Lecture Note Sketches<br>Introduction to Stochastic Processes and Stochastic Differential Equations Hermann Riecke<br>Engineering Sciences and Applied Mathematics h-riecke@northwestern.edu

January 6, 2010
© Hermann Riecke

## Contents

1 Introduction ..... 7
2 Probabilities and Probability Distributions ..... 8
2.1 Examples of Probability Distributions ..... 12
2.1.1 Binomial Distribution ..... 12
2.1.2 Poisson Distribution ..... 13
2.1.3 Gaussian Distribution ..... 15
2.2 Bayes' Formula ..... 18
2.2.1 Data Assimilation ..... 19
3 Stochastic Processes ..... 21
3.1 Wiener-Khinchin Theorem ..... 25
3.2 Markov Processes. Chapman-Kolmogorov Equation ..... 27
3.3 Master Equation ..... 33
3.4 Differential Chapman-Kolmogorov Equation ..... 35
3.4.1 Drift Term ..... 37
3.4.2 Diffusion Term ..... 39
4 Fokker-Planck Equation ..... 40
4.1 The Rayleigh Particle ..... 40
4.2 The Macroscopic Equation ..... 44
4.3 Brownian Motion in an External Potential ..... 45
4.3.1 Markov Approximation for $X(t)$ and Weak Noise ..... 46
4.3.2 Fluctuations in a Steady State ..... 50
4.3.3 Bistable Systems: Escape from a Metastable State ..... 51
4.3.4 First Passage Times: Second Approach ..... 56
4.4 The Backward Fokker-Planck Equation ..... 59
5 Langevin Equation ..... 60
5.1 Relation between Langevin Equation and Fokker-Planck Equation ..... 63
5.1.1 Linear Langevin Equation ..... 63
5.1.2 Nonlinear Langevin Equation ..... 64
5.2 Mathematical Considerations: Ito vs Stratonovich ..... 68
5.3 Ito Stochastic Integrals ..... 71
5.4 Ito Stochastic Differential Equation ..... 75
5.4.1 Ito's Formula ..... 75
5.4.2 Solvability by Variable Transform ..... 78
5.4.3 Fokker-Planck Equation from the Ito Stochastic Differential Equation ..... 80
5.5 Stratonovich's Stochastic Differential Equation ..... 81
5.6 Colored Noise: Ornstein-Uhlenbeck and its White-Noise Limit ..... 83
6 Stochastic Resonance ..... 86
6.1 Examples ..... 90
6.1.1 Ring Laser [22] ..... 91
6.1.2 Mechanoreceptors in Crayfish[12] ..... 93
6.1.3 Tactile Sensation[9] ..... 94
7 Sketch of Numerical Methods for Stochastic Differential Equations ..... 96
7.1 Strong Approximation ..... 96
7.1.1 Euler-Maruyama Scheme ..... 96
7.1.2 Milstein Scheme ..... 98
7.1.3 Implicit Schemes ..... 103
7.2 Weak Approximation ..... 104
8 Projects ..... 106

## References

[1] L. Arnold. Stochastic differential equations: theory and applications. Wiley, New York, 1974. 519.2 A756sX.
[2] R. D. Astumian. Thermodynamics and kinetics of a brownian motor. Science, 276(5314):917-922, May 1997.
[3] R. D. Astumian. Paradoxical games and a minimal model for a brownian motor. Am. J. Phys. paper for 442, 73(2):178-183, February 2005.
[4] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climaticchange. Tellus, 34(1):10-16, September 1982.
[5] L. Bocquet. High friction limit of the kramers equation: the multiple time-scale approach. Am. J. Phys. paper for 442, 65(2):140-144, February 1997.
[6] N. Brunel and V. Hakim. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput., 11(7):1621-1671, October 1999.
[7] S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15(1):1, 1943.
[8] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron. The Langevin equation. World Scientific, 1996.
[9] J. J. Collins, T. T. Imhoff, and P. Grigg. Noise-enhanced tactile sensation. Nature, 383(6603):770-770, October 1996.
[10] S. Denisov, P. Hanggi, and J. L. Mateos. Ac-driven brownian motors: a fokker-planck treatment. Am. J. Phys. paper for 442, 77(7):602-606, July 2009.
[11] D. Dimitropoulos and B. Jalali. Stochastic differential equation approach for waves in a random medium. Phys. Rev. E, 79(3):036606, March 2009.
[12] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss. Noise enhancement of information-transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365(6444):337-340, September 1993.
[13] M. O. Ernst and M. S. Banks. Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870):429-433, Jan 2002.
[14] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70(1):223-287, January 1998.
[15] C. W. Gardiner. Handbook of stochastic methods. Springer, 1990.
[16] J. C. Hull. Options, futures and other derivatives. Prentice-Hall, 2006.
[17] P.E. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Springer, Berlin, 1992.
[18] R. Kuske. Probability densities for noisy delay bifurcations. J. Stat. Phys., 96(3-4):797816, August 1999.
[19] R. Kuske, L. F. Gordillo, and P. Greenwood. Sustained oscillations via coherence resonance in sir. J. Theor. Biol., 245(3):459-469, April 2007.
[20] B. J. Mason. Towards understanding and prediction of climatic variations. Q. J. Roy. Met. Soc., 102(433):473-498, 1976.
[21] B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Phys. Rev. A, 39:4854, 1989.
[22] B. Mcnamara, K. Wiesenfeld, and R. Roy. Observation of stochastic resonance in a ring laser. Phys. Rev. Lett., 60(25):2626-2629, June 1988.
[23] A. S. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78(5):775-778, February 1997.
[24] S. Reinker, Y. X. Li, and R. Kuske. Noise-induced coherence and network oscillations in a reduced bursting model. Bull. Math. Biol., 68(6):1401-1427, August 2006.
[25] Z. Schuss. Theory and applications of stochastic differential equations. Wiley, 1980.
[26] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss. Visual perception of stochastic resonance. Phys. Rev. Lett., 78(6):1186-1189, February 1997.
[27] S. H. Strogatz and R. E. Mirollo. Stability of incoherence in a population of coupled oscillators. J. Stat. Phys., 63(3-4):613-635, May 1991.
[28] N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland, 1992.
[29] N.G. van Kampen. Fluctuation in unstable systems. In E. Tirapegui and Villarroel D., editors, Instabilities and Nonequilibrium Structures. Reidel, 1987.
[30] Y. Weiss, E. P. Simoncelli, and E. H. Adelson. Motion illusions as optimal percepts. Nature Neurosc., 5(6):598-604, June 2002.
[31] P. Wilmott, W. Howison, and J. Dewynne. The mathematics of financial derivatives. Cambridge, 1995.

## Index

absorbing boundary, 57
adiabatic approximation, 47
Arrhenius factor, 56
Backward Euler, 104
backward Fokker-Planck equation, 56, 59
Backward Milstein, 104
Black-Scholes equation, 106
climate, 86
Coherence resonance, 106
Colored Noise, 83
Crayfish, 93
cumulants, $11,12,60$
Doob's theorem, 30
Dynkin equation, 54, 58
escape rate, 56
Euler-Maruyama Schem, 96
fluctuation-dissipation theorem, 42
Fokker-Planck equation, 40
Forward Euler, 104
identically distributed, 17
Implicit Schemes, 103
Kramers' equation, 46
Kuramoto model, 106
Lindeberg condition, 34
Markov process, 23
mean first passage time, 52
mean-squared limit, 70
metastable, 52
Milankovich cycles, 86
Milstein Scheme, 98
Moment Generating Function, 10
multiplicative noise, 64
network oscillations, 106
non-anticipating function, 72
order parameter, 52
Order-2 Weak Taylor Scheme, 105

Ornstein-Uhlenbeck process, 29, 42, 83
phase transition, 52
pitchfork bifurcation, 65
Poisson process, 29
Rare Events, 15
RC-circuit, 62
reaction coordinate, 52
reaction rate, 56
realization, 97
reflecting boundary, 57
Ring Laser, 91
strong approximation, 96
transition probability, 28
Weak Approximation, 104
weak approximation, 96
Wiener process, 28, 43

## 1 Introduction

Many systems have unpredictable components:

- weather
- stock market
- spreading of diseases
- motion of gas molecules
- molecular conformations: opening and closing of ion channels
- emission and absortion of photons: photo multipliers, photo receptors
- ...

Causes of unpredictability:

- many interacting agents (particles)
- chaotic dynamics, even in systems with few degrees of freedom
- quantum mechanics: only probabilities for transitions can be given

Probabilistical description of such systems:
as example, consider Brownian motion of a large particle in a thermal bath of smaller particles. We are interested in

- the evolution of the mean, variance, or higher moments of the position or velocity of the large particle
- possibly even the evolution of full probability distributions for the position or the velocity
- sample trajectories of the large particle

Approaches:

- (evolution) equations for the probability distributions:

Chapman-Kolmogorov equation, master equation, Fokker-Planck equation

- differential equations with stochastic quantities: Langevin equation we will need to make sense of the stochastic differential equation (Ito vs. Stratonovich)

Recommended books:

- N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland, 1992 (on reserve in the library)
- C. W. Gardiner. Handbook of stochastic methods. Springer, 1990 (on reserve in the library)
- D. Henderson and P. Plaschko. Stochastic differential equations in science and engineering.
- N.G. van Kampen. Fluctuation in unstable systems. In E. Tirapegui and Villarroel D., editors, Instabilities and Nonequilibrium Structures. Reidel, 1987 (a scanned version of this paper is on the class web site https://courses.northwestern.edu/webapps/login under 2009FALL ES APPM 442-1 Stochastic Differential Equations
- Other useful references: [25, 1, 17, 8]


## 2 Probabilities and Probability Distributions

We consider stochastic events:

- tossing a coin: event $\omega$ is head or tail
- throwing a die
- position of molecule in a fluid
- emission of an electron in a (old-fashioned) TV-tube
- absorption of a photon
- ...

Consider sets $A_{i} \subseteq \Omega$ of events, $\Omega$ being all possible events.
Define a probability $P\left(A_{i}\right)$

1. $P\left(A_{i}\right) \geq 0$ for all $A_{i}$
2. $P(\Omega)=1$
3. The probability of mutually exclusive events is additive:
if the $A_{i}, i=1,2,3, \ldots$, form a countable (but possibly infinite) collection of sets with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ then

$$
P\left(A_{i} \cup A_{i} \cup \ldots \cup A_{k}\right)=P\left(A_{i}\right)+P\left(A_{j}\right)+\ldots+P\left(A_{k}\right)
$$

e.g. for a die $A_{1}=\{1\}$ and $A_{2}=\{2,3\}$ are mutually exclusive and the probability to get 1 or 2 or 3 is $P\left(A_{1}\right)+P\left(A_{2}\right)$. However, for $A_{i}=\{$ even numbers $\}$ and $A_{2}=\{2\}$ one has $P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)$.

## Note:

- from the definitions one obtains directly

$$
P(\Omega \backslash A)=1-P(A) \quad P(Ø)=0 .
$$

- to make the connection with experiments one needs to measure probabilities: use the relative frequency of events as an approximation for the probability

For continuous variables $x$ one has to define events a bit more carefully;

- if the event is defined that $x$ has a specific value $x=x_{0}$, then the probability of this event is always 0
- need to define the event has $x$ being in some interval:
$P\left(x \in\left(x_{0}, x_{0}+\Delta x\right)\right)$ is a meaningful quantity and can be non-zero
typically $P\left(x \in\left(x_{0}, x_{0}+\Delta x\right)\right)=p\left(x_{0}\right) \Delta x+\mathcal{O}\left(\Delta x^{2}\right)$


## Notation:

- A random variable is a function $X(\omega)$ of the event $\omega$
- Often we need not explicitly denote the event and can simply write for the random variable $X$.
In a given realization $X$ has the value $x$.


## Define

- Joint probability

$$
P(A \cap B)=P(\omega \in A \text { and } \omega \in B)
$$

- Conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

or

$$
P(A \cap B)=P(A \mid B) P(B)
$$

- Statistical independence:

Two events or sets of events are independent of each other if $P(A \mid B)$ does not depend on $B: P(A \mid B)=P(A)$ and analogously $P(B \mid A)=P(B)$
this implies

$$
P(A \cap B)=P(A) P(B)
$$

For multiple events $A_{i}$ statistical independence requires that for all possible combinations $A_{j} \cap A_{k} \cap \ldots \cap A_{m}$ the joint probability factorizes

$$
P\left(A_{j} \cap A_{k} \cap \ldots \cap A_{m}\right)=P\left(A_{j}\right) P\left(A_{k}\right) \ldots P\left(A_{m}\right)
$$

- Mean of a random variable $X$
- $X$ takes on only the discrete values $X_{i}, i=1 . . N$

$$
\mu(X) \equiv\langle X\rangle \equiv \sum_{i=1}^{N} x_{i} P\left(x_{i}\right)
$$

- $X \in \mathbb{R}$

$$
\mu(X) \equiv\langle X\rangle=\int x P(x) d x
$$

- Higher moments

$$
\left\langle X^{n}\right\rangle=\int x^{n} P(x) d x
$$

- Variance of $X$ is the mean of the square of the deviation from the mean

$$
\sigma(X)^{2}=\left\langle(X-\langle X\rangle)^{2}\right\rangle=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}
$$

$\sigma(X)$ is the standard deviation of $X$.

- Covariance between different random variables $X_{i}$ and $X_{j}$

$$
C_{i j}=\left\langle\left(X_{i}-\left\langle X_{i}\right\rangle\right)\left(X_{j}-\left\langle X_{j}\right\rangle\right)\right\rangle=\left\langle X_{i} X_{j}\right\rangle-\left\langle X_{i}\right\rangle\left\langle X_{j}\right\rangle
$$

measures how correlated the two variables are (in terms of their deviations from their respective means:

- For $C_{i j}>0$ the random variables $X_{i}$ and $X_{j}$ are mostly on the same side of their means: correlated
- For $C_{i j}<0$ the random variables $X_{i}$ and $X_{j}$ are mostly on opposite sides of their means: anti-correlated
- For $C_{i j} \sim 0$ the random variables $X_{i}$ and $X_{j}$ are just as often on opposite sides of their means as on the same side: uncorrelated


## Moment Generating Function ${ }^{1}$

To get mean and variance make use of a generating function.
In general the moment generating function or characteristic function is defined as

$$
\phi(\mathbf{s}, t)=\left\langle e^{i \mathbf{s} \cdot \mathbf{X}}\right\rangle=\int d x_{1} \ldots d x_{n} p(\mathbf{x}, t) e^{i \mathbf{s} \cdot \mathbf{x}}
$$

The generating function amounts to a Fourier transform of the probability distribution. The moments can then be expressed elegantly as

$$
\left\langle\prod_{i=1}^{n} X_{i}^{m_{i}}\right\rangle=\left.\left[\prod_{i=1}^{n}\left(-i \frac{\partial}{\partial s_{i}}\right)^{m_{i}} \phi(\mathbf{s}, t)\right]\right|_{\mathbf{s}=0}
$$

[^0]Conversely, using the Taylor expansion of the exponential $e^{i s \cdot \mathbf{X}}=\prod_{j=1}^{n} e^{i s_{j} X_{j}}$ the generating function can be expressed in terms of the moments

$$
\phi(\mathbf{s}, t)=\sum_{m_{1}=0}^{\infty} \ldots \sum_{m_{n}=0}^{\infty} \frac{\left(i s_{1}\right)^{m_{1}}}{m_{1}!} \ldots \frac{\left(i s_{n}\right)^{m_{n}}}{m_{n}!}\left\langle X_{1}^{m_{1}} \ldots X_{n}^{m_{n}}\right\rangle
$$

The probability distribution can be obtained by an inverse Fourier transformation

$$
P(\mathbf{x}, t)=\frac{1}{(2 \pi)^{n}} \int d s_{1} \ldots d s_{n} e^{-i \mathbf{s} \cdot \mathbf{x}} \phi(\mathbf{s}, t)
$$

For independent distributions $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i}\right)$ one gets

$$
\phi\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\prod_{i=1}^{n} \phi\left(s_{i}\right)
$$

It is sometimes also useful to introduce the cumulants $\left\langle\left\langle X_{1}^{m_{1}} \ldots X_{n}^{m_{n}}\right\rangle\right\rangle$, which are defined via

$$
\begin{equation*}
\ln (\phi(\mathbf{s}, t))=\sum_{m_{1}=0}^{\infty} \ldots \sum_{m_{n}=0}^{\infty} \frac{\left(i s_{1}\right)^{m_{1}}}{m_{1}!} \ldots \frac{\left(i s_{n}\right)^{m_{n}}}{m_{n}!}\left\langle\left\langle X_{1}^{m_{1}} \ldots X_{n}^{m_{n}}\right\rangle\right\rangle \tag{1}
\end{equation*}
$$

