HECTOR:
Formal System-Level to RTL
Equivalence Checking

Alfred Koelbl, Sergey Berezin, Reily Jacoby,
Jerry Burch, William Nicholls, Carl Pixley

Advanced Technology Group
Synopsys, Inc.
June 2008

> Your Design Partner

SYNoPsys'

Outline

e Motivation
e Architecture of Hector
e Frontend

e Notions of equivalence and interface
specification

e Proof procedure

e Solvers

e Debugging
e Customer results
e Additional applications
e Conclusion

MOTIVATION

System-level design

e Some reasons for system-level design:
e Faster verification at the system-level
e Easier architectural exploration
e No need to worry about implementation details

e Productivity gain by using High-Level-
Synthesis

e RTL Verification problems:
e Verification of RTL doesn’t get any easier
e Bugs due to faulty specification
e Bugs due to wrong implementation

Functional equivalence checking

Data
System Model _— ~ RTL

int compute(int a, int b) ;ige[?é9é]rﬁz?lt;
-)
int result;
it (a < 10) { assign rs =
1 2
result = a * b; (@ <)) (&) .
} else { :o(atb)<<1;
result (a + b)*2;
always @(posedge clk)
result <= rs;

| R |
Result — Result

return result;

e System-level model is a transaction/word level model for the
hardware

e System and RTL compute same outputs given same inputs
e Equivalence checking proves functional equivalence

e Timing and internal structure can differ significantly, but the
observable results must be the same

Manual (Ad hoc) Flow

e Architect creates C++ specification
e RTL designer creates RTL implementation

e RTL contains much more implementation
details

e Problems:

e Designs often embedded in own simulation
environment, need to specify input/output
mapping, notion of equivalence

e Specification and implementation can be
significantly different

e Constraints are often in designer’s head, need
to be formalized

e Input/output differences sometimes difficult to
capture in a formal model

High-Level Synthesis Flow

e Equivalence checker proves correctness of
produced RTL

e You cannot sell a high level synthesis tool
without a verification tool!!!
e Advantages:

e All information about constraints & interface
mapﬁings / latency differences available from the
synthesis tool

e Hints can significantly simplify proof
e Push-button solution possible
e Problems:

e Every assumption given as hint must be proven by
equivalence checker

e High-level synthesis tool must be able to produce
the information

HL-Synthesis integration

— Timeout <« ———

Equivalence
Checker
Core

Proof strategy

High-Level Synthesis

Database

E

Design C/C++/RTL
DN

P

<

Constraints

ARCHITECTURE

Components

Constraints
Mappings

Counterexample

4

Waveform
Viewer

Front-End

C++ Frontend

Interface definition

CFG

Formal model

Constrained
Random Simulator

Constraints i
l e, Compiler
Formal model

Testbench
Wrapper
¥

Formal model
}

Proof engine

\ N BDD
\ Mem-model \

Bit-level solver

J SAT
» Orchestration

Counterexample
l Word-level solver

Waveform
Viewer

INTERFACE

SPECIFICATION

Interface specification

C++ Frontend Verilog VHDL
. Interface definition ~

CFG Compiler

\ v

Formal model Testbench Formal model
Wrapper
Formal model

Constrqined Proof engine » Orchestration
Random Simulator N

\ BDD
\ Mem-model \

Bit-level solver

/ SAT

Counterexample
l Word-level solver

Waveform
Viewer

Notions of equivalence

e What does equivalence mean for comparing system-level
models against RTL ?

Depends on how abstract the system-level model is
Different customers, different applications

Different design styles

No definite answer (yet)

e Identify commonly used notions:
e Combinational equivalence
e Cycle-accurate equivalence
e Pipelined equivalence
e Stream-based equivalence

e Transaction equivalence
9
® ... ¢

How to deal with different notions ?

e Idea: Reduction to cycle-accurate equivalence
check

¢ Rule of thumb: If you can build random
pattern testbench, checking outputs on the
fly, you're safe.

Verification wrapper generation

e User (or synthesis tool) provides the following
information:

e Input/output mapping between C++ and RTL
¢ Input constraints

e Output don’t cares

e Memories / memory mappings

e Register mappings

e Notion of equivalence (optional)

e Verification wrapper is automatically
generated

e Reduces problem to cycle-accurate
sequential equivalence check

PROOF PROCEDURE

Proof procedure

Constrained
Random Simulator

Constraints
Mappings

Counterexample

!

