Review for Final Exam

Outline

- Basic equations, thermal resistance
- Heat sources
- Conduction, steady and unsteady
- Computing convection heat transfer
- Forced convection, internal and external
- Natural convection
- Radiation properties
- Radiative Exchange

Northridge

Final Exam

- Wednesday, May 23, 3-5 pm
- Open textbook/one-page equation sheet
- Problems like homework, midterm and quiz problems
- Cumulative with emphasis on second half of course
- Complete basic approach to all problems rather than finishing details of algebra or arithmetic

Northridge

Basic Equations

- Fourier law for heat conduction (1D)
$\dot{q}=\frac{k\left(T_{1}-T_{2}\right)}{L}$ or $\dot{Q}=\dot{q} A=\frac{k A\left(T_{1}-T_{2}\right)}{L}$
- Convection heat transfer

$$
\dot{Q}_{\text {conv }}=h A_{s}\left(T_{s}-T_{\infty}\right)
$$

- Radiation (from small object, 1 , in large enclosure, 2)

$$
\dot{Q}_{r a d, 1 \rightarrow 2}=A_{1} \varepsilon_{1} \sigma\left(T_{1}^{4}-T_{2}^{4}\right)
$$

Northridge

Rectangular Energy Balance

$$
\begin{gathered}
\rho c_{p} \frac{\partial T}{\partial t}=-\frac{\partial \dot{q}_{x}}{\partial x}-\frac{\partial \dot{q}_{y}}{\partial y}-\frac{\partial \dot{q}_{z}}{\partial z}+\dot{e}_{g e n} \\
\text { heat inflow }- \\
\text { hered outflow } \\
\text { energy } \\
\rho c_{p} \frac{\partial T}{\partial t}= \\
\frac{\partial}{\partial x} k \frac{\partial T}{\partial x}+\frac{\partial}{\partial y} k \frac{\partial T}{\partial y}+\frac{\partial}{\partial z} k \frac{\partial T}{\partial z}+\dot{e}_{g e n} \\
\text { henerated }
\end{gathered}
$$

1-D, Rectangular, Heat Generation

- Temperature profile for generation with T $=T_{0}$ at $x=0$ and $T=T_{L}$ at $x=L$

$$
T=T_{0}-\frac{\dot{\dot{g}}_{\text {gen }} x^{2}}{2 k}+\frac{\dot{e}_{\text {gen }} \times L}{2 k}-\frac{\left(T_{0}-T_{L}\right) x}{L}
$$

$$
\dot{q}=-k \frac{d T}{d x}=-k\left[-\frac{\dot{e}_{\text {gen }} 2 x}{2 k}+\frac{\dot{e}_{\text {gen }} L}{2 k}-\frac{\left(T_{0}-T_{L}\right)}{L}\right]
$$

$$
\dot{q}=\frac{\dot{\dot{e}}_{\text {gen }}(2 x-L)}{2}+\frac{k\left(T_{0}-T_{L}\right)}{L}
$$

Thermal Resistance
- Conduction $\dot{Q}=\frac{\bar{k} A\left(T_{1}-T_{2}\right)}{L} \Rightarrow \dot{Q}=\frac{T_{1}-T_{2}}{R_{\text {cond }}} \Rightarrow R_{\text {cond }}=\frac{L}{k A}$ •Convection $\dot{Q}=h A\left(T_{s}-T_{f}\right) \Rightarrow \dot{Q}=\frac{T_{s}-T_{f}}{R_{\text {conv }}} \Rightarrow R_{\text {conv }}=\frac{1}{h A}$ - Radiation $\quad R_{\text {rad }}=\frac{1}{A_{1} F_{12} \sigma\left(T_{1}^{3}+T_{2}^{3}+T_{2}^{2} T_{1}+T_{1}^{2} T_{2}\right)}=\frac{1}{A_{1} h_{\text {rad }}}$ Northridge

Fin Results

- Infinitely long fin

$$
\begin{gathered}
\theta=\theta_{b} e^{-m x} \Rightarrow T-T_{\infty}=\left(T_{b}-T_{\infty}\right) e^{-x \sqrt{h p / k A_{c}}} \\
\dot{Q}_{x=0}=A_{c} \dot{q}_{x=0}=\sqrt{k A_{c} h p}\left(T_{b}-T_{\infty}\right)
\end{gathered}
$$

- Heat transfer at end $\left(L_{c}=A / p\right)$
$\theta=T-T_{\infty}=\theta_{b} \frac{\cosh m\left(L_{c}-x\right)}{\cosh m L_{c}}=\left(T_{b}-T_{\infty}\right) \frac{\cosh m\left(L_{c}-x\right)}{\cosh m L}$
Northridge
$\dot{Q}_{x=0}=\sqrt{k A_{c} h p}\left(T_{b}-T_{\infty}\right) \tanh m L_{15}$

