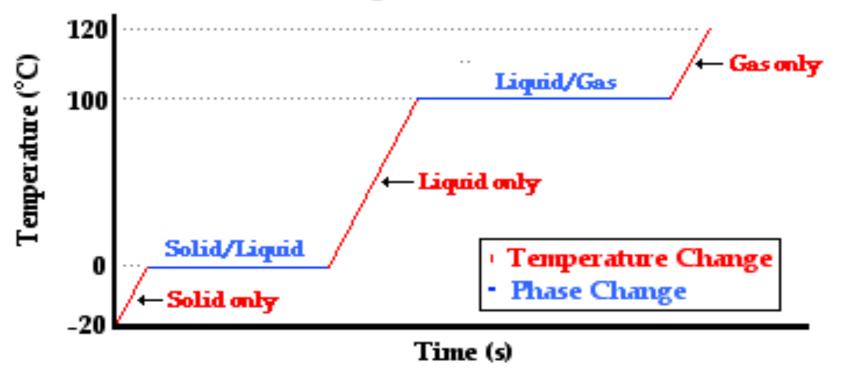
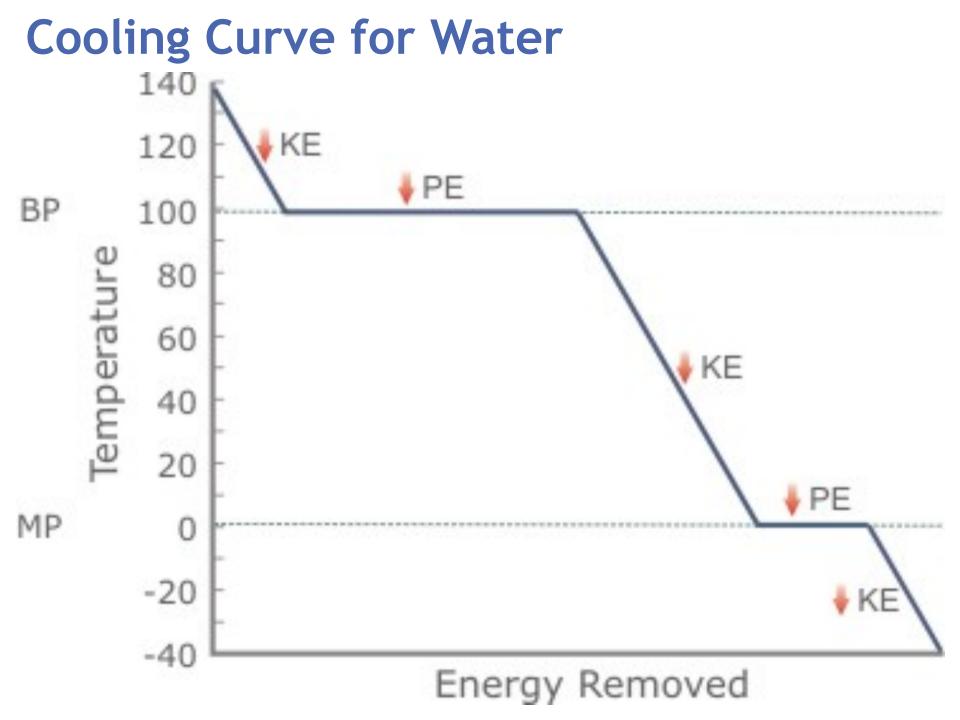
Heating and Cooling Curves

