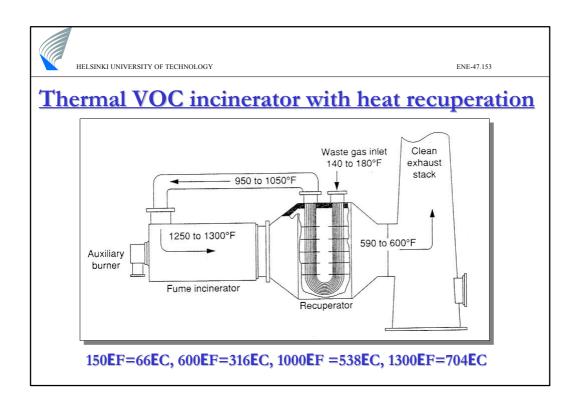
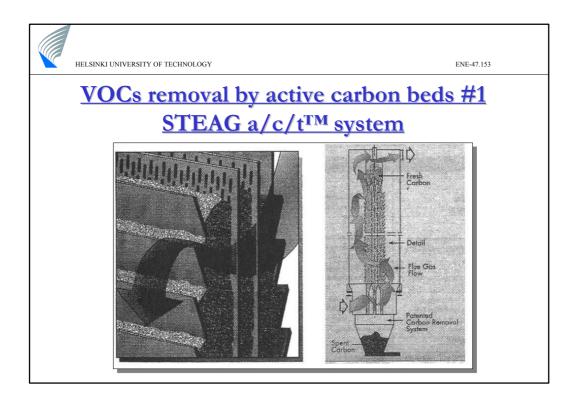
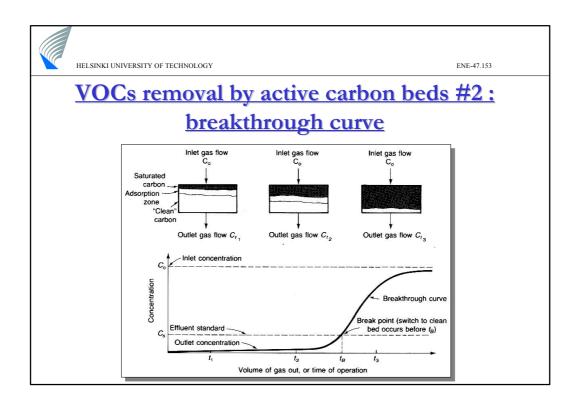
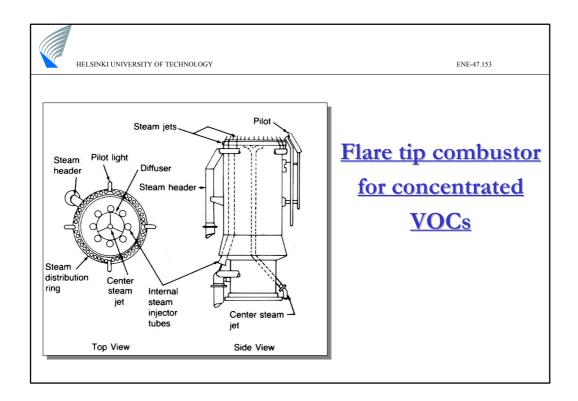


HELS	INKI UNIVERSITY OF TECH	NOLOGY	ENE-47.153
D	efinition	s of VOCs, PAHs, tar,	soot, etc
	VOC	volatile organic compound: "all organic antropogenic nature, other than methane, th producing photochemical oxidants by reactic oxides in the presence of sunlight" (McCo	at are capable of ons with nitrogen
	PAH	polycyclic aromatic hydrocarl	bon
	tar	condensible organic compour	nds
	soot	carbonaceous particles produced from gase volatilised solid or liquid fuel components du	
	THC, TOC	total hydrocarbon, total organi	c carbon
	HAP (USA)	hazardous air pollutan	t
	POHC (USA)	principle organic hazardous constitution on the basis of difficulties with their (LaGrega <i>et al.</i> , 1994)	

