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This is the first of a comprehensive three-part review of the foundation for and 
therapeutic targeting of HER2/neu. No biological molecule in oncology has been more 
extensively or more successfully targeted than HER2/neu. This review will summarize 
the pertinent biology of HER2/neu and the EGF receptor family to which it belongs, 
with attention to the biological foundation for the design and clinical development 
of the entire range of HER2/neu-targeted therapies, including efforts to mitigate 
resistance mechanisms. In conjunction with the subsequent two parts (HER2/neu tissue 
expression and current HER2/neu-targeted therapeutics), this comprehensive survey 
will identify opportunities and promising areas for future evaluation of HER2/neu-
targeted therapies, highlighting the importance of HER2/neu as an increasingly 
important therapeutic target.
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The history of the molecule known as 
HER2/neu dates back to the earliest stud-
ies of virus-associated oncogenes. In 1979, 
studies of avian erythroblastosis virus iden-
tified two putative viral oncogenes, v-erbA 
and v-erbB [1–3]. Subsequently, the Bishop 
group identified the normal avian (chicken, 
‘c’) and mammalian homologs (c-erbA and 
c-erbB) [4,5], and that the encoded protein is 
a membrane glycoprotein [6]. This gene and 
its gene product were rapidly recognized to 
have a relationship to the recently identi-
fied, EGF receptor (EGFR) [7,8]. Simultane-
ous, but separate, studies in the Weinberg 
laboratory in chemical-induced rat tumors 
identified an oncogene – neu – from a rat 
neuroblastoma that could transform wild-
type 3T3 cells. This oncogene was noted to 
have tyrosine kinase activity and sequence 
homology with c-erbB and the EGFR genes 
[9–12]. This relationship became clearer with 
the studies of Semba et al. in which the indi-
vidual genes and the gene nomenclature for 
EGFR family members (c-erbB1 = EGFR, 

c-erbB2 = neu, c-erbB3 = EGFR-3, and 
eventually, c-erbB4 = EGFR-4) were estab-
lished [13]. The fact that the neu molecule 
and coding sequence was originally identi-
fied in the rat species and only recently has 
a biological function been demonstrated for 
the murine gene locus [14–16] has complicated 
studies of the biology and fueled a separate 
nomenclature in humans; HER1, 2, 3 and 4 
(Table 1). The high degree of homology 
between HER2 and rat neu (∼85%) along 
with the recognition that the protein product 
of the c-erbB2 gene was known in various cir-
cles as HER2 or as neu led to the commonly 
used terminology HER2/neu.

The structural elements (Figure 1 & Table 1) 
and the dimerization patterns (Figure 2) result 
in a complex biology for the HER family. 
These type 1 transmembrane proteins con-
tain, in the extracellular portion of the mol-
ecule, three cysteine-rich Furin-like domains 
and two L domains. Each L domain consists 
of a right hand, single-stranded β-helix, 
which forms the ligand-binding site. It 
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remains unclear whether the variable arrangement of 
the three Furin-like domains has any biological sig-
nificance. The intracellular domain contains a pro-
tein tyrosine kinase consensus domain and multiple 
phosphorylation sites that permit downstream signal 
transduction in all but HER3, which has an in active 
protein tyrosine kinase domain [17]. Receptor dimer-
ization, as a homodimer or heterodimer, is essential 
for signal transduction and involves a portion of the 
transmembrane domain along with a portion of the 
membrane proximal, extracellular domain.

Although the ligands for each HER family member 
are relatively restricted, some ligands engage more than 
one HER family member (Figure 2 & Table 1) [18]. The 
ligands for HER1 (EGFR) include: EGF, amphiregu-
lin, TGF-α and epigen [19,20]. Three ligands can bind 
to either HER1 or HER4 including: β-cellulin, epi-
regulin and HB-EGF. The remaining identified HER 
family ligands are members of the Neuregulin fam-
ily. Neuregulin 1 and Neuregulin 2 both have α- and 
β-isoforms. Neuregulin 1 (aka Heregulin, NDF) and 
Neuregulin 2, both with α- and β-isoforms, can bind 
to HER3 or HER4, while Neuregulin 3 and Neuregu-
lin 4 can only bind HER4. Importantly, HER2 has no 
established ligand.

Two facets of HER family biology limit the poten-
tial combinatorial diversity. HER3 is a dead kinase 
[17] and thus, any signaling that occurs is dependent 
upon the dimerizing partner for HER3. HER2 has no 
defined ligand and, thus, is dependent upon the dimer-
izing partner for ligand-dependent signaling. Recent 
structural studies suggest that ligand interaction with 
extracellular domains I and III result in alterations in 
domain II that permit heterodimerization [21,22], the 
relative activity of anti-HER2 antibodies (trastuzumab 
and pertuzumab) are related to binding to different 

domains. HER2 exists in a structurally receptive con-
formation that allows it to readily form dimers and 
heterodimers [23] and is the preferred dimerization 
partner for heterodimers involving HER1, HER3 and 
HER4. This conformation favors heterodimerization 
with HER2 in lieu of homodimerization where pre-
sumably two ligands would be required to convert two 
proteins into the permissive dimerization conforma-
tion [21,22]. Phosphorylation events occurring on the 
cytoplasmic tails of the HER proteins, either via auto- 
or trans-phosphorylation [24–26], are essential for signal 
transduction.

