill choose the

smallest implementation possible. In essencentbdgen_sel attribute is passed to

the module generator inference engine where a different implementation, other than the
default, is selected.

The typemodgen_select and the attributenodgen_sel are declared in the
packageexemplar andexemplar_1164 . Hence, if you use one of these
packages, declaring them is not required in the user code.

Disabling Module Generation

Once themodgen option is specifiedModule Generations enabled for all
arithmetic and relational operators in the desiondule Generatiorcan be switched
off for all operator calls driving a particular signal, by setting the boolean
use_modgen to FALSE.

attribute use_modgen : boolean ;
signal a,b,c,s : bit_vector (7 downto 0);
attribute use_modgen of s: signal is FALSE;

s<=a+b+c;

In this case, for both adders that dréseModule Generations disabled and the adders

will be implemented in random logic. Disablihdodule Generatiorfor specific

signals or variables can be useful when large portions of the operators can be
eliminated during the boolean optimization and synthesis process. This often happens
for user defined type-transformation functions, where the operators implement
simulation behavior, but for synthesis the function should implement a simple set of

Using Module Generation 10-9

10

wires. UsingModule Generatiorfor such function would generate a large amount of
arithmetic logic when it is not required. The attribuse_modgen is defined in the
exemplar andexemplar_1164 packages. If one of these packages is used,
declaring the attribute is not required in the user code.

Counter and RAM Extraction

In Galileo, counters and RAMs are recognized and extracted by default. In Leonardo,
the pre_optimize command with theextract option must be executed.

Verilog Usage
Verilog usage oModule Generationis completely straightforwarddodule Generation

will infer the arithmetic and relational operators from Verilog descriptions and
implement them accordingly.

10-10 HDL Synthesis Manual

User-Defined Module Generators 1=

Apart from the module generators that have been developed by Exemplar to support
the standard FPGA technologies, a user can build his/her own module generator.

The purpose of this chapter is to set guidelines and boundary conditions on how to use
the module generation environment to produce user-defined module generators with
the intended functionality.

Module generators are described in VHDL, regardless of the actual HDL input design
language.

User-defined module generators, as opposed to using overloaded functions, allow the
use of technology specific macros (with component instantiation) for operators in
VHDL or Verilog HDL.

The Module Generator Boundary

Since all operators in VHDL are defined for various sized vectors and integers, each
module generator description for a particular operator should be an entity with
generics.

Only one generic affects the amount of inputs and outputs that have to be generated.
This is the integer genergize . The amount of inputs and outputs generated by a
modgen description should exactly match the amount requiraizby. Any

discrepancy will be labeled as an error. Of course, the functionality inside the modgen
description is the responsibility of the modgen description designer. It is relatively easy
to let a"+" in VHDL work as a'-" with this amount of freedom.

11-1

11

11-2

Since the function of some operators is defined both for unsigned integers (or vectors)
and for signed integers, a boolean gensidned is supplied to indicate that a signed
or unsigned function needs to be generated.

Table 11-1 on page 3 states which VHDL operators are supported Moaithae
Generationenvironment, which generics are required, how many inputs are needed for
each (of the two) parameters of the operator and how many outputs should be
generated.

Note that the generisigned is not required for arithmetic operations. The reason is
that there is no difference between signed and unsigned arithmetic functions if the
input parameters and the output all have the ssimee , and thus the carry bit is not
used. The synthesis tools will make sure that this always happens.

In general, the module description should have two input vectors (one for each
parameter of the operator it represents), and one output vector.