Fin Efficiency

- Compare actual heat transfer to ideal case where entire fin is at base temperature
$\eta_{\text {fin }}=\frac{\dot{Q}_{\text {fin }}}{\dot{Q}_{\text {fin, max }}}=$

$$
\frac{\dot{Q}_{f i n}}{h A_{f i n}\left(T_{b}-T_{\infty}\right)}
$$

Lumped Parameter Model

- Assumes same temperature in solid
- Use characteristic length $\mathrm{L}_{\mathrm{c}}=$ V/A

$$
b=\frac{h A}{\rho c_{p} \mathrm{~V}}=\frac{h}{\rho c_{p} L_{c}}
$$

$\left(T-T_{\infty}\right)=\left(T_{i}-T_{\infty}\right) e^{-b t} \quad$ or $\quad T=\left(T_{i}-T_{\infty}\right) e^{-b t}+T_{\infty}$

- Must have $\mathrm{Bi}=\mathrm{hL} \mathrm{c}_{\mathrm{c}} / \mathrm{k}<0.1$ to use this

Approximate Solutions

- Valid for for $\tau>0.2$
- Slab $\Theta=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=A_{i} e^{-\lambda_{i}^{2} t} \cos \lambda_{1} \xi$
- Cylinder $\Theta=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{i}^{2} t} J_{0}\left(\lambda_{1} \frac{r}{r_{0}}\right)$
- Sphere $\Theta=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=A_{1} e^{-\lambda_{1}^{2} t} \frac{r_{0}}{\lambda_{1} r} \sin \left(\lambda_{1} \frac{r}{r_{0}}\right)$
- Values of A_{1} and λ_{1} depend on Bi and are different for each geometry (as is Bi)

Multidimensional Solutions

- Can get multidimensional solutions as product of one dimensional solutions - All one-dimensional solutions have initial temperature, T_{i}, with convection coefficient, h, and environmental temperature, T_{∞}, starting at $\mathrm{t}=0$
- General rule: $\Theta_{\text {twoD }}=\Theta_{\text {one }} \Theta_{\text {two }}$ where $\Theta_{\text {one }}$ and $\Theta_{\text {two }}$ are solutions from charts for plane, cylinder or sphere

Flow Classifications

- Forced versus free
- Internal (as in pipes) versus external (as around aircraft)
- Entry regions in pipes vs. fully-developed
- Unsteady (changing with time) versus unsteady (not changing with time)
- Laminar versus turbulent
- Compressible versus incompressible
- Inviscid flow regions (μ not important)
- One-, two- or three-dimensional Northridge

Dimensionless Convection

- Nusselt number, $\mathrm{Nu}=\mathrm{hL} \mathrm{c}_{\mathrm{c}} \mathrm{k}_{\text {fluid }}$ - Different from $\mathrm{Bi}=\mathrm{hL} / \mathrm{k}_{\text {solid }}$
- Reynolds number, $\operatorname{Re}=\rho \mathrm{V}_{\mathrm{c}} / \mu=\mathrm{VL}_{\mathrm{c}} / v$
- Prandtl number $\operatorname{Pr}=\mu \mathrm{c}_{\mathrm{p}} / \mathrm{k}$ (in tables)
- Grashof number, $\mathrm{Gr}=\beta \mathrm{g} \Delta \mathrm{TL}_{\mathrm{c}}{ }^{3} / v^{2}$
$-\mathrm{g}=$ gravity, $\beta=$ expansion coefficient $=$ $-(1 / \rho)(\partial \rho / \partial T)_{p}$, and $\Delta T=\left|T_{\text {wall }}-T_{\infty}\right|$
- Peclet, $\mathrm{Pe}=$ RePr; Rayleigh, $\mathrm{Ra}=\mathrm{GrPr}$

Characteristic Length

- Can use length as a subscript on dimensionless numbers to show correct length to use in a problem
$-\operatorname{Re}_{\mathrm{D}}=\rho V \mathrm{D} / \mu, \operatorname{Re}_{\mathrm{x}}=\rho \mathrm{V} / \mathrm{K} / \mu, \mathrm{Re}_{\mathrm{L}}=\rho \mathrm{VL} / \mu$
$-N u_{\mathrm{D}}=\mathrm{hD} / \mathrm{k}, \mathrm{Nu}_{\mathrm{x}}=\mathrm{hx} / \mathrm{k}, \mathrm{Nu} \mathrm{L}_{\mathrm{L}}=\mathrm{hL} / \mathrm{k}$
$-\mathrm{Gr}_{\mathrm{D}}=\rho^{2} \beta g \Delta \mathrm{TD}^{3} / \mu^{2}, \mathrm{Gr}_{\mathrm{x}}=\rho^{2} \beta g \Delta T x^{3} / \mu^{2}$, $\mathrm{Gr}_{\mathrm{L}}=\rho^{2} \beta g \Delta \mathrm{TL}{ }^{3} / \mu^{2}$
- Use not necessary if meaning is clear

