
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019 1543

HEIF: Highly Efficient Stochastic Computing-Based
Inference Framework for Deep Neural Networks

Zhe Li , Student Member, IEEE, Ji Li , Student Member, IEEE, Ao Ren, Student Member, IEEE,
Ruizhe Cai, Student Member, IEEE, Caiwen Ding , Student Member, IEEE, Xuehai Qian, Member, IEEE,

Jeffrey Draper, Member, IEEE, Bo Yuan , Member, IEEE, Jian Tang , Member, IEEE,
Qinru Qiu, Member, IEEE, and Yanzhi Wang, Member, IEEE

Abstract—Deep convolutional neural networks (DCNNs) are
one of the most promising deep learning techniques and have
been recognized as the dominant approach for almost all recog-
nition and detection tasks. The computation of DCNNs is memory
intensive due to large feature maps and neuron connections,
and the performance highly depends on the capability of hard-
ware resources. With the recent trend of wearable devices and
Internet of Things, it becomes desirable to integrate the DCNNs
onto embedded and portable devices that require low power and
energy consumptions and small hardware footprints. Recently
stochastic computing (SC)-DCNN demonstrated that SC as a low-
cost substitute to binary-based computing radically simplifies the
hardware implementation of arithmetic units and has the poten-
tial to satisfy the stringent power requirements in embedded
devices. In SC, many arithmetic operations that are resource-
consuming in binary designs can be implemented with very
simple hardware logic, alleviating the extensive computational
complexity. It offers a colossal design space for integration and
optimization due to its reduced area and soft error resiliency.
In this paper, we present HEIF, a highly efficient SC-based
inference framework of the large-scale DCNNs, with broad appli-
cations including (but not limited to) LeNet-5 and AlexNet, that
achieves high energy efficiency and low area/hardware cost.
Compared to SC-DCNN, HEIF features: 1) the first (to the
best of our knowledge) SC-based rectified linear unit activa-
tion function to catch up with the recent advances in software
models and mitigate degradation in application-level accuracy;
2) the redesigned approximate parallel counter and optimized

Manuscript received January 24, 2018; revised March 27, 2018 and May
11, 2018; accepted June 14, 2018. Date of publication July 4, 2018; date
of current version July 17, 2019. This work was supported by the seedling
fund of DARPA SAGA Program under Grant FA8750-17-2-0021, in part by
the Natural Science Foundation of China under Grant 61133004 and Grant
61502019, in part by the Natural Science Foundation under Grant CNS-
1739748 and Grant CNS-1704662, and in part by the Consolider under Grant
CSD2007-00050. This paper was recommended by Associate Editor Y. Wang.
(Corresponding author: Zhe Li.)

Z. Li, A. Ren, R. Cai, C. Ding, J. Tang, and Q. Qiu are with the
Department of Electrical Engineering and Computer Science, Syracuse
University, Syracuse, NY 13244 USA (e-mail: zli89@syr.edu; aren@syr.edu;
rcai100@syr.edu; cading@syr.edu; jtang02@syr.edu; qiqiu@syr.edu).

J. Li, X. Qian, and J. Draper are with the Department of Electrical
Engineering, University of Southern California, Los Angeles, CA 90089 USA
(e-mail: jli724@usc.edu; xuehai.qian@usc.edu; draper@isi.edu).

B. Yuan is with the Department of Electrical Engineering, City University
of New York, City College, New York, NY 10031 USA (e-mail:
byuan@ccny.cuny.edu).

Y. Wang is with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
yanz.wang@northeastern.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2852752

stochastic multiplication using transmission gates and inverse
mirror adders; and 3) the new optimization of weight storage
using clustering. Most importantly, to achieve maximum energy
efficiency while maintaining acceptable accuracy, HEIF considers
holistic optimizations on cascade connection of function blocks
in DCNN, pipelining technique, and bit-stream length reduction.
Experimental results show that in large-scale applications HEIF
outperforms previous SC-DCNN by the throughput of 4.1×, by
area efficiency of up to 6.5×, and achieves up to 5.6× energy
improvement.

Index Terms—ASIC, convolutional neural network, deep learn-
ing, energy-efficient, optimization, stochastic computing (SC).

I. INTRODUCTION

MACHINE learning technology benefits many aspects of
modern life: Web searches, e-commerce recommenda-

tions, social network content filtering, etc. [2]. Unfortunately,
the conventional machine learning techniques were restricted
by the lack of ability to automatically extract high-level
features which have been conducted by well-engineered man-
ual feature extractors. Deep learning methods have taken
advantage of the architecture of multilevel representations to
learn very complex functions [2]. Here, each representation
is obtained through the transformation from a slightly less
abstract level by a simple nonlinear module. Deep learn-
ing significantly enhances the machine learning capability
by learning from data by these multiple layers for different
features without human involvement.

Deep convolutional neural networks (DCNNs) is one of
the most promising types of artificial neural networks based
on deep learning and have been recognized as the domi-
nant approach for almost all recognition and detection tasks.
DCNNs feature the special structural designs [3] of layer-
wise local connections implementing convolution, integrating
pattern matching techniques into neural networks and learn-
ing invariant elementary features of images. It has been
demonstrated that DCNNs are effective models for under-
standing image content [4], image classification [5], video
classification [4], and object detection [6], [7].

Due to the deep structure, the performance of DCNN
highly relies on the capability of hardware resources. From
high performance server clusters [8], [9] to general-purpose
graphics processing units [10], [11], parallel accelerations of
DCNNs are widely used in both the academic and indus-
try. Recently, hardware acceleration for DCNNs has attracted

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7056-4133
https://orcid.org/0000-0003-4699-084X
https://orcid.org/0000-0003-0891-1231
https://orcid.org/0000-0002-3978-2930
https://orcid.org/0000-0003-4418-0114

1544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

enormous research interests on field-programmable gate
arrays (FPGAs) [12]–[14]. Nevertheless, there is a trend of
embedding DCNNs into light-weight embedded and portable
systems, such as surveillance monitoring systems [15], self-
driving systems [16], unmanned aerial systems [17], and
robotic systems [18]. These scenarios require very low power
and energy consumptions and small hardware footprints.
Besides, cell phones [2] and wearable devices [19] equipped
with hardware-level neural network computation capability
require the radical reduction in power and energy consump-
tions and footprints.

DCNNs are both compute and memory intensive. Based on
the conventional binary arithmetic calculations (used in prior
GPU, FPGA, and ASIC accelerators), deploying the entire
large DCNNs like AlexNet [20]–[22] (for ImageNet appli-
cations) incurs the significant amount of hardware, power,
and energy cost. This makes it impractical to use DCNNs
in embedded systems with a limited area and power bud-
get. Therefore, the novel alternative computing paradigms are
urgently needed to overcome this hurdle.

The recent work [1] considered stochastic computing (SC), a
special approximate computing technique, such as [23]–[28],
as a low-cost substitute to binary-based computing [29] for
DCNNs. SC can radically simplify the hardware implemen-
tation of arithmetic units and has the potential to satisfy
the low-power requirements of DCNNs. In SC, many arith-
metic operations that are resource-consuming in binary designs
can be implemented with very simple hardware logic [30],
alleviating the extensive computation complexity. It offers a
colossal design space for optimization due to its reduced
area and soft error resiliency. Recent works [31]–[33] applied
SC to neural networks and deep belief networks (DBNs),
demonstrating the applicability of SC on deep learning
techniques.

Unlike DBNs, implementing DCNNs using SC is more
challenging due to local connectivities, down-sampling oper-
ations and special activation functions, i.e., the rectified
linear unit (ReLU) function [3], [4]. SC-DCNN [1] is the
first to investigate SC-based DCNN design space explo-
rations. It does have the following limitations. First, SC-
DCNN suffers from the degraded overall accuracy because
it utilizes the easy-to-implement hyperbolic tangent (tanh)
function instead of ReLU function. Second, SC-DCNN is
not sufficiently optimized, which leads to: 1) the difficulty
to maintain the high application-level accuracy due to the
stochastic nature of SC components; and most importantly
and 2) a low clock frequency of no more than 200 MHz.
To overcome these limitations and further improve energy
efficiency, we present highly efficient inference framework
(HEIF) with broad applications including (but not limited
to) LeNet5 and AlexNet, that achieves high energy efficiency
and low area/hardware cost. HEIF includes the following key
innovations.

1) We propose the first (to the best of our knowledge)
SC-based ReLU activation function and corresponding
optimizations to catch up with recent software advances
and mitigate degradation on application-level accuracy.

2) We redesign the approximate parallel counter (APC)
proposed in [34] and optimize stochastic multipli-
cation, which is utilized in the inner product cal-
culations of DCNN, to achieve a smaller footprint
and higher energy efficiency without sacrificing any
precision.

Fig. 1. General DCNN architecture.

3) We investigate a memory reduction and clustering
method considering the effects of hardware imprecision
on the overall application-level accuracy.

