Lecture 33 (Walker 16.46,17.1)

Heat Transfer Ideal Gas \& Ideal Gas Law

Dec. 4, 2009
Quiz (Chaps. 14 \& 16) on Mon. Dec. 7
(14.3, 14.9, 16:6: not covered)

Heat Transfer: Conduction
The insulation value of building materials is given in terms of thermal resistance R-values rather than thermal conductivity:

$$
R=\frac{l}{k}
$$

Here, l is the thickness of the material.

TABLE 14-5 \boldsymbol{R}-values		
Material	Thickness	\boldsymbol{R}-value $\left(\mathbf{f t}^{2} \cdot \mathbf{h} \cdot \mathbf{F} / \mathbf{B t u}\right)$
Glass	$\frac{1}{8}$ inch	1
Brick	$3 \frac{1}{2}$ inches	$0.6-1$
Plywood	$\frac{1}{2}$ inch	0.6
Fiberglass insulation	4 inches	12

Heat Transfer - Methods

- Conduction - Thermal kinetic energy passed from particle-to-particle along a length of material.
- Convection - Thermal energy carried by moving fluid.
- Radiation - Thermal energy carried by electromagnetic waves.

Heat Transfer: Convection

Convection occurs when heat flows by the mass movement of molecules from one place to another. It may be natural or forced (fans); both these examples are natural convection.

Radiation

All objects give off energy in the form of radiation, as electromagnetic waves - infrared, visible light, ultraviolet - which, unlike conduction and convection, can transport heat through a vacuum.

Objects that are hot enough will glow visibly first red, then yellow, white, and blue as temperature increases. Objects at body temperature radiate in the infrared, and can be seen with night vision binoculars.

Heat Transfer: Convection

Many home heating systems are forced hot-air systems; these have a fan that blows the air out of registers, rather than relying completely on natural convection.
Our body temperature is regulated by the blood; it runs close to the surface of the skin and transfers heat. Once it reaches the surface of the skin, the heat is released through convection, evaporation, and radiation, along with a slight bit of conduction. (In water, there is much more conduction.)

Radiation

The amount of energy radiated per second by an object due to its temperature is proportional to its surface area and also to the fourth (!) power of its temperature.
Radiated power also depends on emissivity e of the surface, which is a number between 0 and 1 that indicates how effective a radiator the object is.

A perfect radiator ("black body") would have $\mathrm{e}=1$. A perfect reflector ("shiny" object) would not radiate at all; $\mathrm{e}=0$.

Radiation

If you are sitting in a place that is too cold, your body radiates and loses to convection more heat than it is producing. You will start shivering and your metabolic rate will increase unless you put on clothing that has good insulation and/or low emissivity ("space blanket".)
Emissivity also determines how well a surface absorbs radiant energy.
$e=1$ perfect absorber (perfect black body)
$e=0$ perfect reflector (mirror)

An object at temperature T in surroundings of temperature T_{s} will both radiate and absorb power. The net radiated power is

$$
P_{\text {net }}=e \sigma A\left(T^{4}-T_{s}^{4}\right)
$$

Radiation

This behavior is contained in the StefanBoltzmann law:
Stefan-Boltzmann Law for Radiated Power, P
$P=e \sigma A T^{4}$
SI unit: W
Here, e is the emissivity, and σ is the StefanBoltzmann constant:

$$
\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)
$$

The temperature must be in Kelvin units!

Example

- Person wants to "burn off" 400 Calories $\left(1.7 \times 10^{6} \mathrm{~J}\right)$ by standing naked in ice cave at $-10^{\circ} \mathrm{C}$. How long will it take if cooling is by radiation only? Take $e=0.9 ; A=1.5 \mathrm{~m}^{2} ; T=$ $37^{\circ} \mathrm{C}=310 \mathrm{~K} ; \mathrm{Ts}=-10^{\circ} \mathrm{C}=263 \mathrm{~K}$
Pnet $=\operatorname{e\sigma A}\left(T^{4}-T_{s}^{4}\right)$
$=(0.9)\left(5.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}\right)\left(1.5 \mathrm{~m}^{2}\right)\left[(310 \mathrm{~K})^{4}-(263 \mathrm{~K})^{4}\right]$
= 340W
$Q=P t$, so $t=1.7 \times 10^{6} \mathrm{~J} / 340 \mathrm{~W}=4900 \mathrm{~s}=1.4 \mathrm{hr}$

