Heat, Mass, and Energy Transfer

Dr. Nancy Moore

We are grateful to NCEES for granting us permission to copy short sections from the FE Handbook to show students how to use Handbook information in solving problems. This information will normally appear in these videos as white boxes.

Other Disciplines FE Specifications

Topic: Heat, Mass, and Energy Transfer 9-14 FE exam problems	Exam Problem Numbers
A. Energy, heat, and work	$82,83,98$
B. Thermodynamic laws (e.g., 1st law, 2nd law)	$82,93,98$
C. Thermodynamic equilibrium	
D. Thermodynamic properties (e.g., entropy, enthalpy, heat capacity)	92,98
E. Thermodynamic processes (e.g., isothermal, adiabatic, reversible, irreversible)	$83,92,93,94$
F. Mixtures of nonreactive gases	

Other Disciplines FE Specifications

Topic: Heat, Mass, and Energy Transfer 9-14 FE exam problems	Exam Problem Numbers
G. Heat transfer (e.g., conduction, convection, and radiation)	95,100
H. Mass and energy balances	83
I. Property and phase diagrams (e.g., T-s, P-h)	96
J. Phase equilibrium and phase change	25
K. Combustion and combustion products (e.g., $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NO}_{x}$, ash, particulates)	
L. Psychrometrics (e.g., relative humidity, wet-bulb)	

1. The thermodynamic state of a mixture of saturated liquid and saturated vapor is specified by giving any of the following EXCEPT:
(A) temperature and quality
(B) pressure and quality
(C) specific volume and specific internal energy
(D) temperature and pressure
```
Properties for Two-Phase (vapor-liquid) Systems
Quality x (for liquid-vapor systems at saturation) is defined as
the mass fraction of the vapor phase:
    x= mg}/(\mp@subsup{m}{g}{}+\mp@subsup{m}{f}{\prime})\mathrm{ , where
mg}=\mathrm{ mass of vapor
mf}=\mathrm{ mass of liquid
Specific volume of a two-phase system can be written:
v =xvg}+(1-x)\mp@subsup{v}{f}{}\mathrm{ or }v=\mp@subsup{v}{f}{}+x\mp@subsup{v}{fg}{\primeg}\mathrm{ , where
v
vg = specific volume of saturated vapor
v/g}=\mathrm{ specific volume change upon vaporization
    = vg
```

2. The change in enthalpy of an ideal gas undergoing a constant volume process is given by
(A) $\mathrm{C}_{v} \Delta \mathrm{~T}$
(B) $\mathrm{C}_{\mathrm{P}} \Delta \mathrm{T}$
(C) $\mathrm{R} \Delta \mathrm{T}$
(D) $\mathrm{P} \Delta \mathrm{V}$

State Functions (properties)	
Absolute Pressure, P	$\left(\mathrm{lbffin}^{2}\right.$ or Pa$)$
Absolute Temperature, T	$\left({ }^{\circ} \mathrm{R}\right.$ or K$)$
Volume, V	$\left(\mathrm{ft}^{3}\right.$ or $\left.\mathrm{m}^{3}\right)$
Specific Volume, $v=V / m$	$\left(\mathrm{ft}^{3} / \mathrm{lbm}\right.$ or $\left.\mathrm{m}^{3} / \mathrm{kg}\right)$
Internal Energy, U	(Btu or kJ$)$
Specific Internal Energy,	
$\quad u=U / m$	(Btu/lbm or $\mathrm{kJ} / \mathrm{kg})$
Enthalpy, H	(Btu or kJ$)$
Specific Enthalpy,	
$h=u+P v=H / m$	(Btu/lbm or $\mathrm{kJ} / \mathrm{kg})$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$
\begin{aligned}
& \Delta u=c_{v} \Delta T ; \quad \Delta h=c_{p} \Delta T \\
& \Delta s=c_{p} \ln \left(T_{2} / T_{1}\right)-R \ln \left(P_{2} / P_{1}\right) \\
& \Delta s=c_{v} \ln \left(T_{2} / T_{1}\right)+R \ln \left(v_{2} / v_{1}\right)
\end{aligned}
$$

3. An isentropic process is one which is
(A) only adiabatic
(B) reversible but not adiabatic
(C) reversible only
(D) reversible and adiabatic

Turbines, Pumps, Compressors: Often considered adiabatic
(no heat transfer). Velocity terms usually can be ignored.
There are significant work terms and a single-mass stream.
Isentropic Process
$\Delta s=0 ; d s=0$
A reversible adiabatic process is isentropic.