4) HEIF is holistically optimized with the cascade struc-
tural connection of function blocks, the pipelining
technique, and the bit-stream length reduction. It sig-
nificantly improves the energy efficiency without com-
promising application-level accuracy requirements.

Overall, HEIF could achieve very high energy efficiency
of 1.2M Images/J and 1.3M Images/J, and high throughput
of 3.2M Images/s and 2.5M Images/s, along with very small
area of 22.9 mm2 and 24.7 mm2 on LeNet-5 and AlexNet,
respectively. HEIF outperforms SC-DCNN [1] by throughput
of 4.1×, by area efficiency of up to 6.5× and achieves up to
5.6× energy improvement.

II. PRELIMINARY WORK

A. DCNN Architecture Overview

DCNNs are biologically inspired variants of multilayer per-
ceptrons by mimicking the animal visual mechanism [35].
Thus, a DCNN has special sets of neurons only connected
to a small receptive field of its previous layer rather than fully
connected. Besides an input layer and an output layer, a gen-
eral DCNN architecture consists of a stack of convolutional
layers, pooling layers, and fully connected layers shown in
Fig. 1. Please note that some special layers like normalization
or regularization are not the focus in this paper.

1) A convolutional layer is associated with a set of learn-
able filters (or kernels) [3], which are activated when
specific types of features are found at some spatial posi-
tions in the inputs. Filter-sized moving windows are
applied to the inputs to obtain a set of feature maps
by calculating the convolution of the filter and inputs
in the moving window. Each convolutional neuron, rep-
resenting one pixel in a feature map, takes a set of
inputs and corresponding filter weights to calculate their
inner-products.

2) After extracting features using convolution, a subsam-
pling step can be applied to aggregate statistics of these
features to reduce the dimensions of data and miti-
gate over-fitting issues. This subsampling operation is
realized by a pooling neuron in pooling layers, where
different nonlinear functions can be applied, such as
max pooling, average pooling, and L2-norm pooling.
Among them, max pooling is the dominating type of
pooling in state-of-the-art DCNNs due to the higher
overall accuracy and convergence speed. The activation
functions are nonlinear transformation functions, such
as ReLUs f (x) = max(0, x), hyperbolic tangent (tanh)
f (x) = tanh(x) or f (x) = | tanh(x)|, and sigmoid function
f (x) = [1/(1 + e−x)]. Among them, the ReLU function

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1545

(a) (b) (c)

Fig. 2. Function blocks in a DCNN. (a) Inner-product. (b) Pooling.
(c) Activation.

is the dominating type in the (large-scale) DCNNs due
to: a) the lower complexity for software implementa-
tion and b) the reduced vanishing gradient problem [36].
These nonlinear transformations are conducted some-
where before the inputs of the next layer, ensuring that
they are within the range of [− 1, 1]. Usually, a combi-
nation of convolutional neurons, pooling neurons, and
activation functions forms a feature extraction block
(FEB) to extract high-level abstraction from the input
images or previous low-level features.

3) A fully connected layer is a normal neural network layer
with its inputs fully connected with its previous layer.
Each fully connected neuron calculates the inner-product
of its inputs and corresponding weights.

In general, a DCNN inference process has three basic func-
tion blocks shown in Fig. 2: 1) the inner-product [Fig. 2(a)]
of inputs and weights corresponding to their incoming con-
nections with the previous layer is calculated by neurons in
convolutional layers and fully connected layers; 2) the pooling
block [Fig. 2(b)] subsamples the inner-products; and 3) the
activation function block [Fig. 2(c)] transforms the inner-
products or subsampled outputs to ensure that the inputs of
next layer are within the valid range.

The overall application-level accuracy (e.g., the overall clas-
sification rates) is one of the key optimization goals of the
SC-based DCNN. On the other hand, the SC-based function
blocks and FEBs exhibit a certain degree of imprecision due
to the inherent stochastic nature. The application-level accu-
racy and hardware precision are different but correlated, which
implies the high precision in each function block will likely
lead to a high overall application-level accuracy. Therefore,
the hardware precisions will be optimized for the SC-based
function blocks and FEBs.

B. Stochastic Computing

In SC, a probabilistic number x in the range of [0,1] is rep-
resented by a sequence of binary digits X (i.e., a bit-stream),
where the value of x is contained in the primary statistic of the
bit-stream or the probability of any given bit in the sequence
being a logic one [31]. For instance, the value of a 5-bit
sequence X = 10110 is x = PX=1 = (3/5) = 0.6. In addition
to this unipolar encoding format, SC has the bipolar encod-
ing format to represent a number x in the range of [−1, 1],
where x = 2 · PX=1 − 1. For example, a sequence X = 11101
represents x = 0.6 in the bipolar format. We adopt the bipolar
encoding format since the numbers in a typical DCNN are
distributed on both sides of zero.

(a)

(b)

Fig. 3. Stochastic multiplication. (a) Unipolar. (b) Bipolar.

(a) (b) (c)

Fig. 4. Stochastic addition using (a) OR gate, (b) MUX, and (c) APC.

SC has three characteristics. First, only a subset of the
real numbers can be represented exactly in SC, i.e., an m-bit
sequence can only represent {(0/m), (1/m), . . . , (m/m)} in
the unipolar format. Therefore, increasing the length of the
bit-stream can improve the precision. Since the bits in the bit-
stream are independent of each other, the precision can be
adjusted without hardware modification, which is known as
the progressive precision characteristic [29]. Second, the rep-
resentation of a stochastic number is not unique, e.g., there
are C3

5 = 10 possible ways to represent 0.6 using a 5-bit SC
sequence. Third, as the weight of each bit in the bit-stream is
even, SC is naturally resilient to soft errors.

The basic arithmetic operations in DCNNs are
multiplication, addition, and nonlinear activation, which
can be implemented efficiently using SC with small circuits
and significantly improved energy & power efficiency.

1) Multiplication: Stochastic multiplication can be per-
formed efficiently by an AND gate and an XNOR gate in
unipolar and bipolar format, respectively. Fig. 3(a) and (b)
gives the example for unipolar and bipolar multiplication. We
assume that the inputs are independent of each other. For
unipolar multiplication x = PX=1 = PA1=1 · PA2=1 = a1 · a2,
whereas for bipolar multiplication x = 2PX=1 − 1 = 2(PA1=1 ·
PA2=1 + PA1=0 · PA2=0) − 1 = 2[PA1=1 · PA2=1 + (1 − PA1=1) ·
(1 − PA2=1)] − 1 = (2PA1=1 − 1) · (2PA2=1 − 1) = a1 · a2.
Clearly, multiplication in SC consumes much less hardware
and offers significantly improved energy & power efficiency,
compared with conventional binary arithmetic.

2) Addition: In the SC domain, addition can be imple-
mented by an OR gate, a multiplexer (MUX), and an
APC [34], as shown in Fig. 4(a)–(c), respectively. OR gate-
based addition is an approximation of unipolar addition, i.e.,
x = PX ≈ PA1 + PA2 + · · · PAn ≈ a1 + a2 + · · · + an,
which is not suitable for the bipolar encoding format in
this paper. MUX-based adder works for both unipolar and
bipolar formats, where an MUX is used to randomly select
one input i among n inputs with probability pi such that
�n

i=1pi = 1. For example, adding two numbers using MUX
is x = 2 · PX − 1 = (1/2) · ((2 · PA1 − 1) + (2 · PA2 − 1)) =
(1/2) · (a1 + a2) in bipolar format. Since only one bit is uti-
lized at a time, MUX-based adder has low precision when
input number n is large, making it less attractive for the
large DCNNs.

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

(a) (b)

Fig. 5. Stochastic hyperbolic tangent. (a) Stanh(·). (b) Btanh(·).

As shown in Fig. 4(c), [34] proposed the APC design with
high precision and no bias, which calculates the summation
of multiple input bit streams (A1 − An) by accumulating the
number of 1’s at each time step. Unlike the MUX-based
adder, which incurs significant accuracy loss since the 1-bit
wide output can only represent a number in the range of
[−1, 1], the output of the APC is a log2(n)-bit wide binary
bit-stream, which is capable of representing numbers in a
wide range. As state-of-the-art DCNNs include the large filters
and huge connections with the fully connected layers (i.e., a
large number of input bit streams for an adder), it becomes
imperative to use APC-based addition in practice instead of
MUX or OR gates. The APC should be further optimized
to achieve a smaller footprint and higher energy efficiency
without sacrificing precision.

3) Activation: Nonlinear activation function not only
affects the learning dynamics but also has a significant impact
on the network’s expressive power [37]. Traditional activation
functions, such as sigmoid (f (x) = [1/(1 + e−x)]) and hyper-
bolic tangent (f (x) = [2/(1 + e−2·x)] − 1), suffer from the
vanishing gradient problem, resulting in a slower training pro-
cess or a convergence to a poor local minimum [38]. On the
other hand, ReLU function (f (x) = max(0, x)) has two major
benefits: 1) the reduced likelihood of the gradient to vanish,
since an activated unit gives a constant gradient of 1 and 2)
the induced high sparsity in the hidden layers as x ≤ 0 leads
to f (x) = 0.