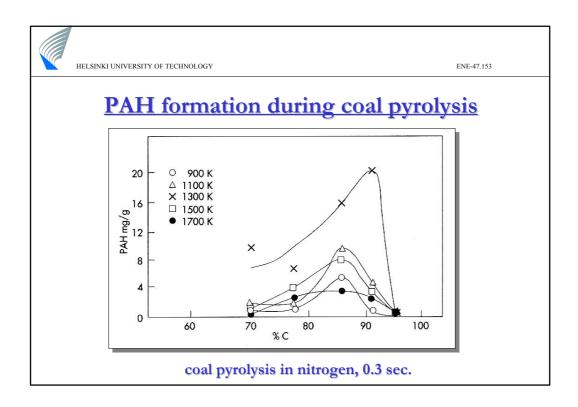

	HELSINKI UNIVERS	SITY OF TECHNOLOG	ïY			ENE	-47.153
	<u>Emis</u>	<u>sion st</u>	andard	<u>s: CO</u>	and T	<u>HC, T(</u>	<u>0C</u>
	Power plant Finland (1990+)	MSW incinerator Finland (1994)	MSW incinerator EU (2000)	Power plant Germany (1999)	MSW incinerator Germany (1999)	Hazardou s waste incinerator EU (1996)	Waste incinerator USA (1995)
CO	no limit	50	50	250	50	50	76.31
THC	no limit	10	10	20	10	10	no limit
		(∑mg∕m³ _{STI}	, @ 11 % (0 ₂ , dry)		

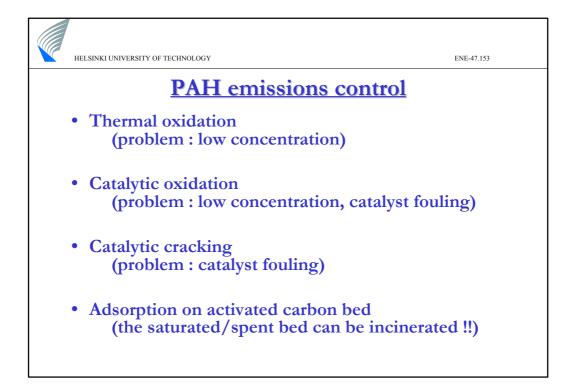


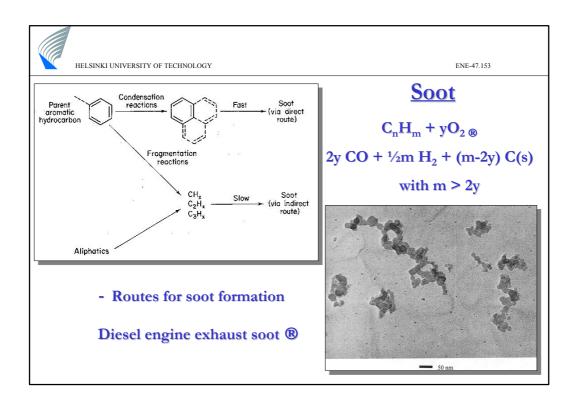

			0		<u>0% CO</u> 2			
	benzene	toluene	phenol	m-xylene	1,3,5 trimethyl benzene	2-ethyl hexanol	naphta- lene	total VOC
Grate*	6.05	2.18	24.85	0.34	2.92	40.43	0.23	387
CFB	0.79	1.65	7.58	0.58	2.69	22.02	-	120
*	Averaged	over 3 fac	cilities					

