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Outline
• Basic equations, thermal resistance
• Heat sources
• Conduction, steady and unsteady
• Computing convection heat transfer

– Forced convection, internal and external
– Natural convection

• Radiation properties
• Radiative Exchange
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Final Exam
• Wednesday, May 23, 3 – 5 pm
• Open textbook/one-page equation sheet
• Problems like homework, midterm and 

quiz problems
• Cumulative with emphasis on second 

half of course
• Complete basic approach to all 

problems rather than finishing details of 
algebra or arithmetic

Basic Equations
• Fourier law for heat conduction (1D)
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large enclosure, 2)
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Heat Generation
• Various 

phenomena in 
solids can 
generate heat

• Define          
as the heat 
generated per 
unit volume 
per unit time
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Figure 2-21 from Çengel, 
Heat and Mass Transfer
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Rectangular Energy Balance
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Cylindrical Coordinates
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Figure 2-3 
from 
Çengel, 
Heat and 
Mass 
Transfer
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Spherical Coordinates
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Çengel, 
Heat and 
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1-D, Rectangular, Heat Generation
• Temperature profile for generation with T 

= T0 at x = 0 and T = TL at x = L
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Plot of (T - T0)/(TL - T0) for Heat Generation in a Slab
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Slab With Heat Generation
Both boundary temperatures = TB
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Thermal Resistance
• Conduction
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Composite Materials II
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Çengel, Heat and 
Mass Transfer
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Fin Results
• Infinitely long fin

• Heat transfer at end (Lc = A/p)
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Fin Efficiency
• Compare actual 

heat transfer to 
ideal case where 
entire fin is at 
base temperature
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Figure 3-39 from 
Çengel, Heat Transfer
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Overall Fin Effectiveness
• Original area, A = (area 

with fins, Afin) + (area 
without fins, Aunfin)
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Figure 3-45 from 
Çengel, Heat Transfer
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Lumped Parameter Model
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• Assumes same temperature in solid
• Use characteristic length Lc = V/A
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Transient 1D Convection

Figure 4-11 in Çengel, 
Heat and Mass 

Transfer

All problems have similar chart solutions
20

Slab Center-line (x = 0) Temperature Chart 
Figure 4-15(a) in Çengel, Heat and Mass Transfer

21

Chart II
• Can find T at any 

x/L from this 
chart once T at x 
= 0 is found from 
previous chart

• See basis for this 
chart on the next 
page
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Figure 4-15(b) in Çengel, Heat 
and Mass Transfer
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Approximate Solutions
• Valid for for τ > 0.2

– Values of A1 and λ1 depend on Bi and are 
different for each geometry (as is Bi)
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Semi-Infinite Solids
• Plane that 

extends to 
infinity in all 
directions

• Practical 
applications: 
large area for 
short times
– Example: earth 

surface locallyFigure 4-24  in Çengel, 
Heat and Mass Transfer 24

Multidimensional Solutions
• Can get multidimensional solutions as 

product of one dimensional solutions
– All one-dimensional solutions have initial 

temperature, Ti, with convection coefficient, 
h, and environmental temperature, T∞, 
starting at t = 0

– General rule: ΘtwoD = ΘoneΘtwo where Θone
and Θtwo are solutions from charts for 
plane, cylinder or sphere
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Multidimensional Example
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Flow Classifications
• Forced versus free
• Internal (as in pipes) versus external (as 

around aircraft)
– Entry regions in pipes vs. fully-developed

• Unsteady (changing with time) versus 
unsteady (not changing with time)

• Laminar versus turbulent
• Compressible versus incompressible
• Inviscid flow regions (μ not important)
• One-, two- or three-dimensional

27

Flows
• Laminar 

flow is 
layered, 
turbulent 
flows are 
not (but 
have some 
structure)

Figures 6-9 and 6-16.  Çengel, Heat 
and Mass Transfer
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Boundary Layer

• Region near wall with sharp gradients
– Thickness, δ, usually very thin compared to 

overall dimension in y direction
Figure 6-12 from Çengel, Heat and Mass Transfer
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Thermal Boundary Layer
• Thin region near 

solid surface in 
which most of 
temperature 
change occurs

• Thermal boundary layer thickness may 
be less than, greater than or equal to 
that of the momentum boundary layer

Figure 6-15.  Çengel, Heat and Mass Transfer 30

Dimensionless Convection
• Nusselt number, Nu = hLc/kfluid

– Different from Bi = hLc/ksolid

• Reynolds number, Re = ρVLc/μ = VLc/ν
• Prandtl number Pr = μcp/k (in tables)
• Grashof number, Gr = βgΔTLc