Nevertheless, to the best of our knowledge, only two types
of hyperbolic tangent activation function have been designed
in the SC domain for neural networks [31], [32]. As shown in
Fig. 5(a), Stanh(·) is designed in [31] for input bit-stream X
using a finite state machine (FSM) with K states. The output
stream Z is determined by the current state si (0 ≤ i ≤ K −1),
which is calculated as

si =
{

0, if 0 ≤ i ≤ K
2 − 1

1, otherwise.
(1)

The detailed mathematical explanation of Stanh(·) is given
in [39]. On the other hand, Btanh(·) is proposed in [32] for
n-input binary bit-streams with m-bit length using a two-state
up/down counter, as shown in Fig. 5(b).

As ReLU has become the most popular activation function
for most recent DCNNs like AlexNet [2], it is imperative to
design novel SC-based ReLU activation for the state-of-the-
art DCNNs. We need to resolve two challenges in developing
effective SC-based ReLU: 1) realize the nonlinear shape of
ReLU using SC and 2) achieve sufficient precision level. The
latter is particularly important because an inaccurate activa-
tion can potentially amplify the imprecision of features after
pooling.

III. PROPOSED DESIGN

A. Motivation

The hundreds of millions of connections and millions of
neurons in the state-of-the-art DCNNs make DCNNs both
highly computational and memory intensive. In order to
deploy DCNNs onto mobile systems, wearable devices, and
unmanned systems, further energy efficiency enhancements
must be achieved to implement the large state-of-the-art
DCNN, such as AlexNet [5], which is composed of over 0.65
million neurons with varying shapes across eight layers.

In the traditional binary arithmetic calculation blocks used
in most of the prior GPU, FPGA, and ASIC accelerator works,
the most intensive calculations in DCNNs are related to the
inner-product operation in both convolution and fully con-
nected layers. The inner-product consists of multiplications
and additions. The large number of binary multipliers and
adders makes it nearly impossible to deploy the entire large
DCNN, such as AlexNet on embedded systems with a limited
hardware resources and power budgets, not to mention more
advanced DCNNs, such as VGG [40] and ZFNet [41] with
even more neurons.

The SC technique, on the other hand, can potentially over-
come this limitation and achieve a drastically smaller hardware
footprint and higher energy efficiency. SC-DCNN [1] performs
design space explorations on SC-based DCNNs for LeNet-5.
However, it lacks the design and optimization at both function
block level (e.g., ReLU or APC-based inner product block)
and overall DCNN level, and result in a notable degradation in
application-level accuracy because of the usage of tanh acti-
vation function. In order to overcome these limitations, the
ReLU function block needs to be designed in SC domain
and avoid the degradation in application-level accuracy. Even
for the inner-product block which has already been investi-
gated in SC-DCNN, it needs further optimizations to satisfy
the requirements of energy efficiency, performance, and accu-
racy. Moreover, an overall design optimization is necessary in
order to optimize the overall energy efficiency while satisfying
the application-level accuracy of DCNN.

In the following sections, we introduce the ReLU func-
tion block design and the inner-product function block design
in order to address the aforementioned drawbacks of SC-
DCNN. And we also propose the optimization on the overall
DCNN architecture including weight storage optimization, co-
optimization on the FEBs, and pipelining-based optimization.

B. ReLU Function Block Design

ReLU has become the most popular activation function
in state-of-the-art DCNNs, however, only hyperbolic tan-
gent/sigmoid functions have been implemented in the SC
domain in previous works [31], [42]. Therefore, it is important
to have the design of SC-based ReLU block in order to accom-
modate the SC technique in the state-of-the-art large-scale
DCNNs, such as AlexNet for ImageNet applications.

The mathematical expression of ReLU is f (x) = max(0, x),
i.e., when input x is less than 0, the activation result is 0,
otherwise the activation result is x itself. This characteris-
tic of ReLU gives rise to a challenge for SC-based designs.
Since x is represented by a stochastic bit-stream in SC with
length m, we can only intuitively determine its sign and value
through a counter using m clock cycles. This straightforward
implementation of ReLU function in SC domain undoubtedly

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1547

leads to a significant extra delay and energy overhead. On the
other hand, the bit-stream-based representation in SC restricts
the number it represents within the range [−1, 1], and as a
result, the output of SC-based ReLU block should be clipped
to 1. The clipped ReLU in the SC domain is expressed as
f (x) = min(max(0, x), 1).

Four concerns should be addressed to develop an effec-
tive SC-based ReLU block for DCNN applications: 1) the
application-level accuracy of the overall DCNN should be high
enough if the ReLU activation result is clipped to 1; 2) deter-
mining whether the input x is a negative number without
causing extra latency; 3) generating of SC bit-stream repre-
senting zero when the input x is less than zero; and 4) output
x itself when x ∈ [0, 1]. In this section, the design of SC-based
ReLU block is presented to resolve these concerns.

The premise that the SC-based ReLU block can be adopted
in DCNNs is that the clipped ReLU would not bring about sig-
nificant application-level accuracy degradation. Accordingly,
we perform a series of experiments on representative DCNNs
LeNet-5 and AlexNet by replacing their activation func-
tions with the clipped ReLU. According to the experiment
results, for AlexNet with ImageNet dataset [43], the clipped
ReLU causes no significant accuracy degradation for the over-
all DCNN whereas for LeNet-5 with MNIST dataset [44],
clipped ReLU even improve the accuracy by more than
0.1%. Therefore, the clipped ReLU is appropriate for the
state-of-the-art DCNNs. This addresses the first concern.

To avoid extra latency, the sign of the number repre-
sented by the bit-stream should be estimated dynamically
and synchronously. The SC-based ReLU proposed in this
paper implements the dynamic estimation by accumulating
the bit-stream and comparing the accumulated value with a
reference number. Since in a stochastic bit-stream, the 1’s
are randomly distributed, the number represented by a bit-
segment is approximately equal to the number represented
by the whole bit-stream. For instance, when 0.5 is repre-
sented by a 1024-bit bit-stream, we consider both the first-half
(512-bit) and the second-half bit-streams are approximately
equal to 0.5. Consequently, by accumulating the bit-stream, the
number represented by the accumulated number will asymptot-
ically converge to the actual number represented by the whole
bit-stream. On the other side, under the context of bipolar rep-
resentation, the number zero is presented by a bit-stream with
50% of 1’s, as (0 + 1)/2 = 0.5. Therefore, if the accumulated
number is less than half of the clock cycles for accumula-
tion, the number represented by the bit-stream is (likely to be)
less than 0. The SC-based ReLU block outputs a bit of 1 to
enforce the output to equal zero by increasing the number of
1’s. The second and the third concerns are addressed by this
accumulating and dynamic comparison strategy.

Similarly, if the accumulated number is greater than half
of the clock cycles for accumulation, the number represented
by the bit-stream is (likely to be) greater than 0. The current
output of the SC-based ReLU is determined by the output of
the FSM, which is homogeneous with Btanh. The last concern
is addressed as well.

Fig. 6 illustrates the proposed architecture of SC-based
ReLU. The input of SC-based ReLU is accumulated, and the
accumulation result is compared with a reference number (half
of the passed clock cycles). The comparator output is used
as an input and also the control signal of the multiplexer. If
the accumulation result is less than the reference number, the

Fig. 6. Diagram of the proposed ReLU block.

Algorithm 1 Proposed SC-Based ReLU Hardware
input : BitMatrix is the output of the previous pooling block

each column of the matrix is a binary vector
Cyclehalf is the half of the passed clock cycles
S is the FSM state number
N is the input size of a feature extraction block
m is the length of a stochastic bit-stream
Positive indicates whether APC’s output represents the number

of 1’s
output: Z is a bit-stream output by ReLU
Smax = S; //upper bound of the state
Shalf = S/2;
State = Shalf ; //State is used to record the state history
Accumulated = 0; //to accumulate each column of BitMatrix
if Positive == 1 then

ActiveBit = 1; InactiveBit = 0;
else

ActiveBit = 0; InactiveBit = 1;

for i + + < m do
BinaryVec = BitMatrix[: i]; //current column
State = State + BinaryVec ∗ 2 − N; //update current state
//accumulate current column of the input
Accumulated = Accumulated + BinaryVec;
if Accumulated < Cyclehalf then

Z[i] = ActiveBit;
//enforce the output of ReLU to be greater than or equal to 0,
//otherwise the output is determined by the following FSM

else
if State > Smax then

State = Smax;
else

if State < 0 then
State = 0;

if State < Shalf then
Z[i] = ActiveBit;

else
Z[i] = InactiveBit;

comparator outputs a 1 and is selected by the multiplexer as
the output of SC-based ReLU block. Otherwise, the output
is determined by the FSM inside the SC-based ReLU block.
Please note that the proposed SC-based ReLU will not incur
any extra latency.