Signaling through the HER family members 
involves a limited number of major signal transduction 
pathways (Figure 2) [18,27]. The PI3K/AKT/mTOR 
pathway is the major pathway involved. Additional 
pathways include the ERK, the Ras/Raf, the Rho/Rac 
and the phospholipase C pathways [27–29]. An appre-
ciation of the complexity of these signaling pathways 
is essential for understanding the resistance mecha-
nisms that come into play to counteract therapies 
targeting the HER molecules, including HER2/neu 
[30–32]. These pathways impact a number of biologi-
cal processes (Figure 2). Signaling through the HER 
family members has been demonstrated to influence 
the regulation of proliferation, transcription, autoph-
agy, apoptosis and chemotaxis. Crosstalk between the 
various involved pathways results in more extensive 
propagation of the ligand-induced signal [18]. The over-
expression of HER2/neu, with its intact kinase activity 
that is not dependent upon engagement of a distinct 
cognate ligand, is believed to perturb the balance of 
signaling within the HER family and contribute to 
dysregulated growth [33].

The HER2/neu molecule, which will be the focus 
of the remainder of this review, is expressed in a wide 

Table 1. Nomenclature of EGF receptor family members.

Gene 
nomenclature

EGFR 
nomenclature

HER 
nomenclature

Common protein 
nomenclature

Kinase signaling 
capacity

Ligand(s)

erb-B1 EGFR HER1 EGFR Active EGFR, 
amphiregulin, 
TGF-β, epigen, 
β-cellulin, HB-EGF

erb-B2 EGFR-2 HER2/neu HER2/neu Active  

erb-B3 EGFR-3 HER3 EGFR-3 Inactive Neuregulin 1, 
Neuregulin 2

erb-B4 EGFR-4 HER4 EGFR-4 Active Neuregulin 1, 
Neuregulin 2, 
Neuregulin 3, 
Neuregulin 4, 
β-cellulin, HB-EGF

EGFR: EGF receptor.
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range of normal tissues, overexpressed in a variety of 
tumor types, with or without gene amplification, and 
is an established target for antitumor therapeutics. The 
normal expression of HER2/neu appears to be pri-
marily transcriptionally regulated [34–36]. A number of 
transcriptional elements and factors have been identi-

fied, which vary between normal and malignant trans-
formed states and by tissue [35,36]. In the absence of 
gene amplification, transcription dysregulation is one 
mechanism for tumor overexpression of HER2/neu 
[37,38]. Post-transcriptional regulation of HER2/neu 
expression has also been described [39–41]. Recent work 

Figure 1.  Protein and coding sequences for HER1, HER2, HER3 and HER4 were retrieved from the US National Center for 
Biotechnology Information Entrez Gene database and submitted for evaluation in the context of the Conserved Domain Data Base 
at the NIH. (Summary graphic output for each HER molecule has been combined into this figure for comparative purposes). 
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Figure 2.  The individual HER heterodimers are depicted in the left hand column and their cognate ligands color 
coded for binding to their respective HER molecules. Blue: HER1 and its respective ligands; green: HER2; orange: 
HER3 and its respective ligands; fuschia: HER4 and its respective ligands. Ligands with two colors bind to both HER 
molecules. The major engaged signaling pathways are depicted with arrows indicating well-established nodes for 
‘cross-talk’. The major biological impacts of HER family-mediated signaling are depicted on the right. 
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supports an important role for miRNAs in the biology 
and expression of HER2/neu [42–45]. Glucocorticoids 
have been reported to stabilize HER2/neu mRNA lev-
els [39] and HSP90 stabilizes the expression levels of at 
least HER1 and HER2 by inhibiting their degradation 
via the ubiquitin proteasome pathway and by facilitat-
ing dimerization [46,47]. Thus, there are transcriptional 
and other nonclassical post-transcriptional mecha-
nisms by which tumor overexpression of HER2/neu 
may occur in the absence of gene amplification. The 
exemplary work by Slamon et al. demonstrated that 
overexpression of HER2/neu by gene amplification in 
breast cancer imparted a poor prognosis [48] and was 
subsequently independently confirmed by Berger et al. 
[49]. HER2/neu overexpression without gene amplifica-
tion has also been associated with prognosis in multiple 
tumor types, potentially related to the transcriptional 
dysregulation or other mechanisms.

Evidence for a critical biological function of HER2 
has been derived from gene-targeting studies in mice, 
which occurred nearly 20 years after the original 
description of neu. Either constitutive kinase dead or 
erbB2-null mice demonstrate embryonic lethality sec-
ondary to gross cardiovascular abnormalities, most 
significantly abnormal development of the heart [14,16]. 
The erbB2-null mice or perinatal cre/lox deletion of 
erbB2 also revealed an important role for develop-
ment and maintenance of the nervous system [14–16]. 
The fact that major defects in erbB2 compromised 
mice were somewhat limited, despite HER2 being 
the preferred dimerization partner for the HER fam-
ily members, amplifies the complexity and redundancy 
present within the EGFR family, but also provides a 
foundation for understanding the unexpected cardiac 
toxicity experienced with initial therapeutics directed 
at HER2/neu.

HER2/neu-targeted therapeutics
Development of therapeutic strategies targeting 
HER2/neu have been driven by the underlying biol-
ogy of the EGFR/HER family and HER2/neu, with a 
major focus on breast cancer [50]. Antibodies directed 
at the extracellular domain were generated [51], with 
both agonistic and antagonistic properties [33,52–54]. 
The absence of a cognate ligand for HER2/neu pre-
cluded development of either ligand-clearing antibod-
ies or small-molecule decoy ligands or ligand-binding 
site inhibitors. However, with the launch of the small-
molecule targeted therapy era, small-molecule tyro-
sine kinase inhibitors (TKIs) have been developed 
and approved for HER2/neu and other HER family 
members. Antitumor antigen-specific immunothera-
peutic strategies (tumor vaccines) and modulators of 
HER2/neu expression, such as inhibitors of HSP90, 

are advancing through clinical studies and have shown 
promise. Future strategies targeting HER2/neu may 
well employ new small-molecule pathway inhibitors or 
combinations of HER2/neu therapeutic strategies or 
agents to minimize the development of resistance [55].

