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Abstract

We extract the heavy quark masses and non-perturbative parameters from the DELPHI preliminary measurements of the first
three moments of the charged lepton energy and hadronic mass distributions in semileptonicB decays, using a multi-parameter
fit. We adopt two formalisms, one of which does not rely on a 1/mc expansion and makes use of running quark masses. The
data are consistent and the level of accuracy of the experimental inputs largely determines the present sensitivity. The results
allow to improve on the uncertainty in the extraction of|Vcb|.
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The Operator Product Expansion (OPE) represents
a foundation for extracting the|Vub| and |Vcb| ele-
ments of the CKM mixing matrix from inclusive semi-
leptonic (s.l.)B decays. In this framework, the de-
cay width is expressed in terms of quark masses, and
non-perturbative effects are described by expectation
values of heavy quark operators, some of which are
presently poorly known. The experimental accuracy

E-mail address: paolo.gambino@cern.ch (P. Gambino).

already achieved, and that expected from the large data
sets recorded by theB-factories, makes the ensuing
theory uncertainty a serious limitation. Extracting the
heavy quark masses and the non-perturbative parame-
ters, arising from the 1/m2

b and 1/m3
b corrections, di-

rectly from the data has therefore become a key issue.
There have already been|Vcb| determinations from the
first moment of distributions in s.l. andb → Xsγ de-
cays, and the 1/m3

b corrections, estimated from para-
meter ranges, have been found to represent an impor-
tant source of uncertainty [1]. These ranges, based on
dimensional arguments, are affected by a considerable
degree of arbitrariness.
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In order to circumvent these problems, we intro-
duce in this Letter a multi-parameter fit to determine
the relevant 1/m2

b and 1/m3
b parameters, together with

the heavy quark masses, from the first three moments
of the leptonic energy and hadronic mass spectra in
s.l. B decays. Results are based on preliminary data
obtained by the DELPHI Collaboration. Moments are
measured without cuts on the lepton energy in theB

rest frame. We consider two formalisms, one of which
is new and relies on fewer theoretical assumptions.
The use of higher moments guarantees a sensitivity
to these parameters and the simultaneous use of the
hadronic and leptonic spectra ensures that a larger
number of parameters can be kept free in the fit. We
discuss the results both in terms of the extraction of
the parameters and the implications for|Vcb|, and as
a consistency check of the underlying theoretical as-
sumptions.

2. Extracting non-perturbative parameters

The moments of the hadronic and leptonic spectra
in s.l. B decays have recently been measured by
several experiments [1–5]. We consider here moments
of the charged lepton energy distribution defined as

M1(E�)= 1

Γ

∫
dE� E�

dΓ

dE�

;

Mn(E�)= 1

Γ

∫
dE�

(
E� −M1(E�)

)n dΓ
dE�

(1)(n > 1),

and moments of the distribution ofMX , the invariant
hadronic mass,

M1(MX)= 1

Γ

∫
dM2

X

(
M2

X − �M2
D

) dΓ

dM2
X

,

Mn(MX)= 1

Γ

∫
dM2

X

(
M2

X − 〈
M2

X

〉)n dΓ

dM2
X

(2)(n > 1),

where �MD = 1.973 GeV is the spin-averagedD
meson mass and no cut on the charged lepton energy
is assumed.

The theoretical framework to interpret these data
has long been known and it is based on the OPE. Dif-
ferent implementations exist, depending on the way
the quark masses are treated. For instance, themb

andmc masses can be taken as independent parame-

ters or subject to a constraint onmb − mc, imposed
from the measuredB(∗) andD(∗) meson masses. The
second choice introduces a 1/mc expansion. Another
option concerns the normalization scheme used for
quark masses and non-perturbative parameters. One
approach is to use short-distance masses, such as the
low-scale running masses. Alternatively, the pole mass
scheme can be used.

The OPE expresses lepton moments through quark
masses as a double expansion inαs and 1/mb:

Mn(E�)=
(
mb

2

)n[
ϕn(r)+ ān(r)

αs

π
+ b̄n(r)

µ2
π

m2
b

+ c̄n(r)
µ2
G

m2
b

+ d̄n(r)
ρ3
D

m3
b

+ s̄n(r)
ρ3
LS

m3
b

(3)+ · · ·
]
,

wherer = (mc/mb)
2. The higher coefficient functions

b̄(r), c̄(r), . . . are also perturbative series inαs . The
expectation values of only two operators contribute to
the 1/m3

b corrections: the Darwin termρ3
D and the

spin-orbital termρ3
LS . Due to the kinematic definition

of the hadronic invariant massM2
X , the general expres-

sion for the hadronic moments includesMB explicitly:

Mn(MX)=m2n
b

∑
l=0

[
MB −mb

mb

]l

×
{
Enl(r)+ anl(r)

αs

π
+ bnl(r)

µ2
π

m2
b

+ cnl(r)
µ2
G

m2
b

+ dnl(r)
ρ3
D

m3
b

+ snl(r)
ρ3
LS

m3
b

(4)+ · · ·
}
.