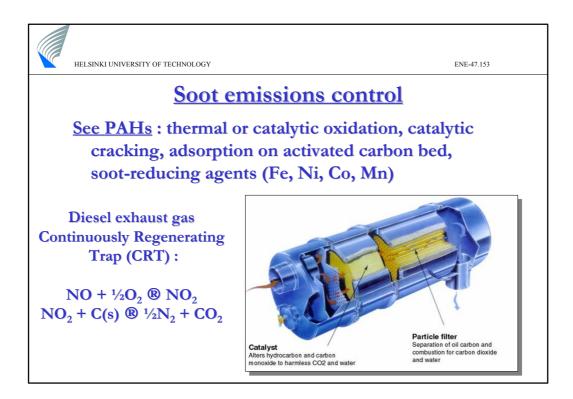

			LOGY			47.153
Gas or vapor	Lower limit % by volume	Upper limit % by volume	Gas or vapo		wer limit by volume	Upper limit % by volume
Acetaldehvde	4.0	57	Lower and Hydrogen cy	anide	5.6	40.0
Acetone	2.5	12.8	Hydrogen		4.0	74.2
Acetylene	2.5	80	Hydrogen su		4.3	45.5
Allyl alcohol	2.5	_		as (coal gas)	5.3	33.0
Ammonia	15.5	26.6	Isobutyl alco	loi	1.7	
Amvi acetate	1.0	7.5	I I I I I I I I I I I I I I I I I I I		1.3	_
Amylene	1.6	7.7	upper isoproyi ac isoproyi ac		1.8	7.8
Benzene (benzol)	1.3	6.8	Isopropyl alc	JNOI	2.0	-
Benzlyl chloride	1.1	-	Kerosene		0.7	5
Butene	1.8	8.4	Linseed oil Methape		5.0	15.0
Butyl acetate	1.4	15.0	flammability		3.1	15.5
Butyl alcohol	1.7				6.7	36.5
Butyl cellosolve	_	-	Methyl acon Methyl brom		13.5	14.5
Carbon disulfide	1.2	50	Methyl butyl		1.2	8.0
Carbon monoxide	12.5	74.2	11.00 1.00 1.00		8.2	18.7
Chlorobenzene	1.3	7.1	Methyl cyclo		11	
Cottonseed oil	-	-	limits Methy child		3.4	18
Cresol m- or p-	1.1		Methyl ethyl	ether	2.0	10.1
Crotonaldehyde	2.1	15.5	Methyl ether		1.8	9.5
Cyclohexane	1.3	8.4	Methyl forma	te	5.0	22.7
Cyclohexanone	1.1		Methyl propy	ketone	1.5	8.2
Cyclopropane	2.4	10.5	Mineral spirit		0.8	
Cymene	0.7	-	(LFL & UFL)		0.9	-
Dichlorobenzene	2.2	9.2	Nitrobenzene		1.8	
Dichloroethylene (1,2)	9.7	12.8	Nitroethane		4.0	
Diethyl selenide	2.5	-	Nitromethane		7.3	
Dimethyl formamide Dioxane	2.2	- 22.2	for organic		0.83	2.9
Dioxane Ethane	2.0	22.2	Octane Octane		0.95	3.2
	3.1	36.5	Paraldehyde		1.3	_
Ether (diethyl) Ethyl acetate	1.8	36.5	Paraffin oil		-	
Ethyl alcohol	3.3	19.0	Pentane		1.4	7.8
Ethyl aconol Ethyl bromide	6.7	11.3	O S S S S S S S S S S S S S S S S S S S		2.1	10.1
Ethyl cellosolve	2.6	15.7	gaseous Propane Propylacetal		1.8	8.0
Ethyl chloride	4.0	14.8	Propyl alcoho Propylene	į.	2.1	13.5
Ethyl ether	1.9	48	Propylene Propylene dit	hlorida	3.4	14.5
Ethyl lactate	1.5	40			2.0	22.0
Ethylene	2.7	28.6	compounds Propylene ox Pyridine	ue .	1.8	12.4
Ethylene dichloride	6.2	15.9			1.0	12.4
Ethyl formate	2.7	16.5	Toluene (tolu	-0	1.3	7.0
Ethyl nitrite	3.0	50	Turpentine	"7	0.8	7.0
Ethylene oxide	3.0	80	Vinvl ether		1.7	27.0
Furfural	2.1	~	Vinyi eher Vinyi chloride		4.0	21.7
Gasoline (variable)	1.4-1.5	7.4-7.6	Water gas (v		4.0	70
Heptane	1.0	6.0	Xylene (xylo)		1.0	6.0

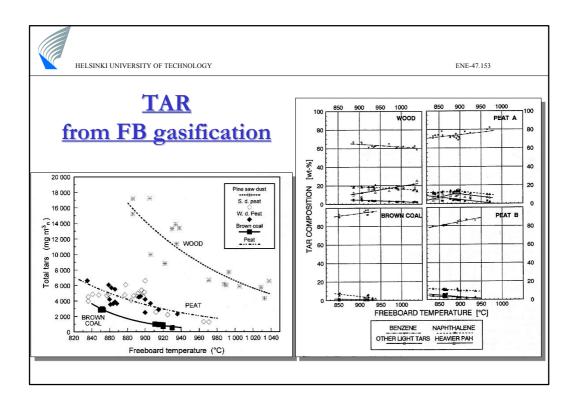
SINKI UNIVER	SITY OF TECH	NOLOGY					ENE-47.1
ptio	<u>ns fo</u>	r VO	<u>С со</u>	ontro	l, and	d com	pariso
Control Device	VOC Content (ppmv)	Flow Rate (scfm)	Capital Cost 1993	Annual Cost 1993	Removal Efficiency	Advantages	Disadvantage
Thermal Incinerator	100-2000*	1000 to 500,000	\$10 to 450/cfm	\$15 to 150/cfm	95- 9 9+%	Up to 95% energy recovery	Halogenated compounds may require additional control
Catalytic Incinerator	100-2000*	1000 to 100,000	\$20 to 250/cfm	\$10 to 90/cfm	90-95%	Up to 70% energy recovery	Catalyst poisoning
Flare		<2,000,000			>98% Steam- assisted	VOC destruction of variable emission conditions	Low heating value VOC requires auxiliary fuel
Boiler		Steady			>98%	Supplement fuel	Variations may affect process
Carbon Adsorber	20-5000*	100 to 60,000	\$15 to 120/cfm	\$10 to 35/cfm	90-98%	Vapor recovery, Pre- Concentrator	High RH may lower capacity Pore fouling
Absorber	500-5000	2000 to 100,000	\$15 to 70/cfm	\$25 to 120/cfm	95-98%	Vapor recovery	Scale build-up Liquid waste
Condenser	>5000	100 to 20,000	\$10 to 80/cfm	\$20 to 120/cfm	50-90%	Vapor recovery	Scale build-up Liquid waste