Waveform
Viewer

Verification approach

e Constrained Random simulator checks for easily detectable
discrepancies

e Bounded formal check for harder discrepancies

e Formal proof (complete):
e Problem reduced to sequential equivalence checking
e Reachability analysis would be an approach

e But: Most system-level designs are arithmetic heavy,
reachability infeasible

e Induction proof

e Proof idea:
e Implementation and specification perform same computations
e Not necessarily in the same number of cycles

e Unroll for the duration of a transaction, prove that symbolic
expressions are the same

e Proof engines:
e Bit-level equivalence checkers (SAT, BDDs)
e Word-level rewriting engine for arithmetic (COMBAT)
e Hybrid (word & bit) engine for orchestration
e PEP’s

Induction proof

e Transaction equivalence

e Assume that designs start in valid state (superset of
reachable state set)

e Execute single transaction by unrolling ESL and RTL
models for one transaction

e Check outputs after transaction
e Check state after transaction
e Proof strategy: Induction

e Needs state invariants
e Register mappings
e Memory mappings & memory constraints
e Additional invariants
e Prove that resulting SAT formula is UNSAT

ce
ivalen
iva

ion equ

ti

ac

ns

Tra

Oa

Transaction equivalence

IA1

L

ESL,

Transaction T, >

Transaction Ty

RTL,

Transaction equivalence

IA1

i N

—— Valid starting state Outputs equivalent ?
(superset of reachable state set)

Transaction equivalence

ITi_ ti_

ESL,

[+ Register mappings

« State invariants
* Memory mappings
e Constraints on memories

Valid end state ?—

RTL, RTL,

Proof procedure

e Assumptions
a0 = MMo(Ma, M) A MM1(Ma, Ms) A....
a1 =co(Ma, M) A ci(Ma, Ms) A...
a2 =10(Sa, SB) AT11(SA, SB) A ...
as =10(Ma, Ms, Sa, SB) A ...

e Proof obligations
aAalAaAa=>MMoM'a, MB) A...
aAnarAaAa=coMa MB)A...
aoAnaAaAas=r1oS'a SB)A...
aAalAaAa=1io(M'a, M's,S'a, S’B) A ...

wAaAARAB=0aA=08

e Check model assumptions, e.g., that no array accesses are
out-of-bounds

SOLVERS

Solvers

C++ Frontend _ Verilog VHDL
. Interface definition ~

CFG l Constraints Compiler

Mappings
A4

\4

Formal model —_, Testbench ~——— Formal model
Wrapper
¥

Formal model

M 1 4 SAT

Constrained Proof engine - Orchestration
Random Simulator \ BDD

Mem-model

Bit-level solver
Counterexample

l Word-level solver

Waveform
Viewer

Decision Procedures

e Core technology for formal reasoning

Satisfying solution

> (Counter-example)

Formula , Decision
Procedure

| Unsatisfiable

(Proof)

e Used for intermediate equivalences
e Used for output equivalences
e Word-level solvers

e Good for equivalent arithmetic

e Bad for producing counter-examples
e Bit-level solvers

e Good for falsification

e Bad for arithmetic

Equivalence check of two DFGs

. Find potentially equivalent points (PEPSs) (e.g. by simulation)
. Prove them equivalent using bit- and word-level engines

. Merge equivalent points thereby increasing sharing

. Prove outputs equivalent

Equivalence check of two DFGs

. Find potentially equivalent points (PEPSs) (e.g. by simulation)
. Prove them equivalent using bit- and word-level engines

. Merge equivalent points thereby increasing sharing

. Prove outputs equivalent

v

C++ _» RTL

Word-level solvers

e SMT solvers (SAT module theories)
e Reason about arithmetic

e Theories for linear arithmetic, bit-vectors,
uninterpreted functions, arrays, real arithmetic

e Need to be able to deal with finite word-sizes
e Re-writing engines

e Re-write formulas into normal-form

e Convergence can be an issue

e CVCLite from Stanford
e Lessons learned:

e Only Bit-Vector theory (and maybe theory of arrays
iIf powerful enough) useful

e Many abstraction techniques are only useful for
property checking

e Few solver techniques specifically target
equivalence checking problem

Bit-level solvers

e Construct Boolean circuit based on bit-level
representation of operations

e BDDs

e Canonical representation, very easy to check if
formula is unsatisfiable

e Tendency to memory blowup
e Good for local intermediate equivalences
e Good for XOR trees
o SAT
e Convert circuit to Conjunctive Normal Form (CNF)
e Branch-and-bound search

e Efficient optimizations onfllct analysis, non-
chronologlcal backtracking)

e ATPG / Circuit-based SAT

o Brancth -and-bound search directly on Boolean
circui

Solver technology

e Compare word-level graphs modulo zero-
extension / sign-extension and merge
intermediate equivalent points

?

a

4

Solver technology

e Compare word-level graphs modulo zero-
extension / sign-extension and merge
intermediate equivalent points

/

Solver technology

e Compare word-level graphs modulo
observability

Solver technology

e Compare word-level graphs modulo
observability

Replace ‘a’ by ‘b’