The algorithm of the proposed SC-based ReLU is illustrated
in Algorithm 1. Please note that the Positive signal is used to
adjust the SC-based ReLU for different types of APCs. When
the outputs of APCs represent the number of 1’s among inputs,
the normal logic is assigned to the output of SC-based ReLU.
When the outputs of APCs represent the number of 0’s, the
inverted logic is assigned. The purpose is to make the output

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

(a) (b) (c) (d)

Fig. 7. Results of the proposed SC-based ReLU using different bit-stream
length. (a) 1024. (b) 512. (c) 256. (d) 128.

of SC-based ReLU (and thereby the whole FEB) not affected
by the types of APCs.

Fig. 7 shows the MATLAB simulation results of the
proposed SC-based ReLU using different bit-stream lengths,
and the simulation curves of the clipped-ReLU are also
depicted. We randomly generate 1000 numbers for each exper-
iments to test the SC-based ReLU accuracy. As each bit is
processed in one clock cycle, the Cyclehalf in Algorithm 1
represents the half of the number of passed bits. In this simu-
lation, we set Positive = 1 to count the number of ones in the
bit-stream. The average inaccuracies (the difference between
the clipped-ReLU and the SC-based ReLU) of using 1024-bit
length and 128-bit length are 0.031 and 0.057, respectively.
We can conclude that SC-based ReLU can guarantee a high
accuracy in DCNNs.

C. Inner-Product Block Optimization

We optimize the APC-based inner-product block with a
potentially large number of inputs. Inner-product calculates the
“summation of products” and involves both multiplication and
addition operations. Hence, we optimize both multiplication
and APC-based addition in SC.

1) Transmission Gate-Based Multiplication: As discussed
before, the multiplications are implemented with XNOR gates
in bipolar SC. Generally, an XNOR gate costs at least 16
transistors if it is implemented in static CMOS technology,
and its simplest structure in gate-level is shown in Fig. 8(a).
However, if the XNOR gate is implemented with transmis-
sion gates, only eight transistors are needed, leading to 50%
savings in hardware. The main drawback of potential volt-
age degradation of a transmission gate does not cause latent
errors for three reasons: 1) the multiplication operations are
only performed in the first sublayer of each network layer, so
any latent voltage degradation will not be significant; 2) the
following APCs and activation blocks are implemented with
static CMOS technology, so any minor voltage degradation
introduced by transmission gates will be compensated; and 3)
SC itself is soft error resilient, i.e., a soft error at one single
bit has a negligible impact on the whole bit-stream. The struc-
ture of the transmission gate-based XNOR gate is illustrated
in Fig. 8(b).

2) APC Optimization: APC [34] has been designed for effi-
ciently performing addition with a large number of inputs in
SC domain. More specifically, it efficiently counts the total
number of 1’s in each “column” of the input stochastic bit-
streams and the output is represented by a binary number, as

(a) (b)

Fig. 8. XNOR gate implementations. (a) Static CMOS design.
(b) Transmission gate design.

shown in Fig. 4(c). The APC consists of two parts: approx-
imate units (AU), implemented by a combination of simple
two-input gates, such as AND/OR gate, and an accurate paral-
lel counter (PC) with size significantly reduced. The PC circuit
consists of a network of full adders for precisely counting the
total number of 1’s among the input bit-streams. Although
the literature [34] presented the operation principle of APC,
there is no existing work targeting at optimization of the
performance and energy efficiency. We mitigate this limita-
tion by presenting a holistic optimization framework of APC
in the following.

First, we investigate the design optimization of adder trees
in PC to refine APC design. A conventional PC uses full adders
and half adders to calculate the number of active inputs (the
total number of 1’s). Each adder reduces a set of three inputs
(for full adder) or two inputs (for half adder) with weight 2n

into an output line with weight 2n and another output with
weight 2n+1, which correspond to the summation and output
carry, respectively. To reduce the area and power and energy
consumption of APC, we design adder tree using inverse mir-
ror full adders [45], i.e., mirror full adders without output
inverters, whose outputs are the logical inversion of summa-
tion and carry out bits. Compared to a full adder synthesis
results (from Synopsys Design Compiler) requiring 32 tran-
sistors, an inverse mirror full adder only costs 24 transistors.
An adder tree design is available for the PC using inverse full
adders, in which the odd layer (of adders) outputs the inverse
values of summation and output carry, representing the num-
ber of inactive inputs (the total number of 0’s). The results are
inverted back in the subsequent even layer of adders. Inspired
by the same idea of using inverse logic, NAND/NOR gates can
be used to construct the AU layer instead of AND/OR gates,
to achieve further delay/area reductions.

Depending on the input size, the output of the proposed
APC can either represent the number of 1’s among the input
bit-streams, or the number of 0’s. Please note that the activa-
tion function needs to be modified if the APC output represents
the number of 0’s as discussed in the ReLU block design. As
an example, the proposed 16-input APC design is shown in
Fig. 9(a).

Next, we discuss the APC designs for input size that is not
a power of two. An example of the proposed 25-input APC is
shown in Fig. 9(b). Two modifications are needed compared
with the previous case. First, arithmetic inverse half adders are
required to calculate the number of inactive inputs (number of
0’s among inputs). In addition, in this case, the final output
of APC should be the noninverted value compared with the
inputs to the adder tree. In other words, if the inputs of adder
tree represent the number of 0’s (inactive inputs), then the

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1549

(a)

(b)

Fig. 9. (a) Proposed 16-input APC structure and (b) proposed 25-input APC
structure.

APC output must also be the number of 0’s. The reason is as
follows: the summation of the number of 0’s and the number
of 1’s should be equal to the input size [e.g., 25 as shown in
Fig. 9(b)], whereas the inverse operation in adders assumes
that their summation is 2N+1, where N is the number of bits
in the output binary number. Thus, the final layer of adder
tree should use either adders or inverse adders to generate
noninverted results compared with the inputs.

Table I shows the comparison of inner-product blocks before
and after optimization using the 1024-bit-stream. After apply-
ing the optimization on the inner-product blocks, the hardware
performance in terms of clock period, area, and energy are
all reduced, especially the area. Table I also demonstrates the
advantages of SC over conventional binary computing. We can
observe that the SC delay/area/energy are much smaller than
binary’s, this is because SC-based inner-product blocks taking
multiple input bit-streams in a parallel manner with simple
gate logic, while the binary logic compute equivalent binary
numbers bit by bit with complex gate logic.

D. Weight Storage Optimization

The main computing task of an inner-product block is to
calculate the inner-products of xi’s and wi’s. xi’s are inputs
of neurons, while wi’s are weights obtained during training,
stored, and used in the hardware-based DCNNs. The number
of weights is skyrocketing as the structure of DCNNs becomes
much deeper and more complex. For example, LeNet-5 [3]

TABLE I
COMPARISON OF INNER-PRODUCT BLOCKS BEFORE AND

AFTER OPTIMIZATION USING 1024-BIT-STREAM

includes 431k parameters, AlexNet [5] has around 61M param-
eters, and VGG-16 [40] contains over 138M parameters. It
is urgent to explore the techniques to store the tremendous
parameters efficiently. In convolutional layers, weights are
shared within filter domain, while in fully connected layers,
the number of weights is enormous and independent. Thus,
the weights need to be either shared or reduced. The reduction
of weights has been explored in many previous works, such
as [20] and [46], however, weight sharing lacks the discussion.
In this section, we present a simple weight reduction method
and a clustering-based weight sharing optimization. The meth-
ods presented can be combined with weight reduction/pruning
methods in related works.

We use static random access memory (SRAM) for weight
storage due to its high reliability, high speed, and small area.
The specifically optimized SRAM placement schemes and
weight storage methods are imperative for further reductions
of area and power (energy) consumptions. In general, DCNN
will be trained with single floating point precision. Thus on
hardware, up to 64-bit SRAM is needed for storing one weight
value in the fixed point format to maintain its original high
precision. This scheme can provide high accuracy as there
is almost no information loss of weights. However, it also
brings about high hardware consumptions in that the size of
SRAM and its related read/write circuits is increasing with the
increasing of precision of the stored weight values.

