

HIAT-12

Heavy Ion Superconducting Linacs: Status and Upgrade Projects

P.N. Ostroumov

Physics Division

June 21, 2012

Content

- New Projects and Upgrades
 - GSI (Germany)
 - LRF (Huelva University, Spain): new!
 - RISP (Korea): new!
 - HIAF (IMP, China): new!
- ATLAS Upgrades
- CW RFQ for SC heavy-ion linacs
- SC Technology at ANL
 - Main steps for cavity construction
 - Cavity sub-systems
 - Performance: accelerating gradients and residual resistance
- Realistic design parameters for new SC linacs
- Application to SARAF Phase II
- Summary

GSI Upgrade: SC CW Linac

- Primary motivation is research in the field of Super Heavy Elements
- q/A=1/6, 1 mA ion beam, output energy is 7.5 MeV/u, variable from 3.5 MeV/u
- Multi-gap CH cavities, focusing by SC solenoids

LINAC Research Facility (LRF-Huelva)

RESEARCH & APPLICATION PROGRAM

- Basic nuclear physics: reactions & structure, astrophysics, superheavies; exotic isotopes (IGISOL)
- Materials for Fusion and Fission energy
- Aerospace
- Medical applications: Radioisotopes & Proton therapy
- Wide range of heavy ions
 - Wide range of energies, from keV/u to ~15 MeV/u
 - Maximum intensity for HI (~100uA, 40Ar)
 - Protons up to 30 MeV (~1 mA); up to 70 MeV (nA)

HIAT-12

LRF Main Parameters

Parameter	Value	Time	Comments
Ion Species	Heavy ions, protons		ECR ion source
Current Range	~1-2 mA (protons) ~ 500uA – 10 uA HI		HI intensities depends strongly on Q/A
PHASE 1	20 MeV protons 9 MeV/u HI	~3 years	Auxilliary, Cryogenics, Ion source, LEBT, RFQ, 2 x cryomodules (7 x SC), 2 beam lines
PHASE 2	55 MeV protons 15 MeV/u HI	2 years	2 x Cryomodule, Ext. Cryogenics, full experimental hall, IGISOL
PHASE 3	72 MeV protons 18 MeV/u HI	1 year	1 x Cryomodule, proton therapy line

Table 5. Main parameters of the Linac

	Frequency, MHz	β _{OPT}	Number	Comments
			of cavities	
MHB*	36.375 (the 1 st harmonic)	N/A	1	
RFQ	72.75	N/A	1	Based on ANL 60.625 MHz RFQ
QWR1	72.75	0.077	7	Design is available as ANL/ATLAS upgrade
OWP2	100 125	0.15	7	cryomodule
QWK2	109.125	0.15	/	ANL/ATLAS upgrade cryomodule
HWR	181.875	0.25	14	Prototype cavity (f=170 MHz) was demonstrated at ANL

F.IN. USU UUIIIUV SCHEAVYIUH LIHAUS

11141-17

June 21, 2012

Civil Construction Already Started

P.N. Ostroumov SC Heavy-Ion Linacs

HIAT-12

Accelerator Complex for RISP (Korea)

- SC Driver Linac 200MeV/u for ²³⁸U, 600 MeV for p, 400 kW beam power
 - Isotope Facility —
 - High power ISOL driver
- Cavities: QWR, HWR and 2 types of SSR, fundamental frequency is 81.25 MHz
- Focusing by quadrupole doublets

Heavy-Ion Accelerator Facility (HIAF) at IMP, China

P.N. Ostroumov SC Heavy-Ion Linacs

HIAT-12

SC Linacs: Beam Physics

- High intensity heavy ion beams: multiple charge state acceleration
 - Form extremely low longitudinal emittance by using MHB and RFQ —
 - Avoid effective emittance growth of multi-q beams —
 - Form time and transverse focus on the stripper _
 - Multi-q isopath transport after stripping —
 - High-quality of accelerating and focusing fields —
 - QWRs with steering compensation
 - Axial symmetric fields in TEM-class SC resonators
 - Moderate tolerances for RF errors: phase 0.5 rms, amplitude 0.5% rms —
 - Alignment of cold cavity-solenoid strings
 - Cold BPMs and dipole coils in the solenoids
 - Small transverse beam size on the fragmentation target _
 - Quick turn around for tuning to different q/A
- High intensity light ion beams
 - Space charge in the front end
 - A section with adiabatic transition for beam dynamics is required between _ RFQ and high-gradient SC linac HIAT-12
 - P.N. Ostroumov SC Heavy-Ion Linacs