## Example:

$n=2$ :

$$
\begin{aligned}
\phi\left(s_{1}, s_{2}, t\right)= & 1+i s_{1}\left\langle X_{1}\right\rangle+i s_{2}\left\langle X_{2}\right\rangle-\frac{1}{2} s_{1}^{2}\left\langle X_{1}^{2}\right\rangle-\frac{1}{2} s_{2}^{2}\left\langle X_{2}^{2}\right\rangle-s_{1} s_{2}\left\langle X_{1} X_{2}\right\rangle+\mathcal{O}\left(s^{3}\right) \\
\ln \left(\phi\left(s_{1}, s_{2}, t\right)\right)= & i s_{1}\left\langle X_{1}\right\rangle+i s_{2}\left\langle X_{2}\right\rangle-\frac{1}{2} s_{1}^{2}\left\langle X_{1}^{2}\right\rangle-\frac{1}{2} s_{2}^{2}\left\langle X_{2}^{2}\right\rangle-s_{1} s_{2}\left\langle X_{1} X_{2}\right\rangle+\mathcal{O}\left(s^{3}\right)+ \\
& +\left(-\frac{1}{2}\right)\left(i s_{1}\left\langle X_{1}\right\rangle+i s_{2}\left\langle X_{2}\right\rangle-\frac{1}{2} s_{1}^{2}\left\langle X_{1}^{2}\right\rangle-\frac{1}{2} s_{2}^{2}\left\langle X_{2}^{2}\right\rangle-s_{1} s_{2}\left\langle X_{1} X_{2}\right\rangle+\mathcal{O}\left(s^{3}\right)\right)^{2}+\ldots \\
= & i s_{1}\left\langle X_{1}\right\rangle+i s_{2}\left\langle X_{2}\right\rangle \\
& -\frac{1}{2}\left(s_{1}^{2}\left\langle X_{1}^{2}\right\rangle+s_{2}^{2}\left\langle X_{2}^{2}\right\rangle+2 s_{1} s_{2}\left\langle X_{1} X_{2}\right\rangle-s_{1}^{2}\left\langle X_{1}\right\rangle^{2}-s_{2}^{2}\left\langle X_{2}\right\rangle^{2}-2 s_{1} s_{2}\left\langle X_{1}\right\rangle\left\langle X_{2}\right\rangle\right) \\
= & i s_{1}\left\langle X_{1}\right\rangle+i s_{2}\left\langle X_{2}\right\rangle \\
& -\frac{1}{2}\left(s_{1}^{2}\left(\left\langle X_{1}^{2}\right\rangle-\left\langle X_{1}\right\rangle^{2}\right)+s_{2}^{2}\left(\left\langle X_{2}^{2}\right\rangle-\left\langle X_{2}\right\rangle^{2}+2 s_{1} s_{2}\left(\left\langle X_{1} X_{2}\right\rangle-\left\langle X_{1}\right\rangle\left\langle X_{2}\right\rangle\right)\right)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\langle\left\langle X_{i}\right\rangle\right\rangle & =\left\langle X_{i}\right\rangle \\
\left\langle\left\langle X_{i}^{2}\right\rangle\right\rangle & =\left\langle X_{i}^{2}\right\rangle-\left\langle X_{i}\right\rangle^{2} \\
\left\langle\left\langle X_{1} X_{2}\right\rangle\right\rangle & =\left\langle X_{1} X_{2}\right\rangle-\left\langle X_{1}\right\rangle\left\langle X_{2}\right\rangle
\end{aligned}
$$

## Notes:

- Considering two random variables ( $n=2$ ):
statistical independence is equivalent with
- $\phi\left(s_{1}, s_{2}, t\right)=\phi_{1}\left(s_{1}, t\right) \phi_{2}\left(s_{2}, t\right)$
- all moments factorize:

$$
\left\langle X_{1}^{m_{1}} X_{2}^{m_{2}}\right\rangle=\left\langle X_{1}^{m_{1}}\right\rangle\left\langle X_{2}^{m_{2}}\right\rangle
$$

- all cumulants $\left\langle\left\langle X_{1}^{m_{1}} X_{2}^{m_{2}}\right\rangle\right\rangle$ vanish when both $m_{1}$ and $m_{2}$ are nonzero:
the expansion of $\ln \left(\phi\left(s_{1}, s_{2}, t\right)\right)=\ln \left(\phi_{1}\left(s_{1}, t\right)\right)+\ln \left(\phi_{2}\left(s_{2}, t\right)\right)$ has no terms in which $s_{1}$ and $s_{2}$ appear at the same time.
- Expressions for general cumulants is cumbersome to obtain[15, Chapter 2.7].

For example

$$
\left\langle\left\langle X_{1} X_{2} X_{3}\right\rangle\right\rangle=\left\langle X_{1} X_{2} X_{3}\right\rangle-\left\langle X_{1} X_{2}\right\rangle\left\langle X_{3}\right\rangle-\left\langle X_{2} X_{3}\right\rangle\left\langle X_{1}\right\rangle-\left\langle X_{1} X_{3}\right\rangle\left\langle X_{2}\right\rangle+2\left\langle X_{1}\right\rangle\left\langle X_{2}\right\rangle\left\langle X_{3}\right\rangle
$$

### 2.1 Examples of Probability Distributions

### 2.1.1 Binomial Distribution

Consider an urn with $N$ balls, $m$ of which are red and $N-m$ are white. What is the probability $P(k ; n)$ to retrieve exactly $k$ red balls in $n$ draws if each ball is placed back into the urn before the next is drawn? Assume that the probability is the same for all balls.

- probability to draw any read ball is given by the fraction of red balls among the balls:

$$
\frac{m}{N}
$$

- probability to draw $k$ red balls in $k$ specific draws

$$
\left(\frac{m}{N}\right)^{k}
$$

since successive drawings are independent of each other

- analogously: probability to draw $n-k$ white balls

$$
\left(\frac{N-m}{N}\right)^{n-k}
$$

- it does not matter in which draws the red or white balls are actually drawn: in how many ways can the $k$ red draws be distributed over the total number of $n$ draws? Think of picking $k$ integers from $1 \ldots n$ without replacing them,

$$
n \cdot(n-1) \cdot \ldots \cdot(n-k+1)
$$

possibilities. It does not matter in which order the integers are picked: do not distinguish those $k$ ! possibilities

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- thus

$$
P(k ; n)=\binom{n}{k}\left(\frac{m}{N}\right)^{k}\left(\frac{N-m}{N}\right)^{n-k}=\binom{n}{k} p^{k} q^{n-k}
$$

with $p=\frac{m}{N}$ probability for red ball and $q=1-p$ probability for white ball.
Normalization

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \underbrace{=}_{\text {binomial theorem }}(p+q)^{n}=1
$$

Mean value

$$
\langle k\rangle=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}=p \frac{\partial}{\partial p} \sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}=p \frac{\partial}{\partial p}(p+q)^{n}=p n
$$

Variance

$$
\begin{aligned}
\sigma^{2} & =\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=p \frac{\partial}{\partial p}\left(p \frac{\partial}{\partial p} \sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}\right)-(p n)^{2}= \\
& =p \frac{\partial}{\partial p}\left(p \frac{\partial}{\partial p}(p+q)^{n}\right)-(p n)^{2}= \\
& =p \frac{\partial}{\partial p}\left(n p(p+q)^{n-1}\right)-(p n)^{2}= \\
& =p n(p+q)^{n-1}+n p^{2}(n-1)(p+q)^{n-2}-(p n)^{2}= \\
& =p n-p^{2} n=n p q
\end{aligned}
$$

### 2.1.2 Poisson Distribution

Consider

- current in a cathode tube (old TV screen): consists of individual electrons that are emitted from the cathode at arbitrary, uncorrelated times
- customers approaching a bank teller, their arrival times are presumably also uncorrelated

What is the distribution $P(n, t)$ of the number $n$ of electrons/customers that have arrived up to a time $t$ ?
The probability that the number increases from $n$ to $n+1$ during a time interval $\Delta t$ is proportional to $\Delta t$

$$
P(n \rightarrow n+1 \text { during } \Delta t)=\lambda \Delta t
$$

Then we have

$$
P(n, t+\Delta t)=\underbrace{\lambda \Delta t}_{\text {probability for } n \text { to increase }} P(n-1, t)+\underbrace{(1-\lambda \Delta t)}_{\text {probbility for } n \text { not to increase }} P(n, t)
$$

For small $\Delta t$

$$
\begin{equation*}
\frac{d}{d t} P(n, t)=\lambda(P(n-1, t)-P(n, t)) \tag{2}
\end{equation*}
$$

For this differential-difference equation we need initial conditions in $t$ and in $n$ (first order in time and in $n$ ). Assume that initially no electrons have arrived:

$$
P(-1, t)=0 \quad P(n, 0)=\delta_{n, 0}
$$

How to solve this equation?
Introduce the generating function for $P(n, t)$

$$
G(u, t)=\sum_{n=0}^{\infty} u^{n} P(n, t)
$$

using (2) one gets

$$
\begin{array}{rll}
\frac{d}{d t} G(u, t) & & \lambda \sum_{n=0}^{\infty}\left(u^{n} P(n-1, t)-u^{n} P(n, t)\right)= \\
& = & \lambda\left\{u \sum_{n=1}^{\infty} u^{n-1} P(n-1, t)-\sum_{n=0}^{\infty} u^{n} P(n, t)\right\} \\
\underbrace{=}_{\text {relabel } m=n-1} & \lambda(u-1) \sum_{n=0}^{\infty} u^{n} P(n, t)=\lambda(u-1) G(u, t)
\end{array}
$$

Thus

$$
G(u, t)=G(u, 0) e^{\lambda(u-1) t}
$$

Using $P(n, 0)=0$ for $n \geq 1$ we get $\mathbf{k}$

$$
G(u, 0)=P(0,0)=1
$$

and

$$
G(u, t)=e^{\lambda u t} e^{-\lambda t}=e^{-\lambda t} \sum_{n=0}^{\infty} \frac{1}{n!}(\lambda t)^{n} u^{n}
$$

Therefore by comparing powers in $u$ we get the Poisson distribution

$$
P(n, t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

For the Poisson distribution we had the generating function in terms of $u \equiv e^{i s}$

$$
\phi(s, t)=G\left(e^{i s}, t\right)=e^{\lambda u t} e^{-\lambda t}=e^{\lambda t e^{i s}} e^{-\lambda t}
$$

- mean value

$$
\langle n\rangle=\left.\left[-i \frac{\partial}{\partial s} \phi(s, t)\right]\right|_{\mathrm{s}=0}=-\left.i e^{-\lambda t} e^{\lambda t e^{i s}} i \lambda t e^{i s}\right|_{s=0}=\lambda t
$$

as expected, $\lambda$ is the mean rate at which electrons/customers arrive.
The mean can also easily be calculated directly from $P(n, t)$

$$
\sum_{n=0}^{\infty} n P(n, t)=e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n}}{(n-1)!}=(\lambda t) e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

- variance

$$
\begin{aligned}
\left\langle n^{2}\right\rangle & =\left.\left[\left(-i \frac{\partial}{\partial s}\right)^{2} \phi(s, t)\right]\right|_{s=0}=-\left.i \frac{\partial}{\partial s}\left(-i e^{-\lambda t} e^{\lambda t e^{i s}} i \lambda t e^{i s}\right)\right|_{s=0}= \\
& =-\left.i \lambda t e^{-\lambda t} e^{\lambda t e^{i s}} e^{i s}\left(i \lambda t e^{i s}+i\right)\right|_{s=0}=\lambda t(\lambda t+1)
\end{aligned}
$$

thus

$$
\sigma^{2}=\lambda t
$$

Determining the variance by evaluating the sum is more difficult.

- The variability of a distribution can be characterized by the Fano factor

$$
F=\frac{\sigma^{2}}{\mu}
$$

The Poisson distribution has $F=1$, i.e. the variance is equal to the mean, corresponding to quite high variability.

## Rare Events: Poisson Distribution from Binomial Distribution

The Poisson distribution arises, e.g., from the binomial distribution for events with low probability.
Consider the binomial distribution for $p \ll 1$ and many draws $n$, $n p=\mu=\mathcal{O}(1)$,

$$
\begin{aligned}
P(k ; n) & =\binom{n}{k} p^{k}(1-p)^{n-k}= \\
& =\frac{n!}{k!(n-k)!}\left(\frac{\mu}{n}\right)^{k}\left(1-\frac{\mu}{n}\right)^{n-k}= \\
& =\frac{1}{k!} \underbrace{\frac{n(n-1) \ldots(n-k+1)}{n^{k}}}_{\rightarrow 1} \mu^{k} \underbrace{\left(1-\frac{\mu}{n}\right)^{n}}_{\rightarrow e^{-\mu}} \underbrace{\left(1-\frac{\mu}{n}\right)^{-k}}_{\rightarrow 1}
\end{aligned}
$$

Letting $n \rightarrow \infty$ with $\mu$ and $k$ fixed one gets

$$
P(k ; n) \rightarrow \frac{1}{k!} \mu^{k} e^{-\mu}
$$

### 2.1.3 Gaussian Distribution

The Gaussian or normal distribution is given by

$$
p(\mathbf{x})=\frac{1}{\sqrt{2 \pi \operatorname{det}(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{t} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\overline{\mathbf{x}})}
$$

where the mean is given by

$$
\langle\mathbf{X}\rangle=\overline{\mathbf{x}}
$$

and the correlation matrix by

$$
\left\langle\left(X_{i}-\bar{x}_{i}\right)\left(X_{j}-\bar{x}_{j}\right)\right\rangle=\boldsymbol{\Sigma}_{i j}
$$

The Gaussian distribution appears very widely because of the Central Limit Theorem: the sum of many independent, (almost) arbitrarily distributed random variables is Gaussian distributed.

More specifically ${ }^{2}$ :
Consider many independent random variables $X_{i}, i=1 \ldots n$, with distributions $p_{i}(x)$. For simplicity assume vanishing mean. Their sum

$$
S_{N}=\sum_{i=1}^{N} X_{i}
$$

is also a random variable.
The distributions of $X_{i}$ can be almost arbitrary as long as their variances are finite

$$
\operatorname{var}\left\{X_{i}\right\}=\left\langle\left(X_{i}-\left\langle X_{i}\right\rangle\right)^{2}\right\rangle=\sigma_{i}^{2}
$$

and they satisfy the Lindeberg condition

$$
\lim _{N \rightarrow \infty}\left[\frac{1}{\sigma_{N}^{2}} \sum_{i=1}^{N} \int_{|x|>\tau \sigma_{n}} x^{2} p_{i}(x) d x\right] \rightarrow 0
$$

for any $\tau>0$, where

$$
\sigma_{N}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}
$$

Then in the limit $N \rightarrow \infty$

$$
P\left(\frac{S_{N}}{\sigma_{N}}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \frac{S_{N}^{2}}{\sigma_{N}^{2}}}
$$

i.e. is Gaussian (normal) distributed and its variance is $\sigma_{n}^{2}$.

## Note:

- The Lindeberg condition requires that large values $|x|$ are sufficiently rare: the distributions $p_{i}(x)$ need to decay sufficiently fast for $|x| \rightarrow \infty$.
If the $\sigma_{i}$ are larger than some constant for all $i$ (e.g. if all distributions $p_{i}(x)$ are equal) one has $\sigma_{N} \rightarrow \infty$ for $N \rightarrow \infty$.
For $\tau=0$ the fraction in the Lindeberg condition would always be 1 .
For $\tau>0$ increasingy larger portions of the integral are omitted as $N \rightarrow \infty$, since $\sigma_{N}$ increases with $N$. For the fraction to go to 0 for arbitrarily small $\tau>0$ requires that the contributions to $\sigma_{i}^{2}$ are not dominated by large values of $|x|$.

[^1]- The Cauchy or Lorentzian distribution

$$
P(x)=\frac{a}{\pi} \frac{1}{a^{2}+x^{2}}
$$

has diverging variance and it does not satisfy the Lindeberg condition.
For identically distributed variables the proof for the central limit theorem is relatively easy:

For simplicity assume all $Y_{i}$ have zero mean and variance 1. For the generating function $\phi_{Y}(s)$ we have

$$
\begin{aligned}
\langle Y\rangle & =-\left.i \frac{d}{d s} \phi_{Y}(s)\right|_{s=0}=0 \\
\left\langle Y^{2}\right\rangle & =-\left.\frac{d^{2}}{d s^{2}} \phi_{Y}(s)\right|_{s=0}=1
\end{aligned}
$$

This gives the Taylor expansion for small $s$

$$
\phi_{Y}(s)=1-\frac{1}{2} s^{2}+\mathcal{O}\left(s^{3}\right)
$$

Consider the rescaled sum of the $Y_{i}$

$$
S_{N}=\sum_{i=1}^{N} \frac{1}{\sqrt{N}} Y_{i}
$$

The generating function $\phi_{S_{N}}$ is then

$$
\begin{aligned}
\phi_{S_{N}}(s) & =\left\langle e^{i s S_{N}}\right\rangle=\left\langle e^{i \sum_{i=1}^{N} \frac{1}{\sqrt{N}} Y_{i}}\right\rangle= \\
& =\left\langle\prod_{i=1}^{N} e^{i \frac{s}{\sqrt{N}} Y_{i}}\right\rangle=\prod_{i=1}^{N} \phi_{Y}\left(\frac{s}{\sqrt{N}}\right)= \\
& =\left(1-\frac{1}{2} \frac{s^{2}}{N}+\mathcal{O}\left(\frac{s^{3}}{N^{\frac{3}{2}}}\right)\right)^{N} \rightarrow e^{-\frac{1}{2} s^{2}} \quad \text { for } N \rightarrow \infty
\end{aligned}
$$

which is the generating function of the Gaussian (normal) distribution with vanishing mean and unit variance, $N(0,1)$.