Reversible means that a process is ideal and therefore has no irreversibilities.
4. Water, initially a saturated vapor at 0.2 MPa , is compressed isentropically to 1 MPa . The temperature at the end of the process is, in ${ }^{\circ} \mathrm{C}$, most nearly
(A) 180
(B) 300
(C) 420
(D) 540

```
Isentropic Process
    \Deltas=0;ds=0
A reversible adiabatic process is isentropic.
```


4. Water, initially a saturated vapor at 0.2 MPa , is compressed isentropically to 1 MPa . The temperature at the end of the process is, in ${ }^{\circ} \mathrm{C}$, most nearly
(A) 180
(B) 300
(C) 420
(D) 540

STEAM TABLESSaturated Water - Temperature Table												
Temp.	Sat.	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy kJ/kg			Enthalpy kJ/kg			$\begin{aligned} & \text { Entropy } \\ & \mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{~K}) \end{aligned}$		
$\begin{gathered} { }^{9} \mathbf{C} \\ T \end{gathered}$	$\begin{gathered} \mathbf{k P a} \\ p_{\mathrm{ar} t} \end{gathered}$	Sat. liquid v_{f}	Sat. vapor v_{ε}	Sat. liquid u_{f} \qquad	Evap. ${ }^{4} \mathrm{~s}$	Sat. vapor u_{g}	Sat. liquid h_{f}	Evap. h_{5}	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ h_{8} \\ \hline \end{gathered}$	Sat. liquid s_{f}	Evap.	Sat. vapor S_{8}
$\begin{gathered} 0.01 \\ 5 \\ 10 \end{gathered}$	0.6113 0.8721 1.2276	$\begin{aligned} & 000100 \\ & 0.00100 \\ & 0.001000 \end{aligned}$	$\begin{aligned} & \hline 206.14 \\ & 147.12 \\ & 10638 \end{aligned}$	$\begin{array}{r} 0.00 \\ 20.97 \\ 42.00 \end{array}$	$\begin{aligned} & 2375.3 \\ & 2361.3 \\ & 2347.2 \end{aligned}$	2375.3 23823 2393.2	$\begin{array}{r} 0.01 \\ 2098 \\ 4201 \end{array}$	$\begin{aligned} & 25013 \\ & 24396 \\ & 2477.7 \end{aligned}$	23014 2510.6 25198	0.0000 0.0761 0.1510	$\begin{aligned} & 9.156 \\ & 8.94 \% \\ & 8.749 \end{aligned}$	$\begin{aligned} & 9.1562 \\ & 9.0057 \\ & 8.9008 \end{aligned}$

At $P_{1}, s_{g}=s_{1} \approx 7.1296 \mathrm{~kJ} / \mathrm{kgK}$
$s_{1}=s_{2}, P_{2}=1 \mathrm{MPa}$
At $P_{2}, s_{g} \approx 6.5857 \mathrm{~kJ} / \mathrm{kgK}$ so $s_{2}>s_{g}$.
Therefore, state 2 is a superheated vapor.

