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System-level designSystem-level design

� Some reasons for system-level design:
� Faster verification at the system-level
� Easier architectural exploration
� No need to worry about implementation details
� Productivity gain by using High-Level-

Synthesis
� RTL Verification problems:

� Verification of RTL doesn’t get any easier
� Bugs due to faulty specification
� Bugs due to wrong implementation
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Data

Result Result

� System-level model is a transaction/word level model for the 
hardware

� System and RTL compute same outputs given same inputs
� Equivalence checking proves functional equivalence
� Timing and internal structure can differ significantly, but the 

observable results must be the same
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Functional equivalence checkingFunctional equivalence checking
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Manual (Ad hoc) FlowManual (Ad hoc) Flow

� Architect creates C++ specification
� RTL designer creates RTL implementation
� RTL contains much more implementation 

details
� Problems:

� Designs often embedded in own simulation 
environment, need to specify input/output 
mapping, notion of equivalence

� Specification and implementation can be 
significantly different

� Constraints are often in designer’s head, need 
to be formalized

� Input/output differences sometimes difficult to 
capture in a formal model
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High-Level Synthesis FlowHigh-Level Synthesis Flow

� Equivalence checker proves correctness of 
produced RTL

� You cannot sell a high level synthesis tool 
without a verification tool!!! 

� Advantages:
� All information about constraints & interface 

mappings / latency differences available from the 
synthesis tool

� Hints can significantly simplify proof
� Push-button solution possible

� Problems:
� Every assumption given as hint must be proven by 

equivalence checker
� High-level synthesis tool must be able to produce 

the information
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HL-Synthesis integrationHL-Synthesis integration

Proof strategy
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Notions of equivalenceNotions of equivalence

� What does equivalence mean for comparing system-level 
models against RTL ?
� Depends on how abstract the system-level model is
� Different customers, different applications
� Different design styles
� No definite answer (yet)

� Identify commonly used notions:
� Combinational equivalence
� Cycle-accurate equivalence
� Pipelined equivalence
� Stream-based equivalence
� Transaction equivalence
� … ?
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How to deal with different notions ?How to deal with different notions ?

� Idea: Reduction to cycle-accurate equivalence 
check

� Rule of thumb: If you can build random 
pattern testbench, checking outputs on the 
fly, you’re safe.
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Verification wrapper generationVerification wrapper generation

� User (or synthesis tool) provides the following 
information:
� Input/output mapping between C++ and RTL
� Input constraints
� Output don’t cares
� Memories / memory mappings
� Register mappings
� Notion of equivalence (optional)

� Verification wrapper is automatically 
generated

� Reduces problem to cycle-accurate 
sequential equivalence check
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Verification approachVerification approach

� Constrained Random simulator checks for easily detectable 
discrepancies

� Bounded formal check for harder discrepancies
� Formal proof (complete):

� Problem reduced to sequential equivalence checking
� Reachability analysis would be an approach
� But: Most system-level designs are arithmetic heavy, 

reachability infeasible
� Induction proof

� Proof idea:
� Implementation and specification perform same computations
� Not necessarily in the same number of cycles
� Unroll for the duration of a transaction, prove that symbolic 

expressions are the same
� Proof engines:

� Bit-level equivalence checkers (SAT, BDDs)
� Word-level rewriting engine for arithmetic (COMBAT)
� Hybrid (word & bit) engine for orchestration
� PEP’s 
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Induction proofInduction proof

� Transaction equivalence
� Assume that designs start in valid state (superset of 

reachable state set)
� Execute single transaction by unrolling ESL and RTL 

models for one transaction
� Check outputs after transaction
� Check state after transaction

� Proof strategy: Induction
� Needs state invariants

� Register mappings
� Memory mappings & memory constraints
� Additional invariants

� Prove that resulting SAT formula is UNSAT
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Transaction equivalenceTransaction equivalence
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Transaction equivalenceTransaction equivalence
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Valid end state ?