## Gaussian Distribution as the Limit of Poisson Distribution

For large mean values the Poisson distribution approaches a Gaussian distribution.
The Poisson distribution (omit the $t$ from our previous result)

$$
P(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

has mean $\mu=\lambda$ and variance $\sigma^{2}=\lambda$.
Expand $k$ around the mean and scale the deviation with the standard deviation

$$
k=\mu+\sigma x=\lambda+\sqrt{\lambda} x=\lambda\left(1+\frac{x}{\sqrt{\lambda}}\right) \quad \text { with } x=\mathcal{O}(1)
$$

Use Stirling's formula for $k$ ! for large $k$, keeping more terms than usually,

$$
\ln k!=k \ln k-k+\frac{1}{2} \ln k+\frac{1}{2} \ln 2 \pi+\mathcal{O}\left(\frac{1}{k}\right)
$$

insert in Poisson distribution

$$
\begin{aligned}
\ln P(k) & =k \ln \lambda-\lambda-\left(k \ln k-k+\frac{1}{2} \ln k+\frac{1}{2} \ln 2 \pi+\mathcal{O}\left(\frac{1}{k}\right)\right)= \\
& =-\lambda\left(1+\frac{x}{\sqrt{\lambda}}\right) \ln \left(1+\frac{x}{\sqrt{\lambda}}\right)+\lambda \frac{x}{\sqrt{\lambda}}-\frac{1}{2} \ln \lambda-\frac{1}{2} \ln \left(1+\frac{x}{\sqrt{\lambda}}\right)-\frac{1}{2} \ln 2 \pi+\mathcal{O}\left(\frac{1}{\lambda}\right)
\end{aligned}
$$

Use

$$
\ln \left(1+\frac{x}{\sqrt{\lambda}}\right)=\frac{x}{\sqrt{\lambda}}-\frac{1}{2} \frac{x^{2}}{\lambda}+\mathcal{O}\left(\frac{1}{\lambda^{\frac{3}{2}}}\right)
$$

get

$$
\begin{aligned}
\ln P(k)= & -\lambda\left(\frac{x}{\sqrt{\lambda}}-\frac{1}{2} \frac{x^{2}}{\lambda}+\frac{x^{2}}{\lambda}-\frac{1}{2} \frac{x^{3}}{\lambda^{\frac{3}{2}}}+\mathcal{O}\left(\frac{1}{\lambda^{\frac{3}{2}}}\right)\right)+\lambda \frac{x}{\sqrt{\lambda}}-\frac{1}{2} \ln \lambda-\mathcal{O}\left(\frac{1}{\lambda^{\frac{1}{2}}}\right)-\frac{1}{2} \ln 2 \pi+\mathcal{O}\left(\frac{1}{\lambda}\right)= \\
= & -\frac{1}{2} x^{2}-\frac{1}{2} \ln \lambda-\frac{1}{2} \ln 2 \pi \\
& P(k) \rightarrow \frac{1}{\sqrt{2 \pi \lambda}} e^{-\frac{1}{2} x^{2}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(k-\mu)^{2}}{\sigma^{2}}} \quad \text { with } \mu=\lambda \quad \sigma^{2}=\lambda
\end{aligned}
$$

Similarly: close to the mean the binomial distribution is well approximated by the Gaussian distribution.
Using

$$
k=n p+\sqrt{n} x=\mu+\sqrt{n} x
$$

for large $n$ with $p$ and $q$ fixed one gets

$$
P(k ; n)=\binom{n}{k} p^{k} q^{n-k} \rightarrow \frac{1}{\sqrt{2 \pi n p q}} e^{-\frac{1}{2} \frac{(k-n p)^{2}}{(n p q)^{2}}} \quad \text { for } n \rightarrow \infty
$$

### 2.2 Bayes' Formula

Write the joint probability in two different ways

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Then one gets

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)} \propto P(A \mid B) P(B)
$$

This simple formula is useful in many applications.

### 2.2.1 Data Assimilation

Consider weather forecasting. Need to combine various uncertain pieces of information

- data from measurements
- the computational model itself is not certain since the physical model for the 'weather' is quite incomplete
- parameters in the model used for the prediction are uncertain
- initial data for the model: not all initial values are actually known, e.g., the algorithm needs the temperature at many more locations than can be measured

Three steps are iteratively performed

1. predict data at a later time $t_{n+1}$, e.g. temperature at a given location, using the model that is based on data at an earlier time $t_{n}$.
2. measure the values of the data at time $t_{n+1}$.
3. combine the two pieces of information to obtain better estimates for the model parameters and the initial conditions.
4. repeat

An essential question is: how to combine the various pieces of information?
In this simple discussion we lump the uncertainties in the model parameters together with the uncertainty of the initial conditions.
We would like to know the true temperature $x$ given a set of measured values $y_{i}$ making use of a predictive model. We won't be able to get a single value, instead we will aim for the distribution $P(x \mid \mathbf{y})$. Due to the measurement errors we obtain from the measurements at best the distribution $P\left(y_{i} \mid x\right)$.
To get the distribution $P(x \mid \mathbf{y})$ of interest we can use Bayes formula

$$
\underbrace{P(x \mid \mathbf{y})}_{\text {posterior distribution }}=\frac{1}{P(\mathbf{y})} \underbrace{P(x \mid \mathbf{y})}_{\text {likelihood }} \quad \underbrace{P(x)}_{\text {prior distribution }}
$$

## Note:

- The prior distribution is the distribution for the true value that we assume (know) before the measurement is done ('a priori')
- The likelihood is the probability for a given true value given the measurements.
- The posterior distribution is the distribution we obtain after we incorporate the measurement into our expectations ('a posteriori')

Specifically, assume that the measurements $y_{i}$ all have normally distributed measurement errors, which may have different degrees of precision,

$$
P\left(y_{i} \mid x\right)=N\left(x, \sigma_{i}\right) \equiv \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\frac{\left(y_{i}-x\right)^{2}}{2 \sigma_{i}^{2}}}
$$

Assuming all $n$ measurements are independent of each other we get

$$
P(\mathbf{y} \mid x)=\prod_{i=1}^{n} P\left(y_{i} \mid x\right)
$$

For simplicity assume all measurements have the same error, $\sigma_{i}=\sigma_{y}$.

$$
P(\mathbf{y} \mid x)=\frac{1}{\sqrt{2 \pi \sigma_{y}^{2}}} e^{-\frac{1}{2 \sigma_{y}^{2}} \sum\left(y_{i}-x\right)^{2}}
$$

For the prior distribution we take the distribution $P(x)$ we obtain from the model - based on previous data - before the new measurements are incorporated. $P(x)$ expresses the uncertainties in the previous data and model parameters. Assume for simplicity also a normal distribution

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{\left(x-\mu_{\text {prior }}\right)^{2}}{2 \sigma_{x}^{2}}}
$$

Thus

$$
\begin{aligned}
P(x \mid \mathbf{y}) & =\frac{1}{P(\mathbf{y})} \frac{1}{\sqrt{2 \pi \sigma_{y}^{2}}} e^{-\frac{1}{2 \sigma_{y}^{2}} \sum_{i}\left(y_{i}-x\right)^{2}} \frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{\left(x-\mu_{\text {prior }}\right)^{2}}{2 \sigma_{x}^{2}}}= \\
& =\frac{1}{P(\mathbf{y})} \frac{1}{\sqrt{2 \pi \sigma_{y}^{2}}} \frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{1}{2}\left[\left(\frac{n}{\sigma_{y}^{2}}+\frac{1}{\sigma_{x}^{2}}\right) x^{2}-2\left(\sum_{i} \frac{y_{i}}{\sigma_{y}^{2}}+\frac{\mu_{\text {prior }}}{\sigma_{x}^{2}}\right) x+\left[\sum_{i} \frac{y_{i}^{2}}{\sigma_{y}^{2}}+\frac{\mu_{\text {prior }}^{2}}{\sigma_{x}^{2}}\right]\right]}
\end{aligned}
$$

which is a normal distribution

$$
N\left(\mu_{\text {post }}, \sigma_{\text {post }}\right)=\frac{1}{\sqrt{2 \pi \sigma_{\text {post }}^{2}}} e^{-\frac{1}{2} \frac{\left(x-\mu_{\text {post }}\right)^{2}}{\sigma_{\text {post }}^{2}}}
$$

with variance

$$
\sigma_{p o s t}^{2}=\frac{1}{\frac{n}{\sigma_{y}^{2}}+\frac{1}{\sigma_{x}^{2}}} \equiv(1-K) \sigma_{x}^{2}
$$

and mean value

$$
\mu_{\text {post }}=\frac{\sigma_{x}^{2} \sigma_{y}^{2}}{\sigma_{x}^{2}+n \sigma_{y}^{2}}\left(n \frac{\mu_{y}}{\sigma_{y}^{2}}+\frac{\mu_{\text {prior }}}{\sigma_{x}^{2}}\right) \equiv \mu_{\text {prior }}+K\left(\mu_{y}-\mu_{\text {prior }}\right)
$$

where $\mu_{y}=\frac{1}{n} \sum_{i} y_{i}$ and the gain $K$ is given by

$$
K=\frac{n \sigma_{x}^{2}}{\sigma_{y}^{2}+n \sigma_{x}^{2}}
$$

## Notes:

- the measurements shift the mean of the posterior towards the mean of the measurements
- the shift is proportional to the gain $K$, which increases with
* the number $n$ of measurements
* the precision of the measurements relative to the uncertainty in the prior distribution (model uncertainty)
- including the measurements always reduces the uncertainty of the posterior distribution relative to that of the prior distribution
- depending on the amount ( $n$ ) and the quality $\left(\sigma_{y}^{2}\right)$ of the data the measurements or the model result dominate the result from this assimilation
- in human sensory processing, a similar approach is often also used to understand the perception that results from integrating different types of sensory information, like touch+vision [13], auditory+vision (e.g. localization of a sound source), or vision+vision [30, see homework], weighing each information with its reliability/precision.


## 3 Stochastic Processes

Given a set of random variables $\left\{X_{n} \mid n=1 \ldots N\right\}$ with probability distribution $P\left(X_{1}, X_{2}, \ldots, X_{n}\right\}$ we can define a stochastic process

$$
Y(t)=f\left(X_{1}, \ldots, X_{n}, t\right)
$$

For each fixed realization of the random variables, $X_{i}=x_{i}$, we get a function

$$
y(t)=f\left(x_{1}, \ldots, x_{n}, t\right)
$$

called sample function or realization of the process.

## Examples:

1. Consider

$$
Y(t)=X_{1} \cos t+X_{2} \sin t
$$

with $\left\langle X_{i}\right\rangle=0$ and $\left\langle X_{i} X_{j}\right\rangle=\delta_{i j} \sigma^{2}$. Then

$$
\begin{aligned}
\langle Y(t)\rangle & =\left\langle X_{1} \cos t+X_{2} \sin t\right\rangle=0 \\
\left\langle Y\left(t_{1}\right) Y\left(t_{2}\right)\right\rangle & =\left\langle\left(X_{1} \cos t_{1}+X_{2} \sin t_{1}\right)\left(X_{1} \cos t_{2}+X_{2} \sin t_{2}\right)\right\rangle= \\
& =\left\langle X_{1}^{2}\right\rangle \cos t_{1} \cos t_{2}+\left\langle X_{2}^{2}\right\rangle \sin t_{1} \sin t_{2}+\left\langle X_{1} X_{2}\right\rangle\left(\cos t_{1} \sin t_{2}+\sin t_{1} \cos t_{2}\right)= \\
& =\sigma^{2} \cos \left(t_{2}-t_{1}\right)
\end{aligned}
$$

2. A discontinuous stochastic process (cf. HW 1)

$$
Y(t)=X_{n} \quad \text { for } \xi+n<t<\xi+n+1
$$

where $\left\{X_{n} \mid n=1,2,3 \ldots\right\}$ is an infinite set of identically distributed independent stochastic variables and $\xi$ is another independent stochastic variable that is uniformly distributed in $0<\xi<1$.

At each fixed time $Y(t)$ is a random variable with a certain probability distribution.
We can characterize a random process using the probability distributions

$$
\begin{gathered}
P_{1}\left(y_{1}, t_{1}\right) \quad \text { probability for } Y \text { to have value } y_{1} \text { at } t_{1} \\
P_{1}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right) \quad \text { probability for } Y \text { to have value } y_{1} \text { at } t_{1} \text { and } y_{2} \text { at } t_{2} \\
\ldots \\
P_{n}\left(y_{1}, t_{1}, ; \ldots ; y, t_{n}\right)
\end{gathered}
$$

## Note:

- the process can be discrete or continuous in time
- if $y$ are continuous variables the probabilities are given by $P_{n}\left(y_{1}, t_{1} ; \ldots ; y_{n} t_{n}\right) \prod_{i=1}^{n} d y_{i}$.

The probabilities need to satisfy the conditions

1. $P_{n} \geq 0$
2. $P_{n}\left(y_{1}, t_{1} ; \ldots ; y_{n}, t_{n}\right)$ is symmetric under interchange of any indices (they are simply joint probabilities), e.g. $P\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)=P\left(y_{2}, t_{2} ; y_{1}, t_{1}\right)$
3. 

$$
\int P_{n}\left(y_{1}, t_{1} ; \ldots ; y_{n-1}, t_{n-1} ; y_{n}, t_{n}\right) d y_{n}=P_{n-1}\left(y_{1}, t_{1} ; \ldots ; y_{n-1}, t_{n-1}\right)
$$

since $y_{n}$ has to take on some value. If that value does not matter then it also does not matter when one would measure that value $\Rightarrow$ no dependence on $t_{n}$.
4. $\int P_{1}\left(y_{1}, t_{1}\right) d y_{1}=1$

## Notes:

- any set of functions that satisfy these conditions define a stochastic process (proof by Kolmogorov, see [28] p.62)
- One need not specify all $P_{n}: P_{n}$ contains all the information about all $P_{m}$ with $m<n$ $\Rightarrow$ any finite number of $P_{n}$ need not be specified
- for a stationary process $P_{n}$ depends only on the time differences $t_{n}-t_{m}$, but not on the times $t_{i}$ themselves.

Means, correlations, etc. are defined as for random variables

- mean

$$
\langle Y(t)\rangle=\int y P(y, t) d y
$$

- correlation

$$
C_{i j}\left(t_{1}, t_{2}\right)=\left\langle\left(Y_{i}\left(t_{1}\right)-\left\langle Y_{i}\left(t_{1}\right)\right\rangle\right)\left(Y_{j}\left(t_{2}\right)-\left\langle Y_{j}\left(t_{2}\right)\right\rangle\right)\right\rangle
$$

Of particular importance is typically how fast (if at all) the correlation decays for $\left|t_{1}-t_{2}\right| \rightarrow \infty$.
The diagonal elements $C_{i i}\left(t_{1}, t_{2}\right)$ give the respective autocorrelations.
The off-diagonal elements of $C_{i j}\left(t_{1}, t_{2}\right)$ give cross-correlations between $Y_{i}$ and $Y_{j}$

## Examples

1. Sequence of independent coin tosses: $y= \pm 1$

$$
\begin{array}{rll}
P_{1}(y, t) & = & P(y) \\
P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right) & \underbrace{=}_{\text {independence }} & P\left(y_{1}\right) P\left(y_{2}\right)
\end{array} \quad \text { for } t_{1} \neq t_{2}
$$

all joint probabilities factorize in this way.

$$
\begin{aligned}
\langle Y\rangle & =-P(-1)+P(1) \\
C\left(t_{1}, t_{2}\right) & =\sum_{y_{1}= \pm 1} y_{1} y_{2} y_{2} \underbrace{P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)}_{P\left(y_{1}\right) P\left(y_{2}\right)}-\left(\sum_{y_{1}} y_{1} P_{1}\left(y_{1}\right)\right)\left(\sum_{y_{2}} y_{2} P_{1}\left(y_{2}\right)\right)= \\
& =0 \quad \text { for } t_{1} \neq t_{2} \\
C(t, t) & =\sum_{y_{1}= \pm 1} y_{1} y_{2}= \pm 1 \underbrace{P_{2}\left(y_{1}, t ; y_{2}, t\right)}_{P\left(y_{1}\right) \delta_{y_{1} y_{2}}}-\left(\sum_{y_{1}} y_{1} P_{1}\left(y_{1}\right)\right)\left(\sum_{y_{2}} y_{2} P_{1}\left(y_{2}\right)\right)= \\
& =\left\langle Y^{2}\right\rangle-\langle Y\rangle^{2}=P(+1)+P(-1)-(P(+1)-P(-1))^{2}
\end{aligned}
$$

since the coin tosses are independent only at different times.
2. Markov process
different events are not independent, but the probability of an event depends only on the immediately previous event
Introduce conditional probability to obtain $y_{n}$ at $t_{n}$ given that $y=y_{i}$ at all previous times:

$$
P_{1 \mid n-1}\left(y_{n} t_{n} \mid y_{n-1}, t_{n-1} ; \ldots ; y_{1}, t_{1}\right)
$$

For a Markov process one has

$$
P_{1 \mid n-1}\left(y_{n} t_{n} \mid y_{n-1}, t_{n-1} ; \ldots ; y_{1}, t_{1}\right)=P_{1 \mid n-1}\left(y_{n} t_{n} \mid y_{n-1}, t_{n-1}\right)
$$

independent of earlier events.
To characterize a Markov process completely we therefore need only $P_{1}(y, t)$ and $P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)$ or $P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)$.
For example:

$$
\begin{array}{lll}
P_{3}\left(y_{1}, t_{1} ; y_{2}, t_{2} ; y_{3}, t_{3}\right) & \underbrace{}_{\text {Markov process }} &
\end{array} \begin{aligned}
& P_{1 \mid 2}\left(y_{3}, t_{3} \mid y_{2}, t_{2} ; y_{1}, t_{1}\right) P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)= \\
& \\
& P_{1 \mid 1}\left(y_{3}, t_{3} \mid y, t_{2}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) P_{1}\left(y_{1}, t_{1}\right)
\end{aligned}
$$

since - as for random variables - we have the connection between joint and conditional probabilities

$$
P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)=P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) P_{1}\left(y_{1}, t_{1}\right)
$$

## Note:

- Markov processes are somewhat similar to $1^{s t}$-order differential equations (one can actually write a $1^{s t}$-order ODE as a Markov process).

3. Gambler tossing coins: capital Y
gambler wins with probability $p_{+} \equiv p: y \rightarrow y+1$
gambler looses with probability $p_{-}=1-p: y \rightarrow y-1$
The capital at step $n$ depends only on the capital at step $n-1$ : Markov process for the capital
Consider one such step

$$
P_{1}(y, n)=P_{1}(y-1, n-1) p+P_{1}(y+1, n-1)(1-p)
$$

Thus

$$
P_{1 \mid 1}\left(y_{n}, n \mid y_{n-1}, n-1\right)=p \delta_{y_{n}, y_{n-1}+1}+(1-p) \delta_{y_{n}, y_{n-1}-1}
$$

and

$$
P_{2}\left(y_{n}, n ; y_{n-1}, n-1\right)=P_{1}\left(y_{n-1}, n-1\right)\left[p \delta_{y_{n}, y_{n-1}+1}+(1-p) \delta_{y_{n}, y_{n-1}-1}\right]
$$

## Note:

- $y_{n}$ could also be considered the position of a one-dimensional random walker that takes only discrete steps of a fixed width.

