
A
TG

 S
oC

HECTOR:
Formal System-Level to RTL
Equivalence Checking

HECTOR: HECTOR:
FormalFormal SystemSystem--Level to RTL Level to RTL
Equivalence CheckingEquivalence Checking

Alfred Koelbl, Sergey Berezin, Reily Jacoby,

Jerry Burch, William Nicholls, Carl Pixley

Advanced Technology Group

Synopsys, Inc.

June 2008

�

OutlineOutline

�Motivation
�Architecture of Hector

� Frontend
� Notions of equivalence and interface

specification
� Proof procedure
� Solvers
� Debugging

�Customer results
�Additional applications
�Conclusion

MOTIVATIONMOTIVATION

�

System-level designSystem-level design

� Some reasons for system-level design:
� Faster verification at the system-level
� Easier architectural exploration
� No need to worry about implementation details
� Productivity gain by using High-Level-

Synthesis
� RTL Verification problems:

� Verification of RTL doesn’t get any easier
� Bugs due to faulty specification
� Bugs due to wrong implementation

�

=
?

Data

Result Result

� System-level model is a transaction/word level model for the
hardware

� System and RTL compute same outputs given same inputs
� Equivalence checking proves functional equivalence
� Timing and internal structure can differ significantly, but the

observable results must be the same

RTL
��������	�
������
�������
�

�����
�	���

�������������
�
�	�����������

��
��
��
�
�	���������������

��
�
�	����
�	���

�����

System Model
�
��� !�"��
�	���

#��
�� !�"����

������������

���������$������

!����������

��#�%��&����
'�
���(�

�
�	���������

Functional equivalence checkingFunctional equivalence checking

�

Manual (Ad hoc) FlowManual (Ad hoc) Flow

� Architect creates C++ specification
� RTL designer creates RTL implementation
� RTL contains much more implementation

details
� Problems:

� Designs often embedded in own simulation
environment, need to specify input/output
mapping, notion of equivalence

� Specification and implementation can be
significantly different

� Constraints are often in designer’s head, need
to be formalized

� Input/output differences sometimes difficult to
capture in a formal model

�

High-Level Synthesis FlowHigh-Level Synthesis Flow

� Equivalence checker proves correctness of
produced RTL

� You cannot sell a high level synthesis tool
without a verification tool!!!

� Advantages:
� All information about constraints & interface

mappings / latency differences available from the
synthesis tool

� Hints can significantly simplify proof
� Push-button solution possible

� Problems:
� Every assumption given as hint must be proven by

equivalence checker
� High-level synthesis tool must be able to produce

the information

�

HL-Synthesis integrationHL-Synthesis integration

Proof strategy

High-Level Synthesis

Equivalence
Checker

Core
Proof

CEX

Timeout

Waveform

vcd.dump

Constraints

Database

Design C/C++/RTL

ARCHITECTUREARCHITECTURE

��

BDD

C++ Frontend VHDLVerilog

CompilerCFG

Interface definition

Testbench
Wrapper

Constrained
Random Simulator

Proof engine Orchestration
SAT

Mem-model

Counterexample

Waveform
Viewer

Constraints
Mappings

Bit-level solver

Word-level solver

Formal model

ComponentsComponents

Formal modelFormal model

��

BDD

C++ Frontend VHDLVerilog

CompilerCFG

Interface definition

Testbench
Wrapper

Constrained
Random Simulator

Proof engine Orchestration
SAT

Mem-model

Counterexample

Waveform
Viewer

Constraints
Mappings

Bit-level solver

Word-level solver

Formal model

Front-EndFront-End

Formal modelFormal model

INTERFACE
SPECIFICATION

INTERFACE
SPECIFICATION

�	

BDD

C++ Frontend VHDLVerilog

CompilerCFG

Interface definition

Testbench
Wrapper

Constrained
Random Simulator

Proof engine Orchestration
SAT

Mem-model

Counterexample

Waveform
Viewer

Constraints
Mappings

Bit-level solver

Word-level solver

Formal model

Interface specificationInterface specification

Formal modelFormal model

��

Notions of equivalenceNotions of equivalence

� What does equivalence mean for comparing system-level
models against RTL ?
� Depends on how abstract the system-level model is
� Different customers, different applications
� Different design styles
� No definite answer (yet)

� Identify commonly used notions:
� Combinational equivalence
� Cycle-accurate equivalence
� Pipelined equivalence
� Stream-based equivalence
� Transaction equivalence
� … ?