Radiation

If you are in sunlight, Sun's radiation will warm you. The intensity of solar radiation is $1000 \mathrm{~W} / \mathrm{m}^{2}$. In general, you will not be perfectly perpendicular to the Sun's rays, and will absorb energy at the rate:

$$
\frac{\Delta Q}{\Delta t}=\left(1000 \mathrm{~W} / \mathrm{m}^{2}\right) e A \cos \theta
$$

Heat Transfer: Radiation

Thermography - detailed measurement of radiation from the body - can be used in medical imaging. Warmer areas may be a sign of tumors or infection; cooler areas on the skin may be a sign of poor circulation.

(a)

(b)

Ideal Gases

Gases are the easiest state of matter to describe, as all ideal gases exhibit similar behavior.

An ideal gas is one that has low enough density, and is far enough away from condensing to liquid, that the interactions between molecules can be ignored.

Ideal Gases
If the volume and
temperature are kept
constant, but more
molecules N of gas are
added (such as in
inflating a tire or
basketbal), the pressure
will increase:
$\quad P=$ (constant) N
(fixed volume, V; fixed temperature, T)
Leecure 33

Ideal Gases
Finally, if the temperature is constant and the volume decreases, the pressure increases: $P=\frac{\text { (constant) }}{V}$ (fixed number of molecules, N; fixed temperature, T) Lectur 33
19288

Ideal Gases

Combining all three observations, we write

$$
P=k \frac{N T}{V}
$$

where \boldsymbol{k} is called the Boltzmann constant:

> Boltzmann Constant, \boldsymbol{k}
> $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
> SI unit: J / K

Ideal Gases

Rearranging gives us the equation of state for an ideal gas:

$$
\begin{aligned}
& \text { Equation of State for an Ideal Gas } \\
& P V=N k T
\end{aligned}
$$

Instead of counting molecules, we can count moles. A mole is the amount of a substance that contains Avogadro's number N_{A} of molecules.
Avogadro's Number, N_{A}
$N_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/ \mathrm{mol}$
SI unit: mol^{-1}; the number of molecules is dimensionless n moles of gas will contain $n N_{A}$ molecules.

Problem Solving with the Ideal Gas Law

Useful facts and definitions:

- Standard temperature and pressure (STP)

$$
T=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)
$$

$$
P=1.00 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=101.3 \mathrm{kPa}
$$

- Volume of 1 mol of an ideal gas at STP is 22.4 L
- If the amount of gas does not change:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

- Always measure T in kelvins
- P must be the absolute pressure

Ideal Gases

Avogadro's number and the Boltzmann constant can be combined to form the universal gas constant and an alternative equation of state:

```
Universal Gas Constant, R
```

```
\(R=N_{\mathrm{A}} k=\left(6.022 \times 10^{23}\right.\) molecules \(\left./ \mathrm{mol}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)\)
    \(=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})\)
SI unit: \(\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\)
```

> Equation of State for an Ideal Gas
> $P V=n R T$
where n is the number of moles of gas present.
Lecture 33
$22 / 28$

Ideal Gases

The atomic or molecular mass of a substance is the mass, in grams, of one mole of that substance. For example,
Helium: $M=4.00260 \mathrm{~g} / \mathrm{mol}$
Copper: $M=63.546 \mathrm{~g} / \mathrm{mol}$
Furthermore, the mass of an individual atom is given by the atomic mass divided by Avogadro's number:

$$
m=\frac{M}{N_{\mathrm{A}}}
$$

Example

- We have 1 mole of ideal gas at a temperature of $40^{\circ} \mathrm{C}$ at atmospheric pressure (101 kPa). Volume?
- $T=313 \mathrm{~K}$
- $P V=n R T$ so $V=n R T / P$

$$
V=(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(313 \mathrm{~K}) /\left(1.01 \times 10^{5} \mathrm{~Pa}\right)
$$

$$
=2.58 \times 10^{-2} \mathrm{~m}^{3}=25.8 \text { liters }
$$

End of Lecture 33

- For Monday, Dec. 7, read Walker 17.2, 17.4-5.
- Homework Assignment 16b is due at 11:00 PM on Monday, Dec. 7.
- Quiz (Chaps. 14 \& 16) on Mon. Dec. 7