4. Brownian motion on a short time scale

The Brownian particle is hit by small particles with a random force at random time:

- because of inertia $v_{n+1}$ depends on $v_{n}$ Moreover, the impact of the collision depends on the velocity of the Brownian particle:
the probability that it is hit by small particles is somewhat higher ahead of it than behind it $\Rightarrow$ the particle slows down. No random walk in velocity space.
But the impact depends only the current velocity, not previous velocities:
$V(t)$ is a Markov process
- the process for the position of the particle is not Markovian:
$x_{n+1}$ depends on $x_{n}$ and on $v_{n} \approx \frac{1}{\Delta t}\left(x_{n}-x_{n-1}\right)$

$$
P\left(x_{3}, t_{3} \mid x_{2}, t_{2} ; x_{1}, t_{1}\right) \neq P\left(x_{3}, t_{3} \mid x_{2}, t_{2}\right) .
$$

Intuitively, the particle is more likely to continue in its direction of motion before the collision than to change the direction significantly.

## - Notes:

- in the deterministic case the position satisfies $2^{\text {nd }}$-order ODE
- over larger time scales and many collisions the particle 'forgets' its velocity and with it the information about the position before the current one.


## Moment Generating Functional

Analogous to the generating functional for a random variable one has

$$
\phi\{s(t)\}=\left\langle e^{i \int_{-\infty}^{+\infty} s(t) Y(t) d t}\right\rangle
$$

which can be thought of as the extension of a vector-valued random variable $Y_{i}$ to infinitely many components,

$$
\phi\left(s_{i}\right)=\left\langle e^{i \sum_{i} s_{i} Y_{i}}\right\rangle
$$

Again, it generates all moments of $Y(t)$ using Taylor expansion

$$
\begin{aligned}
\phi\{s(t)\} & =\left\langle 1+i \int s(t) Y(t) d t+\frac{1}{2}\left(\int s(t) Y(t) d t\right)^{2}+\ldots\right\rangle= \\
& =\sum_{i=0}^{\infty} \frac{i^{n}}{n!} \int s\left(t_{1}\right) \ldots s\left(t_{n}\right)\left\langle Y\left(t_{1}\right) \ldots Y\left(t_{n}\right)\right\rangle d t_{1} \ldots d t_{n}
\end{aligned}
$$

thus

$$
\left\langle Y\left(t_{1}\right) \ldots Y\left(t_{m}\right)\right\rangle=\left.(-i)^{m} \frac{\delta^{m} \phi\{s(t)\}}{\delta s\left(t_{1}\right) \ldots \delta s\left(t_{m}\right)}\right|_{s(t)=0}
$$

analogously to

$$
\left\langle Y_{1} \ldots Y_{m}\right\rangle=\left.(-i)^{m} \frac{\partial^{m} \phi\left(s_{1}, \ldots, s_{n}\right)}{\delta s_{1} \ldots \delta s_{m}}\right|_{s_{i}=0}
$$

### 3.1 Wiener-Khinchin Theorem ${ }^{3}$

For stationary stochastic processes there is a connection between the Fourier spectrum of the process and its autocorrelation. Often it is easier to determine the Fourier spectrum than to measure correlations directly. Then the Wiener-Khinchin theorem is useful.
Consider a stationary stochastic process $Y(t)$. Without loss of generality assume $Y(t)$ has vanishing mean.
For each realization of the underlying random variables the function $y(t)=f(X ; t)$ can be Fourier transformed

$$
y(t)=\sum_{n=-\infty}^{\infty} A_{n} e^{i \frac{2 \pi}{T} n t}
$$

with

$$
A_{n}=\frac{1}{T} \int_{0}^{T} e^{-\frac{2 \pi}{T} n t} y(t) d t
$$

Replacing $y(t)$ by the stochastic process $Y(t)$ the coefficients $A_{n}$ become random variables.

[^2]Using the Parseval identity

$$
\sum_{n=-\infty}^{\infty}\left|A_{n}\right|^{2}=\frac{1}{T} \int_{0}^{T}(Y(t))^{2} d t
$$

one gets for the averages

$$
\left.\left.\sum_{n=-\infty}^{\infty}\langle | A_{n}\right|^{2}\right\rangle=\frac{1}{T} \int_{0}^{T}\left\langle(Y(t))^{2}\right\rangle d t \underbrace{=}_{\text {stationary process }}\left\langle Y^{2}\right\rangle
$$

One can think of $\left\langle Y^{2}\right\rangle$ as the total 'energy' in the random process.
The coefficient $\left.\left.\langle | A_{n}\right|^{2}\right\rangle$ gives the 'energy' for the corresponding frequencies $\omega=\frac{2 \pi}{T} n$.
For very long averaging interval $T$ the frequencies lie densely, $\Delta \omega=2 \pi / T$, and one can introduce a spectral density

$$
S(\omega) \Delta \omega=\underbrace{2}_{Y \in \mathbb{R}: A_{-n}=A_{n}^{*}} \sum_{n=\frac{T}{2 \pi}\left(\omega-\frac{1}{2} \Delta \omega\right)}^{\frac{T}{2 \pi}\left(\omega+\frac{1}{2} \Delta \omega\right)}\left|A_{n}\right|^{2}
$$

Evaluate $\left.\left.\langle | A_{n}\right|^{2}\right\rangle \equiv\left\langle A_{n} A_{n}^{*}\right\rangle$

$$
\left.\left.\langle | A_{n}\right|^{2}\right\rangle=\frac{1}{T^{2}} \int_{0}^{T} d t \int_{0}^{T} d t^{\prime} e^{-i \frac{2 \pi}{T} n t^{\prime}+\frac{2 \pi}{T} t}\left\langle Y\left(t^{\prime}\right) Y(t)\right\rangle
$$

Since $\langle Y(t)\rangle=0$ we have

$$
\begin{aligned}
& \left\langle Y\left(t^{\prime}\right) Y(t)\right\rangle=C\left(t^{\prime}, t\right) \underbrace{=}_{\text {stationary }} C\left(t^{\prime}-t\right) \\
& \left.\left.\langle | A_{n}\right|^{2}\right\rangle \underbrace{=}_{\tau=t^{\prime}-t} \frac{1}{T^{2}} \int_{0}^{T} d t \int_{-t}^{T-t} d \tau e^{-i \frac{2 \pi}{T} n \tau} C(\tau)
\end{aligned}
$$

Assume the autocorrelation decays on a time scale $\tau_{c}$.


The $\tau$-integration interval ( $-t, T-t$ ) is shifted across $C(\tau)$ by the $t$-integration. Except for $-t \gtrsim-\tau_{c}$ and $T-t \lesssim \tau_{c}$ the whole support of $C(\tau)$ is covered by the $\tau$-integral. For $T \gg \tau_{c}$ those contributions become negligible and the $\tau$-integral can be extended to $(-\infty, \infty)$

$$
\left.\left.\langle | A_{n}\right|^{2}\right\rangle=\frac{1}{T^{2}} \int_{0}^{T} d t \int_{-\infty}^{\infty} d \tau e^{-i \frac{2 \pi}{T} n \tau} C(\tau)=\frac{1}{T} \int_{-\infty}^{\infty} d \tau e^{-i \frac{2 \pi}{T} n \tau} C(\tau)
$$

If $C(\tau)$ is smooth (no characteristic delay time at which something happens) then $\left.\left.\langle | A_{n}\right|^{2}\right\rangle$ depends smoothly on $n$ and $n$ can be replaced by the frequency $\omega$

$$
\left.\left.\langle | A_{n}\right|^{2}\right\rangle=\frac{1}{T} \int_{-\infty}^{\infty} d \tau e^{-i \omega \tau} C(\tau) \quad \text { with } \omega=\frac{2 \pi}{T} n
$$

To get to the spectral density need to count the number of modes in the frequency interval $\Delta \omega$

$$
\Delta n=\frac{\Delta \omega}{\frac{2 \pi}{T}}
$$

Therefore

$$
\left.\left.2 \sum_{n=\frac{T}{2 \pi}\left(\omega-\frac{1}{2} \Delta \omega\right)}^{\frac{T}{2 \pi}\left(\omega+\frac{1}{2} \Delta \omega\right)}\langle | A_{n}\right|^{2}\right\rangle=2 \frac{\Delta \omega}{\frac{2 \pi}{T}} \frac{1}{T} \int_{-\infty}^{\infty} d \tau e^{-i \omega \tau} C(\tau)
$$

and we have the Wiener-Khinchin theorem

$$
S(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} d \tau e^{-i \omega \tau} C(\tau)=2 C(\omega)
$$

The Fourier transform of the autocorrelation function is essentially given by the spectral density.

### 3.2 Markov Processes. Chapman-Kolmogorov Equation ${ }^{4}$

A Markov process is completely determined by $P_{1}(y, t)$ and $P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)$. Are there any conditions on these probabilities?

For any probability distributions one has to require

$$
\begin{align*}
P_{1}\left(y_{2}, t_{2}\right) & =\int d y_{1} P_{2}\left(y_{1}, t_{1} ; y_{2}, t_{2}\right)=  \tag{3}\\
& =\int d y_{1} P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) P_{1}\left(y_{1}, t_{1}\right)
\end{align*}
$$

and

$$
\begin{aligned}
P_{1 \mid 1}\left(y_{3}, t_{2} \mid y_{1}, t_{1}\right) & =\int d y_{2} P_{2 \mid 1}\left(y_{3}, t_{3} ; y_{2}, t_{2} \mid y_{1}, t_{1}\right)= \\
& =\int d y_{2} P_{1 \mid 2}\left(y_{3}, t_{3} \mid y_{2}, t_{2} ; y_{1}, t_{1}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)
\end{aligned}
$$

For Markov processes the second condition becomes for $t_{1}<t_{2}<t_{3}$

$$
\begin{equation*}
P_{1 \mid 1}\left(y_{3}, t_{2} \mid y_{1}, t_{1}\right)=\int d y_{2} P_{1 \mid 1}\left(y_{3}, t_{3} \mid y_{2}, t_{2}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) \tag{4}
\end{equation*}
$$

For stationary Markov processes only time differences matter

$$
P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)=T_{t_{2}-t_{1}}\left(y_{2}, \mid y_{1}\right)
$$

[^3]with $T_{\tau}\left(y_{2} \mid y_{1}\right)$ giving the transition probability of the process. It satisfies
\[

$$
\begin{equation*}
T_{\tau+\tau^{\prime}}\left(y_{3} \mid y_{1}\right)=\int T_{\tau}\left(y_{3} \mid y_{2}\right) T_{\tau^{\prime}}\left(y_{2} \mid y_{1}\right) d y_{2} \tag{5}
\end{equation*}
$$

\]



## Notes:

- Equation (3) determines in a straightforward manner the unconditional probability $P_{1}$ at the later time $t_{2}$ from $P_{1}$ at the earlier time $t_{1}$. Thus, we need to specify only $P_{1}\left(y, t_{0}\right)$ for some $t_{0}$.
- Equation (4) is the Chapman-Kolmogorov equation.
- The Chapman-Kolmogovor equation is a nonlinear integral equation for the conditional probability $P_{1 \mid 1}$. It is difficult to solve. It is easier to deal with in the form of a differential equation (see later (14) below).
- A Markov process is completely determined by solutions to $(3,4)$ and any such solution defines a Markov process.


## Examples

## 1. Wiener process

is defined by

$$
\begin{align*}
P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) & =\frac{1}{\sqrt{2 \pi\left(t_{2}-t_{1}\right)}} e^{-\frac{1}{2} \frac{\left(y_{2}-y_{1}\right)^{2}}{t_{2}-t_{1}}}  \tag{6}\\
P_{1}(y, 0) & =\delta(y)
\end{align*}
$$

which yields with (3)

$$
\begin{equation*}
P_{1}(y, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2} \frac{y^{2}}{t}} \tag{7}
\end{equation*}
$$

- The Wiener process is non-stationary ( $P_{1}$ depends explicitly on $t$ ).
- It satisfies the Chapman-Kolmogorov equation (check!).
- It was introduced to model the position of a particle undergoing Brownian motion or a random walker for long times (when the particle 'forgets' its previous velocity):
$P_{1}(y, t$,$) exhibits the diffusive spread expected from a random walker:$ distance that the walker can move during a given time interval:

$$
y_{2}-y_{1} \propto \sqrt{t_{2}-t_{1}}
$$

- path is continuous
- for short times distance can be large, no maximal velocity path need not be differentiable

$$
\frac{y_{2}-y_{1}}{\Delta t}=\mathcal{O}\left(\Delta t^{-\frac{1}{2}}\right) \rightarrow \infty \quad \text { for } \quad \Delta t \rightarrow 0
$$

- for large times it grows sublinearly: no ballistic motion


## 2. Poisson process

Consider $Y(t)$ taking on only integer values $n=0,1,2, \ldots$.
Define a Markov process via

$$
\begin{aligned}
P_{1}(n, 0) & =\delta_{n, 0} \\
P_{1 \mid 1}\left(n_{2}, t_{2} \mid n_{1}, t_{1}\right) & =\frac{\left(t_{2}-t_{1}\right)^{n_{2}-n_{1}}}{\left(n_{2}-n_{1}\right)!} e^{-\left(t_{2}-t_{1}\right)} \quad \text { for } n_{2}>n_{1}
\end{aligned}
$$

- Each sample function $y(t)$ consists of unit steps which occur at random times. The number of steps (increments $n_{2}-n_{1}$ ) between times $t_{2}$ and $t_{1}$ are Poissondistributed.
- The process is not stationary.


## 3. Ornstein-Uhlenbeck process

It is a stationary Markov process given by

$$
\begin{aligned}
P_{1}\left(y_{1}\right) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y_{1}^{2}} \\
T_{\tau}\left(y_{2} \mid y_{1}\right) & =\frac{1}{\sqrt{2 \pi\left(1-e^{-2 \tau}\right)}} e^{-\frac{1}{2} \frac{\left(y_{2}-y_{1} e^{-\tau}\right)^{2}}{\left(1-e^{-2 \tau}\right)}}
\end{aligned}
$$

## Notes:

- The Ornstein-Uhlenbeck process was introduced to model the velocity of a Brownian particle ( $v=y$ )
- Gaussian distribution
- Vanishing mean
- In contrast to the position of the Brownian particle, the velocity does not spread to large values, damping pushes it back to 0 . That makes the process stationary.
- Correlation function decays exponentially

$$
\begin{aligned}
C(\tau) & =\int y_{3} y_{1} P_{2}\left(y_{3}, y_{1}\right) d y_{3} d y_{1}= \\
& =\int y_{3} y_{1} T_{\tau}\left(y_{3} \mid y_{1}\right) P_{1}\left(y_{1}\right) d y_{3} d y_{1} \\
& =\ldots \text { complete the square etc. } \ldots \\
& =e^{-\tau}
\end{aligned}
$$

Over time the particle is hit so often that it 'forgets' its previous velocity: the correlation vanishes for $\tau \gg 1$

## 4. Doob's theorem:

i) The Ornstein-Uhlenbeck process is the only stationary, Gaussian Markov process.

Consider first a general stationary Gaussian process $Y(t)$ (possibly non-Markovian) after shifting the mean and rescaling $Y$ the distribution $P_{1}(y)$ can be written as

$$
P_{1}(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}}
$$

The process is stationary

$$
P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right) \equiv T_{\tau}\left(y_{2} \mid y_{1}\right)=d e^{-\frac{1}{2}\left(a y_{1}^{2}+2 b y_{1} y_{2}+c y_{2}^{2}\right)}
$$

$T_{\tau}\left(y_{2} \mid y_{1}\right)$ must be normalized (the particle has to end up somewhere)

$$
\begin{gathered}
\int T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}=1 \\
\int d e^{-\frac{1}{2}\left(a y_{1}^{2}+2 b y_{1} y_{2}+c y_{2}^{2}\right)} d y_{2}=d e^{-\frac{1}{2} a y_{1}^{2}} \int e^{-\frac{1}{2} c\left(y_{2}+\frac{b}{c} y_{1}\right)^{2}} d y_{2} e^{\frac{1}{2} \frac{b^{2}}{c} y_{1}^{2}}
\end{gathered}
$$

requiring

$$
a=\frac{b^{2}}{c} \quad d=\sqrt{\frac{c}{2 \pi}}
$$

Also, the consistency condition (3) requires

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y_{2}^{2}} & =\int T_{\tau}\left(y_{2} \mid y_{1}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y_{1}^{2}} d y_{1}= \\
1 & =d e^{\frac{1}{2} c y_{2}^{2}} \int e^{-\frac{1}{2}\left(a y_{1}^{2}+2 b y_{1} y_{2}-y_{1}^{2}\right)} e^{-\frac{1}{2} y_{1}^{2}} d y_{1}
\end{aligned}
$$

which leads to

$$
b^{2}=c(c-1)
$$

Express remaining unknown $c$ in terms of the correlation function $C(\tau)$

$$
\begin{aligned}
C(\tau) & =\int y_{2} y_{1} T_{\tau}\left(y_{2} \mid y_{1}\right) P_{1}\left(y_{1}\right) d y_{2} d y_{1}= \\
& =\frac{d}{\sqrt{2 \pi}} \int y_{2} y_{1} e^{-\frac{1}{2}\left(a y_{1}^{2}+2 b y_{1} y_{2}-y_{1}^{2}\right)} e^{-\frac{1}{2} c y_{1}^{2}} d y_{1} d y_{2}
\end{aligned}
$$

yielding

$$
c=\frac{1}{1-C(\tau)^{2}}
$$

This results in

$$
\begin{equation*}
T_{\tau}\left(y_{2} \mid y_{1}\right)=\frac{1}{\sqrt{2 \pi\left(1-C(\tau)^{2}\right)}} e^{-\frac{1}{2} \frac{\left(y_{2}-C(\tau) y_{1}\right)^{2}}{1-C(\tau)^{2}}} \tag{8}
\end{equation*}
$$

## Note:

- Any stationary Gaussian process can be written in the form (8). Different stationary Gaussian processes differ only in their correlation functions and their means.