3/ν2

– g = gravity, β = expansion coefficient =     
–(1/ρ)(∂ρ/∂T)p, and ΔT = | Twall – T∞ |

• Peclet, Pe = RePr; Rayleigh, Ra = GrPr
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Characteristic Length
• Can use length as a subscript on 

dimensionless numbers to show correct 
length to use in a problem
– ReD = ρVD/μ, Rex = ρVx/μ, ReL = ρVL/μ
– NuD = hD/k, Nux = hx/k, NuL = hL/k
– GrD = ρ2βgΔTD3/μ2, Grx = ρ2βgΔTx3/μ2,   

GrL = ρ2βgΔTL3/μ2

• Use not necessary if meaning is clear

32

How to Compute h
• Follow this general pattern

– Find equations for h for the description of 
the flow given

• Correct flow geometry (local or average h?)
• Free or forced convection

– Determine if flow is laminar or turbulent
• Different flows have different measures to 

determine if the flow is laminar or turbulent 
based on the Reynolds number, Re, for forced 
convection and the Grashof number, Gr, for 
free convection

33

How to Compute h
• Continue to follow this general pattern

– Select correct equation for Nu (laminar or 
turbulent; range of Re, Pr, Gr, etc.)

– Compute appropriate temperature for 
finding properties

– Evaluate fluid properties (μ, k, ρ, Pr) at the 
appropriate temperature

– Compute Nusselt number from equation of 
the form Nu = C Rea Prb or D Rac

– Compute h = k Nu / LC
34

Property Temperature
• Find properties at correct temperature
• Some equations specify particular 

temperatures to be used (e.g. μ/μw)
• External flows and natural convection 

use film temperature (Tw + T∞)/2
• Internal flows use mean fluid 

temperature (Tin + Tout)/2

35

Key Ideas of External Flows
• The flow is unconfined
• Moving objects into still air are modeled 

as still objects with air flowing over them
• There is an approach condition of 

velocity, U∞, and temperature, T∞

• Far from the body the velocity and 
temperature remain at U∞ and T∞

• T∞ is the (constant) fluid temperature 
used to compute heat transfer

36

Flat Plate Flow Equations
• Laminar flow (Rex, ReL < 500,000, Pr > .6)
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• Turbulent flow (5x105 < Rex, ReL < 107)
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Flat Plate Flow Equations II
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• Average properties for com-
bined laminar and turbulent 
regions with transition at xc = 
500000 ν/U∞
– Valid for 5x105 < ReL < 107 and 

0.6 < Pr < 60

Figure 7-10 from Çengel, Heat and Mass Transfer 38

Heat Transfer Coefficients
• Cylinder average h (RePr > 0.2; properties 

at (T∞ + Ts)/2 5/48/5
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Other Shapes and Equations

Part of Table 7-1 from Çengel, 
Heat and Mass Transfer 40

Tube Bank Heat Transfer

Table 7-2 from Çengel, Heat and Mass Transfer

41

Key Ideas of Internal Flows
• The flow is confined
• There is a temperature and velocity 

profile in the flow
– Use average velocity and temperature

• Wall fluid heat exchange will change the 
average fluid temperature
– There is no longer a constant fluid 

temperature like T∞ for computing heat 
transfer
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Area Terms

Figure 8-1 from Çengel, Heat and Mass Transfer

• Acs is cross-sectional area 
for the flow
– Acs = πD2/4 for circular pipe
– Acs =  WH for rectangular 

duct
• Aw is the wall area for heat 

transfer
– Aw = πDL for circular pipe
– Aw = 2(W + H)L for 

rectangular duct
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Average Temperature Change
• Let T represent the average fluid 

temperature (instead of Tavg, Tm or    ) 
• T will change from inlet to outlet of 

confined flow
– This gives a variable driving force (Twall –

Tfluid) for heat transfer 
– Can accommodate this by using the first 

law of thermodynamics:     =    cp(Tout – Tin)
– Two cases: fixed wall heat flux and fixed 

wall temperature

T

Q& m&

44

Fixed Wall Heat Flux
• Fixed wall heat flux,       , over given wall 

area, Aw, gives total heat input which is 
related to Tout – Tin by thermodynamics

wallq&
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• “Outlet” can be any point along flow path 
where area from inlet is Aw

• We can compute Tw at this point as Tw = 
Tout +        /hwallq&
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Constant Wall Temperature
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Figure 8-14 from Çengel, Heat and Mass Transfer