HDL Synthesis Manual

11=

Table 11-1 Supported Operators, Their Module Generators And An Overview Of Boundary
Conditions For Correct Matching Of Operators And Module Generation

VHDL'87 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits
T modgen_add size size size size
- modgen_sub size size size size
- modgen_umin size size n/a size
"+ 1" modgen_inc size size n/a size
-1 modgen_dec size size n/a size
ot modgen_mult size size size size
" modgen_div size size size size
=" modgen_eq size size size 1 bit
=" modgen_ne size size size 1 bit
<" modgen_lIt size, signed size size 1 bit
"> modgen_gt size, signed size size 1 bit
"<=" modgen_le size, signed size size 1 bit
r=>" modgen_ge size, signed size size 1 bit
ek modgen_power size size size size
"mod" modgen_mod size size size size
"rem" modgen_rem size size size size
"abs" modgen_abs size size n/a size
VHDL '93 Modgen Required # of Input Bits
Operator Module Name Generics par.1 par. 2 # of Output Bits
sl sll size size size size
"srl" srl size size size size
"sla" sra size size size size
"sra" sra size size size size
"ror" ror size size size size
"rol" rol size size size size

User-Defined Module Generators

11-3

11

As an example, the entity VHDL description for a module generator that implements a
“<=" operator should look like this:

entity modgen_le is
generic (
size : integer := 8 ;
signed : boolean :=FALSE

)

port (
X,y : std_logic_vector (size-1 downto 0);
result : out std_logic

)

end modgen_le ;

Below are some important facts to keep in mind when defining module generators:

» The initial assignments to bosigned andsize are optional. These two generics
are required for thé<=" operator and therefore are always inferred by the
synthesis tools for each call of'a=" operator in VHDL.

» The types of the ports should represent arrays of bit values or single bit values. The
type std_logic_vector for vector types andtd_logic for bit values are
advised because they comply with the IEEE 1164 standard type definitions. Make
sure you include the IEEE 1164 package in your description. Use the following
statement before each new entity:

library ieee;
use ieee.std_logic_1164. al

* The names of the ports can be chosen freely. The associations are order dependent.
The first input portX in this example) will be associated with the parameter on the
left of the operator. The second port mentioned in the port interface list will be
associated with the parameter on the right of the operator.

» The output port mentioned (there can be only one) will be associated with the result
of the operator function.

11-4 HDL Synthesis Manual

11=

« The 'weight’ of the bits in a port which is a vector is also order dependent. The
LEFT most bit in the array range definition of the port is the MSB. In this example,
x is defined with a rangeize-1 downto O and therefore(size-1) is
MSB, andx(0) is LSB. If the range would have been defined as
(0 to size-1) , X(0) would have been MSB.

 If signed operation is required (signed is TRUE), Mhedule Generation
environment expects the MSB bit to be the sign bit, and the bit next to it will be the
new MSB.

Module Generator Contents

The VHDL entity for a module generator is relatively fixed for each module generator,
as shown in the previous section. This is needed to provide a guaranteed interface
between the module generators and VHDL operators they implement.

The contents of the module generators (the VHDL architecture) is completely left up to
the user. You can use all VHDL constructs as long as they do not violate the VHDL
synthesis restrictions.

Typically, component instantiations of technology specific macros will be used in the
module generators. Some guidelines should be considered when making module
generators:

1. Make sure that the module generator has a definition for each generic 'size’ that
could be used from a user HDL description.

2. The synthesis tools do not check the functionality of the module generator. It would
be fairly easy to implement subtractor functionality for thedgen_add module
generator. In that case, edetf operator in VHDL will build a subtractor circuit.
Make sure you verify the module generators for each generic size they could
implement.

3. If you use operators inside a module generator description, the synthesis tools will
NOT try to infer a module generator for these. Instead, the default random-logic
implementation for the operator will be chosen. This prevents infinite recursion
from occurring (module generators calling themselves). It also allows the user to
utilize a specific implementation operator for just a few sizes, and rely on the
default implementation for all others.

Below is an example of a module generator that implemed&ER8hard-macro if
the size of the required adder is between 4 and 8.