Now consider a Markovian stationary Gaussian process.
To make use of the Markov property introduce $t_{3}>t_{2}$

$$
C\left(t_{3}-t_{1}\right)=\int y_{3} y_{1} T_{t_{3}-t_{1}}\left(y_{3} \mid y_{1}\right) P_{1}\left(y_{1}\right) d y_{3} d y_{1}
$$

and use

$$
\begin{gathered}
T_{t_{3}-t_{1}}\left(y_{3} \mid y_{1}\right)=\int T_{t_{3}-t_{2}}\left(y_{3} \mid y_{2}\right) T_{t_{2}-t_{1}}\left(y_{2} \mid y_{1}\right) d y_{2} \\
C\left(t_{3}-t_{1}\right)=\int y_{3} d y_{3} \int T_{\tau^{\prime}}\left(y_{3} \mid y_{2}\right) T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2} \int y_{1} P_{1}\left(y_{1}\right) d y_{1}
\end{gathered}
$$

Evaluating the triple integral yields (done in maple or mathematica) gives

$$
C\left(t_{3}-t_{1}\right)=C\left(t_{3}-t_{2}\right) \cdot C\left(t_{2}-t_{1}\right)
$$

To solve this functional relation take derivative with respect to $t_{2}$ which is an arbitrary intermediate time

$$
0=-C^{\prime}\left(t_{3}-t_{2}\right) \cdot C\left(t_{2}-t_{1}\right)+C\left(t_{3}-t_{2}\right) \cdot C^{\prime}\left(t_{2}-t_{1}\right)
$$

implying

$$
\frac{C^{\prime}\left(t_{3}-t_{2}\right)}{C\left(t_{3}-t_{2}\right)}=\frac{C^{\prime}\left(t_{2}-t_{1}\right)}{C\left(t_{2}-t_{1}\right)}
$$

For fixed $t_{2}$ the left-hand side depends on $t_{3}$ while the right-hand side depends on $t_{1}$
$\Rightarrow$ both sides have to be constant,

$$
\begin{aligned}
\frac{C^{\prime}(\tau)}{C(\tau)} & =\text { const } \\
C(\tau) & =e^{-\gamma \tau}
\end{aligned}
$$

with $\gamma$ the correlation time. Thus the process is the Ornstein-Uhlenbeck process.
ii) Any stationary Gaussian process with exponential correlation function is Markovian.

Show first that a Gaussian process is completely determined by its mean $\langle Y(t)\rangle$ and its correlation $C\left(t_{1}, t_{2}\right)$.
Consider the generating function of the process, which completely determines the process,

$$
\phi\{s(t)\}=\left\langle e^{i \int_{-\infty}^{+\infty} s(t) Y(t) d t}\right\rangle .
$$

Allowing $t$ to be a continuous variable the expectation value is given by a path integral,

$$
\left\langle e^{i \int_{-\infty}^{+\infty} s(t) Y(t) d t}\right\rangle=\int P\{Y(t)\} e^{i \int_{-\infty}^{+\infty} s(t) Y(t) d t} d Y(t)
$$

Consider first discrete times $t_{j}, j=1 . . N$ and consider then the limit $N \rightarrow \infty$.
The process is Gaussian

$$
P_{N}\left(y_{N}, t_{N} ; \ldots ; y_{1}, t_{1}\right)=\frac{1}{\mathcal{N}} e^{-\frac{1}{2} \sum_{i j=1}^{N}\left(y_{i}-\bar{y}_{i}\right) A_{i j}\left(y_{j}-\bar{y}_{j}\right)}
$$

where $\overline{\mathbf{y}}$ is the mean, $\mathbf{A}$ is the inverse of the correlation matrix, and $\mathcal{N}$ is a normalization. Generating function

$$
\phi\left(s_{1}, \ldots, s_{N}\right)=\frac{1}{\mathcal{N}} \int d y_{1} \ldots d y_{n} e^{i \sum_{j} s_{j} y_{j}} e^{-\frac{1}{2} \sum_{i j=1}^{N}\left(y_{i}-\bar{y}_{i}\right) A_{i j}\left(y_{j}-\bar{y}_{j}\right)}
$$

The multiple Gaussian integrals will give again Gaussians with the mean appearing in the imaginary term: as illustration, consider the scalar case $N=1$

$$
\int e^{i s y-\frac{1}{2} A(y-\bar{y})^{2}} d y=\int e^{-\frac{1}{2} A\left(y-\bar{y}-\frac{1}{A} i s\right)^{2}} d y \cdot e^{+\frac{1}{2} A \bar{y} \frac{1}{A} i s+\frac{1}{2} A\left(\frac{i s}{A}\right)^{2}}
$$

Thus

$$
\phi\left(s_{1}, \ldots, s_{N}\right) \propto e^{i \sum_{j} s_{j} \alpha_{j}-\frac{1}{2} \sum_{i j} s_{i} \beta_{i j} s_{j}}
$$

In the limit $N \rightarrow \infty$ the sums turn into integrals

$$
\phi\{s(t)\}=\frac{1}{\mathcal{N}^{\prime}} e^{i \int s(t) \alpha(t) d t-\frac{1}{2} \int s(t) \beta\left(t, t^{\prime}\right) s\left(t^{\prime}\right) d t d t^{\prime}}
$$

where $\beta\left(t, t^{\prime}\right)$ can be assumed to be symmetric, $\beta\left(t, t^{\prime}\right)=\beta\left(t^{\prime}, t\right)$, since the anti-symmetric part does not contribute to the integral.
Also, since $\phi\{s(t)=0\}=1$ we have $\mathcal{N}^{\prime}=1$.
Thus, the Gaussian process is determined completely by the functions $\alpha(t)$ and $\beta\left(t, t^{\prime}\right)$.
We know

$$
\begin{aligned}
\left.\frac{\delta \phi\{s(t)\}}{\delta s\left(t_{a}\right)}\right|_{s(t)=0} & =-i\left\langle Y\left(t_{a}\right)\right\rangle \\
\left.\frac{\delta^{2} \phi\{s(t)\}}{\delta s\left(t_{a}\right) \delta s\left(t_{b}\right)}\right|_{s(t)=0} & =-\left\langle Y\left(t_{a}\right) Y\left(t_{b}\right)\right\rangle=-C\left(t_{a}, t_{b}\right)-\left\langle Y\left(t_{a}\right)\right\rangle\left\langle Y\left(t_{b}\right)\right\rangle
\end{aligned}
$$

Evaluating the derivatives we get

$$
\begin{gather*}
\left.\left(i \alpha\left(t_{a}\right)-\frac{1}{2}\left(\int \beta\left(t_{a}, t^{\prime}\right) s\left(t^{\prime}\right) d t^{\prime}+\int s(t) \beta\left(t, t_{a}\right) d t\right)\right) \phi\{s(t)\}\right|_{s(t)=0}=-i\langle Y(t)\rangle \\
i \alpha(t)=-i\langle Y(t)\rangle \tag{9}
\end{gather*}
$$

and

$$
\left.\left(-\alpha\left(t_{a}\right) \alpha\left(t_{b}\right)-\frac{1}{2}\left[\beta\left(t_{a}, t_{b}\right)+\beta\left(t_{b}, t_{a}\right)\right]\right) \phi\{s(t)\}\right|_{s(t)=0}=-\alpha\left(t_{a}\right) \alpha\left(t_{b}\right)-\beta\left(t_{a}, t_{b}\right)
$$

leading to

$$
\begin{equation*}
\beta\left(t_{a}, t_{b}\right)=-\left\langle Y\left(t_{a}\right)\right\rangle\left\langle Y\left(t_{b}\right)\right\rangle-\left(-C\left(t_{a}, t_{b}\right)-\left\langle Y\left(t_{a}\right)\right\rangle\left\langle Y\left(t_{b}\right)\right\rangle\right)=C\left(t_{a}, t_{b}\right) \tag{10}
\end{equation*}
$$

Thus, for a Gaussian process the mean and the correlation function are sufficient to determine $\phi\{s(t)\}$ completely. Since $\phi\{s(t)\}$ generates all probability distributions, such a process is completely determined by its mean and correlation function.

Now: if the process is stationary and the correlation function of the process is exponential, $C\left(t_{a}-t_{b}\right)=e^{-\left(t_{a}-t_{b}\right)}$, it has the same correlations as the Ornstein-Uhlenbeck process and therefore must be identical to the Ornstein-Uhlenbeck process, which is Markovian.

## Consequence:

- For a Gaussian stationary process exponential correlations imply that the process is Markovian.


## Note:

- Inserting the exponentially decaying correlation function into (8) is not sufficient to show that the process is the Ornstein-Uhlenbeck process; we need to show that the process does not differ from the Ornstein-Uhlenbeck process in higher probability distribution functions like $P_{1 \mid 2}\left(y_{3}, t_{3} \mid y_{2}, t_{2} ; y_{1}, t_{1}\right)$. We did this by showing that a Gaussian process is completely determined by its mean and its correlation.


### 3.3 Master Equation ${ }^{5}$

The Chapman-Kolmogorov equation is a nonlinear integral equation for the transition probability and difficult to solve even in the stationary case

$$
T_{\tau+\tau^{\prime}}\left(y_{3} \mid y_{1}\right)=\int T_{\tau}\left(y_{3} \mid y_{2}\right) T_{\tau^{\prime}}\left(y_{2} \mid y_{1}\right) d y_{2}
$$

One can simplify it if the transition probability has a simple form for small durations $\tau$

$$
\begin{equation*}
T_{\tau}\left(y_{2} \mid y_{1}\right)=\tau \underbrace{W\left(y_{2} \mid y_{1}\right)}_{\text {transition rate }}+\underbrace{\left(1-a_{0}\left(y_{1}\right) \tau\right)}_{\text {probability that } y \text { stays at } y_{1}} \delta\left(y_{2}-y_{1}\right)+o(\tau) \tag{11}
\end{equation*}
$$

( $o(\tau)$ are terms that are smaller than $\mathcal{O}(\tau)$, they could in principle be bigger than $\mathcal{O}\left(\tau^{2}\right)$, e.g. $\mathcal{O}(\tau \ln \tau))$

## Note:

- $W\left(y_{2} \mid y_{1}\right)$ is the probability to jump from $y_{1}$ to $y_{2}$ during time $\tau$ : it is a transition rate

[^4]Total probability is conserved

$$
\begin{gather*}
1=\int T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}=1-a_{0}\left(y_{1}\right) \tau+\tau \int W\left(y_{2} \mid y_{1}\right) d y_{2} \\
a_{0}\left(y_{1}\right)=\int W\left(y_{2} \mid y_{1}\right) d y_{2} \tag{12}
\end{gather*}
$$

## Note:

- the higher the probability to jump away to any location $y_{2}$ the lower the probability to stay at $y_{1}$
- the ansatz (11) implies discontinuous solutions $y(t)$ :
even for arbitrarily small time intervals $\tau$ the rate $W\left(y_{2} \mid y_{1}\right)$ with which the particle jumps a finite distance $y_{2}-y_{1}$ is finite (and independent of the duration)
- to get a continuous Markov process one needs in general (another Lindeberg condition)

$$
\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{\left|y_{2}-y_{1}\right|>\epsilon} T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}=0 \quad \text { for any } \epsilon>0
$$

here one gets

$$
\int_{\left|y_{2}-y_{1}\right|>\epsilon} W\left(y_{2} \mid y_{1}\right) d y_{2}=0 \quad \text { for any } \epsilon>0
$$

implying

$$
W\left(y_{2} \mid y_{1}\right)=0
$$

Now use this expansion in the Chapman-Kolmogorov equation for small $\tau^{\prime}$

$$
\begin{aligned}
T_{\tau+\tau^{\prime}}\left(y_{3} \mid y_{1}\right) & =\int \delta\left(y_{3}-y_{2}\right)\left(1-a_{0}\left(y_{2}\right) \tau^{\prime}\right) T_{\tau}\left(y_{2} \mid y_{1}\right)+\tau^{\prime} W\left(y_{3} \mid y_{2}\right) T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}= \\
& =\left(1-a_{0}\left(y_{3}\right) \tau^{\prime}\right) T_{\tau}\left(y_{3} \mid y_{1}\right)+\tau^{\prime} \int W\left(y_{3} \mid y_{2}\right) T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}
\end{aligned}
$$

for $\tau^{\prime} \rightarrow 0$

$$
\frac{d}{d \tau} T_{\tau}\left(y_{3} \mid y_{1}\right)=-a_{0}\left(y_{3}\right) T_{\tau}\left(y_{3} \mid y_{1}\right)+\int W\left(y_{3} \mid y_{2}\right) T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}
$$

replacing $a_{0}\left(y_{3}\right)$ by using the conservation of probability (12) we get the master equation

$$
\begin{equation*}
\frac{d}{d \tau} T_{\tau}\left(y_{3} \mid y_{1}\right)=\int \underbrace{W\left(y_{3} \mid y_{2}\right) T_{\tau}\left(y_{2} \mid y_{1}\right)}_{\text {rate of jumps into } y_{3}}-\underbrace{W\left(y_{2} \mid y_{3}\right) T_{\tau}\left(y_{3} \mid y_{1}\right)}_{\text {rate of jumps out of } y_{3}} d y_{2} \tag{13}
\end{equation*}
$$

## Notes:

- the master equation describes the increase and decrease of the probability of a state due to 'fluxes' into and out of that state (somewhat similar to a continuity equation)
- a similar master equation can also be derived for the non-stationary case
- for many systems the transition rates $W\left(y_{2} \mid y_{1}\right)$ can be determined (measured, modeled) more easily than the full transition probabilities $T_{\tau}\left(y_{2} \mid y_{1}\right)$. One can then use the master equation to determine $T_{\tau}\left(y_{2} \mid y_{1}\right)$.

For systems with discrete states one gets the analogous master equation

$$
\frac{d}{d \tau} T_{\tau}\left(n_{3} \mid n_{1}\right)=\sum_{n_{2}} \underbrace{W\left(n_{3} \mid n_{2}\right) T_{\tau}\left(n_{2} \mid n_{1}\right)}_{\text {rate of jumps into } y_{3}}-\underbrace{W\left(n_{2} \mid n_{3}\right) T_{\tau}\left(n_{3} \mid n_{1}\right)}_{\text {rate of jumps out of } y_{3}}
$$

### 3.4 Differential Chapman-Kolmogorov Equation ${ }^{6}$

Consider different limit to include also continuous processes. Focus again on stationary case.

Assume for all $\epsilon>0$ :

1. jumps: for $\left|y_{2}-y_{1}\right| \geq \epsilon$

$$
\lim _{\tau \rightarrow 0} \frac{1}{\tau} T_{\tau}\left(y_{2} \mid y_{1}\right)=\underbrace{W\left(y_{2} \mid y_{1}\right)}_{\text {jump rate }}
$$

2. continous component: mean distance moved during small time intervals

$$
\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{\left|y_{2}-y_{1}\right|<\epsilon}\left(y_{2}-y_{1}\right) T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}=A\left(y_{1}\right)+\mathcal{O}(\epsilon)
$$

3. continous component: mean spread during small time intervals

$$
\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{\left|y_{2}-y_{1}\right|<\epsilon}\left(y_{2}-y_{1}\right)^{2} T_{\tau}\left(y_{2} \mid y_{1}\right) d y_{2}=B\left(y_{1}\right)+\mathcal{O}(\epsilon)
$$

Calculate the evolution of $\langle f(y)\rangle$ for a smooth $f(y)$. Since $f(y)$ is arbitrary that expecation value will generate equation for $T_{\tau}\left(y_{2} \mid y_{1}\right)$

$$
\langle f(y)\rangle=\int f(y) T_{t}\left(y \mid y_{1}\right) d y
$$

This average depends on $t$ through $T_{t}\left(y \mid y_{1}\right)$ and it also depends on the initial value $y_{1}$

$$
\frac{d}{d t}\left\langle f(y\rangle=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int f\left(y_{3}\right)\left[T_{t+\Delta t}\left(y_{3} \mid y_{1}\right)-T_{t}\left(y_{3} \mid y_{1}\right)\right] d y_{3}\right.
$$

Using the Chapman-Kolmogorov equation we get

$$
\frac{d}{d t}\left\langle f(y\rangle=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int f\left(y_{3}\right)\left[\int T_{\Delta t}\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right) d y_{2}-T_{t}\left(y_{3} \mid y_{1}\right)\right] d y_{3}\right.
$$

Make now use of the assumptions for small $\Delta t$ :

[^5]- there is a contribution from jumps via $W\left(y_{3} \mid y_{1}\right)$
- smooth part of $T_{\Delta t}\left(y_{3} \mid y_{2}\right)$ is peaked near $\left|y_{3}-y_{2}\right| \ll 1$

Expand $f\left(y_{3}\right)$

$$
f\left(y_{3}\right)=f\left(y_{2}\right)+\left(y_{3}-y_{2}\right) f^{\prime}\left(y_{2}\right)+\frac{1}{2}\left(y_{3}-y_{2}\right) f^{\prime \prime}\left(y_{2}\right)+\ldots
$$