According to our software-level experiments, many least
significant bits far from the decimal point only have a very
limited impact on the overall application-level accuracy, thus
the number of bits for weight representation in the SRAM
block can be significantly reduced. We adopt a mapping equa-
tion that converts a weight in the real number format to the
binary number stored in SRAM to eliminate the proper num-
bers of least significant bits. Suppose the weight value is x,
and the number of bits to store a weight value in SRAM is w
(which is defined as the precision of the represented weight
value in this paper), then the binary number to be stored for
representing x is

y =
Int

(
x+1

2 × 2w
)

2w
(2)

where Int() means only keeping the integer part. Please note
that the binary numbers stored in SRAMs are fed into effi-
cient random number generators (RNGs) to generate stochastic

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

(a)

(b)

Fig. 10. Application-level error rates for (a) clustering through all layers and
(b) clustering within each layer and layer-wise clustering.

numbers at runtime. For instance, a 6-bit binary number can
be used to generate a stochastic number with 1024-bit length
through RNG. Hence, there is no need to store the entire
1024 bit stochastic number in SRAM. The overhead of RNGs
is also taken into account in our experiments. Therefore, this
weight storage method can significantly reduce the size of
SRAMs and their read/write circuits through decreasing the
precision. The area saving achieved by this method based on
estimations from CACTI 5.3 [47] is 10.3×.

1) Weight Clustering: As mentioned before, a state-of-the-
art DCNN contains millions of weights. A large amount of
SRAM will be consumed for storing all these weights. In fact,
many weight values can be rounded to a neighboring value
without significant accuracy loss according to our experiments.
Therefore, we investigate the k-means-based weight clustering
method that clusters all weights into clusters and rounds the
weights in each cluster to one centroid value. Consequently,
only a part of weight values need to be stored in SRAM. A
multiplexer is used to select a weight from an SRAM block for
each wi of an inner product block, and the selection signals
are stored in SRAM block as well. Suppose the filter size
is p × p, each weight occupies n bits, and storing one bit
consumes t units hardware resources on average (including
read/write circuits). Accordingly, the size of an SRAM block
before clustering is p2 ×n× t. After clustering, only s weights
are needed, thus the size of an SRAM block for storing weights
is s×n× t. Since an inner product block has p2 weight values,
p2 multiplexers are required for each inner product block, and
p2 × log2 s× t units hardware resources are needed for storing
the selection signals. Suppose the size of a multiplexer is m
units hardware resources, and there are q inner product blocks
for extracting a feature map. The area saving achieved by the
clustering method is p2 × n × t − (s × n × t + p2 × log2 s ×
t + p2 × m × q) for each feature map.

As shown in Fig. 10(a), when the clustering is performed
on all weights of the network, the application-level error rate
vibrates obviously with the change of the clustering number,
and the error rates in many cases exceed 10%. It indicates that
the clustering on all weights is not practicable.

Then we perform the clustering on weights within
each single layer to explore the application-level accuracy

Fig. 11. Optimized FEB precision versus input size under different bit-stream
lengths.

performance. As illustrated in Fig. 10(b), when the cluster-
ing is performed on each layer from Conv1 to FC2, desirable
application-level accuracy can be obtained while the number
of clusters is more than three. Inspired by the experimental
results, we investigate the application-level accuracy when the
clustering is performed on the whole network but each layer is
individually clustered (called layer-wise, and different layers
may have the different number of clusters). When all lay-
ers are individually clustered into five or more clusters, the
application-level error rate is less than 2%.

E. Optimization on Feature Extraction Block and the
Overall DCNN

1) Co-Optimization on FEBs: In the FEB, the inner-
product, max pooling and ReLU function blocks are connected
in series, and the imprecision of one function block will
be propagated to the subsequent block(s) within this FEB.
Considering the intra-FEB imprecision propagation effect due
to the cascade connection, the parameters of the inner-product,
max pooling, and ReLU function blocks inside one FEB
should be jointly optimized. The goal of co-optimization
through the SC-based FEB is to approach the accuracy level
of software FEB.

We propose an optimization function S = f (N), where S
and N denote the FSM state number in ReLU and the fan-in,
respectively. First of all, given N, each inner-product block is
optimized. Next, in order to derive the optimization function,
we simulate each FEB with all the function blocks connected
together, and select the S that yields the highest precision under
a given N. Below is the empirical function that is extracted
from comprehensive experiments obtaining the optimal state
number providing a high precision

S = f (N) ≈ 2 · N. (3)

Fig. 11 shows the optimized FEB precision under different
combinations of the input size and the bit-stream length. One
can observe that the FEB can work with a short bit-stream
length (i.e., 128 bits) without incurring significant accuracy
degradation. Moreover, as a desirable effect, the accuracy
will increase with the increase of the input number, because
the imprecisions tend to mitigate each other with the input
size increase. Table II summarizes the hardware performance
of FEBs with the different input sizes when the bit-stream
length is 1024, which shows a sublinear growth in terms of
area/power/and energy with the increase of input size.

Using the optimization function, we derive the optimal con-
figuration of a 64-input FEB with four 16-input APCs and
4-to-1 pooling. The full customized layout design of this FEB
using Cadence Virtuoso is shown in Fig. 12. Note that multiple
D flip-flop (DFF) arrays are used to temporarily hold inputs

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1551

TABLE II
HARDWARE PERFORMANCE OF FEBS WITH THE DIFFERENT INPUT SIZES

USING 1024-BIT-STREAM W/ AND W/O PIPELINE-BASED OPTIMIZATION

Fig. 12. Layout of a 64-input FEB using the proposed APC, pooling, and
activation blocks.

(a) (b)

Fig. 13. FEB tape-out. (a) 8-bit chip. (b) 16-bit chip.

Fig. 14. Testing platform for the fabricated chips.

due to the limited I/O bandwidth of the foundry. Shown in
Fig. 13, we taped out the 8-bit and the 16-bit FEB as the
proof-of-concept. We tested our chips using an Altera Cyclone
V FPGA in Fig. 14, random bit-streams are fed into the FEB
chip, the results are displayed on an oscilloscope as Fig. 15
shows.

2) Pipeline-Based DCNN Optimizations: In this paper, we
propose a two-tier pipeline-based network optimization for
HEIF as shown in Fig. 16. The first-tier pipeline is placed
in between different convolutional and fully connected layers,
i.e., inserting DFFs between consecutive layers to hold the
temporary results, which enables pipelining across the deep
layers of DCNNs. The second-tier pipeline is placed within a
layer which is inspired by [48]. More specifically, based on the
delay results of inner product, pooling and ReLU blocks, we

(a)

(b)

Fig. 15. Tested waveform for (a) 8-bit chip and (b) 16-bit chip.

Fig. 16. Two-tier pipeline design in the HEIF framework.

insert DFFs between the pooling unit and ReLU block in order
to further reduce the system clock period. We place the pool-
ing unit in the first stage. Because after pooling, the output size
is reduced so that we can use less DFFs to save area, power,
and energy. To show the effectiveness of pipelining within
a layer, we also evaluate the hardware costs for FEBs with-
out pipelining in the right section in Table II. Comparing the
results in Table II, we observe that the pipelining optimization
significantly reduce the delay (clock period) by about 22% in
average with slight area, power, and energy increase by DFFs.

An additional key optimization knob is the bit-stream
length. A smaller bit-stream length in SC can almost improve
the energy efficiency in a proportional manner. However, we
must ensure that the overall application-level accuracy is main-
tained when the bit-stream length is reduced, and therefore,
a joint optimization is required. In this procedure, we first
optimize the accuracy of each function block, i.e., APC, max
pooling and ReLU, to reduce the imprecision within an FEB.
Furthermore, we conduct co-optimization through FEB to find
the best configuration of each unit inside one FEB, in order
to mitigate the propagation of imprecision and maintain the
overall application-level accuracy.

IV. RESULTS

The proposed HEIF is to accelerate DCNNs. Besides,it is
applicable to various deep models, such as DBNs, long short-
term memory, etc., where similar computations are conducted.
In this section, to demonstrate the effectiveness of the proposed
HEIF, we perform thorough optimizations on two widely used
DCNNs as examples, i.e., LeNet-5 [49] and AlexNet [5],
to minimize area and power (energy) consumption while
maintaining a high application-level accuracy. The FEBs, the

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

TABLE III
APPLICATION-LEVEL PERFORMANCE AND HARDWARE COST OF LENET-5

IMPLEMENTATION USING THE PROPOSED HEIF

pipeline, the bit-stream length, and the weight storage schemes
are carefully selected/optimized in the procedure.

The LeNet-5 is a widely used DCNN structure with a con-
figuration of 784-11520-2880-3200-800-500-10. The MNIST
handwritten digit image dataset [50] is used to evaluate LeNet-
5, which consists of 60 000 training data and 10 000 testing
data. The AlexNet, on the other hand, is a much larger DCNN
with a configuration of 290400-186624-64896-64896-43264-
4096-4096-1000. The accuracy of AlexNet is measured on the
ImageNet dataset (ILSVRC2012) [43], which contains 1.28M
training images, 50k validation images, and 100k test images
with 1000 class labels. The delay, power and energy of FEB
are obtained from synthesized RTL under Nangate 45 nm pro-
cess [51]. The key peripheral circuitry in the SC domain, e.g.,
the RNGs, are developed using the design in [42] and synthe-
sized using Synopsys Design Compiler, whereas the SRAM
blocks are estimated using CACTI 5.3 [47].