Superheated Water Tables								
$\begin{gathered} T \\ \text { Temp. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} v \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	$\begin{gathered} u \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} h \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} s \\ \mathrm{k} \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} v \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	$\mathrm{kJ} / \mathrm{kg}$	$\begin{gathered} h \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} s \\ \mathrm{kJJ} /(\mathrm{kg} \cdot \mathrm{~K}) \\ \hline \end{gathered}$
	$p=0.01 \mathrm{MPa}\left(45.81{ }^{\circ} \mathrm{C}\right)$				$p=0.05 \mathrm{MPa}\left(81.33^{\circ} \mathrm{C}\right)$			
Sat	14.674 14.869	2437.9 2443.9	$\begin{aligned} & 2584.7 \\ & 2592.6 \end{aligned}$	8.1502 8.1749	3.240	2483.9	26459	7.5939
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401
200	21.825	26613	2879.5	8.9038	4.356	2659.9	2877.7	8.1589
250	24.136	2736.0	29773	9.1002	4.820	2735.0	2976.0	8.3556

5. If air is compressed isentropically to twice its original pressure, its absolute temperature increases by a factor of
(A) 2
(B) $1 / 2$
(C) $2^{0.286}$
(D) $2^{3.5}$

Also, for constant entropy processes:

$$
\begin{aligned}
& \frac{P_{2}}{P_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k} ; \quad \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1}, \quad \text { where } k=c_{p} / c_{v}
\end{aligned}
$$

$$
\frac{T_{2}}{T_{1}}=\left(\frac{2 P_{1}}{P_{1}}\right)^{\frac{1.4-1}{1.4}}=2^{0.286}
$$

Thermal and Physical Property Tables (at room temperature)

GASES							
Substance	Mol wt	c_{p}		c_{v}		k	R
		k.J/(kg.K)	Btu/(lbm- ${ }^{\circ}$)	kJ/(kg.K)	Btu/(lbm- ${ }^{\circ} \mathrm{R}$)		kJ/(kg $\cdot \mathrm{K}$)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870

6. The area under the $\mathrm{P}-\mathrm{v}$ process curve for a closed system represents:
(A) internal energy change
(B) enthalpy change
(C) heat transfer
(D) work
```
Reversible boundary work is given by }\mp@subsup{w}{\textrm{b}}{}=\intPdv
Special Cases of Closed Systems (with no change in kinetic or
potential energy)
Constant System Pressure process (Charles' Law):
    w
    (ideal gas) }T/v=\mathrm{ constant
Constant Volume process:
    wb
    (ideal gas) T/P= constant
Isentropic process (ideal gas):
    Pv}= constant
    w = (P2 v}\mp@subsup{v}{2}{}-\mp@subsup{P}{1}{}\mp@subsup{v}{1}{})/(1-k
        =R(T}\mp@subsup{T}{2}{}-\mp@subsup{T}{1}{})/(1-k
```


Constant Temperature process (Boyle's Law):
(ideal gas) $P v=$ constant
$w_{\mathrm{b}}=R T \ln \left(v_{2} / v_{1}\right)=R T \ln \left(P_{1} / P_{2}\right)$
Polytropic process (ideal gas):
$P v^{n}=$ constant
$w=\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-n), n \neq 1$
7. A Carnot engine operates between $35^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$. If the work output is 1000 kW , the rate of heat rejection, in kW , is most nearly
(A) 670
(B) 1070
(C) 1470
(D) 1870

BASIC CYCLES

Heat engines take in heat Q_{H} at a high temperature T_{H}, produce a net amount of work W, and reject heat Q_{L} at a low temperature T_{L}. The efficiency η of a heat engine is given by:

$$
\eta=W / Q_{H}=\left(Q_{H}-Q_{L}\right) / Q_{H}
$$

The most efficient engine possible is the Carnot Cycle. Its efficiency is given by:

$$
\eta_{c}=\left(T_{H}-T_{D}\right) / T_{H} \text {, where }
$$

T_{H} and $T_{L}=$ absolute temperatures (Kelvin or Rankine).

