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Outline
• Review last lecture
• Equivalent circuit analyses

– Review basic concept
– Application to series circuits with 

conduction and convection
– Application to composite materials
– Application to other geometries

• Two-dimensional shape factors
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Review Steady, 1-D,
• Rectangular • Cylindrical shell
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is an average thermal 
conductivity (or a constant 
value) if k is constant

k

T0, TL = temperatures at x = 0,L; T1, T2 = 
temperatures at inner (r1) and outer(r2) radii
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Review Heat Generation
• Various 

phenomena in 
solids can 
generate heat

• Define          
as the heat 
generated per 
unit volume 
per unit time

gene&

Figure 2-21 from Çengel, 
Heat and Mass Transfer
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Review Heat Generation II
• Temperature and heat flux equations
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Plot of (T - T0)/(TL - T0) for Heat Generation in a Slab
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Steady Heat Transfer Definition
• In steady heat transfer the temperature 

and heat flux at any coordinate point do 
not change with time

• Both temperature and heat transfer can 
change with spatial locations, but not 
with time

• Steady energy balance (first law of 
thermodynamics) means that heat in 
plus heat generated equals heat out
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Rectangular Steady Conduction

Figure 2-63 from Çengel, 
Heat and Mass Transfer

Figure 3-2 from 
Çengel, Heat 
and Mass 
Transfer

The heat 
transfer is 
constant 
in this 1D 
rectangle 
for both 
constant 
& variable 
k 
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Thermal Resistance
• Heat flow analogous to current
• Temperature difference analogous to 

potential difference
• Both follow Ohm’s law with appropriate 

resistance term
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Thermal Resistance II
• Conduction
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Where Does the Heat Go?
Energy conservation 
requires that conduction 
heat through wall equals 
the heat leaving the wall 
by convection and 
radiation

321 QQQ &&& +=
Figure 1-18 from 
Çengel, Heat and 
Mass Transfer
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Where Does the Heat Go?  II

Figure 1-18 
from Çengel, 
Heat and 
Mass 
Transfer

Figure 3-5 from Çengel, 
Heat and Mass Transfer
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Parallel Resistances (T∞ = Tsurr)
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Define total heat transfer 
coefficient, htotal
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Figure 3-5 
from Çengel, 
Heat and 
Mass Transfer
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Combined Modes

Convection or 
convection 

plus radiation

Convection or 
convection 

plus radiation
Conduction
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Figure 3-6 from 
Çengel, Heat and 
Mass Transfer
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Combined Modes II
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LA is area normal 
to heat flow

Series 
Resistance 
Formula

Figure 3-6 from 
Çengel, Heat and 
Mass Transfer
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Combined Modes III
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LA is area normal 
to heat flow

If you know h1, h2, L, k, T∞1, 
and T∞2, but you do not know 
T1 and T2, can you find the 
heat flux?

Once you found the heat flux from the 
information give, can you find T1 and T2?
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Figure 3-6 from 
Çengel, Heat and 
Mass Transfer
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Problem
A house has a 4 in thick brick wall with k = 0.6 
Btu/hr·ft·oF.  The interior temperature is 70oF and 
the exterior temperature is 0oF.  The inside and 
outside convection plus radiation coefficients are 
3 Btu/hr·ft2·oF and 4 Btu/hr·ft2·oF, respectively.  
Find the heat flux through the wall. 
Given: Wall with L = 4 in = 4/12 ft and k =0.6 
Btu/hr·ft·oF has convection on two sides.  T∞1 = 
70oF, T∞2 = 0oF, h1 = 3 Btu/hr·ft2·oF and h2 = 4 
Btu/hr·ft2·oF.      

Find:
A
Qq
&
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Solution

LA is area normal 
to heat flow
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Figure 3-6 from 
Çengel, Heat and 
Mass Transfer
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Solution II

LA is area normal 
to heat flow

F

Ffthr
Btu

fthr
Btu

F
h
qTT

h

TTq o

o

o 5.493

5.61

701
2

2

1
11

1

11 =

⋅⋅

⋅−=−=⇒
−

= ∞
∞ &

&

Figure 3-6 from 
Çengel, Heat and 
Mass Transfer

F

Ffthr
Btu

fthr
Btu

F
h
qTT

h

TTq o

o

o 4.154

5.61

01
2

2

1
22

2

22 =

⋅⋅

⋅−=+=⇒
−

= ∞
∞ &

&

20

Solution III

LA is area normal 
to heat flow

FTFT
fthr
Btuq oo 4.155.495.61

212 ==
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Figure 3-6 from 
Çengel, Heat and 
Mass Transfer

How can we check results below found from analysis of 
overall problem and convection processes?