• hAw /   cp = NTU, the 
number of transfer 
units

• This is general 
equation for 
computing Tout in 
internal flows
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Log-mean Temperature Diff
• This is usually written as a set of 

temperature differences
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Developing Flows

Momentum 
boundary 
layer 
development

Thermal 
boundary 
layer 
development

48

Fully Developed Flow
• Temperature profile does not change 

with x if flow is fully developed thermally
• This means that ∂T/∂r does not change 

with downstream distance, x, so heat 
flux (and Nu) do not depend on x
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D
L
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L th• Laminar entry 

lengths
• Turbulent 

entry lengths
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D
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Eggs from Figure 
8-9 in Çengel, 
Heat and Mass 
Transfer

Entry Region Nusselt Numbers

50

Internal Flow Pressure Drop
• General formula: Δp = f (L/D) ρV2/2
• Friction factor, f, depends on Re = 

ρVD/μ and relative roughness, ε/D
• For laminar flows, f = 64/Re

– No dependence on relative roughness
• For turbulent flows
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Moody Diagram

Fundamentals of 
Fluid Mechanics, 5/E 
by Bruce Munson, 
Donald Young, and 
Theodore Okiishi. 
Copyright © 2005 by 
John Wiley & Sons, 
Inc.  All rights 
reserved.

52

Laminar Nusselt Number
• Laminar flow if Re = ρVD/μ < 2,300
• Fully-developed, constant heat flux, Nu 

= 4.36
• Fully-developed, constant wall 

temperature: Nu = 3.66
• Entry region, constant wall temperature:

( )
( )[ ] 32PrRe04.01

PrRe065.066.3
LD
LDNu

+
+=
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Noncircular Ducts
• Define hydraulic diameter, Dh = 4A/P

– A is cross-sectional area for flow
– P is wetted perimeter
– For a circular pipe where A = pD2/4 and P 

= πD, Dh = 4(πD2/4) / (πD) = D
• For turbulent flows use Moody diagram 

with D replaced by Dh in Re, f, and ε/D
• For laminar flows, f = A/Re and Nu = B 

(all based on Dh) – A and B next slide
54

From Çengel, 
Heat and Mass 
Transfer
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Turbulent Flow
• Smooth tubes (Gnielinski)
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• Tubes with roughness
– Use correlations developed for this case
– As approximation use Gnielinski equation 

with f from Moody diagram or f equation
• Danger!  h does not increase for f >4fsmooth
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Free (Natural) Convection
• Flow is induced by temperature 

difference
– No external source of fluid motion
– Temperature differences cause 

density differences
– Density differences induce flow

• “Warm air rises”

– Volume expansion coefficient: β = 
[–(1/ρ)(∂ρ/∂T)]

• For ideal gases β = 1/T

Eggs from Figure 
1-33 in Çengel, 
Heat and Mass 
Transfer

Forced

Free 
(Natural)

57

Grashof and Rayleigh Numbers
• Dimensionless groups for free (natural) 

convection

– g = acceleration of gravity (LT-2)
– β = –(1/ρ)(∂ρ/∂T) called the volume 

expansion coefficient (dimensions: 1/Θ)
– ΔT = |Twall – Tfluid| (dimensions: Θ)
– Other terms same as previous use
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= 3

2

32
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c
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Equations for Nu
• Equations have form of AGraPrb or BRac

• Since Gr and Ra contain |Twall – Tfluid|, 
an iterative process is required if one of 
these temperatures is unknown

• Transition from laminar to turbulent 
occurs at given Ra values
– For vertical plate transition Ra = 109

• Evaluate properties at “film” (average) 
temperature, (Twall + Tfluid)/2

59

Vertical Plate Free Convection
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9-1 in Çengel, Heat 
and Mass Transfer 60

Vertical Plate Free Convection
• Simplified equations on previous chart 

for constant wall temperature
– More accurate: Churchill and Chu, any Ra
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Vertical Plate Free Convection
• Constant wall heat flux

– Use    = hA(Tw – T∞) to compute an 
unknown temperature (Tw or T∞) from 
known wall heat flux and computed h

– Tw varies along wall, but the average heat 
transfer uses midpoint temperature, TL/2

