

HECTOR: Formal System-Level to RTL Equivalence Checking

Alfred Koelbl, Sergey Berezin, Reily Jacoby, Jerry Burch, William Nicholls, Carl Pixley

Advanced Technology Group
Synopsys, Inc.
June 2008

Outline

- Motivation
- Architecture of Hector
 - Frontend
 - Notions of equivalence and interface specification
 - Proof procedure
 - Solvers
 - Debugging
- Customer results
- Additional applications
- Conclusion

MOTIVATION

System-level design

- Some reasons for system-level design:
 - Faster verification at the system-level
 - Easier architectural exploration
 - No need to worry about implementation details
 - Productivity gain by using High-Level-Synthesis
- RTL Verification problems:
 - Verification of RTL doesn't get any easier
 - Bugs due to faulty specification
 - Bugs due to wrong implementation

Functional equivalence checking

- System-level model is a transaction/word level model for the hardware
- System and RTL compute same outputs given same inputs
- Equivalence checking proves functional equivalence
- Timing and internal structure can differ significantly, but the observable results must be the same

Manual (Ad hoc) Flow

- Architect creates C++ specification
- RTL designer creates RTL implementation
- RTL contains much more implementation details
- Problems:
 - Designs often embedded in own simulation environment, need to specify input/output mapping, notion of equivalence
 - Specification and implementation can be significantly different
 - Constraints are often in designer's head, need to be formalized
 - Input/output differences sometimes difficult to capture in a formal model

High-Level Synthesis Flow

- Equivalence checker proves correctness of produced RTL
- You cannot sell a high level synthesis tool without a verification tool!!!
- Advantages:
 - All information about constraints & interface mappings / latency differences available from the synthesis tool
 - Hints can significantly simplify proof
 - Push-button solution possible
- Problems:
 - Every assumption given as hint must be proven by equivalence checker
 - High-level synthesis tool must be able to produce the information

HL-Synthesis integration

ARCHITECTURE

Components

Front-End

INTERFACE SPECIFICATION

Interface specification

Notions of equivalence

- What does equivalence mean for comparing system-level models against RTL?
 - Depends on how abstract the system-level model is
 - Different customers, different applications
 - Different design styles
 - No definite answer (yet)
- Identify commonly used notions:
 - Combinational equivalence
 - Cycle-accurate equivalence
 - Pipelined equivalence
 - Stream-based equivalence
 - Transaction equivalence
 - ... ?

How to deal with different notions?

- Idea: Reduction to cycle-accurate equivalence check
- Rule of thumb: If you can build random pattern testbench, checking outputs on the fly, you're safe.

Verification wrapper generation

- User (or synthesis tool) provides the following information:
 - Input/output mapping between C++ and RTL
 - Input constraints
 - Output don't cares
 - Memories / memory mappings
 - Register mappings
 - Notion of equivalence (optional)
- Verification wrapper is automatically generated
- Reduces problem to cycle-accurate sequential equivalence check

PROOF PROCEDURE

Proof procedure

Verification approach

- Constrained Random simulator checks for easily detectable discrepancies
- Bounded formal check for harder discrepancies
- Formal proof (complete):
 - Problem reduced to sequential equivalence checking
 - Reachability analysis would be an approach
 - But: Most system-level designs are arithmetic heavy, reachability infeasible
 - Induction proof
- Proof idea:
 - Implementation and specification perform same computations
 - Not necessarily in the same number of cycles
 - Unroll for the duration of a transaction, prove that symbolic expressions are the same
- Proof engines:
 - Bit-level equivalence checkers (SAT, BDDs)
 - Word-level rewriting engine for arithmetic (COMBAT)
 - Hybrid (word & bit) engine for orchestration
 - PEP's

Induction proof

- Transaction equivalence
 - Assume that designs start in valid state (superset of reachable state set)
 - Execute single transaction by unrolling ESL and RTL models for one transaction
 - Check outputs after transaction
 - Check state after transaction
- Proof strategy: Induction
- Needs state invariants
 - Register mappings
 - Memory mappings & memory constraints
 - Additional invariants
- Prove that resulting SAT formula is UNSAT