Transaction equivalenceTransaction equivalence
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• Memory mappings
• Constraints on memories

• Register mappings
• State invariants
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Proof procedureProof procedure

� Assumptions

� Proof obligations

� Check model assumptions, e.g., that no array accesses are 
out-of-bounds

�
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� Core technology for formal reasoning

� Used for intermediate equivalences
� Used for output equivalences
� Word-level solvers

� Good for equivalent arithmetic
� Bad for producing counter-examples

� Bit-level solvers
� Good for falsification
� Bad for arithmetic

Decision ProceduresDecision Procedures

Formula Decision
Procedure

Satisfying solution
(Counter-example)

Unsatisfiable
(Proof)
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Equivalence check of two DFGsEquivalence check of two DFGs

=?
C++ RTL

1. Find potentially equivalent points (PEPs) (e.g. by simulation)
2. Prove them equivalent using bit- and word-level engines
3. Merge equivalent points thereby increasing sharing
4. Prove outputs equivalent

Oa Ob
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Equivalence check of two DFGsEquivalence check of two DFGs

=?
C++ RTL

1. Find potentially equivalent points (PEPs) (e.g. by simulation)
2. Prove them equivalent using bit- and word-level engines
3. Merge equivalent points thereby increasing sharing
4. Prove outputs equivalent
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Word-level solversWord-level solvers

� SMT solvers (SAT module theories)
� Reason about arithmetic
� Theories for linear arithmetic, bit-vectors, 

uninterpreted functions, arrays, real arithmetic
� Need to be able to deal with finite word-sizes

� Re-writing engines
� Re-write formulas into normal-form
� Convergence can be an issue
� CVCLite from Stanford

� Lessons learned:
� Only Bit-Vector theory (and maybe theory of arrays 

if powerful enough) useful
� Many abstraction techniques are only useful for 

property checking
� Few solver techniques specifically target 

equivalence checking problem
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Bit-level solversBit-level solvers

� Construct Boolean circuit based on bit-level 
representation of operations

� BDDs
� Canonical representation, very easy to check if 

formula is unsatisfiable 
� Tendency to memory blowup
� Good for local intermediate equivalences
� Good for XOR trees

� SAT
� Convert circuit to Conjunctive Normal Form (CNF)
� Branch-and-bound search
� Efficient optimizations (conflict analysis, non-

chronological backtracking)
� ATPG / Circuit-based SAT

� Branch-and-bound search directly on Boolean 
circuit



		

� Compare word-level graphs modulo zero-
extension / sign-extension and merge 
intermediate equivalent points

Solver technologySolver technology
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� Compare word-level graphs modulo zero-
extension / sign-extension and merge 
intermediate equivalent points
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� Compare word-level graphs modulo 
observability

Solver technologySolver technology

+ +
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Observable(a) -> (a = b)
(c1 & c2) -> (a = b)
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� Compare word-level graphs modulo 
observability

Solver technologySolver technology

+

1

1 0

0

c1

c2

o

b

Replace ‘a’ by ‘b’



	�

Effectiveness comes from many techniquesEffectiveness comes from many techniques

52 unsolved

RR
BDD
SAT

orchestration

18 unsolved

5 unsolved

SAT-equiv
optimizations

0 unsolved

� 68 word (as opposed to bit) outputs
� SL – RTL : different data path architectures
� Different multiplier implementations
� Different adder tree structure
� DFG nodes: 1400

RR
BDD
SAT

orchestration

SAT-equiv
optimizations

RR
BDD
SAT

orchestration

RR
BDD
SAT

orchestration

SMT SMT SMT

Graph
Re-writes
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The Algebraic Solver StrategyThe Algebraic Solver Strategy

Algebraic
Rewrites

SAT
solver

Proof Search

Normal form

Consider 
cases

Smart 
simplifications

Abstractions,
Approximations

When all else 
fails...

Split cases

{ (x *[32] y)[31:16] ,  x *[16] y }
= { (x *[32] y)[31:16] ,  (x *[32] y)[15:0] }

= x *[32] y
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Experience w. Company BExperience w. Company B

� Ad Hoc (manual) design flow
� All modules are parts of a router design
� Customer wanted free consulting.