Separate integral to use the expansion only in the domain $\left|y_{3}-y_{2}\right|<\epsilon$,

$$
\begin{aligned}
\int d y_{3} \int d y_{2} \ldots= & \iint_{\left|y_{3}-y_{2}\right|<\epsilon} d y_{3} d y_{2} f\left(y_{2}\right) T_{\Delta t}\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)+ \\
& +\iint_{\left|y_{3}-y_{2}\right|<\epsilon} d y_{3} d y_{2}\left(\left(y_{3}-y_{2}\right) f^{\prime}\left(y_{2}\right)+\frac{1}{2}\left(y_{3}-y_{2}\right) f^{\prime \prime}\left(y_{2}\right)\right) T_{\Delta t}\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)+ \\
& +\iint_{\left|y_{3}-y_{2}\right| \geq \epsilon} d y_{3} d y_{2} f\left(y_{3}\right) T_{\Delta t}\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)- \\
& -\int d y_{3} f\left(y_{3}\right) T_{t}\left(y_{3} \mid y_{1}\right) \cdot \underbrace{\int d y_{2} T_{\Delta t}\left(y_{2} \mid y_{3}\right)}_{=1 \text { inserted }}
\end{aligned}
$$

In $2^{\text {nd }}$ integral perform integration over $y_{3}$ using the definitions for $A$ and $B$. In $3^{r d}$ and $4^{\text {th }}$ integral exchange the dummy integration variables $y_{2}$ and $y_{3}$.
The $1^{\text {st }}$ integral removes the range $\left|y_{3}-y_{2}\right|<\epsilon$ from the $4^{\text {th }}$ integral

$$
\begin{aligned}
\frac{d}{d t}\langle f(y\rangle= & \int\left[f^{\prime}\left(y_{2}\right) A\left(y_{2}\right)+\frac{1}{2} f^{\prime \prime}\left(y_{2}\right) B\left(y_{2}\right)\right] T_{t}\left(y_{2} \mid y_{1}\right) d y_{2}+ \\
& +\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\iint_{\left|y_{3}-y_{2}\right|>\epsilon} f\left(y_{2}\right)\left(T_{\Delta t}\left(y_{2} \mid y_{3}\right) T_{t}\left(y_{3} \mid y_{1}\right)-T_{\Delta t}\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right) d y_{2} d y_{3}\right]
\end{aligned}
$$

Integrate $1^{\text {st }}$ integral by parts

$$
\begin{aligned}
\frac{d}{d t} \int f\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right) d y_{2}= & \int f\left(y_{2}\right)\left[-\frac{\partial}{\partial y_{2}}\left(A\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{2}^{2}}\left(B\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)\right] d y_{2}+ \\
& +\int d y_{2} f\left(y_{2}\right) \int_{\left|y_{3}-y_{2}\right|>\epsilon} d y_{3}\left(W\left(y_{2} \mid y_{3}\right) T_{t}\left(y_{3} \mid y_{1}\right)-W\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)
\end{aligned}
$$

Since $f(y)$ is arbitrary the integrands have to be equal and one gets the differential ChapmanKolmogorov equation

$$
\begin{align*}
\frac{\partial}{\partial t} T_{t}\left(y_{2} \mid y_{1}\right)= & -\frac{\partial}{\partial y_{2}}\left(A\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{2}^{2}}\left(B\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)+  \tag{14}\\
& +\int_{\left|y_{3}-y_{2}\right|>\epsilon} d y_{3}\left(W\left(y_{2} \mid y_{3}\right) T_{t}\left(y_{3} \mid y_{1}\right)-W\left(y_{3} \mid y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)
\end{align*}
$$

## Note:

- Strictly speaking, the integral is actually the Cauchy principal value, i.e. in the limit $\epsilon \rightarrow 0$. The Cauchy principal value need not exist if $W\left(y_{2} \mid y_{3}\right)$ diverges for $y_{2} \rightarrow y_{3}$. We will assume in the following that there is no such problem and will write simply the usual integral sign instead.
- For boundary terms to vanish restrict $f(y)$ such that it vanishes outside the domain of interest.

The differential Chapman-Kolmogorov equation can also be derived in the non-stationary case,

$$
\begin{align*}
\frac{\partial}{\partial t} P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)= & -\frac{\partial}{\partial y_{2}}\left(A\left(y_{2}, t_{2}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)\right)+  \tag{15}\\
& +\frac{1}{2} \frac{\partial^{2}}{\partial y_{2}^{2}}\left(B\left(y_{2}, t_{2}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)\right)+ \\
& +\int_{\left|y_{3}-y_{2}\right|>\epsilon} d y_{3}\left(W\left(y_{2} \mid y_{3}, t_{3}\right) P_{1 \mid 1}\left(y_{3}, t_{3} \mid y_{1}, t_{1}\right)-W\left(y_{3} \mid y_{2}, t_{2}\right) P_{1 \mid 1}\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)\right)
\end{align*}
$$

The integral term corresponds to the master equation (13) and describes jumps. We will discuss the meaning of the other two terms below.

From this equation for the transition probability one can also obtain an equation for the probability $P(y, t) \equiv P_{1}(y, t)=\int P_{1 \mid 1}\left(y, t \mid y_{1}, 0\right) P\left(y_{1}, 0\right) d y_{1}$ by multiplying (14) or (15) by $P\left(y_{1}, 0\right)$ and integrating over $y_{1}$

$$
\begin{align*}
\frac{\partial}{\partial t} P(y, t)= & -\frac{\partial}{\partial y}(A(y, t) P(y, t))++\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}(B(y, t) P(y, t))+  \tag{16}\\
& +\int_{\left|y-y_{3}\right|>\epsilon} W\left(y \mid y_{3}, t_{3}\right) P\left(y_{3}, t_{3}\right)-W\left(y_{3} \mid y, t\right) P(y, t) d y_{3}
\end{align*}
$$

### 3.4.1 Drift Term

Consider

$$
\begin{equation*}
\frac{\partial}{\partial t} T_{t}\left(y \mid y_{1}\right)=-\frac{\partial}{\partial y}\left(A(y) T_{t}\left(y \mid y_{1}\right)\right) \tag{17}
\end{equation*}
$$

Introduce $y_{0}(t)$ satisfying

$$
\begin{equation*}
\frac{d}{d t} y_{0}=A\left(y_{0}, t\right) \quad \text { with } y_{0}(0)=y_{1} \tag{18}
\end{equation*}
$$

Show that

$$
T_{t}\left(y \mid y_{1}\right)=\delta\left(y-y_{0}(t)\right)
$$

satisfies the drift equation (17).
Left-hand side

$$
\frac{\partial}{\partial t} T_{t}\left(y \mid y_{1}\right)=-\frac{d}{d y} \delta\left(y-y_{0}(t)\right) \cdot \frac{d}{d t} y_{0}=-\frac{d}{d y} \delta\left(y-y_{0}(t)\right) \cdot A\left(y_{0}, t\right)
$$

To evaluate the right-hand-side of (17) use the definition of distributions like the $\delta$-function or its derivative via integrals over smooth functions ${ }^{7}$,

$$
\begin{aligned}
\int f(y)\left[\frac{\partial}{\partial y}\left(A(y) \delta\left(y-y_{0}(t)\right)\right)\right] d y & =-\int f^{\prime}(y) A(y) \delta\left(y-y_{0}(t)\right) d y= \\
& =-f^{\prime}\left(y_{0}(t)\right) A\left(y_{0}\right)= \\
& =-\int A\left(y_{0}\right) f^{\prime}(y) \delta\left(y-y_{0}(t)\right) d y= \\
& =\int f(y)\left[A\left(y_{0}\right) \frac{d}{d y} \delta\left(y-y_{0}(t)\right)\right] d y
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(A(y) T_{t}\left(y \mid y_{1}\right)\right) & =\frac{d}{d y}\left(A\left(y_{0}(t)\right) \delta\left(y-y_{0}(t)\right)\right) \\
& =A\left(y_{0}(t)\right) \frac{d}{d y} \delta\left(y-y_{0}(t)\right)
\end{aligned}
$$

## Notes:

- the drift equation describes the deterministic motion of a particle with velocity $A\left(y_{0}\right)$ : if it initially has the well-defined position $y_{1}$ it stays on the trajectory given by (18)
- using

$$
P_{1}(y, t)=T_{t}\left(y \mid y_{1}\right) P_{1}\left(y_{1}, 0\right)
$$

(17) yields

$$
\frac{\partial}{\partial t} P_{1}(y, t)=-\frac{\partial}{\partial y}\left(A(y) P_{1}(y, t)\right)
$$

which is the Liouville equation of statistical mechanics for the evolution of the probability distribution of an ensemble of particles evolving deterministically under (18).
Example: for the spring-mass system (harmonic oscillator) the motion in phase space $(x, v)$ is given by an ellipse. The motion of the individual harmonic oscillator (marked by circles) is described by $P_{1}(y, t)=\delta\left(y-y_{0}(t)\right)$. The evolution of an ensemble of harmonic oscillators is given by the motion of the marked region.

[^6]

### 3.4.2 Diffusion Term

Consider

$$
\frac{\partial}{\partial t} T_{t}\left(y \mid y_{1}\right)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(B(y) T_{t}\left(y \mid y_{1}\right)\right)
$$

Determine evolution of a $\delta$-peak for short times

$$
T_{0}\left(y \mid y_{1}\right)=\delta\left(y-y_{1}\right)
$$

Initially $T_{t}\left(y \mid y_{1}\right)$ is so sharply peaked that the derivative of $B(y)$ can be ignored

$$
\frac{\partial}{\partial t} T_{t}\left(y \mid y_{1}\right)=\frac{1}{2} B(y) \frac{\partial^{2}}{\partial y^{2}} T_{t}\left(y \mid y_{1}\right)
$$

Since $T_{t}\left(y \mid y_{1}\right)$ is sharply peaked at $y_{1}$ one can initially also ignore the $y$-dependence of $B(y)$ and gets then

$$
T_{\Delta t}\left(y \mid y_{1}\right)=\frac{1}{\sqrt{2 \pi B \Delta t}} e^{-\frac{1}{2} \frac{\left(y-y_{1}\right)^{2}}{B \Delta t}}
$$

Again for $P_{1}(y, 0)=\delta\left(y-y_{1}\right)$ one gets

$$
P_{1}(y, \Delta t)=\frac{1}{\sqrt{2 \pi B \Delta t}} e^{-\frac{1}{2} \frac{\left(y-y_{1}\right)^{2}}{B \Delta t}}
$$

## Notes:

- This term describes diffusion-like spreading of the probability distribution
- the sample paths are continuous: only transitions with $y-y_{1}=\mathcal{O}\left(\Delta t^{\frac{1}{2}}\right)$ are likely, i.e. $y-y_{1} \rightarrow 0$ for $\Delta t \rightarrow 0$
- the sample paths need not be differentiable:

$$
\frac{y-y_{1}}{\Delta t}=\mathcal{O}\left(\Delta t^{-\frac{1}{2}}\right) \rightarrow \infty
$$

- Together, the drift term and the diffusion term constitute the Fokker-Planck equation for $T_{t}\left(y_{2} \mid y_{1}\right)$

$$
\begin{equation*}
\frac{\partial}{\partial t} T_{t}\left(y_{2} \mid y_{1}\right)=-\frac{\partial}{\partial y_{2}}\left(A\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{2}^{2}}\left(B\left(y_{2}\right) T_{t}\left(y_{2} \mid y_{1}\right)\right) \tag{19}
\end{equation*}
$$

or for $P(y, t)$

$$
\begin{equation*}
\frac{\partial}{\partial t} P(y, t)=-\frac{\partial}{\partial y}(A(y, t) P(y, t))++\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}(B(y, t) P(y, t)) \tag{20}
\end{equation*}
$$

## 4 Fokker-Planck Equation

### 4.1 The Rayleigh Particle ${ }^{8}$

Consider a Brownian particle on time scales that may be shorter than the correlation time for the velocity, but still much longer than the time between individual collisions:

- the velocity $v$ should be Markovian
- the position $x$ need not be Markovian: for short enough times the particle 'remembers' its previous position

Describe the velocity of the particle: forces of the collisions are finite therefore the velocity is continuous $\rightarrow$ only Fokker-Planck terms contribute.
How do we get the coefficients for the drift and the diffusion?
Macroscopically, averaging over all the collisions, the particle is exposed to drag

$$
\frac{d}{d t} v=-\gamma v
$$

From the Fokker-Planck equation we get

$$
\begin{array}{rlrl}
\frac{d}{d t}\langle V\rangle & & \int d v v \frac{\partial}{\partial t} T_{t}\left(v \mid v_{1}\right)= \\
& = & & \int d v\left\{-v \frac{\partial}{\partial v}\left(A(v) T_{t}\left(v \mid v_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial v^{2}}\left(B(v) T_{t}\left(v \mid v_{1}\right)\right)\right\}= \\
\underbrace{=} & & \int d v A(v) T_{t}\left(v \mid v_{1}\right)= \\
\text { integrate by parts } \\
= & & \langle A(V)\rangle
\end{array}
$$

[^7]Choose

$$
A(v)=-\gamma v
$$

then

$$
\begin{equation*}
\langle A(V)\rangle=-\langle\gamma V\rangle=-\gamma\langle V\rangle \tag{21}
\end{equation*}
$$

and the mean satisfies the macroscopic equation.

## Note:

- For nonlinear $A(v)$ one has

$$
\langle A(v)\rangle \neq A(\langle v\rangle)
$$

and the mean $\langle V\rangle$ would not necessarily satisfy the macroscopic equation.
This leads to corrections (see Sec.4.2).
The coefficient $B(v)$ describes the diffusive spread of the velocity due to the randomness of the collisions: 'noise'. In the steady state one gets a stationary probability distribution function for $V$.
In thermodynamic equilibrium the velocity is distributed according to the Maxwell distribution,

$$
P_{e}(v)=\sqrt{\frac{M}{2 \pi k T}} e^{-\frac{1}{2} \frac{M v^{2}}{k T}}
$$

where $M$ is the mass of the particle, $k$ is the Boltzmann constant, and $T$ is the temperature. Note the Boltzmann form of the distribution $P_{e} \propto e^{-E / k T}$. $P_{e}$ has to satisfy the Fokker-Planck equation (20)

$$
\begin{aligned}
0 & =\gamma \frac{\partial}{\partial v}\left(v P_{e}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial v^{2}}\left(B(v) P_{e}(v)\right)= \\
& =\gamma P_{e}+\gamma v\left(-\frac{M v}{k T}\right) P_{e}+\frac{1}{2} \underbrace{B}_{\text {try constant } B}\left[-\frac{M}{k T}+\left(\frac{M v}{k T}\right)^{2}\right] P_{e}
\end{aligned}
$$

Comparing coefficients generates two conditions

$$
\gamma=\frac{B M}{2 k T} \quad \frac{M \gamma}{k T}=\frac{1}{2} B \frac{M^{2}}{k^{2} T^{2}}
$$

Since they are consistent with each other we have a solution and have determined the noise term in the Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial}{\partial t} P(v, t)=\gamma \frac{\partial}{\partial v}(v P(v, t))+\gamma \frac{k T}{M} \frac{\partial^{2}}{\partial v^{2}} P(v, t) \tag{22}
\end{equation*}
$$

and in the analogous equation for $T_{t}\left(y_{2} \mid y_{1}\right)$.

## Notes:

- $B \equiv\left\langle(\Delta v)^{2}\right\rangle / \Delta t$ gives the strength of the fluctuations. It is related to the drag, which represents the dissipation: ${ }^{9}$

$$
\underbrace{\frac{\left\langle(\Delta v)^{2}\right\rangle}{2 \Delta t}}_{\text {fluctuations }}=B=\underbrace{\gamma \frac{k T}{M}}_{\text {dissipation }} \quad \text { both Einstein-like relations combined }
$$

This illustrates that fluctuations and dissipation are due to the same mechanism: collisions with other particles.
In statistical mechanics the fluctuation-dissipation theorem gives a quite general relation between fluctuations (correlations) and dissipation (response functions) in the linear regime near equilibrium [28, p.89].

To determine the moment $\left\langle X(t) X\left(t^{\prime}\right)\right\rangle$ we need the transition probability $T_{t}\left(v \mid v_{1}\right)$ in addition to $P(v, t)$. The Fokker-Planck equation for the transition probability is solved by the transition probability of the Ornstein-Uhlenbeck process

$$
T_{t}\left(v \mid v_{1}\right)=\sqrt{\frac{M}{2 \pi k T\left(1-C(t)^{2}\right)}} e^{-\frac{1}{2} \frac{M\left(v-v_{1} C(t)\right)^{2}}{k T\left(1-C(t)^{2}\right)}}
$$

with

$$
C(t)=e^{-\gamma t}
$$

and

$$
P_{1}(v)=\sqrt{\frac{M}{2 \pi k T}} e^{-\frac{1}{2} \frac{M v^{2}}{k T}}
$$

Consider now the position $x(t)$ of the particle

$$
X(t)=\int_{0}^{t} V\left(t^{\prime}\right) d t^{\prime}
$$

where we assume $X(0)=0 . V(t)$ is a Gaussian process. Since the sum of Gaussian processes is again a Gaussian process, $X(t)$ is also a Gaussian process.

We want $\langle X(t)\rangle$ and $\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle$ for a particle that starts at a fixed position $x=0$. The average is over the different realizations of the random process $V$, i.e. over different trajectories that all start at the same location.

Since $\langle V(t)\rangle=0$ we have also

$$
\langle X(t)\rangle=\int_{0}^{t}\left\langle V\left(t^{\prime}\right)\right\rangle d t^{\prime}=0
$$

and

$$
\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle=\int_{0}^{t_{1}} d t^{\prime} \int_{0}^{t_{2}} d t^{\prime \prime}\left\langle V\left(t^{\prime}\right) V\left(t^{\prime \prime}\right)\right\rangle
$$

with $\langle V(t) V(t+\tau)\rangle=\left\langle V(t)^{2}\right\rangle e^{-\gamma \tau}=\left\langle V^{2}\right\rangle e^{-\gamma t}$.