User-Defined Module Generators 11-5

11

library ieee ;
use ieee.std_logic_1164. all ; --Include IEEE 1164 type
-- definition
library exemplar ;
use exemplar.exemplar_1164. all ;--Includefunctions’extend’, "+"
-- etc.
entity modgen_add is
generic (size : integer) ;
port (X, Yy :std_logic_vector (size-1 downto 0);
0: out std_logic_vector (size-1 downto 0));
end modgen_add ;
architecture exemplar of modgen_add is
-- Declare the Hard Macro
component ADDERS
port (a, b: in std_logic_vector(7 downto 0);
add: in std_logic;
S: out std_logic_vector(7 downt o 0);
ofl: out std_logic);

end component
-- Declare internally used signals
signal intern_a, intern_b, intern_o :
std_logic_vector (7 downto 0);
constant pwr : std_logic :='1";

11-6

HDL Synthesis Manual

11=

--ADDERS8 hard macro example (cont.)
begin

0<=X+Yy;

end exemplar ;

1: if size>=4 and size <=8 generate

-- Adjust the inputs to the size of the hard macro
intern_a <= extend (x,8) ;
intern_b <= extend (y,8) ;

-- Instantiate the Hard Macro
il1: ADDERS8 port map (a=>intern_a, b=>intern_b,
add=>pwr,
s=>intern_o, ofl=> OPEN;

--Fortheoutput:pick-upthe LSBbitsfromthe hardmacro
0 <=intern_o (size-1 downto 0);

end generate

-- Default "+" for all other sizes :
12: if size<4 or size>8 generate

end generate ;

This is the description of a full definition of a module generator that instantiates an
ADDERS8hard macro (generic name, not from any specific library, used for this
example) for adders between 4 and 8 bits. A default implementation (random logic) is
provided for all sizes of adders that should not generate a hard macro.

Usage

To include a module generator description into Galileo, use the

-modgen= modgen_libraryoption to include a module generation library of

the specified technology and infer the required arithmetic and relational operations
of the required size from a user VHDL design. For Leonardo, use the
modgen_read modgen_librarycommand to load the module generation library

into the HDL database.

User-Defined Module Generators 11-7

11

11-8

The search path for these files is:

1. The current working directory

2. The$SEXEMPLAR/data/modgen directory
3. The$SEXEMPLAR/data directory

Multiple module generator files can be included. If there is an overlap of operators in
two included files, the operator from the last included file will be resolved. In any
case, for each operator resolved, Galileo reports the file that was used. Therefore, it
will be clear which operator has been resolved from which modgen file.

HDL Synthesis Manual

VHDL Index

A
alias, 2-65
architectures, 2-1
arithmetic and relational logic, 3-22
advanced design optimization, 3-28
module generation, 3-25
ranged integer, 3-27
resource sharing, 3-25
array type, 2-9, 2-21
syntax and semantics, 2-21
synthesis issue, 2-23
assignment statement, 2-38
signal, 2-38
variable, 2-38
attribute, 2-44
exemplar predefined attribute, 2-45
usage of attribute, 2-46
user-defined attribute, 2-46
vhdl predefined attribute, 2-45
Autologic II, 4-11

B

bidirectional buffer, 3-17
block, 2-48

bus, 3-18

bus class, 2-55

C

case statement, 2-34
clock

clock enable, 3-7
component instantiation, 2-58
conditional statement, 2-33
constant, 2-30

D

decoder, 3-32
design root, 4-3

E

entity and package, 4-1
loading in Galileo, 4-1
loading in Leonardo, 4-2
usage, 4-5

exemplar package, 4-11
predefined attribute, 4-12
predefined function, 4-14
predefined procedure, 4-20
predefined type, 4-12

exit statement, 2-36

Index-1

Index-2

F
finding definition of component, 4-3
flip-flop, 3-3

asynchronous sets and reset, 3-5
clock enable, 3-7

predefined procedure, 4-20
synchronous set and reset, 3-4

floating-point type, 2-19
for loop, 2-35, 2-36
function, 2-49

G

generate statement, 2-35
generic, 2-32

I/O buffer, 3-10
automatic assignment, 3-11
component instantiation, 3-13
manual assignment, 3-11