Transition Energy from RFQ to SC Linacs

SC technology is the most critical technology for CW ion accelerators

- Main parameters of SC accelerating cavities for CW operation:
 - Accelerating gradient (cavity voltage, peak fields, design E_{ACC}): real-estate
 - Cavity voltage and surface resistance: cryoplant size
 - For given surface resistance there is an optimal cost (capital + operation) of the Linac as a function of cavity voltages
 - Simple for e-linacs
 - More complicated for heavy-ion linacs due to several cavity types
- 2K operation is more economic than 4K
- Cost per voltage is proportional to cavity (β_{OPT})-k
- Cost of the accelerator is roughly proportional to cavity count

ATLAS Efficiency and Intensity Upgrade - Funded Projects

- Currently includes 10 cryomodules, 60 cavities
- New cryomodule and LHe distribution system upgrade
- RFQ: October 2013
- Cryomodule: April-June 2013

ATLAS Energy Upgrade Cryomodule in Operation Since July 2009

- 7 QWRs, 1 SC solenoid
- Total accelerating voltage is 14.5 MV, 2.1 MV/cavity
- All 7 cavities perform as designed
- One cavity provides 40% higher voltage

ATLAS Beam Intensities After Upgrades

- Funded
 - Intensity is limited by the ECR
 - For light ions intensity is limited by shielding

- Expected funding
 - VENUS type ECR
 - Accelerator Shielding
 - Infrastructure improvement

June 21, 2012

ATLAS CW RFQ

P.N. Ostroumov SC Heavy-Ion Linacs

June 21, 2012

ANL RFQ Highlights

- Highly coupled EM structure
 - "flat" field distribution, non-operational modes are separated more than by 10 MHz
 - "bead-pull" tuning is not required
- Conservative design, peak field is 1.5 Kilpatrick
- Trapezoidal modulation
 - Increases shunt impedance by 60%
- A short output radial matcher to form axially-symmetric beam
- Fabrication: 2-step brazing in a high temperature furnace
- No "cold model" was directly built from CST MWS geometry
- Measured Q-factor is ~93% of the MWS calculated Q for annealed OFHC copper

Acceptance

- Current PII
- The first SC cavity
 - β=0.009
 - Aperture = ϕ 12 mm

With new RFQ

New Cryomodule, Project Started on 9/01/2009

- Cryomodules
 - Long cryomodules containing seven 72. 75 MHz cavities (β_{OPT} =0.077) and 4 SC solenoids
 - Separate cavity and isolation vacuum
 - Vertically loaded, clean room work is minimized
- Length 5 meters, design voltage 17.5 MV; 2.5 MV/cavity
- Available voltage ~4 MV with very low res. resistance
- Replaces 3 existing cryomodules with split-rings
- Beam commissioning is in 2013

SC Cavity Performance

- EM design and mechanical design
- Fabrication technology
- RF surface processing
- First step: EM design
- Reduce E_{PEAK} / E_{ACC} , B_{PEAK} / E_{ACC}
 - Conical center and outer conductor
 - Triple spokes: conical spokes
- Maximize R_{sh}G
- Beam aperture is defined from application; for Heavy Ion Driver accelerators it is in the range from 30 mm to 40 mm

Accelerating Field Quality

- QWR: beam center steering, quadrupole component of the E-field
 - Shaping of the drift tubes to compensate magnetic force with electric force
 - Displacement of the cavity axis: works well for fixed velocity profile
- HWR: quadrupole component of E-field
 - Elliptical aperture
 - "Donut" shape of the drift tube (higher shunt impedance)