It is possible to re-express the heavy quark masses,
mQ, in the above equations, in terms of the meson
masses,MHQ , through the relation [6]:

MHQ =mQ + Λ̄+ µ2
π − aHQµ

2
G

2mQ

(5)+ ρ3
D + aHQρ

3
LS − ρ3

nl

4m2
Q

+O
(

1

m3
Q

)
,

whereaHQ = 1 and−1/3 for pseudoscalar and vector
meson, respectively. The use of these expressions



M. Battaglia et al. / Physics Letters B 556 (2003) 41–49 43

introduces an explicit dependence of the non-local
correlators contributing toρ3

nl . In the notation of [7],
ρ3
nl corresponds to linear combinations ofT1−4.

Here, we employ the following two formalisms.
The first one is based on the kinetic running masses,
mQ(µ), and non-perturbative parameters, introduced
in [8]. No charm mass expansion is assumed. The
second formalism employs quark pole masses and the
B(∗) andD(∗) meson mass relations. It represents a
useful reference, as it has been already adopted in
several studies.

Contributions throughO(α2
s β0) [9,10] andO(1/

m3
b) [11–14] to the moments are available. Depending

on the formulation adopted, the number of parameters
involved at this order ranges from six to nine. Some
of these parameters, likemb and λ2 � µ2

G/3, are
relatively well known. Others, notably those which
appear atO(1/m3

b), are virtually unknown.

2.1. The mb(µ), mc(µ) and µ2
π (µ) formalism

The running kinetic quark massesmb(µ) and
mc(µ) are considered here as two independent para-
meters. Apart fromµ2

π(µ) andµ2
G(µ), defined as ex-

pectation values in the actualB meson, there are two
1/m3

b parameters,ρ3
D andρ3

LS . The effect ofρ3
LS turns

out to be numerically small. In Eqs. (3) and (4) the
mass ratior is given by (mc(µ)/mb(µ))

2, and the
b quark mass is understood asmb(µ). The perturba-
tive coefficients additionally depend onµ/mb and the
mass normalization scaleµ is set atµ = 1 GeV. The
functionsϕn in Eq. (3) are well-known parton expres-
sions. The relevant coefficients are given in Table 1,
for the central values ofmb(1 GeV) = 4.6 GeV and
r � 0.06 obtained in our fit. Although we quote only
the leading-order perturbative coefficients, we also in-
clude second-order BLM corrections in the analysis.
Detailed expressions for the coefficients will be pre-
sented elsewhere.

In the case of hadronic moments, we discard in
Eq. (4) coefficientsbnl , cnl with l > 1, anddnl , snl
with l > 0. The only non-vanishingEi0 coefficient is
E10 = r− �M2

D/m
2
b. The value of the other coefficients,

at r = 0.06, are listed in Table 2. Here we consider
only O(αs) corrections and evaluate them usingαs =
0.3.

Table 1
Numerical values of the coefficients in Eq. (3) evaluated atr = 0.06
andmb(1 GeV)= 4.6 GeV

ϕn ān b̄n c̄n d̄n s̄n

M1(E�) 0.6173 0.015 0.31 −0.73 −3.7 0.2
M2(E�)(×10) 0.3476 0.026 1.7 −1.0 −10.2 −0.9
M3(E�)(×102) −0.3410 0.066 3.4 1.3 −23 −4.2

2.2. The Λ̄ and λ1 formalism

This widely used scheme results from the combi-
nation of the OPE with the HQET. Following the no-
tation of Ref. [14], the moments are expressed in the
following general form:

Mn =Mk
B

[
a0 + a1

αs(�MB)

π
+ a2β0

α2
s

π2
+ b1

Λ̄

�MB

+ b2
αs

π

Λ̄

�MB

+ c1λ1 + c2λ2 + c3Λ̄
2

�M2
B

+ 1
�M3
B

(
d1λ1Λ̄+ d2λ2Λ̄+ d3Λ̄

3

+ d4ρ1 + d5ρ2 +
∑
i=1,4

d5+iTi
)