� Problems
� Customer did not do block-level verification
� Constraint/counterexample loop
� Manager did not understand the idea of equivalence 

checking—he thought Hector was a bug finder
� We did the work but eventually the customer could 

run Hector by herself
� C++ model not entirely complete: one case of two 

modules in RTL and one in the C++
� Abstracted away the simulation environment 

manually
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Experience w. Company BExperience w. Company B

� Core algorithms improved greatly during 
evaluation

� Developed different memory models, e.g., 
TCAM.

� Successes
� Were able to conclusively compare all outputs
� The D5 was not completed by customer
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Design # lines of 
code

# arrays
# rams

#disc
repan
cies

#bugs 
found

time final result

C RTL
D1 50 6200 1 / 1 0 0 4min proven

D2 70 580 1 / 1 0 0 2min proven

D3 570 1720 1 / 3 9 1 RTL
1 C++

4min proven

D4 1700 7500 4 / 4 8 1 RTL
1 C++

<1h proven

D5 4300 6700 31 / 33 >40 4 RTL 43min 62 proven, 
15 cex

Hector experimental resultsHector experimental results
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Experience w. Company NExperience w. Company N

� Ad Hoc (manual) design flow
� All modules were from an arithmetic unit: both 

integer and floating point
� GPU design 
� C++ models act as reference models to provide 

expected/correct output values
� Coverage metrics help but not always reliable
� bugs missed
� Customer was very experienced with formal 

methods.
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Experience w. Company NExperience w. Company N

� Many mismatches are found
� Real design bugs were caught

� mostly corner cases
� C++ model bugs were found
� Raised questions on the definition of correct 

behavior
� Specification documents clarified/modified

� Some instructions are proven automatically by 
the tool without any human assistance

� Some instructions are too complex or too large 
for the tool to handle

� Several techniques for the user to try to assist 
the tool

� The main theme is divide-and-conquer
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Experience w. Company NExperience w. Company N

� Due to the initial success in finding bugs and 
proving correctness, the use of high level 
equivalence checking expands to several designs 
of company’s active GPU development project
� 10 design blocks, 119 sessions set up and run, 107 

proven (some after fixes to bugs found by FV)
� Includes multiplication logic

� Focused on designs with a high probability of 
success
� data transform with simple temporal behavior and 

input constraints
� A bug was found in a previous project that would 

have been caught by running this
� a special case only affects a single input value
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Experience w. Company NExperience w. Company N

� High-level equivalence checking will become 
part of company’s verification plan
� Demonstrated its value for suitable designs
� Increase confidence and find difficult bugs 

more quickly
� Will not replace other forms of verification, 

complementary to existing methodology
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Experience w. Company TExperience w. Company T

� Designs generated automatically from C++ by 
Synfora synthesis tool
� Four designs from four different encryption 

algorithms + fir filter
� All four had streams
� Designs were run entirely automatically!
� Put in scripting capability to tool
� Synfora gave Hector hints—all were checked 

independently
� Had to support many Synfora features such as 

streams, bit width pragmas, loop unroll 
pragmas, memories

� Hector can now handle loops without 
unrolling.
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� Synfora Pico-Extreme synthesized designs
� Encryption designs for GSM/GPRS/UMTS 

protocols

Behavioral synthesis resultBehavioral synthesis result

Design # lines of 
code

# arrays
# rams

#disc
repan
cies

#bugs 
found

time final result

C RTL
DS1 293 5663 0 / 0 0 0 5min proven

DS2 579 14015 0 / 0 1 0 17min proven

DS3 717 11563 2 / 2 2 0 21min proven

DS4 931 45274 4 / 4 2 0 19min proven
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Word/Transaction Level ToolsWord/Transaction Level Tools

� Datapath verification in Synopsys’s Formality 
equivalence checker
� The core solver is the Hector core engine

� Formal front end for SynplicityDSP

� Equivalence checking of Simulation vs. 
Synthesis models of Synopsys IP

� Model checking at the word level: Bjesse 
CAV’08, FMCAD’08
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ConclusionsConclusions

� System-level to RTL equivalence checking is a 
very hard problem

� But… We do it on live commercial designs NOW

� Synthesis is MUCH easier to verify than 
manual (ad hoc) design flow

� HECTOR is not a product – yet.