Antibody-based therapies
Trastuzumab (Herceptin®)
The clinical and commercial success of the anti-
HER2/neu antibody trastuzumab (Herceptin®) is self-
evident and establishes without question the proof-of-
concept for therapeutic targeting of HER2/neu. The 
series of studies leading to the approval and broad 
application of this monoclonal antibody have been held 
up as a prototype for bench-to-bedside translation [56]. 
Initial studies characterizing the erbB2 gene in human 
tumors demonstrated that it was amplified in breast 
[48] and subsequently in ovarian adenocarcinoma [57]. 
Because HER2/neu was a known cell-surface molecule 
and because antagonistic antibodies had been reported, 
the development of an antagonistic antibody for clini-
cal application was logical, given the state of the art in 
the late 1980s [58,59]. The characterization of the anti-
body designated 4D5 demonstrated significant growth 
inhibition of SKBR3 breast carcinoma cells, in which 
the erbB2 gene is amplified, and sensitized them to the 
cytotoxic effects of TNF-α [58] resulting in the initial 
patent (US Patent No 5,677,171). The epitope recog-
nized by the 4D5 antibody resides within extracellu-
lar domain IV of HER2/neu [60], can elicit antibody-
dependent cellular cytotoxicity, and importantly, 
disrupts HER2/neu-mediated signaling, with modest 
disruption of dimerization. Interestingly, this disrup-
tion is much more pronounced for the HER1:HER2 
heterodimer than the HER2:HER3 heterodimer, even 
though HER3 is the preferred dimerization partner for 
HER2 [61]. This antibody would go on to be geneti-
cally engineered to create a chimeric, ‘humanized’ 
IgG1subclass monoclonal antibody [62], and take its 
place in the clinical armamentarium as trastuzumab 
(Herceptin) [63]. In the landmark clinical studies, 
associated cardiac toxicity was observed, particularly 
in patients previously treated with anthracyclines [64]. 
The aforementioned murine work identified the criti-
cal role for HER2/neu in cardiovascular development 
[14,16], wherein erbB2-null animals have an embryonic 
lethal phenotype secondary to abnormal heart devel-
opment [14], and was reported only slightly before this 
unexpected toxicity was observed, in 27% of study 
participants.

The development of resistance and tumor progres-
sion on treatment was observed in the initial studies 
of trastuzumab in the advanced disease setting. Resis-
tance can be generally classified as primary resistance 
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or as acquired/secondary resistance [65]. Given the 
complexity of the EGFR family and the extensive 
crosstalk between signaling pathways, it comes as no 
surprise that the mechanisms of trastuzumab resis-
tance are diverse and likely to be multiple in any one 
patient [31,65,66]. Perhaps the easiest mechanism to 
understand arises from the recognition that the extra-
cellular domain of HER2/neu can be proteolytically 
cleaved into a soluble form, can be detected in the cir-
culation, and that levels of this soluble form have been 
variably associated with disease burden, prognosis and 
inversely with response to treatment [67–70]. Indirect 
studies suggest that the soluble ECD of HER2 could 
both act as a sink for trastuzumab [71,72] and may elicit 
or be associated with anti-HER immune responses, 
particularly antibody responses [73]. There are data 
supporting that the remaining portion of the cleaved 
HER2/neu molecule has increased endogenous consti-
tutive signaling capacity [74], suggesting an additional 
mechanism of resistance. Additionally, an alternatively 
spliced form of HER2/neu has been described that is 
truncated, yielding a potentially secreted form of the 
molecule, but which appears to be sequestered in the 
perinuclear cytoplasm [75]; however, a role for this 
potential alternative fragment in normal or neoplastic 
tissues has not been documented. Interestingly, bind-
ing of trastuzumab to HER2/neu has been reported 
to inhibit the proteolytic cleavage of the extracellular 
domain [76,77]. Although there is no compelling evi-
dence to suggest that HER2/neu undergoes muta-
tion to abrogate the trustuzumab-recognized epitope, 
there is data that MUC-4 can mask the binding site 
and may be responsible for some primary resistance 
[78]. Perturbations of downstream signaling pathways 
can also yield resistance (Figure 2). Loss or low levels 
of expression of PTEN have been associated with a 
decreased response to trastuzumab, perhaps through 
release of the counter-regulatory input of PTEN on 
AKT [79,80]. Activating mutations of PI3K have also 
been associated with trastuzumab resistance [81,82], as 
has increased Rac activity [83,84]. There are also data to 
suggest that increased expression of other HER fam-
ily members can overcome the trastuzumab-mediated 
inhibition of HER2/neu function, and thereby confer 
resistance [85]. Other receptor kinases can also func-
tion in a similar manner to HER2/neu and other HER 
family members, including IGF-1 receptor, Met and 
erythropoietin receptor [86–90].

Pertuzumab
In the initial screen that identified 4D5 as a potent thera-
peutic antibody for HER2/neu gene-amplified tumors, 
another antibody with a nonoverlapping epitope, 2C4, 
was identified [59]. In contrast to trastuzumab, this anti-

body binds to the extracellular domain II, resulting in 
enhanced steric blocking of dimerization via binding 
to the requisite domain for dimerization and signaling 
[91]. Thus, the humanized 2C4 antibody (pertuzumab) 
[92] is more broadly effective at inhibiting hetero-
dimer formation with HER2/neu. Pertuzumab has 
activity with lower levels of expression of HER2/neu 
[93] and unlike trastuzumab, which has limited abil-
ity to inhibit heterodimerization between HER2/neu 
and HER3; pertuzumab inhibits signaling by HER3 
ligands [94]. Pertuzumab may inhibit, but not abrogate 
HER2/neu HER3 heterodimerization and may have 
less activity inhibiting HER2/neu HER1 heterodi-
merization [95,96]. It is unclear if pertuzumab inter-
feres with the heterodimerization of HER2/neu with 
alternate tyrosine kinase receptors such as IGF-1R, 
and Met.