– Use trial and error solution with TL/2 – T∞ as 
ΔT in Ra used to compute h = kNu/L

q&

wall

wall
LLwallwall hA

qTTTThAq
&

& =−⇒−= ∞∞ 2/2/ )(
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Vertical Cylinder
• Apply equations for vertical 

plate from previous charts if 
D/L ≥ 35/Gr1/4

• For this D/L effects of 
curvature are not important

• Thin cylinder results of Cebeci
and Minkowcyz and Sparrow 
available in ASME 
Transactions

Cylinder figure 
from Table 9-1 in 
Çengel, Heat and 
Mass Transfer
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Horizontal Plate

• Hot surface facing up or cold surface 
facing down

• Lc = area / perimeter (As/p)
– For a rectangle of length, L, and width, W, 

Lc = (LW) / (2L + 2W) = 1 / ( 2 / W + 2 / L)
– For a circle, Lc = πR2 / 2πR = R/2 = D/4

Cold surface

1173/1

744/1

101015.0
101054.0

<<=

<<=

RaRaNu
RaRaNu

c

c

L

L
Figures from Table 9-1 in 
Çengel, Heat and Mass 
Transfer
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Horizontal Plate II

• Cold surface facing up or hot surface 
facing down

• Lc = area / perimeter (As/p)
– For a rectangle of length, L, and width, W, 

Lc = (LW) / (2L + 2W) = 1 / ( 2 / W + 2 / L)
– For a circle, Lc = πR2 / 2πR = R/2 = D/4

Cold surface

1154/1 101027.0 <<= RaRaNu
cL

Figures from Table 9-1 in 
Çengel, Heat and Mass 
Transfer
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Sphere and Horizontal Cylinder

• NuD results are average values

( )[ ]
2

27/816/9

6/1

Pr559.01

387.06.0
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+= D

D
RaNu

Figures from Çengel, Heat and Mass Transfer
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4/1

Pr469.01

589.02
+

+= D
D

RaNu
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Horizontal Enclosures
• Top side warmer:

no convection
• Conduction only, Nu 

= hL/k = 1
• Bottom warmer:

convection becomes 
significant when RaL
= (Pr)βgΔTL3/ν2 = 
βgΔTL3/να > 1708

L

Figure 9-22 in Çengel, 
Heat and Mass Transfer
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Horizontal Enclosures II

753/1

544/1

10104068.0
10410195.0

<<=
<<=

LL

LL

RaxRaNu
xRaRaNu

Jakob, for 0.5 < Pr < 2

95074.03/1 107103Pr069.0 xRaxRaNu LL <<=

8101
18

,0max17081,0max44.11 <⎟
⎠
⎞

⎜
⎝
⎛ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= L

L

L
RaRa

Ra
Nu

Globe and Dropkin for 
a range of liquids

Hollands et al. for air; also for other fluids if RaL < 105
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Vertical Enclosures
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Berkovsky and Polevikov, any Pr
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4
3.0
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⎞

⎜
⎝
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3/1
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20Pr1
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L

RaNu
Ra

LH
=

<<
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MacGregor and Emery
Figure 9-
23 in 
Çengel, 
Heat and 
Mass 
Transfer
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Heat Exchangers
• Used to transfer energy from one fluid 

to another
• One fluid, the hot fluid, is cooled while 

the other, the cold fluid, is heated
• May have phase change: temperature 

of one or both fluids is constant
• Simplest is double pipe heat exchanger

– Parallel flow and counter flow

70

Figure 11-1 from Çengel, 
Heat and Mass Transfer

71

Compact Heat Exchangers

Figure 11-3 from Çengel, Heat and Mass Transfer 72

Shell-and-Tube Exchanger

• Counter flow exchanger with larger 
surface area; baffles promote mixing

Figure 11-4 from Çengel, Heat and Mass Transfer
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Shell and Tube Passes
Tube flow has 
three complete 
changes of 
direction giving 
four tube 
passes

Shell flow 
changes 
direction to 
give two shell 
passes

Figure 11-5(b) from Çengel, Heat and Mass Transfer 74

Overall U
• U is overall heat 

transfer coefficient
• Analyzed here for 

double-pipe heat 
exchanger

UAAUAU

Ah
R

Ah
R

iioo

oo
wall

ii
111

11

===

++=

Figure 11-7 from Çengel, Heat and Mass Transfer
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Heat Exchange Analysis 
• Heat transfer from 

hot to cold fluid TUAQ Δ=&

• First law 
energy 
balances

( )
( )outhinhph

incoutcpc

TTcmQ
TTcmQ

h

c

,,

,,

−=
−=

&&

&&

• Assumes no heat loss to surroundings
– Subscripts c and h denote cold and hot 

fluids, respectively
– Alternative analysis for phase change
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Parallel Flow
• Parallel flow 

heat exchanger
lmTUAQ Δ=&

⎟⎟
⎠
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⎜⎜
⎝
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Figure 11-14 from Çengel, Heat and Mass Transfer