IEEE 1076, 2-28
IEEE 1076-1993, 4-2
IEEE 1164, 2-28
integer, 2-17

L

latch, 3-1, 3-2, 3-10
literal, 2-8
loop variable, 2-32

M

Mentor Graphics, 4-11
multiplexer, 3-31

N

next statement, 2-36

O

object, 2-30
constant, 2-30
generic, 2-32
loop variable, 2-32
port, 2-31
signal, 2-30
variable, 2-31, 3-9
operator, 2-40
IEEE 1076 predefined operator, 2-40
IEEE 1164 predefined operator, 2-43

operator overloading, 2-43

P

package, 2-64

physical type, 2-20

pla, 3-32

port, 2-31

post-synthesis functional simulation, 4-7
predefined flip-flops and latches, 3-10
procedure, 2-49

processes, 2-5

R
record, 2-24
register, 3-1

register class, 2-55
resolution function, 2-52
rom, 3-32

S

selector, 3-31
signal, 2-30
State, 3-22
state machine, 3-18
general state machine description, 3-18
power-up and reset, 3-22
state encoding, 3-22
vhdl coding style for state machine, 3-20

statement, 2-33

HDL Synthesis Manual

assignment statement, 2-38
conditional statement, 2-33
generate statement, 2-35
loop statement, 2-35
selection statement, 2-34
std_logic, 2-29, 2-41, 2-52, 2-53
subtype, 2-25
Synopsys integration and packages, 4-9
syntax and semantic restriction, 4-22
synthesis tool restrictions, 4-22
VHDL language Restriction, 4-23

T

technology-specific macro, 3-29
three-state buffer, 3-14
type, 2-9
array type, 2-21
enumeration type, 2-10
floating-point type, 2-19
IEEE 1076 predefined type, 2-28
IEEE 1164 predefined types, 2-28
integer type, 2-17
physical type, 2-20
record type, 2-24
subtype, 2-25
type conversion, 2-27

Vv

variable, 3-9
VHDL environment, 4-1

interfacing with other VHDL tools, 4-6
Viewlogic integration and packages, 4-8

w

wait statement, 3-8
while loop, 2-35

VHDL Index Index-3

Index-4 HDL Synthesis Manual

Verilog Index

A
always block,6-11

arithmetic and relational logic/-25
comparator design/-28
module generation/-27
resource sharing/-27

arithmetic operations/-31

B
bidirectional buffer, 7-10

boolean operations/-31

bus, 7-10

C

case statemen-26
automatic full case detectio®-29
automatic parallel case detection:30
casex statemen6-31
casez statemenH-31
enum type of case expressiof-31
multiplexer generation6-28

comparing with x and z8-1

compiler directive,6-41

continuous assignmen6-9
continuous assignment statemeft9
net declaration assignmer-9

D

data type,6-4
net data type 6-6
parameter data typd5-8
register data typeb-7
directives
parallel_case and full_cas#-30
translate_off and translate_or~31

disable statemen-33

encoding style,7-31
enum synthesis directive/-31

F
flip-flop, 7-2
asynchronous set and resét;4

Index-1

Index-2

clock enable,7-5
synchronous set and resef-3
for statement,6-32
function, 6-36

/0 buffer, 7-5
automatic assignment/-6
component instantiation/ -7
manual assignment(-7
if-else statementp-24