Trastuzumab emtansine (T-DM1; Kadcyla®)
An alternate strategy for improving the efficacy of 
trastuzumab, in the setting of lower expression of 
HER2/neu or resistance to trastuzumab, is the con-
jugation of a cellular toxin or radioisotope in a man-
ner analogous to that demonstrated for hematologic 
malignancies; Adcetris®, Zevalin®, Bexxar® and Mylo-
targ®. Trastuzumab emtansine (T-DM1) is a conjugate 
of trastuzumab and the cellular cytotoxic agent mer-
tansine (DM1) that is a derivative of the microtubule 
disruptive macrolide maytansine, which, when conju-
gated to the trastuzumab antibody using the linking 
agent 4-(3-mercapto-2,5-dioxo-1-pyrrolidinylmethyl)-
cylohexanecarboxylic acid, is known as emtansine [97]. 
The use of this linking agent substantially improved 
the release of mertansine by proteolytic cleavage once 
internalized, relative to more traditional reducible 
disulfide-linking chemistries that were used in the 
early studies of antibody conjugates of this cytotoxic 
agent [98,99]. Mertansine binds to tubulin at a site dif-
ferent from that of the vinca alkaloids and is substan-
tially more potent at inhibiting microtubule formation 
[97]. Given the observed cardiac toxicity with trastu-
zumab, a more potent agent potentially targeting lower 
level HER2/neu expression might be expected to have 
greater cardiotoxicity, but early pharmacokinetic data 
suggested that this is not the case [100].

Other modified antibodies targeting HER2/neu 
have been designed for both therapeutics and imag-
ing, although many suffer from the limitations of tra-
ditional disulfide-based conjugation chemistries [99]. 
These conjugates include affitoxin [101], pseudomonas 
exotoxin [102,103], ricin A chain [104], various probes 
(radioactive and nonradioactive) [104–112], photosensi-
tizers [113–115], RNAse [116,117], cytokines [118] or chemo-
therapeutic agents [119–122]. A Phase II study of a novel 
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PET agent (zr89-labeled trastuzumab) as a predictor 
of response to trastuzumab emtansine (ZEPHIR) has 
recently been initiated in Europe (NCT01565200). 
Additionally, bispecific antibodies targeting HER2/neu 
have been developed [123–127] taking advantage of the 
intrinsic immunologic function of antibodies recog-
nizing HER2/neu. Finally, aptamers selected for rec-
ognition and binding to the HER2/neu molecule can 
deliver cytotoxic agents to HER2/neu-positive cells as 
an alternative to antibody-based delivery [128].

Tyrosine kinase inhibitors
The groundbreaking work that identified Imatinib 
as an effective small-molecule inhibitor of the tyro-
sine kinase activity of the oncogene-derived fusion 
protein BCR/Abl launched the era of molecularly 
targeted therapeutics [129]. The appreciation of the 
signaling capacity and tyrosine kinase activity of 
HER2/neu made identification of small-molecule 
inhibitors an obvious priority, ultimately resulting in 
the development of lapatinib ditosylate and other tar-
geted therapeutics [130–134]. An additional impetus for 
the development of this class of therapeutic agent was 
the observed increased incidence of CNS metastases 
in the setting of breast cancer patients treated with 
trastuzumab or other antibody-based HER2/neu-tar-
geted therapies, with this often being the site of pro-
gression while other systemic disease remained under 
control. Well-designed small molecules might have 
better CNS penetration and potentially circumvent 
this problem. Generalizing from the Imatinib experi-
ence, it was anticipated that multiple TKIs would be 
needed as acquired mutations could lead to resistance. 
Although all TKIs are designed to inhibit receptor 
signaling, there are differences in spectrum, reversibil-
ity and potential secondary mechanisms [135]. Recent 
observations that many of these TKIs interact with 
various drug transporters including ABCB1, ABCG2 
and the P-glycoprotein multidrug resistance trans-
porter [136–138] in a semi-selective and dose-dependent 
manner, adds another complicating element to their 
development and clinical application.

The first TKI developed to target HER2/neu was 
lapatinib ditosylate (GW572016, Tykerb), which 
is a reversible inhibitor of both HER2/neu and 
HER1/EGFR [139]. In the initial Phase I studies of 
lapatinib ditosylate the toxicities matched those pre-
dicted from clinical experience with HER1/EGFR 
inhibitors erlotinib and gifitinib; rash, fatigue and 
gastrointestinal symptoms (diarrhea) [140–144]. Interest-
ingly, no additional or unexpected cardiotoxicities were 
observed when lapatinib ditosylate was combined with 
trastuzumab in early-phase trials [141–144]. The clini-
cal efficacy observed in several Phase II studies and a 

landmark Phase III trial led to US FDA approval of 
lapatinib ditosylate [145]. Whether this represents addi-
tional or more effective targeting of HER2/neu versus 
the addition of HER1/EGFR inhibition remains to be 
determined. Either would be expected to have clinical 
impact given the mechanisms of resistance to trastu-
zumab and the crosstalk between HER family member 
signaling pathways described above. Recently, acquired 
mutations in HER2/neu have been identified in asso-
ciation with resistance to lapatinib ditosylate [146] sug-
gesting that, as in the case of imatinib, other inhibitors 
targeting the same molecule will be necessary to treat 
those tumors with acquired resistance. An additional 
concern arises from the observation that lapatinib 
ditosylate increases the shedding of HER2/neu [147], 
a potential mechanism for resistance particularly to 
HER2/neu-directed antibody-based therapies.