Proof procedure

Assumptions

```
a_0 = MM_0(M_A, M_B) \wedge MM_1(M_A, M_B) \wedge \dots
a_1 = c_0(M_A, M_B) \wedge c_1(M_A, M_B) \wedge \dots
a_2 = r_0(S_A, S_B) \wedge r_1(S_A, S_B) \wedge \dots
a_3 = i_0(M_A, M_B, S_A, S_B) \wedge \dots
```

Proof obligations

$$a_0 \wedge a_1 \wedge a_2 \wedge a_3 \Rightarrow MM_0(M'A, M'B) \wedge \dots$$

 $a_0 \wedge a_1 \wedge a_2 \wedge a_3 \Rightarrow c_0(M'A, M'B) \wedge \dots$
 $a_0 \wedge a_1 \wedge a_2 \wedge a_3 \Rightarrow r_0(S'A, S'B) \wedge \dots$
 $a_0 \wedge a_1 \wedge a_2 \wedge a_3 \Rightarrow i_0(M'A, M'B, S'A, S'B) \wedge \dots$
 $a_0 \wedge a_1 \wedge a_2 \wedge a_3 \Rightarrow O_A = O_B$

 Check model assumptions, e.g., that no array accesses are out-of-bounds

SOLVERS

Solvers

Decision Procedures

Core technology for formal reasoning

- Used for intermediate equivalences
- Used for output equivalences
- Word-level solvers
 - Good for equivalent arithmetic
 - Bad for producing counter-examples
- Bit-level solvers
 - Good for falsification
 - Bad for arithmetic

Equivalence check of two DFGs

- 1. Find potentially equivalent points (PEPs) (e.g. by simulation)
- 2. Prove them equivalent using bit- and word-level engines
- 3. Merge equivalent points thereby increasing sharing
- 4. Prove outputs equivalent

Equivalence check of two DFGs

- 1. Find potentially equivalent points (PEPs) (e.g. by simulation)
- 2. Prove them equivalent using bit- and word-level engines
- 3. Merge equivalent points thereby increasing sharing
- 4. Prove outputs equivalent

Word-level solvers

- SMT solvers (SAT module theories)
 - Reason about arithmetic
 - Theories for linear arithmetic, bit-vectors, uninterpreted functions, arrays, real arithmetic
 - Need to be able to deal with finite word-sizes
- Re-writing engines
 - Re-write formulas into normal-form
 - Convergence can be an issue
 - CVCLite from Stanford
- Lessons learned:
 - Only Bit-Vector theory (and maybe theory of arrays if powerful enough) useful
 - Many abstraction techniques are only useful for property checking
 - Few solver techniques specifically target equivalence checking problem

Bit-level solvers

- Construct Boolean circuit based on bit-level representation of operations
- BDDs
 - Canonical representation, very easy to check if formula is unsatisfiable
 - Tendency to memory blowup
 - Good for local intermediate equivalences
 - Good for XOR trees
- SAT
 - Convert circuit to Conjunctive Normal Form (CNF)
 - Branch-and-bound search
 - Efficient optimizations (conflict analysis, nonchronological backtracking)
- ATPG / Circuit-based SAT
 - Branch-and-bound search directly on Boolean circuit

 Compare word-level graphs modulo zeroextension / sign-extension and merge intermediate equivalent points

 Compare word-level graphs modulo zeroextension / sign-extension and merge intermediate equivalent points

 Compare word-level graphs modulo observability

 Compare word-level graphs modulo observability

Effectiveness comes from many techniques

5 unsolved

SAT-equiv

SMT

RR

BDD

SAT

68 word (as opposed to bit) outputs SL – RTL : different data path architectures Different multiplier implementations

18 unsolved

SMT

RR

BDD

SAT

orchestration

Different adder tree structure

DFG nodes: 1400

52 unsolved

RR

BDD

SAT

orchestration

0 unsolved Graph Re-writes SAT-equiv optimizations optimizations SMT RR **BDD** SAT orchestration orchestration