(6)+O

(
Λ4

QCD

m4
Q

)]
,

where k = n and k = 2n for leptonic and hadronic
moments, respectively, whilea0 = 0 for hadronic
moments.�MB = 5.3135 GeV is the spin-averagedB
meson mass. The second order BLM corrections1 are
expressed in terms ofβ0 = 11 − 2/3nf , where we
take nf = 3. The coefficientsai, bi, ci , di are given
in Table 3 for the first three leptonic,M1,2,3(E�),
and hadronic moments,M1,2,3(MX). In the leptonic
case thea1 coefficients agree with Ref. [12], while
the coefficients of the first two hadronic moments
agree with [13,14]. Details of the derivation will be
presented elsewhere.

The non-perturbative parameters in Eq. (6) are
related to those in Section 2.1 by the following

1 The termsO(α2
s β0) andO(αsΛ̄) are not available for the third

hadronic moment. In our analysis we employ an estimate and the
related uncertainty is included in the fit.
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Table 2
Numerical values of the coefficients in Eq. (4) evaluated atr = 0.06 andmb(1 GeV)= 4.6 GeV

i Ei1 Ei2 Ei3 ai0 ai1 bi0 bi1 ci0 ci1 di0 si0

1 0.839 1 0 0.029 0.013 −0.58 −0.58 0.31 0.87 3.2 −0.4
2 0 0.021 0 −0.001 −0.002 0.16 0.34 0 −0.05 −0.8 0.05
3 0 0 −0.0011 0.0018 0.0013 0 0.034 0 0 0.15 0

Table 3
Numerical values of the coefficients in Eq. (6)

a0 a1 a2 b1 b2 c1 c2 c3
d1 d2 d3 d4 d5 d6 d7 d8 d9

M1(E�)(×10) 2.708 −0.004 −0.10 −0.548 −0.15 −3.99 −9.77 −0.77
−10.1 −15.3 −1.2 −9.7 3.1 −3.9 4.1 −2.0 9.8

M2(E�)(×102) 0.710 −0.096 −0.18 −0.535 −0.10 −4.32 −5.75 −0.35
−7.2 −8.1 −0.2 −19.7 −5.4 1.3 10.2 −0.2 5.7

M3(E�)(×103) −0.257 −0.014 0.03 −0.017 −0.01 −2.14 2.88 0.20
0.5 5.6 0.4 −28.3 −11.4 5.2 9.6 1.0 −2.9

M1(MX) 0 0.052 0.096 0.225 0.10 1.04 −0.31 0.28
2.2 2.4 0.3 2.3 −1.2 1.6 0.8 1.5 0.4

M2(MX)(×10) 0 0.054 0.078 0 0.14 −1.40 0 0.11
−1.6 −1.6 0.2 −8.7 2.4 −1.4 −4.2 0 0

M3(MX)(×102) 0 0.106 – 0 – 0 0 0
−2.05 0 −0.03 14.45 0 0 0 0 0

relations, valid up toO(αs):

µ2
π = −λ1 − T1 + 3T2

mb

,

µ2
G = 3λ2 + T3 + 3T4

mb

,

(7)ρ3
D = ρ1, ρ3

LS = 3ρ2.

Perturbative corrections introduce a significant nu-
merical difference between the parameters in the two
schemes. Atµ= 1 GeV:

Λ̄�MB −mb(1 GeV)− µ2
π −µ2

G

2mb

− 0.26 GeV,

(8)−λ1 � µ2
π(1 GeV)− 0.17 GeV2.

A well-known problem of this formalism is the in-
stability of the perturbative series, due to the use of
the pole quark masses. Large higher-order corrections
are however expected to cancel in the relation between
physical observables, as long as all observables in-
volved in the analysis are computed at the same or-
der inαs [6,15]. We also note that, as a consequence

of the HQET mass relations for the mesons, the in-
trinsic expansion parameter in Eq. (6) is 1/MD , rather
than 1/MB . The convergence of this expansion has
been questioned, in view of indications [16,17] that
the matrix elementsTi of some non-local operators
could be larger than that expected from dimensional
estimates.