How to Compute h

- Continue to follow this general pattern
- Select correct equation for Nu (laminar or turbulent; range of $\mathrm{Re}, \mathrm{Pr}, \mathrm{Gr}$, etc.)
- Compute appropriate temperature for finding properties
- Evaluate fluid properties ($\mu, \mathrm{k}, \rho, \operatorname{Pr}$) at the appropriate temperature
- Compute Nusselt number from equation of the form Nu = C Rea Pr^{b} or D Rac
- Compute $\mathrm{h}=\mathrm{kNu} / \mathrm{L}_{\mathrm{C}}$ Northridge

Key Ideas of External Flows

- The flow is unconfined
- Moving objects into still air are modeled as still objects with air flowing over them
- There is an approach condition of velocity, U_{∞}, and temperature, T_{∞}
- Far from the body the velocity and temperature remain at U_{∞} and T_{∞}
- T_{∞} is the (constant) fluid temperature used to compute heat transfer Northridge

How to Compute h

- Follow this general pattern
- Find equations for h for the description of the flow given
- Correct flow geometry (local or average h?)
- Free or forced convection
- Determine if flow is laminar or turbulent
- Different flows have different measures to determine if the flow is laminar or turbulent based on the Reynolds number, Re, for forced convection and the Grashof number, Gr, for free convection
Northridge

Property Temperature

- Find properties at correct temperature
- Some equations specify particular temperatures to be used (e.g. μ / μ_{w})
- External flows and natural convection use film temperature $\left(T_{w}+T_{\infty}\right) / 2$
- Internal flows use mean fluid temperature $\left(\mathrm{T}_{\text {in }}+\mathrm{T}_{\text {out }}\right) / 2$

Flat Plate Flow Equations

- Laminar flow ($\left.\operatorname{Re}_{x}, \mathrm{Re}_{\mathrm{L}}<500,000, \mathrm{Pr}>.6\right)$

$$
C_{f_{x}}=\frac{\tau_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=0.664 \mathrm{Re}_{x}^{-1 / 2} \quad N u_{x}=\frac{h_{x} x}{k}=0.332 \mathrm{Re}_{x}^{1 / 2} \mathrm{Pr}^{1 / 3}
$$

$$
C_{f}=\frac{\bar{\tau}_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=1.33 \mathrm{Re}_{L}^{-1 / 2} \quad N u_{L}=\frac{\bar{h} L}{k}=0.664 \mathrm{Re}_{L}^{1 / 2} \mathrm{Pr}^{1 / 3}
$$

- Turbulent flow ($5 \times 10^{5}<\operatorname{Re}_{\mathrm{x}}, \mathrm{Re}_{\mathrm{L}}<10^{7}$)

Heat Transfer Coefficients

- Cylinder average $\mathrm{h}(\mathrm{RePr}>0.2$; properties at $\left(T_{\infty}+T_{s}\right) / 2$
$N u=\frac{h D}{k}=0.3+\frac{0.62 \operatorname{Re}^{1 / 2} \operatorname{Pr}^{1 / 2}}{\left[1+\left(\frac{0.4}{\mathrm{Pr}}\right)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{\mathrm{Re}}{282,000}\right)^{5 / 8}\right]^{4 / 5}$
- Sphere average h ($3.5 \leq \operatorname{Re} \leq 80,000 ; 0.7$ $\leq \operatorname{Pr} \leq 380 ; \mu_{\mathrm{s}}$ at T_{s}; other properties at T_{∞})

$$
\begin{aligned}
& \left.\quad \leq \mathrm{Pr} \leq 38 \mathrm{U} ; \mu_{\mathrm{s}} \text { at } \mathrm{I}_{\mathrm{s}} ; \text { otner properties at } \mathrm{I}_{\infty}\right) \\
& \mathrm{Nu}=\frac{h D}{k}=2+\left[0.4 \mathrm{Re}^{1 / 2}+0.06 \mathrm{Re}^{2 / 3}\right] \operatorname{Pr}^{0.4}\left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1 / 4} \\
& \text { Northridge }
\end{aligned}
$$

