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Typical Pipe System

Source: Munson, Young and Okiishi, Figure 8.1, p. 402
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Classification of Pipe flows

• Open channel versus Pipe Flow

• Fully Developed flow

• Laminar versus Turbulent flow.

Laminar: Re < 2000

Turbulent: Re > 2000

Re =
ρV L

µ
=

V L

ν

V is a characteristic velocity

L is a characteristic length
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Conditions for an (Easy) Analytical Solution

Analytical solution is possible for following reasonable assumptions

• Steady

• Incompressible

• Pipe cross-section doesn’t change with axial position

• Flow is fully-developed

Head Loss in Pipe Flow: January 23, 2007 page 3



Developing Flow in a Pipe

• Flow becomes fully developed

after an entrance length

• Velocity profile is independent of

axial position

• Pressure gradient is constant

dp

dx
= constant

=⇒ p(x) is linear in x

• Applies to laminar and turbulent

flow
Source: Munson, Young and Okiishi, Figure 8.6, p. 407
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Entrance Length

Laminar flow: (Red < 2000)

Le

d
≈ 0.06Red

Turbulent flow: (Red > 2000)

Le

d
≈ 4.4Re

1/6
d

See Munson, Young and Okiishi
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In most design calculations, the flow in straight sections is assumed to be fully developed.

The entrance length correlations are used to check to see whether this is a good

assumption.

Head Loss in Pipe Flow: January 23, 2007 page 5



Tools

• Mass conservation for incompressible flowX
Qi = 0 Qi = ViAi

• Energy conservation (MYO, Equation (5.84), p. 280)»
p

γ
+

V 2

2g
+ z

–
out

=

»
p

γ
+

V 2

2g
+ z

–
in

+ hs − hL

NOTE : All “h” terms on right hand side are positive.

• Semi-empirical information: Darcy-Weisbach equation and Moody chart
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Force Balance on a Control Volume in a Pipe (1)

Source: Munson, Young and Okiishi, Figure 8.8, p. 409

Force balance on a plug-shaped element of fluid gives

(p1)πr
2 − (p1 −∆p)πr

2 − (τ)2πr` = 0 (1)

The pressure is assumed to decrease in the flow direction, hence the pressure on the right

hand side is p1 −∆p.
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Force Balance on a Control Volume in a Pipe (2)

Rearrange Equation (1)
∆p

`
=

2τ

r
(2)

Equation (1) shows that the pressure drop exists because of shear stress on the

circumpherential surface of the fluid element. Ultimately this shear stress is transmitted

to the wall of the pipe.

Solve Equation (2) for τ

τ =
∆p

2`
r (3)

Thus, if ∆p/` is constant, i.e. if the flow is fully-developed then the shear stress varies

linearly with r. This result applies for laminar or turbulent flow.
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Force Balance on a Control Volume in a Pipe (3)

Evaluate Equation (3) at r = R, i.e. at the wall

τw =
∆p

2`
R (4)

Summary so far:

• Force balance applies to laminar or turbulent flow

• For fully-developed flow, dp/dx is constant. As a consequence the shear stress profile

is linear: τ = 0 at the centerline and τ = τw at r = R.

• We need a relationship between τ and u to obtain the velocity profile.
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Analytical Solution for Laminar Flow (1)

Introduce modified form of Newton’s

Law. This applies to laminar flow only

τ = −µ
du

dr
(5)

The minus sign gives positive τ (as

shown in original control volume) when

du/dr < 0.

du
dr

< 0: u decreases as 
r increases

x

r

Since the pressure gradient is constant for fully-developed flow

∆p

`
=

dp

dx
(6)
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Analytical Solution for Laminar Flow (2)

Substitute formulas for τ and dp/dr into Equation (3)

−µ
du

dr
=

1

2

dp

dx
r

Since dp/dx is constant (for fully developed flow), the preceding ODE can be rearranged

and integrated
du

dr
= −

1

2µ

dp

dx
r = Kr

where K = −(1/2µ)(dp/dx).

Integrate twice
du

dr
= Kr =⇒ u =

1

2
Kr

2
+ C1

Apply B.C. that u = 0 and r = D/2 to get C1 =
D2

16µ

dp

dx

Head Loss in Pipe Flow: January 23, 2007 page 11



Analytical Solution for Laminar Flow (3)

The analytical solution for velocity profile in laminar flow is

u(r) = −
D2

16µ

dp

dx

"
1−

„
r

R

«2
#

Note that dp/dx < 0 for flow in the positive x direction.

Also remember that dp/dx is constant. In MYO, dp/dx = ∆p/`.

Summary so far:

• Apply a force balance to a differential control volume to get an ODE.

• Integrate the ODE analytically to get the velocity profile.

Next: Use the velocity profile to derive formulas useful for practical engineering design.
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Analytical Solution for Laminar Flow (4)

The solution to the velocity profile enables us to compute some very important practical

quantities

The maximum velocity in the pipe is at the centerline

Vc = u(0) = −
D2

16µ

dp

dx

=⇒ u(r) = Vc

"
1−

„
r

R

«2
#
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Analytical Solution for Laminar Flow (5)

The average velocity in the pipe

Q = V A V = average velocity A = cross sectional area

The total flow rate, and hence the average velocity, can be computed exactly because the

formula for the velocity profile is known.