3. Fits and results

This analysis is based on the preliminary DELPHI

measurements [3,4] of the first three moments of the
hadronic mass and charged lepton energy, summarised
in Table 4. Owing to the large boost ofB hadrons in
Z0 → bb̄ events, the acceptance of the analyses can
be extended down to the start of the lepton energy
spectrum, making their theoretical interpretation more
direct. The results correspond toB0

d andB−
u mesons

decays only.
We perform aχ2 fit to these six moments, using

the two theoretical frameworks discussed above. In the
fit we also impose some additional constraints derived
from independent determinations.
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Table 4
Preliminary DELPHI results for the three leptonic and hadronic
moments

Moment Result (stat) (syst)

M1(E�) (1.383 ±0.012 ±0.009) GeV
M2(E�) (0.192 ±0.005 ±0.008) GeV2

M3(E�) (−0.029 ±0.005 ±0.006) GeV3

M1(MX) (0.534 ±0.041 ±0.074) GeV2

M2(MX) (1.226 ±0.158 ±0.152) GeV4

M3(MX) (2.970 ±0.673 ±0.478) GeV6

Table 5
Results of fit for themb(µ), mc(µ) andµ2

π (µ) formalism

Fit Fit Fit Syst.
parameter values uncertainty uncertainty

mb(1 GeV) 4.59 ±0.08 ±0.01 GeV
mc(1 GeV) 1.13 ±0.13 ±0.03 GeV
µ2
π (1 GeV) 0.31 ±0.07 ±0.02 GeV2

ρ3
D

0.05 ±0.04 ±0.01 GeV3

In the kinetic mass scheme, we fit the full set of
parameters:mb(1 GeV), mc(1 GeV), µ2

π , ρ3
D and

ρ3
LS . We imposeµ2

G = (0.35 ± 0.05) GeV2 [16]
and ρ3

LS = (−0.15 ± 0.15) GeV3. Two mass con-
straints have also been applied:mb(1 GeV)= (4.57±
0.10) GeV [18], and, to be conservative,mc(1 GeV)=
(1.05 ± 0.30) GeV. The most stringent is that on
mb(1 GeV). It must be noted that this constraint is
largely equivalent to that derived from the first mo-
ment of the photon energy spectrum inb → sγ in
other studies [2]. Results are obtained forαs(mb) =
0.22 ± 0.01 and are shown in Table 5. In order to
study the effect of the bounds onmb,c introduced,
the fit has been repeated unconstrained. Results are
consistent, although the accuracy on the masses de-
grades. In particular we findmb(1 GeV) = (4.61 ±
0.15) GeV. It is interesting to observe that the mass
constraints applied are of the scale of the fit sensitiv-
ity. Also, the central values of the heavy quark masses
are in good agreement with independent determina-
tions [18,19].

In the alternative approach based on pole masses,
the fit extractsΛ̄, λ1, λ2, ρ1 andρ2. We fixTi = 0 and
impose two constraints fromMB∗ − MB andMD∗ −
MD which effectively reduce by two the number of
free parameters. The results are given in Table 6.

Table 6
Results of fit for theΛ̄–λ1 formalism

Fit Fit Fit Syst
parameter values uncertainty uncertainty

Λ̄ 0.40 ±0.10 ±0.02 GeV
λ1 −0.15 ±0.07 ±0.03 GeV2

λ2 0.12 ±0.01 ±0.01 GeV2

ρ1 −0.01 ±0.03 ±0.03 GeV3

ρ2 0.03 ±0.03 ±0.01 GeV3

Projections of the constraints from the six moments
in themb–µ2

π andmb–ρ3
D planes are shown in Fig. 1

and those in theΛ̄–λ1 and Λ̄–ρ1 planes in Fig. 2.
The χ2/n.d.f. of the fits is 0.96 and 0.35 in the
two formulations. Since the contributions proportional
to ρ3

LS in the moment expressions are numerically
suppressed, the fit is only marginally sensitive to its
size and the result is determined by the constraint
applied. By removing this, the fit would giveρ3

LS =
(−1.0± 0.7) GeV3.

In contrast, the value of the leading 1/m3
b correc-

tion (parameterised byρ3
D or ρ1) can be determined

with satisfactory accuracy and its range agrees with
theoretical expectations [16].

Systematic uncertainties due to ranges of residual
parameters which have been fixed and missing terms
in the expansions have been estimated. For the run-
ning mass formalism we propagate the uncertainty on
αs and evaluate the effect of removing the BLM cor-
rections from the lepton moments. In this scheme that
is a small effect and higher order perturbative correc-
tions are expected to be under control. Dimensional
estimates suggest that 1/m4

b effects do not exceed the
present experimental resolution. Other systematic un-
certainties will be addressed in a dedicated publica-
tion.