Other Shapes and Equations			
Cross-section of the cylinder	Fluid	Range of Re	Nusselt number
Circle	Gas or liquid	$\begin{aligned} & \hline 0.4-4 \\ & 4-40 \\ & 40-4000 \\ & 4000-40,000 \\ & 40,000-400,000 \end{aligned}$	$\begin{aligned} & \mathrm{Nu}=0.989 \mathrm{Re}^{0.330} \mathrm{Pr}^{1 / 3} \\ & \mathrm{Nu}=0.911 \mathrm{Re}^{0.385} \mathrm{Pr}^{1 / 3} \\ & \mathrm{Nu}=0.683 \mathrm{Re}^{0.466} \mathrm{Pr}^{1 / 3} \\ & \mathrm{Nu}=0.193 \mathrm{Re}^{0.618} \mathrm{Pr}^{1 / 3} \\ & \mathrm{Nu}=0.027 \mathrm{Re}^{0.805} \mathrm{Pr}^{1 / 3} \end{aligned}$
Square	Gas	5000-100,000	$\mathrm{Nu}=0.102 \mathrm{Re}^{0.675} \mathrm{Pr}^{1 / 3}$
	Gas	$5000-100,000$ Part of Table 7 Heat and Mas	$\mathrm{Nu}=0.246 \mathrm{Re}^{0.588} \mathrm{Pr}^{1 / 3}$ 1 from Çengel, Transfer

Tube Bank Heat Transfer Nusselt number correlations for cross flow over tube banks for $N>16$ and $0.7<\mathrm{Pr}<500$ (from Zukauskas, 1987)*		
Arrangement	Range of Re_{D}	Correlation
In-line	0-100	$\mathrm{Nu}_{D}=0.9 \mathrm{Re}^{0.4} \mathrm{Pr}{ }^{0.36}\left(\mathrm{Pr} / \mathrm{Pr}_{\mathrm{s}}\right)^{0.25}$
	100-1000	$\mathrm{Nu}_{D}=0.52 \operatorname{Re}_{D}^{0.5} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}_{2} / \mathrm{Pr}_{s}\right)^{0.25}$
	$1000-2 \times 10^{5}$	$\mathrm{Nu}_{D}=0.27 \mathrm{Re}_{D}^{0.63} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} \mathrm{Pr}_{s}\right)^{0.25}$
	$2 \times 10^{5}-2 \times 10^{6}$	$\mathrm{Nu}_{D}=0.033 \mathrm{Re}_{D}^{0.8} \mathrm{Pr}^{0.4}\left(\mathrm{Pr}^{2} \mathrm{Pr}_{s}\right)^{0.25}$
Staggered	0-500	$\mathrm{Nu}_{D}=1.04 \mathrm{Re}_{D}^{0.4} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} \mathrm{Pr}_{s}\right)^{0.25}$
	500-1000	$\mathrm{Nu}_{D}=0.71 \mathrm{Re}_{D}^{0.5} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} \mathrm{Pr}_{s}\right)^{0.25}$
	$1000-2 \times 10^{5}$	$\mathrm{Nu}_{D}=0.35\left(S_{T} / S_{L}\right)^{0.2} \operatorname{Re}_{D}^{0.6} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} / \mathrm{Pr}_{s}\right)^{0.25}$
	$2 \times 10^{5}-2 \times 10^{6}$	$\mathrm{Nu}_{D}=0.031\left(S_{T} / S_{L}\right)^{0.2} \mathrm{Re}_{D}^{0.8} \mathrm{Pr}{ }^{0.36}\left(\mathrm{Pr}^{2} \mathrm{Pr}_{s}\right)^{0.25}$
${ }^{*}$ All properties except Pr_{s} are to be evaluated at the arithmetic mean of the inlet and outlet temperatures of the fluid (Pr_{s} is to be evaluated at T_{s}). Northridg Northridge Table 7-2 from Çengel, Heat and Mass Transfer		

Key Ideas of Internal Flows

- The flow is confined
- There is a temperature and velocity profile in the flow
- Use average velocity and temperature
- Wall fluid heat exchange will change the average fluid temperature
- There is no longer a constant fluid temperature like T_{∞} for computing heat transfer