The Algebraic Solver Strategy

CUSTOMER EXPERIENCES

COMPANY B

- Ad Hoc (manual) design flow
- All modules are parts of a router design
- Customer wanted free consulting.
- Problems
- Customer did not do block-level verification
- Constraint/counterexample loop
- Manager did not understand the idea of equivalence checking—he thought Hector was a bug finder
- We did the work but eventually the customer could run Hector by herself
- C++ model not entirely complete: one case of two modules in RTL and one in the C++
- Abstracted away the simulation environment manually

- Core algorithms improved greatly during evaluation
- Developed different memory models, e.g., TCAM.
- Successes
 - Were able to conclusively compare all outputs
 - The D5 was not completed by customer

Hector experimental results

Design	# lines of code		# arrays # rams	#disc repan	#bugs found	time	final result
	С	RTL		cies			
D1	50	6200	1/1	0	0	4min	proven
D2	70	580	1/1	0	0	2min	proven
D3	570	1720	1 / 3	9	1 RTL 1 C++	4min	proven
D4	1700	7500	4 / 4	8	1 RTL 1 C++	<1h	proven
D5	4300	6700	31 / 33	>40	4 RTL	43min	62 proven, 15 cex

COMPANY N

- Ad Hoc (manual) design flow
- All modules were from an arithmetic unit: both integer and floating point
- GPU design
- C++ models act as reference models to provide expected/correct output values
- Coverage metrics help but not always reliable
- bugs missed
- Customer was very experienced with formal methods.

- Many mismatches are found
 - Real design bugs were caught
 - mostly corner cases
 - C++ model bugs were found
 - Raised questions on the definition of correct behavior
 - Specification documents clarified/modified
- Some instructions are proven automatically by the tool without any human assistance
- Some instructions are too complex or too large for the tool to handle
- Several techniques for the user to try to assist the tool
- The main theme is divide-and-conquer

- Due to the initial success in finding bugs and proving correctness, the use of high level equivalence checking expands to several designs of company's active GPU development project
 - 10 design blocks, 119 sessions set up and run, 107 proven (some after fixes to bugs found by FV)
 - Includes multiplication logic
- Focused on designs with a high probability of success
 - data transform with simple temporal behavior and input constraints
- A bug was found in a previous project that would have been caught by running this
 - a special case only affects a single input value

- High-level equivalence checking will become part of company's verification plan
 - Demonstrated its value for suitable designs
 - Increase confidence and find difficult bugs more quickly
 - Will not replace other forms of verification, complementary to existing methodology

COMPANY T

- Designs generated automatically from C++ by Synfora synthesis tool
 - Four designs from four different encryption algorithms + fir filter
 - All four had streams
 - Designs were run entirely automatically!
 - Put in scripting capability to tool
 - Synfora gave Hector hints—all were checked independently
 - Had to support many Synfora features such as streams, bit width pragmas, loop unroll pragmas, memories
 - Hector can now handle loops without unrolling.

Behavioral synthesis result

- Synfora Pico-Extreme synthesized designs
- Encryption designs for GSM/GPRS/UMTS protocols

Design	# lines of code		# arrays # rams	#disc repan	#bugs found	time	final result
	C	RTL		cies			
DS1	293	5663	0 / 0	0	0	5min	proven
DS2	579	14015	0/0	1	0	17min	proven
DS3	717	11563	2 / 2	2	0	21min	proven
DS4	931	45274	4 / 4	2	0	19min	proven

ADDITIONAL APPLICATIONS

Word/Transaction Level Tools

- Datapath verification in Synopsys's Formality equivalence checker
 - The core solver is the Hector core engine
- Formal front end for SynplicityDSP
- Equivalence checking of Simulation vs.
 Synthesis models of Synopsys IP
- Model checking at the word level: Bjesse CAV'08, FMCAD'08

Conclusions

- System-level to RTL equivalence checking is a very hard problem
- But... We do it on live commercial designs NOW
- Synthesis is MUCH easier to verify than manual (ad hoc) design flow
- HECTOR is not a product yet.