Other TKIs targeting HER2/neu have been gen-
erated and are at various stages of development. In 
contrast to lapatinib ditosylate, which is a reversible 
inhibitor of HER1 and HER2, the pipeline of TKIs 
targeting HER2/neu contains second-generation 
irreversible inhibitors [148], which can be categorized 
as either pan-HER or dual HER1/HER2 inhibitors. 
These TKIs, like essentially all drugs in this class, are 
oral, multikinase inhibitors inhibiting HER2/neu, 
other members of the HER family, and other receptor 
tyrosine kinases (Table 2).

Afatinib (Gilotrif, BIBW 2992, Tomtovok) is in the 
class of irreversible TKIs that target HER2/neu along 
with other HER family members. This ‘second gen-
eration’ of TKIs with irreversible inhibitory activity 
are felt to not only have increased potency, but also 
the capacity to inhibit tumors that have progressed on 
the first-generation reversible inhibitors, typically by 
acquiring mutations that confer resistance to first gen-
eration TKIs [132,148,149]. The majority of the effort in 
development of afatinib has been directed toward its 
activity inhibiting EGFR (HER1), but it was rapidly 
recognized to also inhibit HER2/neu [150,151]. Preclini-
cal work also suggested that afatinib would be syner-
gistic with radiation therapy [151,152]. Pharmacokinetic 
[150,153] and Phase I studies have led to a number of 
administration schedules and doses with acceptable 
toxicities including: 2 weeks with daily administra-
tion of 70 mg with 2 weeks off [154]; continuous 50 mg 
daily dosage [155,156]; continuous 40 mg daily dosage 
[157]; 3 weeks of daily 40 mg and 1 week off [158]; afa-
tinib 90 mg days 2–4 in combination with paclitaxel 
75 mg/m2 on day 1 every 3 weeks [159]; and, more 
multi drug regimens containing cisplatin and either 
paclitaxel or 5-fluorouracil at 20 or 39 mg daily, respec-
tively [160]. The dose-limiting toxicities are, as expected 
from the first-generation HER family-targeting TKIs, 
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diarrhea and rash. Afatinib was given fast track status 
for NSCLC by the FDA [161] leading to recent FDA 
approval. Afatinib has been reported to inhibit HER4 
[162], which would indicate that it resides in the class 
of irreversible pan-HER inhibitors. Other members of 
this class of pan-HER irreversible TKIs include caner-
tinib (CI-1033), which has TKI activity across the 
entire HER family, HER1, HER2 and HER4 and was 
noted to have radiosensitizing activity [163,164]. Phase I 
studies conducted by different groups using different 
schedules including oral continuous, oral for 14 days 
with 7 off, oral for 7 days with 14 off, and intravenous, 
came to entirely different maximum-tolerated doses 
[165–170] with dose-limiting toxicities being rash, nausea, 
diarrhea or fatigue depending, in part, on schedule and 

route. Dacomitinib (PF-00299804) is a second-gener-
ation irreversible pan-HER TKI related to canertinib, 
but with better pharmacokinetic and bioavailability 
properties [171,172]. Although HER2/neu is subject to 
inhibition by this agent, the overwhelming bulk of its 
development has focused on its inhibition of EGFR 
(HER1) [171–173]. In Phase I studies, dacomitinib did 
not appear to have the same variability in maximum-
tolerated dose, established at 60 mg daily, by schedule 
and route as in the first-generation pan-HER inhibi-
tor canertinib [174–176]. Dacomitinib, at 45 mg daily 
the dose carried forward to Phase II studies, is able to 
inhibit HER family members with acquired mutations 
that confer resistance, particularly to erlotinib and gefi-
tinib, but amplification of the mutated HER sequence 

Table 2. Tyrosine kinase inhibitors with HER2/neu inhibitory activity.

Tyrosine kinase 
inhibitor

Reversibility Documented receptor 
targets†

Clinical trial status‡ Tumor types§

Gifitinib Reversible EGFR (HER1), 
HER2/neu

Approved (1) Multiple

Erlotinib Reversible EGFR (HER1), 
HER2/neu

US FDA approved (2) Mulitiple

Lapatinib Reversible HER2/neu, EGFR 
(HER1)

FDA approved (3) Breast

TAK-285 Reversible HER2/neu, EGFR 
(HER1)

Phase I Multiple

Afatinib Irreversible EGFR (HER1), 
HER2/neu, HER4

FDA approved (4) Lung (NSCLC), 
breast, colorectal

Neratinib Irreversible HER2/neu, EGFR 
(HER1)

Phase III Breast, lung 
(NSCLC), colon

Pelitinib Irreversible EGFR (HER1), 
HER2/neu

Phase II (no Phase III 
registered)

Lung (NSCLC), 
colorectal

AST1306 Irreversible HER2/neu, EGFR 
(HER1)

Preclinical only  

Canertinib Irreversible EGFR (HER1), HER2, 
HER4

Phase II (no Phase III 
registered)

Breast, lung 
(NSCLC), ovarian

Dacomitinib Irreversible EGFR (HER1), HER2, 
HER4

Phase II (no Phase III 
registered)

Lung (NSCLC), 
head and neck 
squamous cell and 
glioblastoma

BMS-599626 Irreversible EGFR (HER1), HER2, 
HER4

Phase I (no Phase II or III 
registered)

HER2-positive 
tumors

BMS-690514 Reversible EGFR (HER1), HER2, 
VEGFR-1, 2 and 3

Phase II (no Phase III 
registered)

Breast, lung 
(NSCLC)

AEE788 Reversible EGFR (HER1), HER2, 
VEGFR-1 and 2

Phase I (no Phase II or III 
registered)

Multiple, brain 
(GBM)

†Target molecules in bold represent the primary molecular target for the respective tyrosine kinase inhibitor. 
‡(1): approved outside of the USA, for first-line lung NSCLC, with mutated EGFR; (2): first-, second- and third-line lung NSCLC, with mutated 
EGFR; first line for advanced pancreatic adenocarcinoma; (3): second-line advanced or metasatic HER2/neu+ breast adenocarcinoma; 
(4) first-, second- and third-line lung NSCLC, with mutated EGFR. 
§Tumor types that have been evaluated in either Phase II or III clinical studies with the exception of TAK-285, BMS599626 and AEE788. 
EGFR: EGF receptor; GBM: Glioblastoma multiforme; NSLC: Non-small-cell lung cancer.
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can lead to dacomitinib resistance [177]. BMS599626 
(AC480) is also a second-generation pan-HER inhibi-
tor [178,179] that appears to be a radiosensitizing agent 
[179]. Somewhat surprisingly, the dose-limiting toxici-
ties were not the usual mucocutaneous toxicities, which 
did occur, but rather QT prolongation and elevation of 
liver transaminases with a maximum-tolerated dose of 
600 mg daily [180].