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−−
=Δ

incinh

outcouth

incinhoutcouth
lm

TT
TT

TTTT
T

,,

,,

,,,,

ln

77

Counter Flow
• Same basic equations

– Difference in ΔT1 and 
ΔT2 definitions

ΔT1 = Th,in – Tc,out

ΔT2 = Th,out – Tc,in

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−−
=Δ

outcinh

incouth
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TT

TTTT
T

,,

,,

,,,,

ln
Figure 11-16 from Çengel, 
Heat and Mass Transfer
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Heat Exchanger Problems
• With ΔTlm method we want to find U or 

A when all temperatures are known
• If we know three temperatures, we can 

find the fourth by an energy balance 
with known mass flow rates (and cp’s)

( )
( )outhinhph

incoutcpc

TTcmQ
TTcmQ

h

c

,,

,,

−=
−=

&&

&& Can find     from two 
temperatures for one 
stream and then find 
unknown temperature

Q&
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Correction Factors
• Correction factor parameters, R and P

– Shell and tube definitions below

– Correction factor charts show diagrams 
that illustrate the equations for P and R
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Correction Factor Chart I

Figure 11-18 from Çengel, 
Heat and Mass Transfer

P
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Effectiveness-NTU Method
• Used when not all temperatures are 

known
• Based on ratio of actual heat transfer to 

maximum possible heat transfer
• Maximum possible temperature 

difference, ΔTmax is Th,in – Tc,in
– Only one fluid, the one with the smaller value 

of    cp, can have ΔTmax

– Define Cc = (   cp)c and Ch = (   cp)h

m&
m&m&
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Effectiveness, ε

• In effectiveness-NTU method we find ε, 
then find     = ε   max
– Use CminΔTmax to find   max because  C1ΔT1

= C2ΔT2 or ΔT2 = C1ΔT1/C2 

– If ΔT2 = ΔTmax and C1/C2 > 1,  ΔT2 > ΔTmax

– CminΔTmax is maximum heat transfer that 
can occur without impossible T < Tc,in

( ) ( )ch
incinh

CCC
TTC

Q
Q

Q ,minmin
,.minmax

=
−

==ε
&

&

&

Q& Q&

Q&
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Find ε
Example chart 
for finding 
effectiveness 
from NTU = 
UA/Cmin and 
Cmin/Cmax ratio

Figure 11-26 from 
Çengel, Heat and 
Mass Transfer

For NTU = 1.5 
and Cmin/Cmax
= 0.25, ε = ?

For NTU = 1.5 
and Cmin/Cmax
= 0.25, ε = .7

84

Effectiveness Equations
• Double pipe parallel flow

( )

c
e cNTU

+
−

=ε
+−

1
1 1

( )

( )cNTU

cNTU

ce
e

−−

−−

−
−

=ε 1

1

1
1

• Double pipe counter flow
max

min
C
Cc =

minC
UANTU =

Figures from Figure 11-26 from Çengel, Heat and Mass Transfer
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Black-Body Radiation
• Basic black body equation: Eb = σT4

– Eb is total black-body radiation energy flux 
W/m2 or Btu/hr·ft2

– σ is the Stefan-Boltzmann constant
• σ = 5.670x10-8 W/m2·K4

• σ = 0.1714x10-8 Btu/hr·ft2·R4

– Must use absolute temperature
• Radiation flux varies with wavelength

– Ebλ is flux at given wavelength, λ

86

Spectral Ebλ

• Energy (W/m2) 
emitted varies 
with wavelength 
and temperature

• Maximum point 
occurs where λT
= 2897.8 μm·K

• T increase shifts 
peak shift to 
lower λ

Figure 12-9 from Çengel, Heat and Mass Transfer

InfraredUltraviolet

87

Partial Black-body Power

∫
λ

λλ− λ=
1

1
0

0, dEE bb

∫
λ

λλ λ
σ

=
0

4 '1 dE
T

f b

Black body radiation between λ = 
0 and λ = λ1 is Eb,0-λ1

Fraction of total radiation 
(σT4) between λ = 0 and 
any given λ is fλ

Figure 12-13 from Çengel, Heat and Mass Transfer
88

Radiation Tables
• Can show that fλ is function of λT

( ) ( ) ( ) ( )∫∫∫
λ

λ

λ

λ

λ
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−λσ
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TCTCb Td
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e
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dE