Q =

Z R

0

u(r) dA =⇒ V =
Q

A
=

1

A

Z R

0

u(r) dA
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Analytical Solution for Laminar Flow (6)

Carry out the integration. It’s easy!

Q =

Z R

0

u(r) 2πr dr

= 2πVc

Z R

0

"
1−

„
r

R

«2
#

r dr

= 2πVc

"
r2

2
−

r4

4R2

#R

0

=
πR2Vc

2

Therefore

V =
Q

A
=

Vc

2

sc

dA = 2π rdr

r

R

dr
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Analytical Solution for Laminar Flow (7)

Total flow rate is

Q =
πR2Vc

2
=

πR2

2

D2

16µ

„
−

dp

dx

«
=

πD4

128µ

„
−

dp

dx

«
Now, for convenience define ∆p as the pressure drop that occurs over a length of pipe L.

In other words, let −
dp

dx
≡

∆p

L

Then

Q =
πD4

128µ

∆p

L
(7)

So, for laminar flow, once we know Q and L, we can easily compute ∆p and vice versa.
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Implications of the Energy Equation

Apply the steady-flow energy equation»
p

γ
+

V 2

2g
+ z

–
out

=

»
p

γ
+

V 2

2g
+ z

–
in

+ hs − hL

For a horizontal pipe (zout − zin) with no pump (hs = 0), and constant cross section

(Vout = in), the energy equation reduces to

hL =
pin − pout

γ
=

∆p

γ

Solve Equation (7) for ∆p

∆p =
128µQL

πD4
=⇒ hL =

128µQL

πγD4
(8)

These formulas only apply to laminar flow. We need a more general approach.
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Dimensional Analysis

The pressure drop for laminar flow in a pipe is

∆p =
128µQL

πD4
(8)

or, in the form of a dimensional analysis

∆p = φ(V, L, D, µ)

where φ( ) is the function in Equation (8). Note that ρ does not appear. For turbulent

flow, fluid density does influence pressure drop.

For turbulent flow the dimensional form of the equation for pressure drop is

∆p = φ(V, L, D, µ, ρ, ε)

where ε is the length scale determining the wall roughness.
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Turbulent Flow in Pipes (1)

Consider the instantaneous velocity at a point in a pipe when the flow rate is increased

from zero up to a constant value such that the flow is eventually turbulent.

Source: Munson, Young and Okiishi, Figure 8.11, p. 418
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Turbulent Flow in Pipes (2)

Reality:

Turbulent flows are unsteady:

fluctuations at a point are caused by

convection of eddies of many sizes.

As eddies move through the flow the

velocity field at a fixed point changes.

Model:

When measured with a “slow” sensor

(e.g. Pitot tube) the velocity at a

point is apparently steady. Treat flow

variables (velocitie components,

pressure, temperature) as time

averages (or ensemble averages).

These averages are steady.

Engineering Model:
Flow is “Steady-in-the-Mean”

Source: Munson, Young and Okiishi, Figure 8.1,

p. 402
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Turbulent Velocity Profiles in a Pipe

A power-law function fits the shape of

the turbulent velocity profile

ū

Vc

=

„
1−

r

R

«1/n

where ū = ū(r) is the mean axial

velocity, Vc is the centerline velocity, and

n = f(Re). See Figure 8.17, p. 4.26

Source: Munson, Young and Okiishi,

Figure 8.18, p. 427
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Structure of Turbulence in a Pipe Flow

Source: Munson, Young and Okiishi, Figure 8.15, p. 424
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Roughness and the Viscous Sublayer

Source: Munson, Young and Okiishi, Figure 8.19, p. 431
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Head Loss Correlations (1)

For turbulent flow the dimensional form of the equation for pressure drop is

∆p = φ(V, L, D, µ, ρ, ε)

where ε is the length scale determining the wall roughness.

Form dimensionless groups to get

∆p
1
2ρV 2

= φ̃

„
ρV D

µ
,

L

D
,

ε

D

«
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Head Loss Correlations (2)

From practical experience we know that the pressure drop increases linearly with pipe

length, as long as the entrance effects are negligible.

Factor out L/D
∆p

1
2ρV 2

=
L

D
φ̃2

„
ρV D

µ
,

ε

D

«
(9)

The φ̃2 function is universal: it applies to all pipes. It’s called the friction factor, and

given the symbol f

f = φ̃2

„
ρV D

µ
,

ε

D

«
(10)

Combine Equation (9) and Equation (10) to get a working formula for the Darcy friction

factor

f =
∆p

1
2ρV 2

D

L
(11)
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Friction Factor for Laminar Flow

The pressure drop for fully-developed laminar flow in a pipe is

∆p =
128µQL

πD4
(8)

Divide both sides by (1/2)ρV 2 and rearrange

∆p
1
2ρV 2

=
1

1
2ρV 2

128µQL

πD4
=

1
1
2ρV 2

128µV (π/4)D2L

πD4
=

64µ

ρV D

L

D
=

64

ReD

L

D

Therefore, for laminar flow in a pipe

flam =
64

ReD
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Colebrook Equation

Nikuradse did experiments with artificially roughened pipes

Colebrook and Moody put Nikuradse’s data into a form useful for engineering calculations.

The Colebrook equation

1
√

f
= −2 log10

„
ε/D

3.7
+

2.51

Re
√

f

«
(12)
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Moody Diagram
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