L
latch, 7-1

M
module, 6-2
module generation/-27

module instantiation©-14
parameter overrideb-15

N

net data type 6-6
supply net,6-7
wand and wor netB-7
wire and tri net,6-7

number, 6-3

O
one-hot encoding,/-22
operand,6-17
operator,6-17
arithmetic operator6-20
bit-wise operator,6-21

concatenation6-23

conditional operator6-22

logical operator,6-21

reduction operator6-22

relational and equality operato§-20
shift operator,6-22

signed and unsigned attribut®-23

R
register, 7-1
reset, 7-1

S

state encoding,/-21

state machine/-12
issues in state machine desigh:21
Mealy machine,7-18
Moore machine,/-14

syntax and semantic restriction8;3
synthesis directives

attribute, 7-32

enum, 7-31

parallel_case and full_cas&,-30
translate_off and translate_od-31

T
task, 6-38

technology-specific macro/-29
tristate buffer, 7-8

Vv

variable indexing of bit vector8-2

HDL Synthesis Manual

Modgen Index

A
area/delay trade-off attributed, 0-8

C
Counter,10-10
counter and RAM extraction] 0-10

D
disabling module generatiorl,0-9

M

module generation9-1

module generatorl1-1

module generator contentd, 1-5

module generator usagd,1-7

S

specifying module generation library,0-8

supported operators] 0-2
supported technologies 0-1

T

the module generator boundary1-1

U

using module generation with exemplar
synthesis tools10-8

V
Verilog, 10-10
verilog usage, 10-10

Index-1

Index-2 HDL Synthesis Manual

	Contents
	Introduction to VHDL Synthesis
	Overview
	VHDL and Synthesis
	In This Manual
	Customer Support

	VHDL Language Features
	Entities and Architectures
	Configuration
	Processes

	Literals
	Types
	Enumeration Types
	Syntax and Semantics
	Synthesis Issues

	Integer Types
	Syntax and Semantics
	Synthesis issues

	Floating-point Types
	Syntax and Semantics
	Synthesis Issues

	Physical Types
	Syntax and Semantics
	Synthesis Issues

	Array Types
	Syntax and Semantics
	Synthesis Issues

	Record Types
	Syntax and Semantics
	Synthesis Issues

	Subtypes
	Type Conversions
	IEEE 1076 Predefined Types
	IEEE 1164 Predefined Types

	Objects
	Signals
	Constants
	Variables
	Ports
	Generics
	Loop Variables

	Statements
	Conditional Statements
	Selection Statements
	Loop Statements and Generate Statements
	Assignment Statements

	Operators
	IEEE 1076 Predefined Operators
	IEEE 1164 Predefined Operators
	Operator Overloading

	Attributes
	VHDL Predefined Attributes
	Exemplar Predefined Attributes
	User-Defined Attributes
	Usage Of Attributes

	Blocks
	Functions And Procedures
	Resolution Functions
	Syntax and Semantics
	Synthesis Issues

	BUS and REGISTER
	Component Instantiation
	Packages
	Aliases

	The Art Of VHDL Synthesis
	Registers, Latches and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-Flops
	The Event Attribute
	Synchronous Sets And Resets
	Asynchronous Sets And Resets
	Clock Enable

	Wait Statements
	Variables
	Predefined Flip-flops and Latches

	Assigning I/O Buffers From VHDL
	Automatic Assignment Using Chip Mode
	Manual Assignment Using The BUFFER_SIG Property
	Buffer Assignment Using Component Instantiation

	Three-state Buffers
	Bidirectional Buffers
	Busses
	State Machines
	General State Machine Description
	VHDL Coding Style For State Machines
	Power-up And Reset
	State Encoding
	Arithmetic And Relational Logic
	Module Generation
	Resource Sharing
	Ranged Integers
	Advanced Design Optimization

	Technology-Specific Macros
	Multiplexers and Selectors
	ROMs, PLAs And Decoders

	The VHDL Environment
	Entity and Package Handling
	Loading Entities and Packages (Galileo)
	Loading Entities and Packages (Leonardo)

	Entity Compiled as the Design Root
	Finding Definitions of Components
	How to Use Packages

	Interfacing With Other VHDL Tools
	VHDL Simulators
	Post-Synthesis Functional Simulation