T
f

0
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1

0
5

1
4

0
4 1

1
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11
22

• Radiation tables 
give fλ versus λT
– See table 12-2, 

page 672 in text
– Extract from this 

table shown at right
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Δλ

Figure 12-14 from Çengel, Heat and Mass Transfer

• Radiation in finite 
band, Δλ
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Emissivity
• Ratio of actual emissive power to blakc

body emissive power
– Diffuse surface – emissivity does not 

depend on direction
– Gray surface – emissivity does not depend 

on wavelength
– Gray, diffuse surface – emissivity is the 

does not depend on direction or 
wavelength

• Simplest surface to handle and often used in 
radiation calculations
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Average Emissivity
• Average over all wavelengths
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• For emissivity with constant values in a 
series of wavelength ranges
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• Applies to other properties as well
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Properties
• Incoming 

radiation 
properties
– Reflectivity, ρ
– Absorptivity, α
– Transmissivity, τ

• Energy balance: 
ρ + α + τ = 1Figure 12-31 from 

Çengel, Heat and 
Mass Transfer

95

α Data
• Solar 

radiation has 
effective 
source 
temperature 
of about 
5800 K

Figure 12-33 from 
Çengel, Heat and 
Mass Transfer 96

Kirchoff’s Law
• Absorptivity equals emissivity (at the 

same temperature)
• True only for values in a given direction 

and wavelength
• Assuming total hemispherical values of 

α and ε are the same simplifies 
radiation heat transfer calculations, but 
is not always a good assumption
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Effect of Temperature
• Emissivity, ε, depends on surface 

temperature
• Absorptivity, α, depends on source 

temperature (e.g. Tsun ≈ 5800 K)
• For surfaces exposed to solar radiation

– high α and low ε will keep surface warm
– low α and high ε will keep surface cool
– Does not violate Kirchoff’s law since 

source and surface temperatures differ  
98

View Factor, Fi→j or Fij

• Fi→j or Fij is the 
fraction of radiation, 
leaving surface i, that 
strikes surface j
– AiFij = AjFji

– ΣkFik = 1 (enclosure)
– F1→2+3 = F12 + F13

Figure 13-1 from Çengel, Heat and Mass Transfer

• Fk→k = 0 only if k is a flat surface
• View factors from equations or charts
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All Black Surface Enclosure
• Heat transfer from surface 1 reaching 

surface 2 is A1F12σT1
4

• Heat transfer from surface 2 reaching 
surface 1 is A2F21σT2

4 = A1F12σT2
4

• Net heat exchange between surface 1 
and surface 2: A1F12σ(T1

4 – T2
4)

– Negative value indicates heat into surface 1 
– For multiple surfaces
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Gray Diffuse Opaque Enclosure

• Kirchoff’s law applies to the average: α
= ε at all temperatures

• For opaque surfaces τ = 0 so α + ρ = 1
• For gray, diffusive, opaque surfaces 

then ρ = 1 – α = 1 – ε
• Define radiosity, J = εEb + ρG = emitted 

and reflected radiation
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Net Radiation Leaving Surface
• = A(J – G)
• Can show

Figure 13-20 from Çengel, Heat and Mass Transfer
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Gray Diffuse Opaque II
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• Combining two equations for 
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• Solve system of N simultaneous linear 
equations for N values of Ji

• Black or reradiating surface (    = 0) has 
Ji = Ebi = σTi

4
iQ&
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Review Circuit Analogy
• Look at simple 

enclosure with only 
two surfaces

• Apply circuit analogy 
with total resistance
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Three-Surface Circuit

• Three or more 
surfaces easirer
by system of 
equations

• Exception:     = 0
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Review Three-Surface Circuit

• If    3 = 0,   net,1→2
can be found 
from circuit with 
two parallel 
resistances
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Radiation Exchange
• Two possible surface conditions: (1) 

known temperature, (2) known    iQ&
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Solve this set 
of N 
simultaneous 
equations for 
N values of Ji

(1)

(2)

107

Radiation Exchange II
• Once all Ji values are known we can 

compute unknown values of Ti and 
– For known Ti

– For known 

iQ&
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Numerical Heat Transfer
• Finite difference expressions with 

truncation error
• Computers give roundoff error
• Convert differential equations to 

algebraic equations
– Solve system of algebraic equations to get 

temperatures at discrete points
– Reduce step size for stability

• Will not be covered on final