A subset of pan-HER inhibitors were designed to 
include significant inhibitory activity of one or more 
of the VEGFRs. AEE788 is a pan-HER inhibitor with 
capacity to inhibit the three VEGF receptors, which 
has roughly equivalent activity inhibiting HER1 and 
HER2 [181]. Preclinical work with AEE788 suggests 
antiangiogenesis activity, radiosensitizing capacity, 
and potential synergy with aromatase inhibition in 
breast cancer models [182,183]. The initial Phase I study 
demonstrated the expected dose-limiting toxicities 
rash and diarrhea with the maximum-tolerated dose of 
450 mg/day, but based on biomarker data suggested 
that in humans there was limited antiangiogenic activ-
ity [184]. BMS-690514, is another pan-HER inhibitor 
that includes inhibitory activity for all three VEGF 
receptors [185]. Pharmacokinetic and Phase I studies 
have been reported identifying the maximum-tolerated 
dose of 200 mg daily [186–190]. In contrast to AEE788, 
BMS-690514 appears to have significant anti-
angiogenic activity by toxicity profile and biomarker 
analyses [186,191]. There is also evidence for synergism 
with radiation when BMS-690514 is administered in 
sequence with radiation [192].

Neratitib (HKI-272, WAY-179272) is an irrevers-
ible, dual EGFR and HER2 TKI moving through the 
development pipeline [193]. The initial Phase I study 
identified a maximum-tolerated dose of 320 mg daily, 
with the expected dose-limiting toxicity being gas-
trointestinal (diarrhea). In subsequent Phase I and II 
studies, conducted in breast and lung adeno carcinoma, 
this toxicity proved to be excessive resulting in a dose 
of 240 mg daily being carried forward into more 
advanced clinical studies [194–197]. Pelitinib (EKB-569) 
is another analog of established dual HER1 and HER2 
inhibitors [198,199]. Preclinical and Phase I studies sug-
gest that pelitinib has greater activity in inhibiting 
EGFR/HER1, is capable of overcoming resistance to 
other EGFR-targeted TKIs due to acquired muta-
tions, and also inhibits signaling through HER2/neu 
[198–200]. Phase I studies have been reported establishing 
a maximum-tolerated dose of 75 mg/day with gastro-
intestinal toxicity (diarrhea) being limiting [200–204]. 
AST1306 is another recently developed dual HER1 
and HER2 TKI, which has yet to progress to early-
phase clinical studies [205]. Several other dual targeting 
TKIs have been developed and entered into clinical 

studies but abandoned, including: MP-412 (AV-412), 
XL647, CP-724,714 and PPI-166 [206].

HER2/neu antigen-specific immunotherapy
The work of Slamon et al. in defining the critical role 
for HER2/neu gene amplification in identifying a 
group of breast cancer patients with particularly poor 
prognosis [48], the awareness of the role of HER2 in 
receptor signaling for all HER molecules [18], and the 
clinical success of an exogenous antibody recognizing 
HER2/neu (trastuzumab) [63] made HER2/neu an 
appealing target for development of antigen-specific, 
antitumor vaccines [207,208]. The high degree of homo-
logy with other receptor tyrosine kinases, including 
other members of the HER family, and the expres-
sion of HER2/neu in normal tissues, pose signifi-
cant challenges that need to be addressed, including 
overcoming the anticipated immunological tolerance 
while maintaining specificity of the elicited immune 
response. Much of the preclinical work was performed 
in HER2/neu transgenic mouse models due, in part, to 
the fact that a murine homolog was not confirmed until 
the early 2000s [14–16], although other models were also 
employed (dog, guinea pig, rat, primate) [209–214]. The 
majority of these have focused on the extracellular 
domain of HER2/neu due, in large part to the high 
degree of homology of the intracellular kinase domain 
with other receptor tyrosine kinases both in and out-
side of the HER family [209,215–219], although some 
strategies have included elements from the intracellu-
lar domain [213–215]. Indeed, cytotoxic T-lymphocytes 
directed against HER2/neu have been documented to 
react with HER3 and HER4 [220].

In the mid-1990s, preclinical work demonstrated a 
number of potential peptides derived from HER2/neu 
that could be viable target antigens giving rise to pep-
tide-based immunotherapy strategies [221–223]. These 
moved into early-phase clinical studies in the first 
decade of the 2000s including: several early-phase 
clinical studies of the immunodominant E75 peptide 
with granulocyte macrophage colony-stimulating fac-
tor as a biological adjuvant (now referred to as Neu-
Vax™) [221–223]; of an improved E75 vaccine, AE37 
(NCT00524277) [224–227]; and of the subdominant 
G2 peptide (NCT00524277) [228–230]. Other groups 
have ongoing Phase I and II clinical studies examin-
ing other peptides, other adjuvants and/or combina-
tions of immunomodulatory agents (NCT00058526, 
NCT00194714, NCT00791037, NCT00952692, 
NCT01355393, NCT01376505 and NCT01632332). 
Early data suggest synergy between peptide-based 
anti-HER2/neu vaccine and other HER2/neu-
targeted therapies, for example trastuzumab [231,232] 
and lapatinib ditosylate [233]. However, in some cases, 
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there is substantial toxicity arising from combining or 
incorporated adjunctive elements [221].