Northridge

Fixed Wall Heat Flux

Average Temperature Change

- Let T represent the average fluid temperature (instead of $\mathrm{T}_{\text {avg }}, \mathrm{T}_{\mathrm{m}}$ or $\overline{\mathrm{T}}$)
- T will change from inlet to outlet of confined flow
- This gives a variable driving force ($\mathrm{T}_{\text {wall }}$ $\mathrm{T}_{\text {fluid }}$) for heat transfer
- Can accommodate this by using the first law of thermodynamics: $Q=\dot{m} c_{p}\left(T_{\text {out }}-T_{\text {in }}\right)$
- Two cases: fixed wall heat flux and fixed wall temperature Northridge
- Fixed wall heat flux, $\dot{q}_{\text {wall }}$, over given wall area, A_{w}, gives total heat input which is related to $\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}$ by thermodynamics $\dot{Q}=\dot{q}_{\text {wall }} A_{w}=\dot{m} c_{p}\left(T_{\text {out }}-T_{\text {in }}\right) \Rightarrow T_{\text {out }}=T_{\text {in }}+\frac{\dot{q}_{\text {wall }} A_{w}}{\dot{m} c_{p}}$
- "Outlet" can be any point along flow path where area from inlet is A_{w}
- We can compute T_{w} at this point as $T_{w}=$ $\mathrm{T}_{\text {out }}+\dot{\mathrm{q}}_{\text {wall }} / \mathrm{h}$
Northridge

Log-mean Temperature Diff

- This is usually written as a set of temperature differences

$$
\begin{gathered}
L M \Delta T=\frac{\left(T_{\text {out }}-T_{\text {in }}\right)}{\ln \left(\frac{T_{\text {out }}-T_{s}}{T_{\text {in }}-T_{s}}\right)}=\frac{\left(T_{\text {out }}-T_{s}\right)-\left(T_{\text {in }}-T_{s}\right)}{\ln \left(\frac{T_{\text {out }}-T_{s}}{T_{\text {in }}-T_{s}}\right)} \\
\dot{Q}=\frac{h A_{w}\left(T_{\text {out }}-T_{\text {in }}\right)}{\ln \left(\frac{T_{\text {out }}-T_{s}}{T_{\text {in }}-T_{s}}\right)}=h A_{w}(L M \Delta T) \quad \quad \text { Çengel uses }
\end{gathered}
$$

Fully Developed Flow

- Temperature profile does not change with x if flow is fully developed thermally
- This means that $\partial \mathrm{T} / \partial \mathrm{r}$ does not change with downstream distance, x, so heat flux (and Nu) do not depend on x
- Laminar entry $\frac{L_{h}}{D} \approx 0.05 \mathrm{Re} \frac{L_{t}}{D} \approx 0.05 \mathrm{RePr}$
lengths
- Turbulent entry lengths
Northridge

$$
\frac{L_{t}}{D} \approx \frac{L_{h}}{D}=1.359 \mathrm{Re}^{1 / 4} \approx 10
$$

Internal Flow Pressure Drop

- General formula: $\Delta \mathrm{p}=\mathrm{f}(\mathrm{L} / \mathrm{D}) \rho \mathrm{V}^{2} / 2$
- Friction factor, f, depends on $\mathrm{Re}=$ $\rho V D / \mu$ and relative roughness, ε / D
- For laminar flows, $f=64 / \mathrm{Re}$
- No dependence on relative roughness
- For turbulent flows $\begin{aligned} & \left.\text { Colebrook } \frac{1}{\sqrt{f}}=-2.0 \log _{10}\left(\frac{\varepsilon / D}{3.7}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)\right)\end{aligned}$

Northridge
${ }^{50}$

Laminar Nusselt Number

- Laminar flow if $\operatorname{Re}=\rho V D / \mu<2,300$
- Fully-developed, constant heat flux, Nu $=4.36$
- Fully-developed, constant wall temperature: $\mathrm{Nu}=3.66$
- Entry region, constant wall temperature:

$$
N u=3.66+\frac{0.065(D / L) \operatorname{Re} \operatorname{Pr}}{1+0.04[(D / L) \operatorname{Re} \operatorname{Pr}]^{2 / 3}}
$$

Noncircular Ducts

- Define hydraulic diameter, $D_{h}=4 A / P$
- A is cross-sectional area for flow
- P is wetted perimeter
- For a circular pipe where $\mathrm{A}=\mathrm{pD2} / 4$ and P $=\pi D, D_{h}=4\left(\pi D^{2} / 4\right) /(\pi D)=D$
- For turbulent flows use Moody diagram with D replaced by D_{h} in $R e, f$, and ε / D
- For laminar flows, $f=A / R e$ and $N u=B$ (all based on D_{h}) - A and B next slide Northridge

Turbulent Flow

- Smooth tubes (Gnielinski)
$N u=\frac{(f / 8)(\operatorname{Re}-1000) \operatorname{Pr}}{1+12.7(f / 8)^{0.5}\left(\operatorname{Pr}^{2 / 3}-1\right)}\binom{0.5 \leq \operatorname{Pr} \leq 2000}{3 \times 10^{3}<\operatorname{Re}<5 \times 10^{6}}$
Petukhov : $f=[0.790 \ln (\mathrm{Re})-1.64]^{-2} \quad 3000<\mathrm{Re}<5 x 10^{6}$
- Tubes with roughness
- Use correlations developed for this case
- As approximation use Gnielinski equation with f from Moody diagram or f equation - Danger! h does not increase for $f>4 f_{\text {smooth }}$ Northridge