$$
\begin{aligned}
& \eta_{\text {th, Carnot }}=1-\frac{T_{L}}{T_{H}}=1-\frac{308 \mathrm{~K}}{473 \mathrm{~K}}=0.349 \\
& \eta_{t h}=\frac{W_{n e t}}{Q_{H}} \Rightarrow Q_{H}=\frac{W_{n e t}}{\eta_{t h}}=2865 \mathrm{~kW}=Q_{i n}
\end{aligned}
$$

$$
Q_{n e t}=W_{n e t} \text { for any cycle }
$$

$$
Q_{L}=Q_{H}-W_{n e t}=1865 \mathrm{~kW}
$$

8. An ideal gas contained in a closed system receives $60 \mathrm{~kJ} / \mathrm{kg}$ of work and has $60 \mathrm{~kJ} / \mathrm{kg}$ of heat transfer to surroundings during a process. The gas has constant specific heats: $\mathrm{c}_{\mathrm{V}}=0.6 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $\mathrm{c}_{\mathrm{P}}=1.1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. As a result of the process, the temperature change of the gas, in ${ }^{\circ} \mathrm{C}$, is most nearly
(A) 0
(B) 100
(C) -100
(D) -55

$$
\begin{aligned}
& \text { Closed Thermodynamic System } \\
& \text { No mass crosses system boundary } \\
& Q-W=\Delta U+\Delta K E+\Delta P E \\
& \text { where } \Delta U=\text { change in internal energy } \\
& \Delta K E=\text { change in kinetic energy } \\
& \Delta P E=\text { change in potential energy }
\end{aligned}
$$

$$
\begin{aligned}
& q_{n e t}=q_{i n}-q_{o u t} \\
& w_{n e t}=w_{o u t}-w_{i n}
\end{aligned}
$$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$
\begin{aligned}
& \Delta u=c_{v} \Delta T ; \quad \Delta h=c_{p} \Delta T \\
& \Delta s=c_{p} \ln \left(T_{2} / T_{1}\right)-R \ln \left(P_{2} / P_{1}\right) \\
& \Delta s=c_{v} \ln \left(T_{2} / T_{1}\right)+R \ln \left(v_{2} / v_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
q_{\text {net }}-w_{n e t}=\Delta u \\
w_{\text {in }}-q_{\text {out }}=\Delta u=c_{v} \Delta T
\end{gathered}
$$

9. The thermodynamic properties of a compressed liquid at temperature T_{0} and pressure P_{o} are nearly equal to the thermodynamic properties of which of the following?
(A) a saturated liquid at temperature T_{0}
(B) a saturated liquid at the critical point
(C) a saturated liquid at pressure P_{0}
(D) a saturated liquid at atmospheric pressure

Methane, CH_{4}, burns with air according to the reaction equation

$$
\mathrm{CH}_{4}+6\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \Rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{O}_{2}+22.56 \mathrm{~N}_{2}
$$

10. If the mass flow rate of the methane is $1 \mathrm{~kg} / \mathrm{s}$, the mass flow rate of the air supplied in kg / s is most nearly,
(A) 6
(B) 12
(C) 40
(D) 52

Incomplete Combustion
Some carbon is burned to create carbon monoxide (CO).

$$
A F=\frac{m_{a}}{m_{f}}=\frac{6(4.76)(29)}{1(16)}=51.7
$$

Molar Air-Fuel Ratio, $\overline{A / F}=\frac{\text { No. of moles of air }}{\text { No. of moles of fuel }}$
Thermal and Physical Property Tables (at room temperature)
Air-Fuel Ratio, $A / F=\frac{\text { Mass of air }}{\text { Mass of fuel }}=(\overline{A / F})\left(\frac{\mathrm{M}_{\text {uir }}}{\mathrm{M}_{\text {fuel }}}\right)$

GASES							
Substance	Mol wt	c_{p}		c_{v}		k	R
		kJ/(kg.K)	$\mathbf{B t u} /(\mathrm{lbm}-\mathrm{R})$	kJ/(kg•K)	Btu/(lbm- ${ }^{\circ}$)		kJJ/(kg.K)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430

Methane, CH_{4}, burns with air according to the reaction equation

$$
\mathrm{CH}_{4}+6\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \Rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{O}_{2}+22.56 \mathrm{~N}_{2}
$$