For the Λ̄–λ1 formalism we take the effect of
Ti = (0.0 ± 0.50)3 GeV3, αs = 0.22± 0.01 and we
also estimate the effect of the missing corrections to
third moments asM6

B(0.001± 0.0005)β0(αs/π)
2 and

M6
B(0.003± 0.003)(Λ̄/�MB)(αs/π).
The fit was also repeated using only the first two

moments, leaving freemb(1 GeV), µ2
π(1 GeV) and

Λ̄, λ1, respectively. The other parameters were fixed
to the central values obtained in the full fit. Re-
sults agreed with those from the full fit. In partic-
ular, the values ofΛ̄ = 0.42 ± 0.07(stat.) GeV and
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Fig. 1. The projection of the constraints of the six measured moments on themb(1 GeV)–µ2
π (1 GeV) (left) andmb(1 GeV)–ρ3

D (right) planes.
The bands correspond to the total measurement accuracy and are given by keeping all the other parameters at their central values. The ellipses
represent the 1σ contours.

Fig. 2. The projection of the constraints of the six measured moments on theΛ̄–λ1 (left) andΛ̄–ρ1 (right) planes. The bands correspond to the
total measurement accuracy and are given by keeping all the other parameters at their central values. The ellipses represent the 1σ contours.

λ1 = (−0.17± 0.05(stat.)) GeV2 agree with the re-
cent result reported by the CLEO Collaboration [1],
which uses the first moments of the charged lepton
energy to obtainΛ̄ = 0.39 ± 0.07 GeV andλ1 =
(−0.25± 0.05) GeV2.

There are several facets of these results to be
looked at. One interesting piece of information comes
from the correlation betweenmc and mb extracted
from the fit. It corresponds tomc(1 GeV) = 1.63×
(mb(1 GeV) − 3.91). Therefore, a competitive value
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of the charm mass can be extracted from a precise de-
termination ofmb. Using, for instance,mb(1 GeV) =
(4.60± 0.05) GeV would givemc(1 GeV)= (1.13±
0.09) GeV. This can be compared to the present typ-
ical lattice uncertainties which range between 50 and
120 MeV [20].

In the running mass scheme, the expansions of
Eq. (5), for theB and D mesons are not used in
the fit. It is therefore possible to testa posteriori
the consistency of the meson mass expansion by
comparing theΛ̄ values obtained in the two cases. We
find Λ̄(B) − Λ̄(D) = −0.086± 0.092. This is also a
test of the size of the non-local terms.

In both approaches, the OPE predictions for the
six moments, computed with the available precision,
have a common intersection in the multi-parameter
space and the quality of the fit is good. Within
the present experimental accuracy, we therefore do
not see the need to introduce higher order terms
to establish agreement with the data. In particular,
the first leptonic and hadronic moments are highly
correlated and depend on nearly the same combination
of heavy quark masses. Fixing this fromM1(MX),
one findsM1(E�) = 1.377 GeV which agrees well
with the measured value of(1.383± 0.015) GeV.
This provides a non-trivial consistency check of the
OPE. The overall agreement represents both a test
of the theory and suggests constraints on the size
of the 1/m4

b terms and of other missing corrections.
Similarly, the observed agreement strongly supports
the validity of quark–hadron duality in theB decay
shape variables.

At present the achieved experimental resolution
matches the available theoretical accuracy. With more
precise data soon becoming available, it is important
to improve the latter, particularly, for higher hadronic
moments. One way to improve the convergence of the
heavy quark expansion could be to employ different
kinematic variables. We propose to considerN 2

X =
M2

X − 2Λ̃EX , whereMX andEX are the hadronic
mass and energy and̃Λ a fixed mass parameter.
Choosing Λ̃ near MB − mb(1 GeV) � 0.65 GeV,
suppresses terms withl � 1 in Eq. (4) and results in
a better convergence of higher moments [21]. The use
of this variable should be feasible atB factories, where
the kinematics allows an accurate reconstruction of
both the mass and energy of the hadronic system in
s.l.B decays.

3.1. Implications for |Vcb|

The value of |Vcb| obtained from the total s.l.
decay width depends on the OPE parameters extracted
above. We discuss now the implications of our results
for |Vcb|, using the input parameters given in Table 7.
The uncertainties on the BR(b → X�−ν) have been
increased compared to Ref. [22] for not using the
heavy quark forward–backward asymmetries in the
LEP global electroweak fit and to account for the
±15% uncertainty on the equality of s.l. partial width
of b baryons and mesons.