[^8]Thus

$$
\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle=\left\langle V^{2}\right\rangle \int_{0}^{t_{1}} d t^{\prime} \int_{0}^{t_{2}} d t^{\prime \prime} e^{-\gamma\left|t^{\prime}-t^{\prime \prime}\right|}
$$

Without loss of generality assume $t_{2} \geq t_{1}$

$$
\begin{aligned}
\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle= & \left\langle V^{2}\right\rangle \int_{0}^{t_{1}} d t^{\prime} \underbrace{\int_{0}^{t^{\prime}} d t^{\prime \prime} e^{-\gamma\left(t^{\prime}-t^{\prime \prime}\right)}}_{\frac{1}{\gamma}\left(1-e^{-\gamma t^{\prime}}\right)}+\int_{0}^{t_{1}} d t^{\prime} \underbrace{\int_{t^{\prime}}^{t_{2}} d t^{\prime \prime} e^{-\gamma\left(t^{\prime \prime}-t^{\prime}\right)}}_{-\frac{1}{\gamma}\left(e^{-\gamma\left(t_{2}-t^{\prime}\right)}-1\right)}= \\
& =\frac{\left\langle V^{2}\right\rangle}{\gamma}\left\{t_{1}+\frac{1}{\gamma}\left(e^{-\gamma t_{1}}-1\right)+t_{1}-\frac{1}{\gamma}\left(e^{-\gamma\left(t_{2}-t_{1}\right)}-e^{-\gamma t_{2}}\right)\right\}= \\
& =\frac{\left\langle V^{2}\right\rangle}{\gamma^{2}}\left\{2 \gamma t_{1}-1+e^{-\gamma t_{1}}+e^{-\gamma t_{2}}-e^{-\gamma\left(t_{2}-t_{1}\right)}\right\}
\end{aligned}
$$

Thus

$$
\left\langle X(t)^{2}\right\rangle=\frac{2\left\langle V^{2}\right\rangle}{\gamma^{2}}\left\{\gamma t+e^{-\gamma t}-1\right\} \rightarrow\left\{\begin{array}{lc}
\left\langle V^{2}\right\rangle t^{2}+\ldots & \text { for } \gamma t \ll 1 \\
\frac{2}{\gamma}\left\langle V^{2}\right\rangle t+\ldots & \text { for } \gamma t \gg 1
\end{array}\right.
$$

## Notes:

- the process is not stationary: the initial condition was fixed at $t=0$ and $\left\langle X^{2}(t)\right\rangle$ gives the spread of the particle after that time.
- for $\gamma t \ll 1$ the velocity is still correlated $\langle V(0) V(t)\rangle=\mathcal{O}(1)$ :
- inertia is relevant and particle moves almost ballistically: distance covered is linear in the time
- $\left\langle X(t)^{2}\right\rangle$ is independent of $\gamma$, it is only determined by the velocity scale $\left\langle V^{2}\right\rangle$
- $X$ is non-Markovian
- for $\gamma t \gg 1$ the velocity is uncorrelated $\langle V(0) V(t)\rangle \rightarrow 0$ :
- particle undergoes random walk, i.e. Wiener process
- for $\gamma t_{1}, \gamma t_{2}, \gamma\left(t_{2}-t_{1}\right) \gg 1$ one gets

$$
\begin{equation*}
\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle=\frac{2}{\gamma}\left\langle V^{2}\right\rangle \min \left(t_{1}, t_{2}\right) \tag{23}
\end{equation*}
$$

(the $\min \left(t_{1}, t_{2}\right)$ arises because we assumed $t_{1}<t_{2}$ in the derivation).

- Einstein relation for the position

$$
\left\langle X(t)^{2}\right\rangle=\frac{2 k T}{\gamma M} t
$$

### 4.2 The Macroscopic Equation ${ }^{10}$

In our discussion of the Rayleigh particle we had set in (21)

$$
\langle A(V)\rangle=A(\langle V\rangle)
$$

in order to relate the macroscopic equation to the Fokker-Planck equation.
In general this is not valid, instead one has for solutions of the Fokker-Planck equation

$$
\frac{d}{d t}\langle V\rangle=\langle A(V)\rangle
$$

Consider the corrections for weak fluctuations $\rightarrow$ only velocities close to $\langle V\rangle$ are relevant.
Expand

$$
A(V)=A(\langle V\rangle)+(V-\langle V\rangle) A^{\prime}(\langle V\rangle)+\frac{1}{2}(V-\langle V\rangle)^{2} A^{\prime \prime}(\langle V\rangle)+\ldots
$$

then

$$
\begin{gathered}
\langle A(V)\rangle=A(\langle V\rangle)+\frac{1}{2}\left(\left\langle V^{2}\right\rangle-\langle V\rangle^{2}\right)^{2} A^{\prime \prime}(\langle V\rangle)+\ldots \\
\frac{d}{d t}\langle V\rangle=A(\langle V\rangle)+\frac{1}{2} \sigma^{2} A^{\prime \prime}(\langle V\rangle)+\ldots
\end{gathered}
$$

This is not a closed equation for $\langle V\rangle$, it depends on $\sigma^{2}$ and higher moments of $V$ Need at least an evolution equation for $\sigma^{2}$

$$
\begin{aligned}
& \frac{d}{d t}\left\langle V^{2}\right\rangle=\int-v^{2} \frac{\partial}{\partial v}\left(A(v) T_{t}\left(v \mid v_{1}\right)\right)+\frac{1}{2} v^{2} \frac{\partial^{2}}{\partial v^{2}}\left(B(v) T_{t}\left(v \mid v_{1}\right)\right) d v= \\
& \underbrace{=}_{\text {i.b.p. }} 2\langle V A(V)\rangle+\langle B(V)\rangle
\end{aligned}
$$

Thus

$$
\frac{d}{d t} \sigma^{2}=\langle B(V)\rangle+2\langle V A(V)\rangle-2\langle V\rangle\langle A(V)\rangle=\langle B(V)\rangle+2\langle(V-\langle V\rangle) A(V)\rangle
$$

Expand again

$$
\langle(V-\langle V\rangle) A(\langle V\rangle+V-\langle V\rangle)\rangle=A^{\prime}(\langle V\rangle) \underbrace{\left\langle(V-\langle V\rangle)^{2}\right\rangle}_{\sigma^{2}}+\underbrace{\frac{1}{2} A^{\prime \prime}(\langle V\rangle)\left\langle(V-\langle V\rangle)^{3}\right\rangle+\ldots}_{\text {higher moments }}
$$

Small fluctuations $\rightarrow B$ is small, no need to expand it.
Thus, ignoring contributions from higher moments one gets

$$
\begin{aligned}
\frac{d}{d t} \sigma^{2} & =B(\langle V\rangle)+2 \sigma^{2} A^{\prime}(\langle V\rangle) \\
\frac{d}{d t}\langle V\rangle & =A(\langle V\rangle)+\frac{1}{2} \sigma^{2} A^{\prime \prime}(\langle V\rangle)
\end{aligned}
$$

## Notes:

[^9]- for the single macroscopic equation for $\langle V\rangle$ to be valid one needs

$$
\left|\frac{\sigma^{2} A^{\prime \prime}}{A}\right| \ll 1
$$

with $\sigma^{2}=\mathcal{O}\left(\mathrm{B} / \mathrm{A}^{\prime}\right)$ one gets

$$
B \ll\left|\frac{A A^{\prime}}{A^{\prime \prime}}\right|
$$

i.e. the curvature of $A$ needs to be small, only small deviation from linear dependence or equivalently, the noise strength should be small enough for $v$ to remain in the linear regime

- if the deterministic force $A(V)$ is nonlinear, fluctuations do modify the mean velocity $\langle V\rangle$ through $A^{\prime \prime}$ : the change in the force for positive and for negative fluctuations away from the mean do in general not compensate each other
- to this order the fluctuations are symmetric ( $V$-dependence of $B$ not important) and the term $(V-\langle V\rangle) A^{\prime}$ is averaged away

- for $\sigma^{2}$ to saturate one needs $A^{\prime}(\langle V\rangle)<0$ : positive dissipation (drag)
for $A^{\prime}(\langle V\rangle)>0$ the system is unstable for this mean value of $V$
- $\sigma^{2}$ and $\langle V\rangle$ relax on the same time scale $A^{\prime}(\langle V\rangle)$ (linearize the $\langle V\rangle$-equation) $\rightarrow$ no separation of time scales and no decoupling of the two equations if the fluctuations are to be kept at all.


### 4.3 Brownian Motion in an External Potential ${ }^{11}$

Consider the motion of a Brownian particle in potential wells and across potential barriers. The particle need not be a true particle, it can be thought of as a variable characterizing other random processes like chemical reactions (barrier = activation energy) etc.

[^10]

For a true Brownian particle one would have to consider a Rayleigh particle in an external potential
Fokker-Planck equation for the velocity $V$ alone is not sufficient, since the force depends on the position $X$
the deterministic equations are given by

$$
\begin{aligned}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=\frac{1}{M} F(x, t)
\end{aligned}
$$

where $M$ is the mass of the particle.
$\rightarrow$ both $X$ and $V$ are random variables and one gets a bivariate Fokker-Planck equation for $T_{t}\left(X, V \mid X_{1}, V_{1}\right)$, which is a 3 -dimensional PDE (Kramers' equation).
We would like to simplify the situation to $P(x, t)$ : need $A(x)$ and therefore we need

$$
\frac{d x}{d t}=f(x, t)
$$

### 4.3.1 Markov Approximation for $X(t)$ and Weak Noise

To simplify matters: consider sufficiently long time scales such that the Markov approximation for $X$ is sufficient.
For constant force $F$ the situation would be just like that for the free Rayleigh particle:

- $\gamma t \lesssim 1$ : inertia is relevant, $X$ is not Markovian
- $\gamma t \gg 1$ : inertia irrelevant, $v=F / \gamma$, and the deterministic equation for $x$ contains only $x$

$$
\frac{d x}{d t}=v=\frac{F(x)}{\gamma}
$$

$X$ is Markovian
Non-constant force:

- Time-dependent $F(t)$ :
for adiabatic approximation $v(t)=\frac{F(t)}{\gamma}$ to be valid need that the velocity relaxes faster than the force changes

$$
\gamma \gg \frac{1}{F} \frac{d F}{d t}
$$

- Space-dependent force $F(x)$ :
as the particle moves it experiences a time-dependent force

$$
\frac{d F}{d t}=\frac{d F}{d x}\langle V\rangle
$$


thus need

$$
\gamma \gg\langle V\rangle \frac{1}{F} \frac{d F}{d x}
$$

Assume: $F(x)$ varies slowly in space. Then can use adiabatic approximation

$$
v(x)=\frac{F(x)}{\gamma}=-\frac{1}{\gamma} \frac{d U(x)}{d x}
$$

Macroscopic equation for the position

$$
\begin{equation*}
-A(x)=\frac{d x}{d t}=v=-\frac{1}{\gamma} \frac{d U}{d x} \tag{24}
\end{equation*}
$$

Assuming $B(x)=b=$ const. we get then the Fokker-Planck equation for $P(x, t)$

$$
\frac{\partial P}{\partial t}=\frac{1}{\gamma} \frac{\partial}{\partial x}\left(U^{\prime}(x) P\right)+\frac{1}{2} b \frac{\partial^{2}}{\partial x^{2}} P
$$

## Notes:

- The macroscopic equation (24) is not restricted to describing a Brownian particle. It describes many dissipative (overdamped) systems: $x$ could represent the magnetization of a magnet, the density of a liquid, the concentration of a mixture, a variable characterizing a chemical reaction.
- Fluctuations are in particular interesting near phase transitions (where a state becomes linearly unstable and fluctuations are amplified and in multi-stable systems where fluctuations allow transitions between the different linearly stable states (see Sec.4.3.3)

Consider again weak noise: $b \ll 1$
Expect: the particle follows mostly the macroscopic trajectory

$$
\frac{d x}{d t}=-\frac{1}{\gamma} \frac{d U}{d x}
$$

Go into a frame moving along with the macroscopic motion $x=\phi(t)$ and rewrite the probability

$$
P(x, t)=P(\xi(x, t), t)
$$

with

$$
\xi(x, t)=\frac{1}{\sqrt{b}}(x-\phi(t)) \quad \text { i.e. } \quad x=\phi(t)+\sqrt{b} \xi
$$

## Note:

- $\xi$ is a stretched variable, i.e. expect $x-\phi(t)=\mathcal{O}(\sqrt{b})$ and $P$ is sharply peaked around $x=\phi(t)$. With this scaling $\xi=\mathcal{O}(1)$.

$$
\begin{aligned}
\frac{\partial}{\partial t} P & \rightarrow \frac{\partial}{\partial t} P-\frac{1}{\sqrt{b}} \frac{d \phi}{d t} \frac{\partial}{\partial \xi} P \\
\frac{\partial}{\partial x} P & \rightarrow \frac{1}{\sqrt{b}} \frac{\partial}{\partial \xi} P
\end{aligned}
$$

In this frame the potential becomes explicitly time-dependent:

$$
\begin{aligned}
U(x) & =U(\phi(t)+\sqrt{b} \xi)= \\
& =U(\phi(t))+\sqrt{b} \xi U^{\prime}(\phi(t))+\frac{1}{2} b \xi^{2} U^{\prime \prime}(\phi(t))+\ldots
\end{aligned}
$$

Insert into Fokker-Planck equation

$$
\frac{\partial}{\partial t} P-\frac{1}{\sqrt{b}} \frac{d \phi}{d t} \frac{\partial}{\partial \xi} P=+\frac{1}{\gamma} \frac{1}{b} \frac{\partial}{\partial \xi}\left(\left(\frac{\partial}{\partial \xi} U\right) P\right)+\frac{1}{2} \frac{\partial^{2}}{\partial \xi^{2}} P
$$

Expect that an equation for the fluctuations arises at $\mathcal{O}(1)$ because the diffusion term is of that order.
Expand in the drift term

$$
\begin{aligned}
\frac{\partial}{\partial \xi}\left(\left(\frac{\partial}{\partial \xi} U\right) P\right) & =\frac{\partial}{\partial \xi}\left(\sqrt{b} U^{\prime}(\phi) P+b \xi U^{\prime \prime}(\phi) P+\ldots\right)= \\
& =\sqrt{b} U^{\prime}(\phi) \frac{\partial}{\partial \xi} P+b U^{\prime \prime}(\phi) \frac{\partial}{\partial \xi}(\xi P)+\ldots
\end{aligned}
$$

Collect orders in $b$

- $\mathcal{O}\left(b^{-1 / 2}\right)$ :

$$
\frac{d \phi}{d t}=-\frac{1}{\gamma} U^{\prime}(\phi)
$$

recovering the macroscopic equation of motion

- $\mathcal{O}\left(b^{0}\right)$ :

$$
\frac{\partial}{\partial t} P=\frac{1}{\gamma} U^{\prime \prime}(\phi) \frac{\partial}{\partial \xi}(\xi P)+\frac{1}{2} \frac{\partial^{2}}{\partial \xi^{2}} P
$$

Determine mean and variance (using $P(\xi) \rightarrow 0$ for $\xi \rightarrow \pm \infty$ )

$$
\frac{d}{d t}\langle\xi\rangle=\frac{1}{\gamma} U^{\prime \prime}(\phi) \int \xi \frac{\partial}{\partial \xi}(\xi P) d \xi+\frac{1}{2} \int \xi \frac{\partial^{2}}{\partial \xi^{2}} P d \xi \underbrace{=}_{\text {i.b.p. }}-\frac{1}{\gamma} U^{\prime \prime}(\phi)\langle\xi\rangle
$$

Analogously for $\left\langle\xi^{2}\right\rangle$, yielding

$$
\begin{aligned}
\frac{d}{d t}\langle\xi\rangle & =-\frac{1}{\gamma} U^{\prime \prime}(\phi)\langle\xi\rangle \\
\frac{d}{d t}\left\langle\xi^{2}\right\rangle & =-\frac{2}{\gamma} U^{\prime \prime}(\phi)\left\langle\xi^{2}\right\rangle+1
\end{aligned}
$$

Using integrating factors one obtains the solutions as

$$
\begin{aligned}
\langle\xi\rangle_{t} & =\langle\xi\rangle_{t=0} e^{-\frac{1}{\gamma} \int_{0}^{t} U^{\prime \prime}\left(\phi\left(t^{\prime}\right)\right) d t^{\prime}} \\
\left\langle\xi^{2}\right\rangle_{t} & =\left\langle\xi^{2}\right\rangle_{t=0} e^{-\frac{2}{\gamma} \int_{0}^{t} U^{\prime \prime}\left(\phi\left(t^{\prime}\right)\right) d t^{\prime}}+\int_{0}^{t} e^{-\frac{2}{\gamma} \int_{t^{\prime}}^{t} U^{\prime \prime}\left(\phi\left(t^{\prime \prime}\right)\right) d t^{\prime \prime}} d t^{\prime}
\end{aligned}
$$

## Notes:

- all along the macroscopic trajectory $x=\phi(t)$ to leading order in $b\left(b^{0}\right)$ the potential in the Fokker-Planck equation is approximated by a quadratic (i.e. a linear force)
- since the drift term $A(\xi)$ of the lowest order ( $b^{0}$ ) Fokker-Planck equation is linear, i.e. $A(\xi)=\frac{1}{\gamma} U^{\prime \prime}(\phi) \xi, P$ is a Gaussian centered around the macroscopic path

$$
P\left(x, t \mid x_{1}, t_{1}\right)=\frac{1}{\sqrt{2 \pi\left\langle\xi^{2}\right\rangle_{t}}} e^{-\frac{1}{2} \frac{(x-\phi(t))^{2}}{\left\langle\xi^{2}\right\rangle_{t}}}
$$

- for the full process $P$ need not be Gaussian since in general the potential will not be quadratic
- for $U^{\prime \prime}(\phi)>0$ :
- the deviations from the macroscopic trajectory go to zero in the mean

$$
\langle\xi\rangle_{t} \rightarrow 0 \quad \text { for } \quad t \rightarrow \infty
$$

thus, deviations from the macroscopic trajectory decrease with time. In particular, near a stable equilibrium the particle approaches the equilibrium in the mean.