��

How to deal with different notions ?How to deal with different notions ?

� Idea: Reduction to cycle-accurate equivalence
check

� Rule of thumb: If you can build random
pattern testbench, checking outputs on the
fly, you’re safe.

��

Verification wrapper generationVerification wrapper generation

� User (or synthesis tool) provides the following
information:
� Input/output mapping between C++ and RTL
� Input constraints
� Output don’t cares
� Memories / memory mappings
� Register mappings
� Notion of equivalence (optional)

� Verification wrapper is automatically
generated

� Reduces problem to cycle-accurate
sequential equivalence check

PROOF PROCEDUREPROOF PROCEDURE

��

BDD

C++ Frontend VHDLVerilog

CompilerCFG

Interface definition

Testbench
Wrapper

Constrained
Random Simulator

Proof engine Orchestration
SAT

Mem-model

Counterexample

Waveform
Viewer

Constraints
Mappings

Bit-level solver

Word-level solver

Formal model

Proof procedureProof procedure

Formal modelFormal model

�

Verification approachVerification approach

� Constrained Random simulator checks for easily detectable
discrepancies

� Bounded formal check for harder discrepancies
� Formal proof (complete):

� Problem reduced to sequential equivalence checking
� Reachability analysis would be an approach
� But: Most system-level designs are arithmetic heavy,

reachability infeasible
� Induction proof

� Proof idea:
� Implementation and specification perform same computations
� Not necessarily in the same number of cycles
� Unroll for the duration of a transaction, prove that symbolic

expressions are the same
� Proof engines:

� Bit-level equivalence checkers (SAT, BDDs)
� Word-level rewriting engine for arithmetic (COMBAT)
� Hybrid (word & bit) engine for orchestration
� PEP’s

��

Induction proofInduction proof

� Transaction equivalence
� Assume that designs start in valid state (superset of

reachable state set)
� Execute single transaction by unrolling ESL and RTL

models for one transaction
� Check outputs after transaction
� Check state after transaction

� Proof strategy: Induction
� Needs state invariants

� Register mappings
� Memory mappings & memory constraints
� Additional invariants

� Prove that resulting SAT formula is UNSAT

��

Transaction equivalenceTransaction equivalence

SA

SB

MA

MB

ESL

RTL

IA

IB

OA

OB

��

Transaction equivalenceTransaction equivalence

SA

SB

MA

MB

ESL0 ESL1

RTL0 RTL1 RTL2

IA0

IB0 IB1 IB2

OA

OB

Transaction TA

Transaction TB

SA’
MA’

SB’
MB’

IA1

�	

Transaction equivalenceTransaction equivalence

ESL0 ESL1

RTL0 RTL1 RTL2

IA0 IA1

IB0 IB1 IB2

OA

OB

SA

SB

MA

MB

SA’
MA’

SB’
MB’

Valid starting state
(superset of reachable state set)

Outputs equivalent ? =

��

Valid end state ?

Transaction equivalenceTransaction equivalence

ESL0 ESL1

RTL0 RTL1 RTL2

IA0 IA1

IB0 IB1 IB2

OA

OB

SA

SB

MA

MB

SA’
MA’

SB’
MB’

• Memory mappings
• Constraints on memories

• Register mappings
• State invariants

��

Proof procedureProof procedure

� Assumptions

� Proof obligations

� Check model assumptions, e.g., that no array accesses are
out-of-bounds

�

�

�

�

)S ,S ,M ,(Mi a
)S ,(Sr)S ,(Sr a

)M ,(Mc)M ,(Mc a
)M ,(MMM)M ,(MMM a

BABA03

BA1BA02

BA1BA01

BA1BA00

��

���

���

���

BA3210

BABA03210

BA03210

BA03210

BA03210

O O a a a a
)S ,S ,M ,M(i a a a a

)S ,S(r a a a a
)M ,M(c a a a a

)M ,M(MM a a a a

�����

���������

�������

�������

�������

�

�

�

�

SOLVERSSOLVERS

��

BDD

C++ Frontend VHDLVerilog

CompilerCFG

Interface definition

Testbench
Wrapper

Constrained
Random Simulator

Proof engine Orchestration
SAT

Mem-model

Counterexample

Waveform
Viewer

Constraints
Mappings

Bit-level solver

Word-level solver

Formal model

SolversSolvers

Formal modelFormal model

��

� Core technology for formal reasoning

� Used for intermediate equivalences
� Used for output equivalences
� Word-level solvers