Table III concludes the performance and hardware cost
of the proposed HEIF on LeNet-5 implementation. One can
observe that the proposed HEIF can realize the entire LeNet-
5 with only 0.10% accuracy degradation compared to the
software accuracy of our software-based implementations.
Table IV compares the performance and hardware cost of
the proposed HEIF with the existing hardware platforms on
the MNIST dataset. It can be observed that compared with the
other platforms, the proposed HEIF yields the highest through-
put, area efficiency, and energy efficiency while approaching
the highest software accuracy, i.e., 99.77%, demonstrating
the effectiveness of the SC technology and our proposed
holistic optimization procedure. Compared with the high-
performance version of SC-DCNN in [1], the proposed method
achieves up to 0.81% accuracy increase, and 4.1×, 6.5× and
5.5× improvement in terms of throughput, area efficiency,
and energy efficiency, respectively. Compared with the low-
power version of SC-DCNN, the proposed method achieves
improved accuracy due to the overall optimization on the
cascade connection of function blocks and the novel ReLU
design, whereas the area, power, and energy efficiency gain
are mainly achieved through APC optimization, pipelining
technique, bit-stream length reduction, and weight storage
optimization.

Next, we present the results of HEIF on the large-scale
AlexNet applications. We trained AlexNet using ImageNet
training set by our own configurations. To follow the SC
paradigm, we use scaled pixel values within [0, 1] instead
of original range [0, 255]. Because data preprocessing first
deducts the mean value of each image from each pixel value,
the input then ranges in [−1, 1]. Moreover, we use clipped
ReLU to restrain the activation output to be [0, 1]. We also
move pooling units before ReLU so that we can save resource
of ReLU in the aspect of hardware cost. The trained network
achieves top-1 and top-5 accuracies of 56.56% and 80.48%

on the test set, respectively. To the best of our knowledge, the
existing hardware platforms either implemented one compu-
tation layer of the AlexNet [20], built a reconfigurable circuit
to accelerate each layer separately [22], or designed a recon-
figurable system that can be connected in a chip system to
deal with large computation tasks [21]. Table V lists the
existing hardware platforms for AlexNet implementation. As
EIE [20] provided the results on the fully connected FC7 layer
of AlexNet, we evaluate the proposed HEIF on the same FC7
layer of AlexNet. We apply the same weight compression tech-
nique in [55], making a fair comparison. Note that Table V is a
list of existing platforms instead of a strict comparison table,
because the implementation scales and method of different
works are not the same (and some are not discussed in details
in papers). One can observe from Table V that the proposed
HEIF has the smallest footprint due to the small footprint of
each SC component, and achieves the best performance in
terms of throughput, area efficiency, and energy efficiency.

Finally, we investigate the capacity of HEIF on implement-
ing each layer and the full AlexNet. We evaluate the hardware
performance of each layer in AlexNet separately and conclude
the area, power, and layer delay in Table VI. Table VI also
concludes the accuracy performance of the proposed HEIF on
the full AlexNet. It is observed that the proposed HEIF can
realize the entire AlexNet with only 1.35% top-1 accuracy
degradation and 1.02% top-5 accuracy degradation compared
to the software accuracy of our software-based implementa-
tions. As shown in Table VI, the convolution layer Conv5 and
fully connected layers FC6–FC8 can be implemented using the
proposed HEIF efficiently. However, one should note that due
to a large number of neurons in convolution layers Conv1–
Conv4, the area and power consumptions of these layers are
significant. Hence, to make tape-out possible, we have to adopt
a reconfigurable approach to implement the large layers in a
time-multiplexed manner, which is also a future extension of
this paper.

V. DISCUSSION

A. Scalability

The proposed SC paradigm is able to process the compu-
tation as the (convolutional) neural network architecture gets
deeper with the help of pipelining. Since the input size in
each inner-product function block in convolutional layers is the
corresponding filter size, the key challenge the SC-based com-
ponents face is the booming of inputs for each inner-product
function block in the fully connected layers.

The experimental results show that a 4096-input inner-
product function block consumes power as high as 6.2 mW
and delay is 3.3 ns which is longer than smaller blocks.
Meanwhile, it is as big as 11, 973 μm2 and needs 20.64 pJ to
drive a large APC. Considering in AlexNet, FC7 layer contains
4096 inner-product function blocks, the concurrent circuit with
such power and energy consumption is not achievable. Thus,
the model must be compressed to reduce the input size in
FC layers. We applied compressed model mentioned in [55],
the input size of each neuron is pruned to as low as 9% of
the original number. The path delay is then improved by 50%
because of the shorter path along hierarchical adder in APC.
And the power and energy are reduced to 0.9 mW and 6.3 pJ,
respectively, while area efficiency is improved by 9×.

With the compressed design of inner-product function block,
we can scale the SC-based framework to the state-of-the-art

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1553

TABLE IV
COMPARISON WITH EXISTING HARDWARE PLATFORMS FOR HANDWRITTEN DIGIT RECOGNITION USING THE MNIST [50] DATASET

TABLE V
LIST OF EXISTING HARDWARE PLATFORMS FOR IMAGE CLASSIFICATION USING (PART OF) THE ALEXNET [5] ON IMAGENET [43] DATASET

TABLE VI
HARDWARE COST AND PERFORMANCE OF THE WHOLE ALEXNET

IMPLEMENTATION USING THE PROPOSED HEIF

large-scale DCNNs, considering that the computation within
those DCNNs is covered by our framework. Some special nor-
malization layers, such as local response normalization and
regularization layers, such as Dropout are the competition-
directed optimization, which can be removed with a slight
sacrifice of accuracy [5], [56] to improve the overall efficiency
of the network. These nonresource-exhausting operations are
the next step to fully design a general SC-based framework
for DCNN which is also the future work for other hardware
acceleration researches for DCNNs.

B. Energy Efficiency

SC-based design has achieved high energy efficiency which
is shown in Table IV and Table V. However, the consumed
energy is proportional to the stage delay of the network and the
length of bit-streams. Since bit-streams are processed sequen-
tially in the network and the hardware building blocks are
given, reducing the length of bit-streams can efficiently reduce
the energy consumption without increasing the power. This is
a key characteristic of SC as long as the overall accuracy satis-
fies certain constraints. Shown in Table III, when the bit-stream

length is reduced to 128, compared with a bit-stream length
of 1024, the energy efficiency is increased by 8× with only
0.11% validation application-level accuracy loss, and 0.05%
test accuracy loss. Meanwhile, the footprint and power are not
increased, for the hardware is not modified. There is a poten-
tial for a shorter bit-stream and much less energy which is due
to the tradeoff between accuracy and energy efficiency. Note
that the energy & power related results are the synthesis results
using Synopsys Design Compiler, the power dissipation on the
clock tree is neglected although that on the sequential elements
(DFFs) is already accounted for. Compared with binary-based
designs, SC-based designs (e.g., the proposed HEIF) do not
contain a large number of sequential elements because of the
sequential processing nature. Also, the operating frequency of
the proposed HEIF (410 MHz) is not overly high. Therefore,
the energy dissipation induced by the clock tree will not be
very significant.

C. Application-Level Accuracy

The proposed highly efficient SC-based framework ensures
high application-level accuracy of DCNN. Taking LeNet and
AlexNet as examples for DCNNs, shown in Tables III and VI,
the proposed framework can achieve as high as 99.07% test
accuracy which outperforms the previous SC-based related
work [1] on LeNet-5. Please note the trained software model
for LeNet in this paper is able to achieve 99.17% test accuracy,
which means the HEIF only downgrades 0.1% accuracy to
achieve much higher energy efficiency. Moreover, in the large-
scale application of ImageNet classification of 1000 labels,
using AlexNet, the proposed framework can achieve as high
as 79.46% top-5 accuracy which is only 1.02% performance
degradation from the trained model.

This is because the combination of DCNN and SC paradigm
along with the proposed optimization framework mitigates the
errors brought by the imprecision of each function block. In

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

LeNet-5, an FEB takes 25 inputs which shows an impre-
cision of 0.11, and the fully connected neuron causes an
imprecision of 0.06. Similarly, in AlexNet, an FEB taking
121, 25, 9 inputs gives imprecision of 0.07, 0.11, and 0.18,
respectively. Interestingly, when translating the hardware-level
imprecision to application-level accuracy, the latter is not
downgraded significantly, with only 0.1% test accuracy loss
in LeNet and 1% top-5 accuracy in AlexNet. This is because:
1) the imprecisions can be both positive or negative and can
mitigate each other when the input size is large, and can
be mitigated in the pooling block and by the scaling func-
tion of inner products and 2) random and small deviations
of hardware results will not significantly affect the software
classification results. The theoretical analysis and quanti-
tative proof of translating hardware-level imprecisions into
application-level errors will be another promising direction of
SC research and the more general research area of approximate
computing.