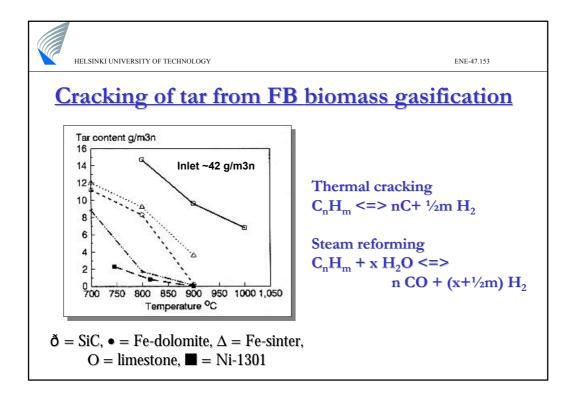



	Molecular	Molar mass	D. It.	Structure	
	formula	(g/mol)	Boiling point (EC)	Structure	
Naphtalene	$C_{10}H_8$	128	218	\bigcirc	Polycyclic
Anthracene	C14H10	178	342		aromatic
Fenanthrene	C14H10	178	340		<u>hydrocarbons</u>
Pyrene	C ₁₆ H ₁₀	202	393		(PAHs)
Fluoranthene	C ₁₆ H ₁₀	202	375		
Benzo(a)pyrene	C20H12	252	493		




PAH a		<u>emissio</u> furnace			<u>s furnaces</u> [<u>s</u>
	Small wood stove	Small solid fuel furnace	Small residential furnace	Heating furnace 1-5 MW	Heat and power units > 5 MW
PAHs (µg/MJ)	100-1000	1000-3000 (batch) < 1000 (continuous)	< 1000	2-10 (solid fuel) < 5 (oil, gas)	< 10 (5 -50 MW) < 5 (> 50 MW)
BaP (µg/MJ)		< 20		< 0.1	< 0.01 (> 50 MW)


HELSINKI UNIVERSITY OF TE	CHNOLOGY			ENE-47.153
Effect o	f fuel ty	pe and fur	mace ty	pe
	•	I emissior	•	
	Methyl anthracene and/or fenanthrene (µg/MJ)	Fluoranthene (µg/MJ)	Ругепе (µg/MJ)	Fenanthrene and/or anthracene (µg/MJ)
Pyrolysis - Montana lignite - High vol. bit. coal	5890	1720 6320	2710 11680	10950 1900
Grate firing 200 kW - High vol. bit. coal - Sub-bit. coal	3160 370	3120 96	2120 132	5160 720
Pulverised coal combustion	0.005	0.0007	0.004	0.076


LSINKI UNIVERSITY OF T	ECHNOLOGY				ENE-47.
<u>Gas ph</u> fi	ase an rom w	-		-	
	Particulate- bound PAH (µg/mg solid)	Particulate- bound PAH (µg/m³srP)	Gas phase PAH (µg/kg gas)	Gas phase PAH (µg/m³sīp)	Particulate concentration (µg/m ³ srp)
10 MW saw waste, grate	0.002-0.004	0.45-13.1	4.5-7.4	5.8-9.6	188-316
7 MW peat, grate	0.0001-0.00015	0.09-0.15	1-2	1.3-2.6	600-1467
5 MW peat, gasification	0.13-1.9	16-90	0.85-32	1.1-41.5	28-144
65 MW peat, FBC	0.009-0.15	0.31-3.2	19.5-140.7	25.3-183	7.6-52
25 MW peat, Stoker	0.4-4.5	15.7-359	267-707	316-919	40-80
25 MW wood, batch	4.3-11.5	518-923	5044-9003	6557-11704	80-120

