

3

$$\dot{Q}_{rad,1\to 2} = A_1 \varepsilon_1 \sigma \left(T_1^4 - T_2^4 \right)$$

California State University Northridge

algebra or arithmetic

Northridge

34

35

Key Ideas of External Flows

- The flow is unconfined
- Moving objects into still air are modeled as still objects with air flowing over them
- There is an approach condition of velocity, U_{∞} , and temperature, T_{∞}
- Far from the body the velocity and temperature remain at U_{∞} and T_{∞}
- T_∞ is the (constant) fluid temperature used to compute heat transfer Northridge

Other Shapes and Equations							
Cross-section of the cylinder	Fluid	Range of Re	Nusselt number				
Circle	Gas or liquid	0.4-4 4-40 40-4000 4000-40,000 40,000-400,000	$\begin{array}{l} \text{Nu} = \ 0.989 \text{Re}^{0.330} \ \text{Pr}^{1/3} \\ \text{Nu} = \ 0.911 \text{Re}^{0.385} \ \text{Pr}^{1/3} \\ \text{Nu} = \ 0.683 \text{Re}^{0.466} \ \text{Pr}^{1/3} \\ \text{Nu} = \ 0.193 \text{Re}^{0.618} \ \text{Pr}^{1/3} \\ \text{Nu} = \ 0.027 \text{Re}^{0.805} \ \text{Pr}^{1/3} \end{array}$				
Square	Gas	5000–100,000	Nu = 0.102Re ^{0.675} Pr ^{1/3}				
Square (tilted 45°)	Gas	5000–100,000 Part of Table 7 Heat and Mass	$Nu = 0.246 Re^{0.588} Pr^{1/3}$ -1 from Çengel, s Transfer				

Tube Bank Heat Transfer							
Nusselt number correlations for cross flow over tube banks for $N>16$ and $0.7 < \Pr < 500$ (from Zukauskas, 1987)*							
Arrangement	Range of Re _D	Correlation					
In-line	0–100	$Nu_D = 0.9 \text{ Re}_D^{0.4} Pr^{0.36} (Pr/Pr_s)^{0.25}$					
	100-1000	$Nu_D = 0.52 \text{ Re}_D^{0.5} Pr^{0.36} (Pr/Pr_s)^{0.25}$					
	$1000-2 \times 10^{5}$	$Nu_D = 0.27 \text{ Re}_D^{0.63} Pr^{0.36} (Pr/Pr_s)^{0.25}$					
	$2\times10^{5}2\times10^{6}$	$Nu_D = 0.033 \text{ Re}_D^{0.8} \text{Pr}^{0.4} (\text{Pr/Pr}_s)^{0.25}$					
Staggered	0–500	$Nu_D = 1.04 \text{ Re}_D^{0.4} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$					
	500-1000	$Nu_D = 0.71 \text{ Re}_D^{0.5} Pr^{0.36} (Pr/Pr_s)^{0.25}$					
	$1000-2 \times 10^{5}$	$Nu_D = 0.35(S_T/S_L)^{0.2} Re_D^{0.6} Pr^{0.36} (Pr/Pr_s)^{0.25}$					
	$2\times10^{5}2\times10^{6}$	$Nu_D = 0.031(S_T/S_L)^{0.2} \text{Re}_D^{0.8}\text{Pr}^{0.36}(\text{Pr/Pr}_s)^{0.25}$					
All properties except Pr_s are to be evaluated at the arithmetic mean of the inlet and outlet temperatures if the fluid (Pr_s is to be evaluated at T).							
Northridge Table 7-2 from Çengel, Heat and Mass Transfer 40							

various cross section	ns $(D_h = 4A$	tor for fully developed familiar flow in tubes of c/p , Re = $V_{avg}D_h/\nu$, and Nu = hD_h/k)		
Tube Geometry	alb or 0°	T = Const	a = Const	 Friction Factor
Circle	010	2 cc	4 26	64.00/D-
D		From Çengel, Heat and Mass Transfer		
Rectangle	<u>a/b</u>			
	1	2.98	3.61	56.92/Re
/ /	2	3.39	4.12	62.20/Re
	3	3.96	4.79	68.36/Re
6	4	4.44	5.33	72.92/Re
	6	5.14	6.05	78.80/Re
<u>←a</u>	8	5.60	6.49	82.32/Re
	00	7.54	8.24	96.00/Re

69

California State University Northridge