VI. RELATED WORKS

References [5], [10], [57], and [58] leveraged the parallel
computing and storage resources in GPUs to efficiently imple-
ment DCNNs. FPGA-based accelerators are another attractive
option for the hardware implementation of DCNNs [12], [13]
due to its programmability, the high degree of parallelism
and short develop period. However, the current GPU- and
FPGA-based implementations still exhibit a large margin
of performance enhancement and power reduction. This is
because: 1) GPUs and FPGAs are general-purpose comput-
ing devices not specifically optimized for executing DCNNs
and 2) the relatively limited signal routing resources in such
general platforms restrict the performance of DCNNs which
require high interneuron communication.

Alternatively, ASIC-based implementations of DCNNs have
been recently exploited to overcome the limitations of
general-purpose computing approaches. Three representative
state-of-the-art works on ASIC-based implementations are
Eyeriss [22], EIE [20], and the DianNao family, includ-
ing DianNao [59], DaDianNao [21], ShiDianNao [60], and
PuDianNao [61]. Eyeriss [22] is an energy-efficient reconfig-
urable accelerator for the large CNNs with various shapes.
EIE [20] focuses specifically on the fully connected layers
of DCNN and achieves high throughput and energy effi-
ciency. The DianNao family [59]–[61] is the series of hardware
accelerators designed for a variety of machine learning tasks
(especially the large-scale DCNNs) with a special emphasis
on the impact of memory on accelerator design, performance,
and energy.

To provide the high energy efficiency and low hardware
footprint required in embedded and portable devices, novel
computing paradigms are needed. SC-based design of neu-
ral networks has been shown an attractive candidate to meet
the stringent requirements and facilitate the widespread of
DCNNs in low-power personal, embedded, and autonomous
systems. Ji et al. [33] utilized stochastic logic to implement
a radial basis function-based neural network. Kim et al. [32]
presented the neuron design with SC for DBN. The design
space exploration of SC-based DCNNs is recently performed
in [1] for LeNet-5. However, there is no existing work
that: 1) optimizes energy efficiency without compromising
application-level accuracy and 2) investigates comprehensive
design optimizations of SC-based DCNNs with a large scale
(e.g., AlexNet with ImageNet-scale) and wide applications.

VII. CONCLUSION

In this paper, we present HEIF, a highly efficient SC-
based inference framework of the large-scale DCNNs, with
broad applications on (but not limited to) both LeNet-5 and
AlexNet, in order to achieve ultrahigh energy efficiency and
low area/hardware cost. In this framework, we redesign the
APC and optimize stochastic multiplication while propos-
ing for the first time SC-based ReLU activation function to
track with the recent advances in software models. A memory
storage optimization method is investigated to store weights
efficiently. Lastly, overall optimizations on the cascade con-
nection of function blocks in DCNN, pipelining technique,
and bit-stream length optimization are investigated in order
to achieve maximum energy efficiency while maintaining
application-level accuracy requirements. The proposed frame-
work achieves very high energy efficiency of 1.2M Images/J
and 1.3M Images/J, and high throughput of 3.2M Images/s and
2.5M Images/s, along with very small area of 22.9 mm2 and
24.7 mm2 on LeNet-5 and AlexNet, respectively. HEIF out-
performs previous SC-DCNN by the throughput of 4.1×, by
area efficiency of up to 6.5×, and achieves up to 5.6× energy
improvement.

REFERENCES

[1] A. Ren et al., “SC-DCNN: Highly-scalable deep convolutional neu-
ral network using stochastic computing,” in Proc. ACM 22nd Int.
Conf. Archit. Support Program. Lang. Oper. Syst., Xi’an, China, 2017,
pp. 405–418.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[4] A. Karpathy et al., “Large-scale video classification with convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Columbus, OH, USA, 2014, pp. 1725–1732.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, 2014,
pp. 580–587.

[7] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 1–9.

[8] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223–1231.

[9] B. Catanzaro et al., “Deep learning with COTS HPC systems,” in Proc.
30th Int. Conf. Int. Conf. Mach. Learn. (ICML), Atlanta, GA, USA,
2013, pp. 1337–1345.

[10] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA,
2014, pp. 675–678.

[11] J. Bergstra et al., “Theano: Deep learning on GPUs with python,” in
Proc. BigLearn. Workshop NIPS, vol. 3. Granada, Spain, 2011, pp. 1–48.

[12] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2015, pp. 161–170.

[13] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space explo-
ration of FPGA-based deep convolutional neural networks,” in Proc. 21st
Asia South Pac. Design Autom. Conf. (ASP-DAC), 2016, pp. 575–580.

[14] K. Ovtcharov et al., “Accelerating deep convolutional neural networks
using specialized hardware,” Redmond, WA, USA, Microsoft Res.,
White Paper, Feb. 2015.

[15] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[16] B. Huval et al., “An empirical evaluation of deep learning on highway
driving,” arXiv preprint arXiv:1504.01716, 2015.

[17] F. Maire, L. Mejias, and A. Hodgson, “A convolutional neural network
for automatic analysis of aerial imagery,” in Proc. Int. Conf. Digit. Image
Comput. Techn. Appl. (DlCTA), 2014, pp. 1–8.

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HEIF FOR DEEP NEURAL NETWORKS 1555

[18] K. R. Konda, A. Königs, H. Schulz, and D. Schulz, “Real time
interaction with mobile robots using hand gestures,” in Proc. 7th Annu.
ACM/IEEE Int. Conf. Human–Robot Interact., Boston, MA, USA, 2012,
pp. 177–178.

[19] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional, and
recurrent models for human activity recognition using wearables,” in
Proc. 25th Int. Joint Conf. Artif. Intell., 2016, pp. 1533–1540.

[20] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), 2016, pp. 243–254.

[21] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit., Cambridge, U.K.,
2014, pp. 609–622.

[22] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
San Francisco, CA, USA, 2016, pp. 262–263.

[23] J. S. Miguel and N. E. Jerger, “The anytime automaton,” in Proc. Int.
Symp. Comput. Archit., Seoul, South Korea, 2016, pp. 545–557.

[24] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The bunker cache
for spatio-value approximation,” in Proc. Int. Symp. Microarchit., Taipei,
Taiwan, 2016, pp. 1–12.

[25] D. Mahajan, A. Yazdanbaksh, J. Park, B. Thwaites, and
H. Esmaeilzadeh, “Towards statistical guarantees in controlling
quality tradeoffs for approximate acceleration,” in Proc. Int. Symp.
Comput. Archit., Seoul, South Korea, 2016, pp. 66–77.

[26] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh,
“AxGames: Towards crowdsourcing quality target determination in
approximate computing,” in Proc. 21st Int. Conf. Archit. Support
Program. Lang. Oper. Syst., Atlanta, GA, USA, 2016, pp. 623–636.

[27] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “COATCheck:
Verifying memory ordering at the hardware-OS interface,” in Proc. ACM
21st Int. Conf. Archit. Support Program. Lang. Oper. Syst., Atlanta, GA,
USA, 2016, pp. 233–247.

[28] K. Ma et al., “Nonvolatile processor architectures: Efficient, reliable
progress with unstable power,” IEEE Micro, vol. 36, no. 3, pp. 72–83,
May/Jun. 2016.

[29] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embedded Comput. Syst. (TECS), vol. 12, no. 2s, p. 92, 2013.

[30] B. R. Gaines, “Stochastic computing systems,” in Advances in
Information Systems Science. Boston, MA, USA: Springer, 1969,
pp. 37–172.

[31] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
Computational elements,” IEEE Trans. Comput., vol. 50, no. 9,
pp. 891–905, Sep. 2001.

[32] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks,” in Proc. ACM 53rd Annu. Design
Autom. Conf., Austin, TX, USA, 2016, pp. 1–6.

[33] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of a
radial basis function neural network using stochastic logic,” in Proc.
Design Autom. Test Europe Conf. Exhibit., Grenoble, France, 2015,
pp. 880–883.

[34] K. Kim, J. Lee, and K. Choi, “Approximate de-randomizer for stochastic
circuits,” in Proc. ISOCC, 2015, pp. 123–124.

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architec-
ture of monkey striate cortex,” J. Physiol., vol. 195, no. 1, pp. 215–243,
1968.

[36] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. AISTATS, vol. 15, 2011, pp. 315–323.

[37] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, 2013,
p. 3.

[39] P. Li and D. J. Lilja, “Using stochastic computing to implement digital
image processing algorithms,” in Proc. IEEE 29th Int. Conf. Comput.
Design (ICCD), Amherst, MA, USA, 2011, pp. 154–161.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[41] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[42] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number gen-
erator for stochastic circuits,” in Proc. IEEE 21st Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2016, pp. 256–261.

[43] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2009,
pp. 248–255.

[44] Y. LeCun, C. Cortes, and C. J. C. Burges, MNIST Handwritten
Digit Database, AT T Labs, Florham Park, NJ, USA, 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist

[45] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Boston, MA, USA: Addison-Wesley, 2010.

[46] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, 2015,
pp. 1117–1125.