11. If the pressure of the products is 100 kPa , the pressure of the water in the product gases, in kPa , is most nearly,
(A) 6.8
(B) 7.3
(C) 25
(D) 100

$$
P_{v}=y_{v} P_{m i x}=\frac{2}{1+2+4+22.56}(100 \mathrm{kPa})=6.77 \mathrm{kPa}
$$

Thermal and Physical Property Tables
(at room temperature)

GASES							
Substance	Molwt	c_{p}		c_{v}		k	R
		kJJ/(kg.K)	Btu/(lbm- ${ }^{\circ}$)	k.J/(kg.K)	Btu/(1bm- ${ }^{\circ} \mathrm{R}$)		kJJ/(kg.K)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870

Henry's Law at Constant Temperature At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., $x=0$. $P_{i}=P y_{i}=h x_{p} \text { where }$ $h=$ Henry's Law constant $P_{t}=$ partial pressure of a gas in contact with a liquid $x_{f}=$ mol fraction of the gas in the liquid $y_{t}=\mathrm{mol}$ fraction of the gas in the vapor $P=$ total pressure Raoult's Law for Vapor-Liquid Equilibrium Valid for concentrations near 1; i.e., $x_{l}=1$ at low pressure (ideal gas behavior) $P_{t}=x_{t} P_{t}^{*} \text {, where }$ $P_{t}=$ partial pressure of component i $x_{I}=$ mol fraction of component i in the liquid $P_{i}^{*}=$ vapor pressure of pure component i at the temperatu of the mixture

Methane, CH_{4}, burns with air according to the reaction equation

$$
\mathrm{CH}_{4}+6\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \Rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{O}_{2}+22.56 \mathrm{~N}_{2}
$$

12. If the pressure of the products is sufficient for the pressure of the water in the products to be 20 kPa , the temperature at which the water would begin to condense when the products are cooled at constant pressure is, in ${ }^{\circ} \mathrm{C}$, most nearly
(A) 45
(B) 60
(C) 85
(D) 100

13. A room contains air at $30^{\circ} \mathrm{C}$ and a total pressure of 96.0 kPa with a relative humidity of 75 percent. The partial pressure of dry air is

(A) 82.0 kPa
(B) 85.8 kPa (C) 92.8 kPa
(D) 90.6 kPa

Steremed					
			Inerumilimery	cin	(entopy
$\stackrel{\text { c }}{\sim}$	$\underset{\substack{\text { Prase } \\ \text { ura }}}{ }$	Sat. Sat. liquid vapor			
	cin				\%

$$
\begin{gathered}
P_{g} \text { at } T=4.246 \mathrm{kPa} \\
\Phi=.75=\frac{P_{v}}{P_{g}} \text { so } P_{v}=3.1845 \mathrm{kPa} \\
P_{\text {air }}=P-P_{v}=96.0 \mathrm{kPa}-3.1845 \mathrm{kPa}=92.8 \mathrm{kPa}
\end{gathered}
$$

PSYCHROMETRICS

Properties of an air-water vapor mixture at a fixed pressure are given in graphical form on a psychrometric chart as provided in this section. When the system pressure is 1 atm , an ideal-
gas mixture is assumed.
The definitions that follow use subscript a for dry air and v for water vapor.
$P=$ pressure of the air-water mixture, normally 1 atm $T=$ dry-bulb temp (air/water mixture temperature)
$P_{a}=$ partial pressure of dry air
$P_{v}=$ partial pressure of water vapor

$$
P=P_{a}+P_{v}
$$

Specific Humidity (absolute humidity, humidity ratio) ω :

$$
\omega=m_{v} / m_{a} \text {, where }
$$

$m_{v}=$ mass of water vapor
$m_{a}=$ mass of dry air

$$
\omega=0.622 P_{v} / P_{a}=0.622 P_{v} /\left(P-P_{v}\right)
$$

Relative Humidity (rh) ϕ :

$$
\phi=P_{v} / P_{g}, \text { where }
$$

$P_{g}=$ saturation pressure of water at T.