A multitude of other vaccination strategies and 
immunotherapeutic methodologies have been evalu-
ated in both preclinical and early clinical studies [207,208]. 
Dendritic cells (DCs) are the most potent antigen 
presenting and immune-stimulating cells within the 
immune system, thus, DC-based immunotherapeutic 
strategies directed against HER2/neu have been inves-
tigated, including DCs loaded with various fragments 
or peptides from the HER2/neu sequence [234–237] 
(NCT00266110 and NCT00923143) and transduced 
DCs [213,237–243] including adenoviral transduced 
autologous DCs expressing the extra cellular and trans-
membrane domains of HER2/neu (NCT01730118). A 
preparation analogous to Sipuleucel-T (the first FDA-
approved cellular based-immunotherapy) [244] is being 
developed, Lapuleucel-T, consisting of a HER2/neu 
truncated fusion with granulocyte macrophage colony-
stimulating factor that is used to generate an autolo-
gous mixture of antigen-presenting cells targeting the 
HER2/neu component [245].

HER2/neu has been targeted using polynucleotide 
or DNA vaccine strategies involving both syngeneic 
and xenogeneic sequences, the latter to improve the 
magnitude of elicited immune responses [246–254], in 
prime boost strategies combining DNA vaccines with 
viral vector-based vaccines [255] and with gene-modified 
allogeneic cellular vaccines (NCT00095862) [256]. 
Viral vector vaccine strategies using adenovirus vectors 
[257–260], alphavirus vectors [212,213,261], vaccinia virus 
vectors (NCT00485277 and NCT01152398), vesicu-
lar stomatitis virus [262] and polyoma virus systems 
[263,264] have all been used to elicit anti-HER2/neu 
immune responses. The intracellular bacteria Listeria 
monocytogenes has also been adapted as an immuno-
therapeutic vector system and studied in strategies to 
elicit anti-HER2/neu immune responses [215,265].

The broad strategy of adoptive cellular therapy has 
also been investigated. Typically, this has involved 
clones of autologous T-lymphocytes derived from 
tumor-infiltrating lymphocytes or from peripheral 
circulation [266]. Some groups have combined pep-
tide vaccination, in an effort to increase the number 
of circulating HER2/neu reactive T-lymphocytes, to 
provide an alternative source of T-lymphocytes for 
expansion and adoptive transfer back to the patient 
(NCT00791037). An alternative approach to gener-
ate HER2/neu-reactive T-lymphocytes is to geneti-
cally modify autologous lymphocytes with chime-
ric antigen receptors (CARs) [267,268]. The history 
of CAR strategies for targeting HER2/neu is quite 
substantial. Soon after the identification of antibod-
ies that recognized HER2/neu, they were leveraged to 

try to target T-lymphocytes to HER2/neu-expressing 
tumors [269–271]. Initial efforts involved electroporation 
of a murine T-cell hybridoma with cDNA-encoding 
antigen-binding domain from a HER2/neu-recogniz-
ing antibody and the CD3 ζ-chain transmembrane 
and intra cellular signaling domain [269]. Although this 
provided proof-of-principle for imparting functional 
capacity to T-lymphocytes enabling them to recognize 
and respond to the HER2/neu antigen, electropora-
tion and the use of T-cell hybridomas was not readily 
translatable to the clinical arena. The development of 
retrovirus/lentivirus vectors provided for more efficient 
transduction of T-lymphocytes and NK cells [272–280]. 
Various groups have sought to refine the CAR con-
structs, including tuning affinity of the HER2/neu 
antigen-recognition domain [275], utilizing the T-cell 
receptor peptide recognition domain instead of an 
antibody-based recognition domain [281] and incorpo-
ration of costimulatory elements [282] within the con-
struct. With the identification of Heregulin as a ligand 
for heterodimers involving HER3 or HER4, includ-
ing those with HER2/neu, a chimeric ligand molecule 
(heregulin and intracellular signaling component from 
the CD3 ζ-chain) was developed [283]. Novel transduc-
tion methods [284] and the application of allogeneic 
CAR-modified cells [285], in a bone marrow transplant-
like setting, have been developed. Within the antitu-
mor immunotherapy community there is enthusiasm 
for the potential of CARs to overcome some of the 
major hurdles encountered in the clinical application of 
adoptive cellular therapy [286–290], due in large part to 
the work of Carl June with CAR-modified T-lympho-
cytes in the setting of chronic lymphocytic leukemia 
[291]. However, recent data on the adoptive transfer of 
CAR engineered T-lymphocytes has raised some con-
cerns as to toxicity and potential differences between 
targeting cell surface molecules on hematopoietic 
versus solid tumor cells [286,292].