� Good for equivalent arithmetic
� Bad for producing counter-examples

� Bit-level solvers
� Good for falsification
� Bad for arithmetic

Decision ProceduresDecision Procedures

Formula Decision
Procedure

Satisfying solution
(Counter-example)

Unsatisfiable
(Proof)

�

Equivalence check of two DFGsEquivalence check of two DFGs

=?
C++ RTL

1. Find potentially equivalent points (PEPs) (e.g. by simulation)
2. Prove them equivalent using bit- and word-level engines
3. Merge equivalent points thereby increasing sharing
4. Prove outputs equivalent

Oa Ob

	�

Equivalence check of two DFGsEquivalence check of two DFGs

=?
C++ RTL

1. Find potentially equivalent points (PEPs) (e.g. by simulation)
2. Prove them equivalent using bit- and word-level engines
3. Merge equivalent points thereby increasing sharing
4. Prove outputs equivalent

	�

Word-level solversWord-level solvers

� SMT solvers (SAT module theories)
� Reason about arithmetic
� Theories for linear arithmetic, bit-vectors,

uninterpreted functions, arrays, real arithmetic
� Need to be able to deal with finite word-sizes

� Re-writing engines
� Re-write formulas into normal-form
� Convergence can be an issue
� CVCLite from Stanford

� Lessons learned:
� Only Bit-Vector theory (and maybe theory of arrays

if powerful enough) useful
� Many abstraction techniques are only useful for

property checking
� Few solver techniques specifically target

equivalence checking problem

	�

Bit-level solversBit-level solvers

� Construct Boolean circuit based on bit-level
representation of operations

� BDDs
� Canonical representation, very easy to check if

formula is unsatisfiable
� Tendency to memory blowup
� Good for local intermediate equivalences
� Good for XOR trees

� SAT
� Convert circuit to Conjunctive Normal Form (CNF)
� Branch-and-bound search
� Efficient optimizations (conflict analysis, non-

chronological backtracking)
� ATPG / Circuit-based SAT

� Branch-and-bound search directly on Boolean
circuit

		

� Compare word-level graphs modulo zero-
extension / sign-extension and merge
intermediate equivalent points

Solver technologySolver technology

cast cast

in_a in_b

+ +

3 3

4

3232

32
cast

=
?

32

	�

� Compare word-level graphs modulo zero-
extension / sign-extension and merge
intermediate equivalent points

Solver technologySolver technology

cast

in_a in_b

+

3 3

432

	�

� Compare word-level graphs modulo
observability

Solver technologySolver technology

+ +

1

1 0

0

c1

c2

Observable(a) -> (a = b)
(c1 & c2) -> (a = b)

o

a b

	�

� Compare word-level graphs modulo
observability

Solver technologySolver technology

+

1

1 0

0

c1

c2

o

b

Replace ‘a’ by ‘b’

	�

Effectiveness comes from many techniquesEffectiveness comes from many techniques

52 unsolved

RR
BDD
SAT

orchestration

18 unsolved

5 unsolved

SAT-equiv
optimizations

0 unsolved

� 68 word (as opposed to bit) outputs
� SL – RTL : different data path architectures
� Different multiplier implementations
� Different adder tree structure
� DFG nodes: 1400

RR
BDD
SAT

orchestration

SAT-equiv
optimizations

RR
BDD
SAT

orchestration

RR
BDD
SAT

orchestration

SMT SMT SMT

Graph
Re-writes

	�

The Algebraic Solver StrategyThe Algebraic Solver Strategy

Algebraic
Rewrites

SAT
solver

Proof Search

Normal form

Consider
cases

Smart
simplifications

Abstractions,
Approximations

When all else
fails...

Split cases

{ (x *[32] y)[31:16] , x *[16] y }
= { (x *[32] y)[31:16] , (x *[32] y)[15:0] }

= x *[32] y

CUSTOMER
EXPERIENCES

CUSTOMER
EXPERIENCES

COMPANY
B

COMPANY
B

��

Experience w. Company BExperience w. Company B

� Ad Hoc (manual) design flow
� All modules are parts of a router design
� Customer wanted free consulting.