14. An ideal gas mixture whose apparent molar mass is $20 \mathrm{~kg} / \mathrm{kmol}$

 consists of N_{2} and three other gases. If the mole fraction of nitrogen is 0.55 , its mass fraction is(A) 0.23
(B) 0.39
(C) 0.55
(D) 0.77

$$
\begin{gathered}
\text { Mole fraction, } x_{i}=0.55 \\
\text { Mass fraction, } y_{i}=\frac{x_{i} M_{i}}{M}=\frac{0.55(28 \mathrm{~kg} / \mathrm{kmol})}{(20 \mathrm{~kg} / \mathrm{kmol})}=0.77
\end{gathered}
$$

Thermal and Physical Property Tables
(at room temperature)

GASES							
Substance	Mol wt	c_{p}		c_{v}		k	R
		kJ/(kg•K)	Btu/(lbm- R)	$\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$	Btu/(lbm- ${ }^{\circ}$)		kJ/(kg•K)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430

15. A piston-cylinder device contains an ideal-gas mixture of 3 kmol of He gas and 7 kmol of Ar gas at $50^{\circ} \mathrm{C}$ and 400 kPa . Now the gas expands at constant pressure until its volume doubles. The amount of heat transfer to the gas mixture is
(A) 67 MJ
(B) 4.2 MJ
(C) 27 MJ

Ideal Gas

For an ideal gas, $P v=R T$ or $P V=m R T$, and $P_{1} v_{1} / T_{1}=P_{2} v_{2} / T_{2}$, where

Special Cases of Closed Systems (with no change in kinetic or potential energy)
 Constant System Pressure process (Charles' Law):
 $$
w_{\mathrm{b}}=P \Delta v
$$
 $$
\text { (ideal gas) } T / v=\text { constant }
$$

Thermal and Physical Property Tables (at room temperature)

GASES							
Substance	Molwt	c_{p}		c_{v}		k	R
		kJ/(kg.K)	Btu/(lbm- ${ }^{\circ} \mathrm{R}$)	kJ/(kg•K)	Btu/(lbm- ${ }^{\circ}$)		kJ/(kg•K)
Gases							
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430

$\left(\frac{P V}{T}\right)_{1}=\left(\frac{P V}{T}\right)_{2}$ so $T_{2}=\frac{V_{2}}{V_{1}} T_{1}=2 T_{1}=646 \mathrm{~K}$
$Q_{n e t}-W_{n e t}=\Delta U$
$Q_{\text {net }}=P \Delta V+\Delta U=\Delta H$
$Q_{\text {net }}=m_{H e} c_{p, H e}\left(T_{2}-T_{1}\right)+m_{A r} c_{p, A r}\left(T_{2}-T_{1}\right)$
$Q_{\text {net }}=3 \mathrm{kmol}(4 \mathrm{~kg} / \mathrm{kmol})(5.19 \mathrm{~kJ} / \mathrm{kgK})\left(T_{2}-T_{1}\right)+7 \mathrm{kmol}(40 \mathrm{~kg} / \mathrm{kmol})\left(0.52^{\mathrm{kJ} / \mathrm{kgK}}\right)\left(\mathrm{T}_{2}-T_{1}\right)$
$Q_{\text {net }}=67000 \mathrm{~kJ}$
16. Heat is transferred steadily through a 0.2 m thick $8 \mathrm{~m} \times 4 \mathrm{~m}$ wall at a rate of 2.4 kW . The inner and outer surface temperatures of the wall are measured to be $15^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$. The average thermal conductivity of the wall is
(A) $0.002 \mathrm{~W} / \mathrm{mC}$
(B) $1.5 \mathrm{~W} / \mathrm{mC}$
(C) $0.75 \mathrm{~W} / \mathrm{mC}$
(D) $3.0 \mathrm{~W} / \mathrm{mC}$

$$
\begin{aligned}
Q & =\frac{k A}{L}\left(T_{2}-T_{1}\right) \\
k & =\frac{(2.4 k W)(0.2 \mathrm{~m})}{(8 \mathrm{~m})(4 \mathrm{~m})} \frac{1}{\left(T_{2}-T_{1}\right)}=0.0015 \mathrm{~kW} / \mathrm{mC}
\end{aligned}
$$

```
BASIC HEAT-TRANSFER RATE EQUATIONS
Conduction
Fourier's Law of Conduction
    Q}=-kA\frac{dT}{dx},\mathrm{ where
Q = rate of heat transfer (W)
k = the thermal conductivity [W/(m.K)]
A = the surface area perpendicular to direction of heat
    transfer (m2)
```