[47] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi, Cacti 5.3,
HP Lab., Palo Alto, CA, USA, 2008.

[48] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. Int. Symp. Comput.
Archit., Seoul, South Korea, 2016, pp. 14–26.

[49] Y. LeCun et al. (2015). LeNet-5, Convolutional Neural Networks.
[Online]. Available: http://yann.lecun.com/exdb/lenet

[50] L. Deng, “The MNIST database of handwritten digit images for
machine learning research,” IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 141–142, Nov. 2012.

[51] Nangate 45nm Open Library, Nangate Inc., Santa Clara, CA, USA,
2009.

[52] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Providence, RI, USA, 2012, pp. 3642–3649.

[53] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 12, pp. 2621–2628, Dec. 2014.

[54] E. Stromatias et al., “Scalable energy-efficient, low-latency implemen-
tations of trained spiking deep belief networks on spinnaker,” in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), 2015, pp. 1–8.

[55] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and con-
nections for efficient neural network,” in Proc. Adv. Neural Inf. Process.
Syst., Montreal, QC, Canada, 2015, pp. 1135–1143.

[56] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[57] E. László, P. Szolgay, and Z. Nagy, “Analysis of a GPU based CNN
implementation,” in Proc. IEEE 13th Int. Workshop Cellular Nanoscale
Netw. Appl., Turin, Italy, 2012, pp. 1–5.

[58] G. V. Stoica, R. Dogaru, and C. E. Stoica, “High performance
CUDA based CNN image processor,” in Proc. Telecommun. Informat.
(TELE-INFO), 2015. [Online]. Available: http://www.wseas.us/e-
library/conferences/2015/Malta/SITEPO/SITEPO-09.pdf

[59] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[60] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sen-
sor,” ACM SIGARCH Comput. Archit. News, vol. 43, no. 3, pp. 92–104,
2015.

[61] D. Liu et al., “PuDianNao: A polyvalent machine learning accelerator,”
ACM SIGARCH Comput. Archit. News, vol. 43, no. 1, pp. 369–381,
2015.

Zhe Li (S’14) received the B.E. degree in telecom-
munication engineering from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2012, and the M.S. degree in computer engineer-
ing from Syracuse University, Syracuse, NY, USA,
in 2014. He is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering and
Computer Science, Syracuse University.

His current research interests include deep learn-
ing applications and acceleration, neuromorphic
computing, and high performance computing.

Ji Li (S’15) received the B.S. degree in micro-
electronics from Xi’an Jiaotong University, Xi’an,
China, in 2012, and the M.S. degree in electri-
cal engineering from the University of Southern
California, Los Angeles, CA, USA, in 2014, where
he is currently pursuing the Ph.D. degree in electrical
engineering, under the supervision of Prof. J. Draper
and Prof. S. Nazarian.

His current research interests include resilient
computing, neuromorphic computing, and the smart
grid.

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

1556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 2019

Ao Ren (S’15) received the B.S. degree in inte-
grated circuit design and integrated system from the
Dalian University of Technology, Dalian, China, in
2013, and the M.S. degree in computer engineer-
ing from Syracuse University, Syracuse, NY, USA,
in 2015, where he is currently pursuing the Ph.D.
degree under the supervision of Dr. Y. Wang.

His research interest includes hardware accelera-
tion for deep neural networks.

Ruizhe Cai (S’15) received the B.S. degree in inte-
grated circuit design and integrated system from the
Dalian University of Technology, Dalian, China, in
2014, and the M.S. degree in computer engineer-
ing from Syracuse University, Syracuse, NY, USA,
in 2016, where he is currently pursuing the Ph.D.
degree in computer engineering.

He was a research student of communication and
computer engineering with the Tokyo Institute of
Technology, Tokyo, Japan, from 2013 to 2014. His
research interests include neuromorphic computing,

deep neural network acceleration, and low power design.

Caiwen Ding (S’15) is currently pursuing the
Ph.D. degree with the Department of Electrical
Engineering and Computer Science, Syracuse
University, Syracuse, NY, USA.

His research interests include high-performance
and energy-efficient computing, hybrid electrical
energy storage systems, and neuromorphic comput-
ing systems for hardware acceleration, and cognitive
frameworks.

Xuehai Qian (M’13) received the Ph.D. degree from
Computer Science Department, University of Illinois
at Urbana–Champaign, Champaign, IL, USA, in
2013.

He is an Assistant Professor with the Ming
Hsieh Department of Electrical Engineering and
the Department of Computer Science, University of
Southern California, Los Angeles, CA, USA. He has
made several contribution to parallel computer archi-
tecture, including cache coherence for atomic block
execution, memory consistency check, architectural

support for deterministic record and replay. His research interests include
system/architectural supports for graph processing, transactions for nonvolatile
memory and acceleration of machine learning and graph processing using
emerging technologies.

Jeffrey Draper (S’85–M’89) received the B.S.
degree in electrical engineering from Texas A&M
University and the M.S.E. and Ph.D. degrees in
computer engineering from the University of Texas
at Austin, Austin, TX, USA, in 1993.

He holds a joint appointment as a Research
Associate Professor with the Ming Hsieh
Department of Electrical Engineering and a Project
Leader with the Information Sciences Institute,
University of Southern California. He has led the
microarchitecture and/or VLSI effort on several

large projects in the past 20 years, including many U.S. Defense Advanced
Research Projects Agency sponsored programs, such as integrity and
reliability in integrated circuits, ubiquitous high-performance computing,
trust in integrated circuits, radiation hardening by design, polymorphous
computing architectures, and data-intensive systems. His research interests
include energy-efficient memory oriented architectures including transactional
memory, resilience, 3DIC, and networks on chip.

Bo Yuan (S’08–M’15) received the B.S. degree
in physics and the M.S. degree in microelectron-
ics from Nanjing University, Nanjing, China, in
2007 and 2010, respectively, and the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Minnesota, Twin cities,
Minneapolis, MN, USA, in 2015, under the super-
vision of Prof. K. K. Parhi.

He is currently an Assistant Professor with
the Department of Electrical Engineering, City
University of New York (CUNY), City College of

New York, USA. He is also the affiliated faculty of the Computer Science
Ph.D. Program with the CUNY Graduate Center. His research interests include
co-designing the algorithms (especially on artificial intelligence, machine
learning, and signal processing) and low-power fault-tolerant hardware to
address the emerging challenges for embedded and intelligent systems in big
data, and IoT eras.

Jian Tang (M’08–SM’13) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, USA, in 2006.

He is a Professor with the Department of
Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY, USA. He has
published over 90 papers in premier journals and
conferences. His research interests include cloud
computing, big data, and wireless networking.

Dr. Tang was a recipient of the NSF CAREER
Award in 2009, the 2016 Best Vehicular Electronics

Paper Award from IEEE Vehicular Technology Society, and the Best Paper
Awards from the 2014 IEEE International Conference on Communications and
the 2015 IEEE Global Communications Conference (Globecom), respectively.

Qinru Qiu (M’00) received the B.S. degree from the
Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China,
in 1994, and the M.S. and Ph.D. degrees from the
Department of Electrical Engineering, University of
Southern California, Los Angeles, CA, USA, in
1998 and 2001, respectively.

She has been an Assistant Professor and
an Associate Professor with the Department
of Electrical and Computer Engineering, State
University of New York, Binghamton, NY, USA.

She is currently a Professor and the Program Director of computer engineer-
ing with the Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY, USA. Her research interests include high
performance energy efficient computing systems and neuromorphic comput-
ing.

Dr. Qiu is a TPC member of DATE, DAC, ISLPED, ISQED, VLSI-SoC,
and ICCAD. She is an Associate Editor of ACM Transactions on Design
Automation of Electronic Systems.

Yanzhi Wang (S’12–M’15) received the B.S. degree
(with Distinction) in electronic engineering from
Tsinghua University, Beijing, China, in 2009 and
the Ph.D. degree in computer engineering from
the University of Southern California, Los Angeles,
CA, USA, in 2014, under supervision of Prof. M.
Pedram.

He joined the Department of Electrical and
Computer Engineering, Northeastern University,
Boston, MA, USA, as an Assistant Professor. He has
been an Assistant Professor with the Department of

Electrical Engineering and Computer Science, Syracuse University, Syracuse,
NY, USA, since 2015. His research interests include energy-efficient and
high-performance implementations of deep learning and artificial intelligence
systems, and emerging deep learning algorithms/systems such as Bayesian
neural networks, generative adversarial networks, and deep reinforcement
learning. Besides, he researches on the application of deep learning and
machine intelligence in various mobile and IoT systems, medical systems,
and UAVs, as well as the integration of security protection in deep learning
systems. His group works on both algorithms and actual implementations
(FPGAs, circuit tapeouts, including superconducting circuits, mobile and
embedded systems, and UAVs).

Authorized licensed use limited to: University of Southern California. Downloaded on March 01,2020 at 19:22:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