Analyze conduction step for consistency.
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Composite Materials

How 
would 
you 
analyze 
this 
problem?

Figure 3-9 from Çengel, Heat and 
Mass Transfer
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Composite Materials II

23

Review Cylindrical Shell

Figure 2-
50 from 
Çengel, 
Heat and 
Mass 
Transfer

For constant k
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Cylindrical Shell with Convection

Figure 3-25 from Çengel, Heat 
and Mass Transfer
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Cylinder plus Convection Result

Figure 3-25 from Çengel, Heat 
and Mass Transfer
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We can rearrange 
this equation as 
shown below
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Problem
• A hot-water pipe (k = 35 Btu/hr·ft·oF) in a 

house, made of ¾ inch schedule 40 pipe 
(OD = 1.050 in; ID = 0.824 in) is 40 ft 
long and contains  water at 120oF.  The 
air around the pipe is at 60oF.  The heat 
transfer coefficients inside and outside 
the pipe are, respectively, 200 and 3 
Btu/hr·ft2·oF.  Determine the heat loss 
from the pipe. ( )
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Solution

Figure 3-25 from 
Çengel, Heat and 
Mass Transfer

Given: T∞2 = 60oF, T∞1 = 
120oF, r1 = ID/2 = 0.412 in, 
r2 = OD/2 = 0.525 in, k =35 
Btu/hr·ft·oF, L = 40 ft,       

h1= 200 
Btu/hr·ft2·oF,        
h2= 3 Btu/hr·ft2·oF

Find:
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Solution II
Given: T∞2 = 60oF, T∞1 = 
120oF, r1 = ID/2 = 0.412 in, 
r2 = OD/2 = 0.525 in, k =35 
Btu/hr·ft·oF, L = 40 ft,       
h1= 200 Btu/hr·ft2·oF,        
h2= 3 Btu/hr·ft2·oF

Find: Q&
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Composite 
Cylindrical Shell

Figure 3-26 from Çengel, Heat 
and Mass Transfer
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Figure 3-26 
from Çengel, 
Heat and Mass 
Transfer

Composite 
Cylindrical 

Shell III
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Another Problem
• Insulation with k = 0.2 Btu/hr·ft·oF is to be 

added to the pipe in the previous 
example problem.  Determine the heat 
transfer if the insulation is one inch thick.
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example except 
these two
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Another Problem II
Unchanged resistances from previous 
example
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Another Problem III
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• Insulation and outer convection resistances 
are largest
– Inner convection and pipe conduction negligible
– Outer convection resistance less with insulation
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Effect of Insulation Thickness
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Insulation Increases   ?
• Why does initial amount of insulation 

increase heat transfer?
– Tradeoff of two resistances
– Added insulation adds conduction 

resistance
– Added insulation also increases outer 

radius which decreases the outer 
convection resistance 1/(houterAouter) = 
1/(houter2πrouterL)

Q&
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Resistances for Pipe Insulation
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Radius for Maximum 
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For maximum   :Q&

ro = outer radius

ko = thermal conductivity 
of outer layer

ro = ko/h2 for maximum Q&
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Radius for Maximum Q&

Q&

Q&• ro = ko/h2 for maximum
• In the example problem h2 = 3 

Btu/hr·ft2·oF, and ko = 0.2 Btu/hr·ft·oF so 
ro = 0.0667 ft = 0.8 in for maximum

• Pipe radius was 0.525 in; ro = 0.8 in 
gives an insulation thickness of 0.275 in

• Note that ro = ko/h2 does not depend on 
ri and is usually larger than ri

• There is no radius for minimum Q&
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Spherical Shell with Convection

Figure 3-25 from Çengel, Heat 
and Mass Transfer
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Spherical Shell Result

Figure 3-25 from Çengel, Heat 
and Mass Transfer
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Conduction Shape Factors
• Simplified analysis

– for multidimensional geometries with each 
surface at a uniform temperature

– Use shape factor, S, whose equation is 
found from tables like Çengel Table 3-7

– Basic equation:    = kS(T1 – T2)
– S must have dimensions of length

• Equations for S depend on parameters in the 
different geometries

Q&
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Example Shape Factor

From Table 7-1 in Çengel, Heat 
and Mass Transfer
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Buried Pipe Shape Factor
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