17. A $3 \mathrm{~m}^{2}$ hot black surface at $80^{\circ} \mathrm{C}$ is losing heat to the surrounding air at $25^{\circ} \mathrm{C}$ by convection with a convection heat transfer coefficient of $12 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$, and by radiation to the surrounding surfaces at $15^{\circ} \mathrm{C}$. The total rate of heat loss from the surface is
(A) 1987 W
(B) 2239 W
(C) 2348 W
(D) 3451 W

Convection
Newton's Law of Cooling

$$
\dot{Q}=h A\left(T_{w}-T_{\infty}\right), \text { where }
$$

$h=$ the convection heat-transfer coefficient of the fluid [W/(m $\left.\left.{ }^{2} \cdot \mathrm{~K}\right)\right]$
$A=$ the convection surface area $\left(\mathrm{m}^{2}\right)$
$T_{w}=$ the wall surface temperature (K)
$T_{\infty}=$ the bulk fluid temperature (K)

Radiation

The radiation emitted by a body is given by

$$
\dot{Q}=\varepsilon \sigma A T^{4}, \text { where }
$$

$\varepsilon=$ the emissivity of the body
$\sigma=$ the Stefan-Boltzmann constant

$$
=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)
$$

$A=$ the body surface area $\left(\mathrm{m}^{2}\right)$
$T=$ the absolute temperature (K)

$$
\begin{aligned}
& Q=Q_{\text {conv }}+Q_{\text {rad }} \\
& Q=h A\left(T_{s}-T_{\text {air }}\right)+\varepsilon \sigma A\left(T_{s}^{4}-T_{\text {surr }}^{4}\right) \\
& Q=\left(12 W / m^{2} C\right)\left(3 m^{2}\right)(80-25){ }^{\circ} \mathrm{C}+(1)\left(5.67 \times 10^{-8} \mathrm{~W} / m^{2} K^{4}\right)\left(3 m^{2}\right)\left(353^{4}-288^{4}\right) K \\
& Q=3451 \mathrm{~W}
\end{aligned}
$$

18. Which of the following is not an intensive property?
(A) temperature
(C) density
(B) age
(D) weight
```
PROPERTIES OF SINGLE-COMPONENT SYSTEMS
Nomenclature
1. Intensive properties are independent of mass.
2. Extensive properties are proportional to mass.
3. Specific properties are lowercase (extensive/mass).
```

19. A closed system undergoes a reversible process, does work equal to $50 \mathrm{~kJ} / \mathrm{kg}$, and has an internal energy decrease of $50 \mathrm{~kJ} / \mathrm{kg}$. This is a process in which the
(A) volume is constant
(B) pressure is constant
(C) entropy is constant
(D) information is insufficient to determine the process

$$
\begin{aligned}
& \text { Closed Thermodynamic System } \\
& \text { No mass crosses system boundary } \\
& Q-W=\Delta U+\Delta K E+\Delta P E \\
& \text { where } \Delta U=\text { change in internal energy } \\
& \Delta K E=\text { change in kinetic energy } \\
& \Delta P E
\end{aligned}
$$

$$
\begin{aligned}
& Q_{n e t}-W_{n e t}=\Delta U \\
& q_{n e t}=50^{\mathrm{kJ}} / \mathrm{kg}-50^{\mathrm{kJ}} / \mathrm{kg}=0
\end{aligned}
$$

Isentropic Process

$$
\Delta s=0 ; d s=0
$$

A reversible adiabatic process is isentropic.
20. The thermodynamic state of a system is specified by giving
(A) any one extensive property
(B) any two independent extensive properties
(C) any one intensive property
(D) any two independent intensive properties

```
For a single-phase pure component, specification of any two
intensive, independent properties is sufficient to fix all the rest.
```