Free (Natural) Convection

$[78=$	Flow is induced by temperature difference
Forced	- No external source of fluid motion
Hotcory	- Temperature differences cause density differences
$\begin{aligned} & \text { Free } \\ & \text { (Natural) } \end{aligned}$	- Density differences induce flow - "Warm air rises"
Eggs from Figure 1-33 in Çengel, Heat and Mass Transfer	- Volume expansion coefficient: $\beta=$ $[-(1 / \rho)(\partial \rho / \partial \mathrm{T})]$ - For ideal gases $\beta=1 / \mathrm{T}$
Northridge	- ${ }_{56}$

Equations for Nu

- Equations have form of $\mathrm{AGraPr}^{\mathrm{b}}$ or $\mathrm{BRa}^{\mathrm{c}}$
- Since Gr and R a contain $\mid T_{\text {wall }}-T_{\text {fuiud }}$, an iterative process is required if one of these temperatures is unknown
- Transition from laminar to turbulent occurs at given Ra values
-For vertical plate transition $\mathrm{Ra}=10^{9}$
- Evaluate properties at "film" (average) temperature, $\left(T_{\text {wall }}+T_{\text {fluid }}\right) / 2$

Vertical Plate Free Convection

- Simplified equations on previous chart for constant wall temperature
- More accurate: Churchill and Chu, any Ra
$N u_{L}=\left\{0.825+\frac{0.387 R a_{L}^{1 / 6}}{\left[1+(0.492 / \operatorname{Pr})^{9 / 16}\right]^{8 / 27}}\right\}^{2} \quad$ Any $R a_{L}$
- More accurate laminar Churchill/Chu
$N u_{L}=0.68+\frac{0.670 \mathrm{Ra}_{L}^{1 / 4}}{\substack{\text { Niln } \\ \text { Northridge }}}\left[1+(0.492 / \operatorname{Pr})^{9 / 16}\right]^{4 / 9} \quad 0<R a_{L}<10^{9}$

Vertical Plate Free Convection

- Constant wall heat flux
- Use $\dot{q}=h A\left(T_{w}-T_{\infty}\right)$ to compute an unknown temperature (T_{w} or T_{∞}) from known wall heat flux and computed h
- T_{w} varies along wall, but the average heat transfer uses midpoint temperature, $\mathrm{T}_{\mathrm{L} / 2}$
$\dot{q}_{\text {wall }}=h A_{\text {wall }}\left(T_{L / 2}-T_{\infty}\right) \Rightarrow T_{L / 2}-T_{\infty}=\frac{\dot{q}_{\text {wall }}}{h A_{\text {wall }}}$
- Use trial and error solution with $T_{L / 2}-T_{\infty}$ as $\Delta \mathrm{T}$ in Ra used to compute $\mathrm{h}=\mathrm{kNu} / \mathrm{L}$ Northridge

Horizontal Plate

- Hot surface facing up or cold surface facing down
- $\mathrm{L}_{\mathrm{c}}=$ area / perimeter ($\mathrm{A}_{\mathrm{s}} / \mathrm{p}$)
- For a rectangle of length, L, and width, W ,
$\mathrm{L}_{\mathrm{c}}=(\mathrm{LW}) /(2 \mathrm{~L}+2 \mathrm{~W})=1 /(2 / \mathrm{W}+2 / \mathrm{L})$
- For a circle, $L_{c}=\pi R^{2} / 2 \pi R=R / 2=D / 4$

Figures from Table 9-1 in
Figures from Table 9-1 in
Cengel, Heat and Mass CThnge,
Transfer
$N u=0.54 R a_{L_{c}}^{1 / 4} \quad 10^{4}<R a<10^{7}$
Northridge
$N u=0.15 R a_{L_{c}}^{1 / 3} \quad 10^{7}<R a<10^{11}$ 63

Heat Exchangers

- Used to transfer energy from one fluid to another
- One fluid, the hot fluid, is cooled while the other, the cold fluid, is heated
- May have phase change: temperature of one or both fluids is constant
- Simplest is double pipe heat exchanger -Parallel flow and counter flow