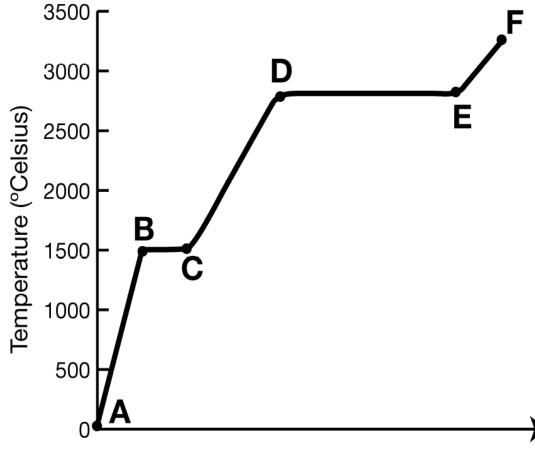

1

April 23, 2015 Chemistry CP


Heating/Cooling Curve Revisited

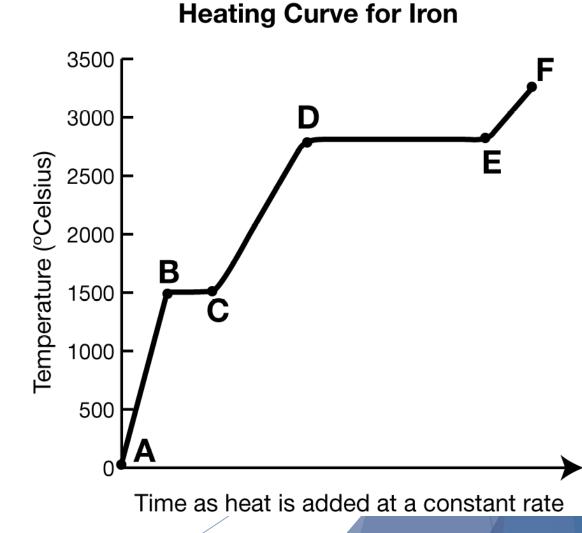
- Potential Energy: energy of position (stored energy)
 - During phases changes
- Kinetic Energy: energy of motion (temperature)

Increases as temperature increases

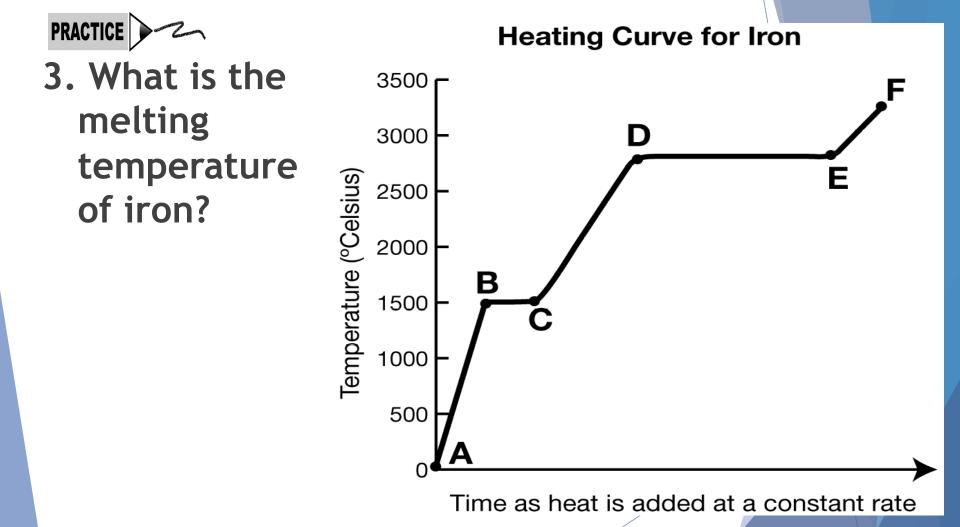

Heating Curve for Water

Heating/Cooling Curve

PRACTICE 1. In the heating curve for iron, describe the phase change that occurred between points B and C on the graph.