21. Water is contained in a piston-cylinder device at a temperature of $95^{\circ} \mathrm{C}$. The water is cooled at constant pressure from a saturated vapor to a saturated liquid. The heat transfer for this process is, $\mathrm{kJ} / \mathrm{kg}$, most nearly
(A) -2270
(B) -2100
(C) 2100
(D) 2270

$$
\begin{aligned}
& q_{n e t}-w_{n e t}=\Delta u \\
& q_{n e t}=P \Delta v+\Delta u=\Delta h=h_{f g}
\end{aligned}
$$

STEAM TABLESSaturated Water - Temperature Table												
Temp.	Sat. Press	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy kJ/kg			Enthalpy kJ/kg			Entropy$\mathbf{k J} /(\mathrm{kg} \cdot \mathrm{~K})$		
$\begin{gathered} { }^{\circ} \mathbf{C} \\ T \end{gathered}$	$\begin{gathered} \text { Press. } \\ \text { kPa } \\ p_{s a t} \end{gathered}$	Sat. liquid v_{f}	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ v_{g} \\ \hline \end{gathered}$	Sat. liquid u_{f}	Evap. u_{18}	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ u_{g} \\ \hline \end{gathered}$	Sat. liquid h_{f}	Evap. $h_{\text {寿 }}$	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ h_{8} \\ \hline \end{gathered}$	Sat. liquid s_{f}	Evap. $S_{f g}$	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ s_{8} \\ \hline \end{gathered}$
0.01	0.6113	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
5	0.8721	0.001000	147.12	2097	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.9008

22. The heat added to a vessel containing an ideal gas during an isothermal process is equal to
(A) internal energy change
(B) enthalpy change
(C) work
(D) entropy change

```
For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:
\[
\Delta u=c_{v} \Delta T ; \quad \Delta h=c_{p} \Delta T
\]
\[
\Delta s=c_{p} \ln \left(T_{2} / T_{1}\right)-R \ln \left(P_{2} / P_{1}\right)
\]
\[
\Delta s=c_{v} \ln \left(T_{2} / T_{1}\right)+R \ln \left(v_{2} / v_{1}\right)
\]
```

$$
q_{n e t}-w_{n e t}=\Delta u=c_{v} \Delta T=0
$$

23. The heat added to a vessel containing an ideal gas during a constant volume process is equal to
(A) internal energy change
(B) enthalpy change
(C) work

> Constant Volume process:
> $w_{\mathrm{b}}=0$
> (ideal gas) $T / P=$ constant
(D) entropy change

$$
\begin{aligned}
& q_{\text {net }}-w_{n e t}=\Delta u \\
& q_{\text {net }}=\Delta u
\end{aligned}
$$

24. In a steady flow process, the work done plus the heat lost by an engine, per kilogram of substance flowing through it, when the kinetic and potential energies of the flow are neglected must equal the drop in \qquad of the substance.
(A) temperature
(B) internal energy
(C) enthalpy
(D) pressure

$$
\begin{aligned}
E_{\text {in }} & =E_{\text {out }} \\
m_{\text {in }} & =m_{\text {out }} \\
m_{\text {in }} h_{\text {in }}=W_{\text {out }} & +Q_{\text {out }}+m_{\text {out }} h_{\text {out }}
\end{aligned}
$$

```
Steady-Flow Systems
The system does not change state with time. This assumption
is valid for steady operation of turbines, pumps, compressors,
throttling valves, nozzles, and heat exchangers, including
boilers and condensers.
\sum\dot{m}
and
\sum\dot{m}
where
m}=\mathrm{ mass flowrate (subscripts i and e refer to inlet and exit
    states of system)
g = acceleration of gravity
Z = elevation
V = velocity
Q}\mp@subsup{Q}{in}{}=\mathrm{ the net rate of heat transfer into the system
\mp@subsup{W}{\mathrm{ out }}{}= the net rate of work out of the system
```