Mechanical design and Engineering Analysis

- Compact mechanical design to maintain a high real estate accelerating gradient;
- Provide coupling ports enabling advanced RF surface processing techniques (electropolishing and high pressure water rinsing);
- Integrate a coupling port for a **RF coupler**;
- Facilitate the integration of several cavities and their sub-systems (RF coupler and tuners) into the cryomodule;
- Provide a means for cavity **alignment** in the cryomodule;
- Ensure that the stresses in the niobium and the stainless steel parts are below the maximum allowable limits;
- Satisfy **pressure vessel** requirements according to the ASME code
- Minimize the sensitivity of the resonant frequency to fluctuations in helium pressure
- Ensure that the slow tuner operation provides a sufficient tuning range and that the correlated cavity deformations remain well below the plastic limit;
- If necessary, integrate a **fast tuner** with a required tuning window;
- Create a complete set of **fabrication drawings**.

Fabrication

- Niobium sheet forming
- Wire EDM
- Brazed Nb-SS transitions
- Electron Beam Welding
 - BCP weld preparation
 - Pre-weld manual HPR on weld surfaces, class 1000 bag; unbag in chamber
- SS vessel installation

Wire EDM

Electropolishing at ANL

HIAT-12

72 MHz QWR

Outstanding test results

P.N. Ostroumov SC Heavy-Ion Linacs

Sub-Systems: RF Coupler, Slow and Fast Tuners

HIAT-12

Piezoelectric tuner

Pneumatic Slow Tuner

Design Parameters for a CW Heavy Ion Linac

Realistic design parameters for future SC linacs

Year	1999	2003	2012	2012 Demo	201X	ILC pulsed
E _{PEAK} , MV/m	21	27.5	40	117	60	70
B _{PEAK} , mT	75	80	80	165	100	140
Operational T, K	4	4 & 2	2	2	2	2
Residual Resistance, n Ω	25	25 & 10	4-10	high	4-10	4.7

Phase II of SARAF at SNRC (Israel), 200 kW beam

- Particles: protons and deuterons
- Beam current 5 mA
- Beam total energy 40 MeV
- Highly optimized HWRs

Cavity Parameters	Туре І	Туре I I
Frequency, MHz	176	176
β _{ορτ}	0.089	0.16
Number of cavities	7	21
Aperture, mm	33	36
Leff, cm	15.2	27.3
Ep/Ea,	5.3	4.6
Bp/Ea, mT/MV/m	5.7	5.6
R/Q, Ω	231	291
G, Ω	40	60

176 MHz HWRs for SARAF

- Design voltage per high-beta cavity is 2.1 MV
- Expected voltage is ~4 MV

P.N. Ostroumov

SRF projects

SARAF Cryomodule Design Highlights

- Titanium strongback
- Compact SC solenoid (35 mm aperture)
 - Dipole coils for H and V steering
 - Return coils to dramatically reduce edge field
- **Cleanable BPM**
- Alignments system
 - Predictable displacement during the cool-down
 - Tolerances ±250 μm —

June 21, 2012

Summary

- Since HIAT-09
 - Several new HI accelerators received funding
 - Several substantial upgrades of existing facilitates were funded
 - Advanced proposals for new HI facilities were developed
- We observe substantial progress in technology of CW heavy-ion accelerators
- These technologies are in demand for
 - Multi-purpose high-power ion & proton linacs (science and applications)
 - CW proton (H-minus) accelerators for fundamental science
 - Accelerator Driven Systems
 - Isotope production for medicine

Acknowledgments

- Dong-O Jeon (RISP, Korea)
- Ismael Martel (UoH, Spain)
- Winfred Barth (GSI, Germany)
- Dan Berkovits (SNRC, Israel)
- Hongwei Zhang (IMP, China)
- Dong-O Jeon (RISP, Korea)

F

()m

- A. Barcikowski
- G. Cherry
- Z. Conway
- C. Dickerson
- R. Fischer
- S. Gerbick

S-H. Kim

M. Kedzie

S. Kondrashev

- J. Morgan
- R. Murphy
- B. Mustapha
- D. Paskvan
- T. Reid
- S. Sharamentov
- K. Shepard
 - G. Zinkann

1. Walt

S. Kutsaev