The inclusive s.l. decay width has been calculated
through second order in perturbative QCD. Second
order BLM corrections were obtained in [23], all-
order BLM terms are available from [24], whereas
second-order non-BLM corrections have been esti-
mated in [25]. Non-perturbative corrections start at or-
derO(1/m2

b) [11] andO(1/m3
b) corrections have also

been calculated [7]. Electroweak corrections have also
been taken into account [26].

The determination of|Vcb| and the contributions
of the various parameters in the kinetic mass scheme
is described in [27]. An approximate formula which
displays the dependence on the different parameters
is:

|Vcb| = |Vcb|0
[
1− 0.65

(
mb(1)− 4.6 GeV/c2)

+ 0.40
(
mc(1)− 1.15 GeV/c2)

+ 0.01
(
µ2
π − 0.4 GeV2)

+ 0.10
(
ρ3
D − 0.12 GeV3)

+ 0.06
(
µ2
G − 0.35 GeV2)

(9)− 0.01
(
ρ3
LS + 0.17 GeV3)].

A detailed discussion of the theoretical uncertain-
ties on|Vcb| goes beyond the scope of this Letter. Here
we focus on the uncertainty arising from the heavy
quark masses and non-perturbative parameters deter-
mined in the fit. It is evaluated using the full fit error
matrix which leads to±1.5%. There is an additional

Table 7
Input values used for the determination of|Vcb|
Measurement Value [22]

b-hadron lifetime (1.564± 0.014) ps
BR(b →X�−ν) (10.59± 0.31)%
BR(b →Xu�

−ν) (0.17± 0.05)%
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uncertainty coming from the limited accuracy of the
theoretical expressions which have been used. We take
the rangemb/2<µ′ <mb for the scaleµ′ at whichαs
is evaluated and find a±1% effect.2 In summary, we
obtain:

(10)

|Vcb| = 0.0419
(
1± 0.016

∣∣
meas± 0.015

∣∣
fit

± 0.010
∣∣
pert

)
,

where the first uncertainty reflects the accuracy on the
s.l. width determination.

The expression for the inclusiveb s.l. width in the
pole mass scheme is known to the same order. The fit
results have been used to obtain:

(11)

|Vcb| = 0.0413
(
1± 0.016

∣∣
meas± 0.017

∣∣
fit

± 0.006
∣∣
nl ± 0.021

∣∣
pert

)
.

Again, the first two uncertainties correspond to the de-
cay width measurement and to the fitted parameters,
respectively. The third uncertainty refers to theTi=1,4
parameters which have been varied within the range
(0 ± (0.5)3) GeV3. The uncertainty from the trunca-
tion of the perturbative QCD series is again estimated
by varying the scale at whichαs is evaluated between
mb/2 and 2mb. Here the perturbative uncertainty is
larger and reflects the slower convergence of the per-
turbative series when the pole mass scheme is em-
ployed.

4. Conclusions

The values of the heavy quark masses have been
determined, together with the leading 1/m2

b and 1/m3
b

parameters, from a fit to the first three moments of
the charged lepton energy and hadronic mass spec-
tra in s.l. decays, measured in a preliminary analysis
of the DELPHI data. The absence of a charged lepton
energy cut in the analysis makes the heavy quark ex-
pansion more reliable and allows us to include higher
moments. We have adopted two different formalisms:
one based on low-energy running quark masses, which

2 Incorporating the third-order BLM correction suppresses this
scale dependence. Combining Refs. [24] and [28], we find the third-
order BLM correction toΓsl(b → c) to be≈ −50(αs/π)3 in this
scheme. This increases|Vcb | by 1% for µ′ = mb , and leaves it
nearly unchanged, compared to two loops, forµ′ =mb/2.

does not rely on a 1/mc expansion, and the other on
pole quark masses. The constraints from the six mo-
ments agree well and the size of the dominant 1/m3

b

term has been found to be compatible with theoreti-
cal estimates. The fit is largely insensitive to non-local
correlators and to the spin-orbital operator.

Propagating the ranges of the OPE parameters to
the determination of|Vcb| reduces the theoretical un-
certainty due to the 1/m3

b corrections below 2%. Fur-
thermore, the use of a fit changes the nature of these
uncertainties and partly removes the arbitrariness aris-
ing from estimates based on parameters ranges.

Note

During the final stage of this work, a new analysis
of s.l. moments has appeared [29]. There are several
differences with our approach, but the results are
qualitatively consistent with our findings.
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