Heat Exchange Analysis

- Heat transfer from hot to cold fluid

$$
\dot{Q}=U A \Delta T
$$

- First law $\dot{Q}=\dot{m}_{c} c_{p_{c}}\left(T_{c, \text { out }}-T_{c, \text { in }}\right)$ energy balances

$$
\dot{Q}=\dot{m}_{h} c_{p_{h}}\left(T_{h, \text { in }}-T_{h, \text { out }}\right)
$$

- Assumes no heat loss to surroundings
- Subscripts cand h denote cold and hot fluids, respectively
- Alternative analysis for phase change Northridge

Heat Exchanger Problems

- With $\Delta T_{\text {Im }}$ method we want to find U or A when all temperatures are known
- If we know three temperatures, we can find the fourth by an energy balance with known mass flow rates (and c_{p} 's)
$\dot{Q}=\dot{m}_{c} c_{p_{c}}\left(T_{c, \text { out }}-T_{c, \text { in }}\right)$ $\dot{Q}=\dot{m}_{h} c_{p_{h}}\left(T_{h, \text { in }}-T_{h, \text { out }}\right) \begin{aligned} & \text { stream and then find } \\ & \text { unknown temperature }\end{aligned}$

Correction Factors

- Correction factor parameters, R and P - Shell and tube definitions below

$$
P=\frac{T_{\text {tube }, \text { out }}-T_{\text {tube }, \text { in }}}{T_{\text {shell, in }}-T_{\text {tube }, \text { in }}}=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}
$$

$$
R=\frac{T_{\text {shell, in }}-T_{\text {tube }, \text { in }}}{T_{\text {tube }, \text { out }}-T_{\text {tube, in }}}=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}=\frac{\left(\dot{m} c_{p}\right)_{\text {tube }}}{\left(\dot{m} c_{p}\right)_{\text {shell }}}
$$

- Correction factor charts show diagrams that illustrate the equations for P and R Northridge

Effectiveness-NTU Method

- Used when not all temperatures are known
- Based on ratio of actual heat transfer to maximum possible heat transfer
- Maximum possible temperature difference, $\Delta T_{\text {max }}$ is $T_{h, i n}-T_{c, \text { in }}$
- Only one fluid, the one with the smaller value of $\dot{m} c_{p}$, can have $\Delta T_{\text {max }}$
- Define $\mathrm{C}_{\mathrm{c}}=\left(\mathrm{m}_{\mathrm{p}}\right)_{\mathrm{c}}$ and $\mathrm{C}_{\mathrm{h}}=\left(\mathrm{m}_{\mathrm{p}}\right)_{\mathrm{h}}$

Effectiveness, ε

$$
\varepsilon=\frac{\dot{Q}}{\dot{Q_{\max }}}=\frac{\dot{Q}}{C_{\min }\left(T_{h . i n}-T_{c, \text { in }}\right)} \quad C_{\min }=\min \left(C_{h}, C_{c}\right)
$$

- In effectiveness-NTU method we find ε, then find $\dot{Q}=\varepsilon \dot{Q}_{\text {max }}$
- Use $C_{\min } \Delta T_{\text {max }}$ to find $\dot{Q}_{\max }$ because $C_{1} \Delta T_{1}$ $=\mathrm{C}_{2} \Delta \mathrm{~T}_{2}$ or $\Delta \mathrm{T}_{2}=\mathrm{C}_{1} \Delta \mathrm{~T}_{1} / \mathrm{C}_{2}$
- If $\Delta \mathrm{T}_{2}=\Delta \mathrm{T}_{\text {max }}$ and $\mathrm{C}_{1} / \mathrm{C}_{2}>1, \Delta \mathrm{~T}_{2}>\Delta \mathrm{T}_{\text {max }}$
$-\mathrm{C}_{\text {min }} \Delta \mathrm{T}_{\text {max }}$ is maximum heat transfer that can occur without impossible $T<T_{c, \text { in }}$
Northridge

Black-Body Radiation

- Basic black body equation: $\mathrm{E}_{\mathrm{b}}=\sigma \mathrm{T}^{4}$
$-E_{b}$ is total black-body radiation energy flux $\mathrm{W} / \mathrm{m}^{2}$ or Btu/hr-ft ${ }^{2}$
$-\sigma$ is the Stefan-Boltzmann constant
- $\sigma=5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
- $\sigma=0.1714 \times 10^{-8} \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot \mathrm{R}^{4}$
- Must use absolute temperature
- Radiation flux varies with wavelength $-\mathrm{E}_{\mathrm{b} \lambda}$ is flux at given wavelength, λ