� Problems
� Customer did not do block-level verification
� Constraint/counterexample loop
� Manager did not understand the idea of equivalence

checking—he thought Hector was a bug finder
� We did the work but eventually the customer could

run Hector by herself
� C++ model not entirely complete: one case of two

modules in RTL and one in the C++
� Abstracted away the simulation environment

manually

��

Experience w. Company BExperience w. Company B

� Core algorithms improved greatly during
evaluation

� Developed different memory models, e.g.,
TCAM.

� Successes
� Were able to conclusively compare all outputs
� The D5 was not completed by customer

�	

Design # lines of
code

arrays
rams

#disc
repan
cies

#bugs
found

time final result

C RTL
D1 50 6200 1 / 1 0 0 4min proven

D2 70 580 1 / 1 0 0 2min proven

D3 570 1720 1 / 3 9 1 RTL
1 C++

4min proven

D4 1700 7500 4 / 4 8 1 RTL
1 C++

<1h proven

D5 4300 6700 31 / 33 >40 4 RTL 43min 62 proven,
15 cex

Hector experimental resultsHector experimental results

COMPANY
N

COMPANY
N

��

Experience w. Company NExperience w. Company N

� Ad Hoc (manual) design flow
� All modules were from an arithmetic unit: both

integer and floating point
� GPU design
� C++ models act as reference models to provide

expected/correct output values
� Coverage metrics help but not always reliable
� bugs missed
� Customer was very experienced with formal

methods.

��

Experience w. Company NExperience w. Company N

� Many mismatches are found
� Real design bugs were caught

� mostly corner cases
� C++ model bugs were found
� Raised questions on the definition of correct

behavior
� Specification documents clarified/modified

� Some instructions are proven automatically by
the tool without any human assistance

� Some instructions are too complex or too large
for the tool to handle

� Several techniques for the user to try to assist
the tool

� The main theme is divide-and-conquer

��

Experience w. Company NExperience w. Company N

� Due to the initial success in finding bugs and
proving correctness, the use of high level
equivalence checking expands to several designs
of company’s active GPU development project
� 10 design blocks, 119 sessions set up and run, 107

proven (some after fixes to bugs found by FV)
� Includes multiplication logic

� Focused on designs with a high probability of
success
� data transform with simple temporal behavior and

input constraints
� A bug was found in a previous project that would

have been caught by running this
� a special case only affects a single input value

��

Experience w. Company NExperience w. Company N

� High-level equivalence checking will become
part of company’s verification plan
� Demonstrated its value for suitable designs
� Increase confidence and find difficult bugs

more quickly
� Will not replace other forms of verification,

complementary to existing methodology

COMPANY
T

COMPANY
T

��

Experience w. Company TExperience w. Company T

� Designs generated automatically from C++ by
Synfora synthesis tool
� Four designs from four different encryption

algorithms + fir filter
� All four had streams
� Designs were run entirely automatically!
� Put in scripting capability to tool
� Synfora gave Hector hints—all were checked

independently
� Had to support many Synfora features such as

streams, bit width pragmas, loop unroll
pragmas, memories

� Hector can now handle loops without
unrolling.

��

� Synfora Pico-Extreme synthesized designs
� Encryption designs for GSM/GPRS/UMTS

protocols

Behavioral synthesis resultBehavioral synthesis result

Design # lines of
code

arrays
rams

#disc
repan
cies

#bugs
found

time final result

C RTL
DS1 293 5663 0 / 0 0 0 5min proven

DS2 579 14015 0 / 0 1 0 17min proven

DS3 717 11563 2 / 2 2 0 21min proven

DS4 931 45274 4 / 4 2 0 19min proven

ADDITIONAL
APPLICATIONS

ADDITIONAL
APPLICATIONS

�	

Word/Transaction Level ToolsWord/Transaction Level Tools

� Datapath verification in Synopsys’s Formality
equivalence checker
� The core solver is the Hector core engine

� Formal front end for SynplicityDSP

� Equivalence checking of Simulation vs.
Synthesis models of Synopsys IP

� Model checking at the word level: Bjesse
CAV’08, FMCAD’08

��

ConclusionsConclusions

� System-level to RTL equivalence checking is a
very hard problem

� But… We do it on live commercial designs NOW

� Synthesis is MUCH easier to verify than
manual (ad hoc) design flow

� HECTOR is not a product – yet.