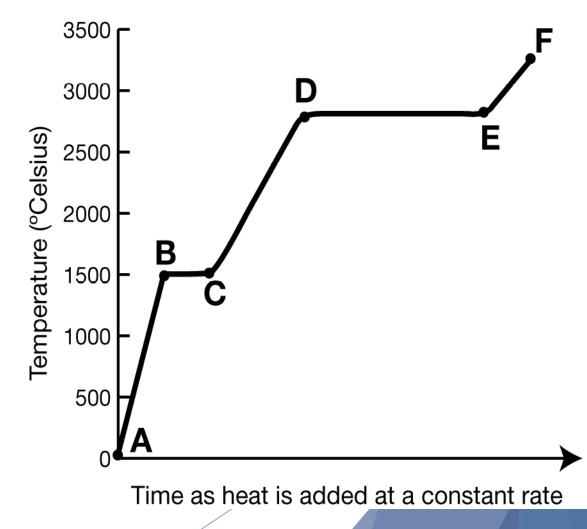
Time as heat is added at a constant rate


Heating/Cooling Curve

PRACTICE

2.Explain why the temperature stayed constant between points B and C.

Heating/Cooling Curve



Heating Cooling Curve

PRACTICE

4. What is the boiling temperature of iron?

Heating Curve for Iron

Calculating Heat Involved in a Phase Change

- The energy required to melt one gram of a substance at its melting point is called the <u>heat of fusion</u> (Δ H_{fusion})
 - It is different for each substance
 - The units are joules or calories per gram
- To calculate the energy to melt a substance at its melting point we use the following formula: $Q = m \times \Delta H_{fus}$

Ex. Problem: Calculating Heat Involved in a Phase Change

Calculate the energy necessary to melt 50 grams of water. Heat of fusion (H_{fusion}) of water = 334 J/g

 $P = m \times H_{fusion} = 50 g \times 334 J/g = 16,700 J$

Calculating Heat Involved in a Phase Change

- The energy required to boil one gram of a substance at it boiling point is called the <u>heat of vaporization</u> (\Delta H_{vap})
 - It is different for each substance
 - The units are joules or calories per gram
- To calculate the energy to boil a substance at its melting point we use the following formula: Q = m x ΔH_{vap}

Ex. Problem: Calculating Heat Involved in a Phase Change

Calculate the energy necessary to boil 150 g of water. Heat of vaporization (ΔH_{vap}) = 2260 J/g.

► Q = m × ΔH_{vap} = 150 g × 2260 J/g ► Q = 339,000 J

Calculating Energy Required to Make a Temperature and Phase Change

How much energy is needed to raise the temperature of 250 grams of water from 25°C to it's boiling point and then boil it? The specific heat of water is 4.18 J/g°C and the heat of vaporization is 2260 J/g.

Let's Solve

Step 1: Calculate the energy necessary to raise the temperature from 25°C to 100°C

 $Q = m \times \Delta T \times Cp$

 $Q = 250g \times (100^{\circ}C - 25^{\circ}C) \times 4.18J/g^{\circ}C$

Q = 78,375 J

Step 2 Calculate the energy necessary to boil the water

 $\Delta H_{vap} = m \times H_{vap}$ $\Delta H_{vap} = 250g \times 2260 \text{ J/g} = 565,000 \text{ J}$

Step 3 Add together the results of steps 1 and 2

78,375J + 565,000J = 643,375J

Draw a heating curve for water, going from -20°C to 125°C on the axis below. Determine the heat needed to 15 g of ice at -20°C to 125°C.

The data below are for water (H_2O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

1. Heat needed to raise the temperature of ice at -20°C to 0°C.

The data below are for water (H_2O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

2. Heat needed to melt ice 0°C.

The data below are for water (H_2O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

3. Heat needed to raise temperature of water from 0°C to 100°C.

The data below are for water (H₂O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

4. Heat needed to vaporize water at 100°C.

The data below are for water (H_2O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

5. Heat needed to raise temperature of water from 100 to 125°C.

The data below are for water (H_2O)

Melting point	Boiling Point	Heat of Fusion	Heat of Vapor.	Cp (solid)	Cp liquid)	Cp (vapor)
0.0°C	100.0°C	334 J/g	2260 J/ g	2.05 J/ g°C	4.18 J/ g°C	1.90 J/ g°C

Determine the heat needed to 15 g of ice at -20°C to 125°C.

TOTAL HEAT: ADD UP ALL VALUES FOR Q