Radiation Tables

- Can show that f_{λ} is function of λT
$f_{\lambda}=\frac{1}{\sigma T^{4}} \int_{0}^{\lambda} E_{b \lambda} d \lambda=\frac{1}{\sigma T^{4}} \int_{0}^{\lambda} \frac{C_{1}}{\lambda^{5}\left(e^{C_{2} / \lambda T}-1\right)} d \lambda=\frac{1}{\sigma} \int_{0}^{\lambda T} \frac{C_{1}}{(\lambda T)^{5}\left(e^{C_{2} / \lambda T}-1\right)} d(\lambda T)$
Fraction of total radiation ($\sigma \mathrm{T}^{4}$) between $\lambda=0$ and any given λ is f_{λ}
$f_{\lambda}=\frac{1}{\sigma T^{4}} \int_{0}^{\lambda} E_{b \lambda} d \lambda^{\prime}$
Northridge Figure $12-13$ from Cengel, Heat and Mass Transfer
- Radiation tables give f_{λ} versus λT
- See table 12-2, page 672 in text
- Extract from this table shown at right
Northridge
Blackbody radiation functions f_{A}

Emissivity

- Ratio of actual emissive power to blakc body emissive power
- Diffuse surface - emissivity does not depend on direction
- Gray surface - emissivity does not depend on wavelength
- Gray, diffuse surface - emissivity is the does not depend on direction or wavelength
- Simplest surface to handle and often used in radiation calculations
Northridge

Kirchoff's Law

- Absorptivity equals emissivity (at the same temperature)
- True only for values in a given direction and wavelength
- Assuming total hemispherical values of α and ε are the same simplifies radiation heat transfer calculations, but is not always a good assumption

Effect of Temperature

- Emissivity, ε, depends on surface temperature
- Absorptivity, α, depends on source temperature (e.g. $\mathrm{T}_{\text {sun }} \approx 5800 \mathrm{~K}$)
- For surfaces exposed to solar radiation - high α and low ε will keep surface warm - low α and high ε will keep surface cool
- Does not violate Kirchoff's law since source and surface temperatures differ

Gray Diffuse Opaque Enclosure

- Kirchoff's law applies to the average: $=\varepsilon$ at all temperatures
- For opaque surfaces $\tau=0$ so $\alpha+\rho=1$
- For gray, diffusive, opaque surfaces then $\rho=1-\alpha=1-\varepsilon$
- Define radiosity, $J=\varepsilon E_{b}+\rho G=$ emitted and reflected radiation
$\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b i}-J_{i}\right)=\frac{E_{b i}-J_{i}}{R_{i}} \quad$ where $\quad R_{i}=\frac{1-\varepsilon_{i}}{A_{i} \varepsilon_{i}}$
Northridge
100

Review Circuit Analogy

- Look at simple enclosure with only two surfaces
- Apply circuit analog' with total resistance $\dot{Q}_{12}=\frac{E_{b 1}-E_{b 2}}{R_{\text {Total }}}=\frac{E_{b 1}-E_{b 2}}{\frac{1-\varepsilon_{1}}{A_{1} \varepsilon_{1}}+\frac{1}{A_{1} F_{12}}+\frac{1-\varepsilon_{2}}{A_{2} \varepsilon_{2}}}$ Northridge

Three-Surface Circuit

Radiation Exchange II

- Once all J_{i} values are known we can compute unknown values of T_{i} and \dot{Q}_{i}
- For known T_{i}
$\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b_{i}}-J_{i}\right)=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(\sigma T_{i}^{4}-J_{i}\right)$
-For known \dot{Q}_{i}

$$
E_{b_{i}}=J_{i}+\frac{1-\varepsilon_{i}}{A_{i} \varepsilon_{i}} \dot{Q}_{i} \Rightarrow T_{i}=\frac{1}{\sigma} \sqrt[4]{J_{i}+\frac{1-\varepsilon_{i}}{A_{i} \varepsilon_{i}} \dot{Q}_{i}}
$$

Northridge

Radiation Exchange

- Two possible surface conditions: (1) known temperature, (2) known \dot{Q}_{i}
$\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b_{i}}-J_{i}\right)=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right) \quad i=1, \ldots, N$
(1) $\left(1+\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N} F_{i j}\right) J_{i}-\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N} F_{i j} J_{j}=E_{b_{i}}=\sigma T_{i}^{4}$ Solve this set
(2) $\left(\sum_{j=1, j \neq i}^{N} A_{i} F_{i j}\right) J_{i}-\sum_{j=1, j \neq i}^{N} A_{i} F_{i j} J_{j}=\dot{Q}_{i}$ of N simultaneous equations for N values, of J_{i}

Numerical Heat Transfer

- Finite difference expressions with truncation error
- Computers give roundoff error
- Convert differential equations to algebraic equations
- Solve system of algebraic equations to get temperatures at discrete points
- Reduce step size for stability
- Will not be covered on final

Northridge
108