	Viewlogic
	Synopsys
	Mentor Graphics

	The Exemplar Packages
	Predefined Types
	Predefined Attributes
	Predefined Functions
	Predefined Procedures
	Flip-flops
	Latches
	Tristate Busses
	pullup(busname)
	pulldn(busname)
	trstmem(busname)

	Syntax and Semantic Restrictions
	Synthesis Tool Restrictions
	VHDL Language Restrictions
	After Clause Ignored
	Restrictions on Initialization Values
	Ranges Of Loops Have To Evaluate To Constants During Compile Time
	Restrictions On Edge-Detecting Attributes (’event)
	Restrictions on Wait Statements
	Restrictions on Multiple Drivers on One Signal

	Introduction to Verilog HDL Synthesis
	Verilog and Synthesis
	Synthesizing the Verilog Design

	Verilog Language Features
	Modules
	 macromodule’

	Numbers
	Data Types
	Net Data Types
	wire and tri Nets
	Supply Nets
	wand and wor Net Types

	Register Data Type
	Parameter Data Type
	Declaration Local to Begin-End Block
	Array of reg and integer Declaration (Memory Declaration)

	Continuous Assignments
	Net Declaration Assignment
	Continuous Assignment Statement

	Procedural Assignments
	Always Blocks
	Module Instantiation
	Parameter Override During Instantiation of Module
	Defparam Statement
	Example:

	 unconnected_drive’ and ’nounconnected_drive’

	Operators
	Operands
	Arithmetic Operators
	Relational and Equality Operators
	=== and !== Operators are Treated as == and !=
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation

	 signed and ‘unsigned Attributes on Operators
	Operator Precedence

	Statements
	If-Else Statements
	Case Statements
	Case Statement and Multiplexer Generation
	Automatic Full Case Detection
	Automatic Parallel Case Detection
	casex Statement
	casez Supported
	 case’ and ’default’ Statements

	for Statements
	Disable Statement
	forever, repeat, while and Generalized Form of for Loop

	Functions and Tasks
	Functions
	Tasks
	Inout Ports in Task
	Access of Global Variables from Functions and Tasks

	System Task Calls
	System Function Calls
	Initial Statement
	Compiler Directives

	The Art of Verilog Synthesis
	Registers, Latches, and Resets
	Level-Sensitive Latch
	Edge-Sensitive Flip-flops
	Synchronous Sets and Resets
	Asynchronous Sets and Resets
	Clock Enable

	Assigning I/O Buffers from Verilog
	Automatic Assignment Using Chip Mode
	Manual Assignment Using the Control File
	Buffer Assignment Using Component Instantiation

	Tristate Buffers
	Bidirectional Buffers
	Buses
	State Machines
	Moore Machines
	Mealy Machines
	Issues in State Machine Design
	State Encoding
	One-Hot Encoding
	Initialization and Power-Up Conditions

	Arithmetic and Relational Logic
	Module Generation
	Resource Sharing and Common Subexpression Elimination
	Comparator Design

	Technology-Specific Macros
	Synthesis Directives
	parallel_case and full_case directives
	translate_off and translate_on directives
	enum directive
	attribute directive

	Verilog and Synthesis of Logic
	Comparing With X and Z
	Variable Indexing of Bit Vectors
	Syntax and Semantic Restrictions
	Unsupported Verilog Features
	Supported Verilog Features (Limited in Usage)
	Supported Verilog Features (Ignored by Exemplar Synthesis)

	Introduction to Module Generation
	Using Module Generation
	Supported Technologies
	Supported Operators
	Counters and RAMs
	Counter and RAM Inferencing and Module Generation

	Using Module Generation With Exemplar Synthesis Tools
	Specifying Module Generation Library
	Area/Delay Trade-offs Attributes
	Disabling Module Generation

	Counter and RAM Extraction
	Verilog Usage

	User-Defined Module Generators
	The Module Generator Boundary
	Module Generator Contents
	Usage

	VHDL Index
	Verilog Index
	Modgen Index