Other modulators of HER2 expression or 
activity
Less direct targeting of HER2 has been explored. Since 
the early 2000s, inhibition of HSP90 has been docu-
mented to inhibit HER2 and HER1-mediated cell sig-
naling, along with increasing ubiquitin-mediated pro-
teosomal degradation of HER2/neu [46,47]. The diverse 
activities and clients of HSP90 result in a number of 
biological pathways being impacted by HSP90 inhibi-
tion [47], several of which involve, directly or indirectly, 
the HER2/neu signaling pathways. Thus, it is not sur-
prising that a substantial effort is being put forth by 
numerous groups and companies to develop HSP90 
inhibitors with attractive therapeutic to toxicity ratios 
and pharmacokinetics [293–304]. One of the more impor-
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tant activities associated with HSP90 inhibition is the 
reversal of resistance to both trastuzumab and hor-
monal agents [305,306]. Importantly, there is preclinical 
data indicating that HSP90 inhibitors are synergistic 
with both trastuzumab [307–309] and lapatinib ditosylate 
[309,310]. Phase I and II clinical studies of first-genera-
tion HSP90 inhibitors have been published [311–313]. As 
with most biologic or targeted therapies, the effective-
ness is quite schedule-dependent. Another compound, 
tephrosin, can downregulate both HER1 and HER2 
expression [314], providing an alternative pathway to 
HSP90 for the downregulation of HER2/neu expres-
sion. There are scattered studies of ‘natural products’ 
and pharmacologic agents that modulate signaling or 
expression of HER2 [314–317]. Preclinical studies in a 
murine breast cancer model of an adenovirus encod-
ing kinase dead HER2/neu have been conducted as 
a potential mechanism to downregulate HER family 
signaling and take advantage of the promiscuity of 
heterodimerization with HER2/neu [318]; based on the 
biology of the HER family it is predicted that this strat-
egy would have its greatest effect in tumors with high 
HER3 expression. The role of these pathway modula-
tors remains to be determined, but the HSP90 inhibi-
tors in particular are showing substantial promise and 
have the potential to circumvent resistance to other 
therapeutic agents.

With the clinical success of immune checkpoint 
inhibitors targeting CTLA-4 and the PD1 pathway 
[319] in melanoma, the incorporation of other adjunc-
tive maneuvers to enhance tumor immunogenicity 
and immunotherapeutic efficacy [320] are indicated for 
HER2/neu-directed immunotherapeutic strategies. 
The co-targeting of other biological processes, such as 
the autophagy pathway, or other signaling pathways, 
such as the HedgeHog pathway, may be beneficial and 
could be simultaneously impacted by agents such as 
the HSP90 inhibitors [321–323]. Similarly targeting the 
microenvironment in which tumors survive may be a 
complimentary approach [324,325]. There are recent data 
that support a role for HER2/neu in the biology of can-
cer stem cells, which opens the potential for application 
of HER2/neu-targeted therapy in combination with 
therapeutic strategies targeting the cancer stem cell 
population [326].

Conclusion
The breadth of potential therapeutic agents target-
ing HER2/neu far exceeds that directed at any other 
tumor-associated, biological molecule. The develop-
ment of this repertoire is driven in large part by the 
fact that HER2/neu is overexpressed in a broad range 
of tumor types and the biological role HER2/neu plays 
in the broader HER family signaling network. The 

ongoing characterization of the biology of HER2/neu 
and other HER family members continues to provide 
critical insight into mechanisms of resistance to indi-
vidual therapeutic agents or strategies and also illumi-
nates novel targetable nodes within the HER2/neu sig-
naling network. Although FDA approval of antibodies, 
antibody conjugates, and TKIs targeting HER2/neu 
has been obtained for breast, gastric and esophageal 
adenocarcinomas, there are other clear opportunities 
in other tumor types. There is reason to be encour-
aged that other therapeutic approaches to targeting 
HER2/neu will find a place in the therapeutic arma-
mentarium, including immunotherapeutic strategies 
and modulators of HER2/neu expression such as the 
HSP90 inhibitors. The basic science, preclinical and 
clinical work reviewed above substantiates the propo-
sition that targeting HER2/neu has and continues to 
be the consummate translational research success story 
and making HER2/neu an increasingly important 
therapeutic target.

Future perspective
Our increasing appreciation of the complexity of intra-
cellular signaling pathways, particularly with respect 
to crosstalk between pathways and the impact of other 
nonsignaling biological pathways, is dramatically driv-
ing the field towards systems biology and network 
analyses. The basic laboratory work elucidating these 
biological interactions that began well over a decade 
ago, including those involving the HER signaling 
pathways, is now poised to make an impact in the clin-
ical arena in the next decade. Although there will still 
be a role for determining HER2/neu overexpression, 
at the protein and genetic level, network analyses from 
expression profiling (proteomic or genomic) of individ-
ual tumors will reveal both resistance mechanisms and 
identify potential nodes for combining other agents to 
improve the efficacy of targeting HER2/neu. It is quite 
possible, given recent and ongoing technical advances, 
that tissue obtained from small needle biopsies will be 
sufficient to provide expression profiling of primary 
and metastatic tumors enabling network analyses to 
make way into routine clinical use to direct the design 
and adaptation of individualized treatment plans for 
patients over the course of their disease. In this future 
setting, synergistic modulation of multiple biological 
pathways, not necessarily limited to the primary tar-
get signaling pathway, will become the norm. Given 
the success of immune checkpoint inhibitors in mela-
noma and lung cancer, the combination of molecu-
larly targeted therapies and immunotherapy/immuno-
modulatory therapies will be evaluated in the setting 
of HER2/neu overexpression. In the short term, the 
next 5 years, the robust pipeline of small-molecule 
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inhibitors will make its way forward; defining the clin-
ical utility of individual agents and providing a larger 
armamentarium for the practicing clinician.
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Executive summary

History & biology of HER2/neu
•	 Member of EGF receptor (EGFR) family.
•	 Complex heterodimer and ligand signaling network.
•	 Involved in normal development of cardiovascular and neurologic systems.
HER2/neu-targeted therapeutics
•	 Antibody-based therapies are the most advanced and broadly employed:

 – Trastuzumab
 – Pertuzumab
 – Trastuzumab emtansine (T-DM1)

•	 Small-molecule tyrosine kinase inhibitors have been approved and have a role in the treatment 
armamentarium:

 – Lapatinib
 – Afatinib

•	 Immunotherapeutic strategies
 – Tumor vaccines have advanced into clinical trials with suggestion of clinical benefit in some settings.
 – Adoptive cellular therapy and chimeric antigen receptor engineered T cells are in the pipeline.

•	 Modulators of HER2/neu expression and downstream signaling:
 – HSP90 inhibitors
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