Effectiveness comes from many techniques

e 68 word (as opposed to bit) outputs

e SL — RTL : different data path architectures

e Different multiplier implementations

e Different adder tree structure 0 unsolved
e DFG nodes: 1400

SAT-equiv SAT.-eqyiv
optimizations optimizations

RR RR RR RR

BDD BDD BDD BDD
SAT SAT SAT SAT

orchestration orchestration orchestration orchestration

18 unsolved

The Algebraic Solver Strategy

Normal form * Split cases

Algebraic
Rewrites

Proof Search

\
SAT

' e SOlver

Abstractions,
Approximations

—— |
Consider
cases

A
. { (X 3 Y[B31:16], X 1 Y }
S = { (< "oy Y)[BT:16] . (x *io Y)[15:0]}
=X "3 Y

When all else
fails...

38

CUSTOMER

EXPERIENCES

COMPANY
B

Experience w. Company B

e Ad Hoc (manual) design flow
e All modules are parts of a router design
e Customer wanted free consulting.

e Problems
e Customer did not do block-level verification
e Constraint/counterexample loop

e Manager did not understand the idea of equivalence
checking—he thought Hector was a bug finder

e We did the work but eventually the customer could
run Hector by herself

e C++ model not entirely complete: one case of two
modules in RTL and one in the C++

e Abstracted away the simulation environment
manually

Experience w. Company B

e Core algorithms improved greatly during
evaluation

e Developed different memory models, e.g.,
TCAM.

e Successes
e Were able to conclusively compare all outputs
e The D5 was not completed by customer

Hector experimental results

Design

lines of

code

C

RTL

arrays
rams

#disc
repan
cies

#bugs
found

time

final result

50

6200

1/1

0

proven

70

580

1/1

0

proven

1720

1/3

proven

7500

4/4

proven

62 proven,
15 cex

COMPANY
N

Experience w. Company N

e Ad Hoc (manual) design flow

e All modules were from an arithmetic unit: both
integer and floating point

e GPU design

e C++ models act as reference models to provide
expected/correct output values

e Coverage metrics help but not always reliable
e bugs missed

e Customer was very experienced with formal
methods.

Experience w. Company N

e Many mismatches are found

e Real design bugs were caught
(o) mostly corner cases

e C++ model bugs were found

e Raised questions on the definition of correct
behavior
o Specification documents clarified/modified
e Some instructions are proven automatically by
the tool without any human assistance

e Some instructions are too complex or too large
for the tool to handle

e Several techniques for the user to try to assist
the tool

e The main theme is divide-and-conquer

Experience w. Company N

e Due to the initial success in finding bugs and
proving correctness, the use of high level
equivalence checking expands to several designs
of company’s active GPU development project

e 10 design blocks, 119 sessions set up and run, 107
proven (some after fixes to bugs found by FV)
o Includes multiplication logic

e Focused on designs with a high probability of

success
e data transform with simple temporal behavior and
input constraints

e A bug was found in a previous project that would
have been caught by running this

e a special case only affects a single input value

Experience w. Company N

e High-level equivalence checking will become
part of company’s verification plan

e Demonstrated its value for suitable designs

¢ Increase confidence and find difficult bugs
more quickly

e Will not replace other forms of verification,
complementary to existing methodology

COMPANY
T

Experience w. Company T

e Designs generated automatically from C++ by
Synfora synthesis tool

e Four designs from four different encryption
algorithms + fir filter

¢ All four had streams
e Designs were run entirely automatically!
e Put in scripting capability to tool

e Synfora gave Hector hints—all were checked
independently

e Had to support many Synfora features such as
streams, bit width pragmas, loop unroll
pragmas, memories

e Hector can now handle loops without
unrolling.

Behavioral synthesis result

e Synfora Pico-Extreme synthesized designs

e Encryption designs for GGM/GPRS/UMTS
protocols

Design | #lines of | # arrays final result
code # rams

C RTL
293 | 5663 0/0 proven

579 | 14015 0/0 proven
717 | 11563 2/2 proven

931 | 45274 4/4 proven

ADDITIONAL
APPLICATIONS

Word/Transaction Level Tools

e Datapath verification in Synopsys’s Formality
equivalence checker

e The core solver is the Hector core engine
e Formal front end for SynplicityDSP

e Equivalence checking of Simulation vs.
Synthesis models of Synopsys IP

e Model checking at the word level: Bjesse
CAV’08, FMCAD’08

Conclusions

e System-level to RTL equivalence checking is a
very hard problem

e But... We do it on live commercial designs NOW

e Synthesis is MUCH easier to verify than
manual (ad hoc) design flow

e HECTOR is not a product — yet.