- $\left\langle\xi^{2}\right\rangle_{t}$ is bounded: the spreading by the fluctuations is balanced by the convergence of the trajectories. In particular, near a stable equilibrium

$$
\left\langle\xi^{2}\right\rangle_{t} \rightarrow \frac{\gamma}{2 U^{\prime \prime}\left(\phi_{e q}\right)}
$$



- For $U^{\prime \prime}(\phi)<0$ : trajectory unstable, fluctuations grow without bound (until they reach a stable regime), trajectories of different realizations of the fluctuations diverge from each other.



### 4.3.2 Fluctuations in a Steady State

If the system approaches a stable steady state the distribution $P$ can be given exactly without assuming small deviations from the steady state.
Fokker-Planck equation

$$
\frac{\partial P}{\partial t}=\frac{1}{\gamma} \frac{\partial}{\partial x}\left(U^{\prime}(x) P\right)+\frac{1}{2} b \frac{\partial^{2}}{\partial x^{2}} P
$$

For steady state $\partial_{t} P=0$ we can integrate once to get

$$
\frac{1}{2} \gamma b \frac{\partial}{\partial x} P=-U^{\prime}(x) P+C
$$

Assume the particle is confined to a finite domain:

$$
U(x) \rightarrow \infty \quad \text { and } \quad P(x) \rightarrow 0 \quad \text { for }|x| \rightarrow \infty
$$

If $P(x)$ decreases fast enough so that $U^{\prime}(x) P \rightarrow 0$ one gets $C=0$.

$$
P(x)=\frac{1}{N} e^{-\frac{2 U(x)}{b \gamma}} \quad \text { with } \quad N=\int P(x) d x
$$

## Notes:

- the speed of the decay of $P(x)$ for $|x| \rightarrow \infty$ is consistent with the assumption.
- In thermal equilibrium

$$
P(x)=\frac{1}{N} e^{-\frac{U(x)}{k T}}
$$

therefore

$$
\begin{equation*}
\frac{1}{2} b \gamma=k T \tag{25}
\end{equation*}
$$



### 4.3.3 Bistable Systems: Escape from a Metastable State

Consider a particle in a potential with 2 minima


Among the situations such a potential can model are

- Chemical reactions, e.g.

$$
A+B \rightleftarrows C
$$

$x$ is a reaction coordinate, it measures the progress of the reaction, it could be related to the distance between the reacting molecules

$$
\begin{aligned}
& x=x_{a} \\
& x \rightarrow \\
& x_{c} \rightarrow \text { A and B are separate } \\
& \text { A } \text { are bound together forming C }
\end{aligned}
$$

In order to form the cound state $A B \equiv C$ typically an energy barrier has to be overcome
This model is very primitive:

- only single reaction coordinate (in addition to position, the molecule orientation, conformation or even simply bending of the molecule could be relevant, etc.)
- molecule velocities are ignored
- ...
- $1^{\text {st }}$-order phase transition
$x$ is given by an order parameter. E.g., in liquid-gas transition $x$ related to density of the fluid

$$
\begin{array}{lll}
x=x_{a} & \rightarrow & \text { liquid state } \\
x=x_{c} & \rightarrow & \text { gaseous state }
\end{array}
$$

when the temperature changes the shape of the potential changes


## Notes:

- $x_{a}$ and $x_{c}$ are (linearly) stable states:
- in the absence of fluctuations they persist forever e.g., liquid state can persist even above the boiling point
- with fluctuations the state with higher energy is only metastable: there is a finite probability that fluctuations will push the system across that energy barrier life-time of the metastable state depends on the strength of the fluctuations relative to the height of the barrier:
nucleation seeds (dust, boiling stones) lower the energy barrier and can trigger the transition

Goal: determine the mean first passage time $\tau\left(x_{c} \mid x_{a}\right)$ : average of the time $t_{a c}$ the particle takes to leave the metastable well.

## Note:

- $t_{a c}$ depends also on the initial position $x_{1}$ inside the first well and the final position $x_{2}$ in the second well.
$\rightarrow$ for the definition to make sense the average $\left\langle t_{a c}\right\rangle$ must be much longer than the time for the particle to traverse either well
$\rightarrow$ the barrier must be sufficiently high
Consider an intermediate position

$$
x_{1} \underbrace{\rightarrow}_{\Delta t} x^{\prime} \rightarrow x_{2}
$$

- in time interval $\Delta t$ system goes from $x_{1}$ (which does not have to be inside the well with minimum $x_{a}$ to some $x^{\prime}$ )
- from $x^{\prime}$ it goes on to $x_{2}$ somewhere in the well with minimum $x_{b}$ : this takes on average $\tau\left(x_{2} \mid x^{\prime}\right)$
- average time given by average over all allowed positions $x^{\prime}$ weighted by the probability to get their from $x_{1}$

For $x_{1}<x_{2}$ consider the mean first passage time from $x_{1}$ to $x_{2}$ (which will eventually be assumed to be $x_{a}$ and $x_{c}$, respectively)

$$
\tau\left(x_{2} \mid x_{1}\right)=\underbrace{\Delta t}_{\text {time to get to } x^{\prime}}+\underbrace{\int_{-\infty}^{x_{2}}} \tau\left(x_{2} \mid x^{\prime}\right) T_{\Delta t}\left(x^{\prime} \mid x_{1}\right) d x^{\prime}
$$

first passage time

## Note:

- for first passage time the intermediate state $x^{\prime}$ is not allowed to be beyond the final state $x_{2}$, that defines the upper limit for the $x^{\prime}$-integral
$T_{\Delta t}\left(x^{\prime} \mid x_{1}\right)$ satisfies the Fokker-Planck equation

$$
\frac{\partial}{\partial t} T_{t}\left(x^{\prime} \mid x_{1}\right)=-\frac{\partial}{\partial x^{\prime}}\left(A\left(x^{\prime}\right) T_{t}\left(x^{\prime} \mid x_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{\prime 2}}\left(B\left(x^{\prime}\right) T_{t}\left(x^{\prime} \mid x_{1}\right)\right)
$$

For small $\Delta t$ the solution $T_{\Delta t}\left(x^{\prime} \mid x_{1}\right)$ that starts at $x_{1}$, i.e. with initial condition $\delta\left(x^{\prime}-x_{1}\right)$, is given by

$$
T\left(x^{\prime} \mid x_{1}\right)=\delta\left(x^{\prime}-x_{1}\right)+\Delta t\left\{-\frac{\partial}{\partial x^{\prime}}\left(A\left(x^{\prime}\right) \delta\left(x^{\prime}-x_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{\prime 2}}\left(B\left(x^{\prime}\right) \delta\left(x^{\prime}-x_{1}\right)\right)\right\}
$$

Insert that into the integral

$$
\begin{aligned}
\tau\left(x_{2} \mid x_{1}\right)= & \Delta t+\tau\left(x_{2} \mid x_{1}\right)+ \\
& +\Delta t \int_{-\infty}^{x_{2}} \tau\left(x_{2} \mid x^{\prime}\right)\left[-\frac{\partial}{\partial x^{\prime}}\left(A\left(x^{\prime}\right) \delta\left(x^{\prime}-x_{1}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{\prime 2}}\left(B\left(x^{\prime}\right) \delta\left(x^{\prime}-x_{1}\right)\right)\right] d x^{\prime}
\end{aligned}
$$

Integrate by parts (boundary terms vanish since $\tau\left(x_{2} \mid x_{2}\right)=0$ and $\delta$-function localized at $\left.x_{1}>-\infty\right)$.

$$
\tau\left(x_{2} \mid x_{1}\right)=\Delta t+\tau\left(x_{2} \mid x_{1}\right)+\Delta t\left\{A\left(x_{1}\right) \frac{\partial}{\partial x_{1}} \tau\left(x_{2} \mid x_{1}\right)+\frac{1}{2} B\left(x_{1}\right) \frac{\partial^{2}}{\partial x_{1}^{2}} \tau\left(x_{2} \mid x_{1}\right)\right\}
$$

This yields the Dynkin equation

$$
\begin{equation*}
A\left(x_{1}\right) \frac{\partial}{\partial x_{1}} \tau\left(x_{2} \mid x_{1}\right)+\frac{1}{2} B\left(x_{1}\right) \frac{\partial^{2}}{\partial x_{1}^{2}} \tau\left(x_{2} \mid x_{1}\right)=-1 \tag{26}
\end{equation*}
$$

with boundary condition

$$
\tau\left(x_{2} \mid x_{2}\right)=0
$$

## Notes:

- The Dynkin equation involves the adjoint of the Fokker-Planck operator (cf. integration by parts): the derivatives are acting on the second argument of $\tau$
- The second boundary condition has to be chosen such that the boundary terms in the integration by parts vanish.

Solve using integrating factor for $A(x)=-U^{\prime}(x) / \gamma$ and $B(x)=b$ :
introduce $v\left(x_{1}\right)=\frac{\partial}{\partial x_{1}} \tau\left(x_{2} \mid x_{1}\right)$

$$
\begin{gathered}
v^{\prime}-\frac{2}{b \gamma} U^{\prime} v=-\frac{2}{b} \\
\frac{d}{d x_{1}}\left(e^{-\frac{2}{b \gamma} U} v\right)=-\frac{2}{b} e^{-\frac{2}{b \gamma} U}
\end{gathered}
$$

Then

$$
v\left(x_{1}\right)=e^{\frac{2}{b \gamma} U\left(x_{1}\right)}\left\{\int_{-\infty}^{x_{1}}-\frac{2}{b} e^{-\frac{2}{b \gamma} U\left(x^{\prime}\right)} d x^{\prime}+C\right\}
$$

Assume that for $x \rightarrow-\infty$ the potential diverges, $U(x \rightarrow-\infty) \rightarrow \infty$, then for $v\left(x_{1}\right)$ to remain finite for $x_{1} \rightarrow-\infty$ one needs to have $C=0^{12}$.

Thus

$$
\tau\left(x_{2} \mid x_{1}\right)=\int_{\hat{x}}^{x_{1}} e^{\frac{2}{b \gamma} U\left(x^{\prime}\right)} \int_{-\infty}^{x^{\prime}}-\frac{2}{b} e^{-\frac{2}{b \gamma} U\left(x^{\prime \prime}\right)} d x^{\prime \prime}
$$

With the choice $\hat{x}=x_{2}$ the boundary condition $\tau\left(x_{2} \mid x_{2}\right)=0$ is satisfied ${ }^{13}$ and

$$
\tau\left(x_{2} \mid x_{1}\right)=\frac{2}{b} \int_{x_{1}}^{x_{2}} e^{\frac{2}{b \gamma} U\left(x^{\prime}\right)}\left\{\int_{-\infty}^{x^{\prime}} e^{-\frac{2}{b \gamma} U\left(x^{\prime \prime}\right)} d x^{\prime \prime}\right\} d x^{\prime}
$$

For weak noise, $b \ll 1$, the exponentials are sharply peaked:

[^11]

The $x^{\prime \prime}$-integral has sizeable contributions only for $x^{\prime \prime}$ near $x_{a}$ and near $x_{c}$.
The $x^{\prime}$-integrand is the product of $e^{\frac{2}{b y} U\left(x^{\prime}\right)}$ and the area under the solid curve from $x=-\infty$ to $x^{\prime}$.
$\Rightarrow$ it has sizeable contributions only if $x^{\prime}$ is close to the maximum $x_{m}$ of the barrier.
Approximate $U(x)$ in the two exponentials

$$
\begin{array}{ll}
U\left(x^{\prime}\right)=U\left(x_{m}\right)+\frac{1}{2} U^{\prime \prime}\left(x_{m}\right)\left(x^{\prime}-x_{m}\right)^{2} & \text { for } x^{\prime} \text { near } x_{m} \\
U\left(x^{\prime \prime}\right)=U\left(x_{a}\right)+\frac{1}{2} U^{\prime \prime}\left(x_{a}\right)\left(x^{\prime \prime}-x_{a}\right)^{2} & \text { for } x^{\prime \prime} \text { near } x_{a}
\end{array}
$$

## Note:

- $U^{\prime \prime}\left(x_{a}\right)>0$ while $U^{\prime \prime}\left(x_{m}\right)<0$

For $x_{1}$ close to $x_{a}$ one gets then

$$
\tau\left(x_{2} \mid x_{1}\right)=\frac{2}{b} e^{\frac{2}{b \gamma}\left(U\left(x_{m}\right)-U\left(x_{a}\right)\right)} \int_{x_{1}}^{x_{2}} e^{\frac{1}{b \gamma} U^{\prime \prime}\left(x_{m}\right)\left(x^{\prime}-x_{m}\right)^{2}}\left\{\int_{-\infty}^{x^{\prime}} e^{-\frac{1}{b \gamma} U^{\prime \prime}\left(x_{a}\right)\left(x^{\prime \prime}-x_{a}\right)^{2}} d x^{\prime \prime}\right\} d x^{\prime}
$$

Away from $x_{m}$ the Gaussian involving $x^{\prime}$ decays very rapidly: can replace $x_{1,2}$ by $x_{m} \pm \delta$ with $\delta=\mathcal{O}(\sqrt{b})$.

Since now $x^{\prime}$ is restricted to $x^{\prime}>x_{m}-\delta$ the $x^{\prime \prime}$-integral can be extended to $+\infty$ since $\int_{x_{m}-\delta}^{\infty} e^{-\frac{1}{b \gamma} U^{\prime}\left(x_{a}\right)\left(x^{\prime \prime}-x_{a}\right)^{2}} d x^{\prime \prime}$ is very small.

$$
\tau\left(x_{2} \mid x_{1}\right)=\frac{2}{b} e^{\frac{2}{b \gamma}\left(U\left(x_{m}\right)-U\left(x_{a}\right)\right)}\left(\int_{x_{m}-\delta}^{x_{m}+\delta} e^{\frac{1}{b \gamma} U^{\prime \prime}\left(x_{m}\right)\left(x^{\prime}-x_{m}\right)^{2}} d x^{\prime}\right)\left(\int_{-\infty}^{+\infty} e^{-\frac{1}{b \gamma} U^{\prime \prime}\left(x_{a}\right)\left(x^{\prime \prime}-x_{a}\right)^{2}} d x^{\prime \prime}\right)
$$

Can extend now the limits of the $x^{\prime}$-integral to $\pm \infty$ and evaluate the integrals

$$
\begin{equation*}
\tau\left(x_{2} \mid x_{1}\right)=\frac{2 \pi b \gamma}{b} \frac{1}{\sqrt{-U^{\prime \prime}\left(x_{m}\right) U^{\prime \prime}\left(x_{a}\right)}} e^{\frac{2}{b^{\gamma}}\left(U\left(x_{m}\right)-U\left(x_{a}\right)\right)} \tag{27}
\end{equation*}
$$

One often introduces

$$
\omega_{a}^{2}=U^{\prime \prime}\left(x_{a}\right) \quad \omega_{m}^{2}=-U^{\prime \prime}\left(x_{m}\right) \quad W=U\left(x_{m}\right)-U\left(x_{a}\right)
$$

with the noise in thermal equilibrium given by $\frac{1}{2} b \gamma=k T$ (cf. (25))

$$
\begin{equation*}
\frac{1}{\tau\left(x_{2} \mid x_{1}\right)}=\frac{1}{2 \pi \gamma} \omega_{1} \omega_{m} e^{-\frac{W}{k T}} \tag{28}
\end{equation*}
$$

## Notes:

- $\frac{1}{\tau\left(x_{2} \mid x_{1}\right)}$ is an escape rate or a reaction rate
- $e^{-\frac{W}{k T}}$ is the Arrhenius factor for activated reactions
- $\omega_{a}$ characterizes the frequency of oscillations in the initial well (if there were no damping). It set the frequency with which the barrier crossing is 'attempted': $\omega_{a}$ small (wide potential well) $\Rightarrow$ few attempts at crossing and small escape rate
- $\omega_{m}$ characterizes the width of the barrier: $\omega_{m}$ small $\Rightarrow$ flat top $\Rightarrow$ hard to get across barrier $\Rightarrow$ small escape rate


### 4.3.4 First Passage Times: Second Approach ${ }^{14}$

To determine higher moments of the first-passage-time another approach is useful.
Consider the probability $G(x, t)$ of a particle to be within the interval [ $a, b$ ] at time $t$ if it was released at $x \in[a, b]$ at time $t=0$

$$
G(x, t)=\int_{a}^{b} P_{1 \mid 1}\left(x^{\prime}, t \mid x, 0\right) d x^{\prime}
$$

Assume the particle leaves the interval at a time $T$,

$$
\operatorname{Prob}(T \geq t)=G(x, t)
$$

We seek to derive a differential equation for $G(x, t)$ : want to have $t$ and $x$ both on the conditional side of $P_{1 \mid 1}$. If the system is translation invariant in time we have

$$
P_{1 \mid 1}\left(x^{\prime}, t \mid x, 0\right)=P_{1 \mid 1}\left(x^{\prime}, 0 \mid x,-t\right)
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t} P_{1 \mid 1}\left(x^{\prime}, t \mid x, 0\right)=\frac{\partial}{\partial t} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x,-t\right) \tag{29}
\end{equation*}
$$

In terms of the initial conditions $P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)$ satisfies the backward Fokker-Planck equation

$$
\frac{\partial}{\partial t} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)=-A(x) \frac{\partial}{\partial x} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)-\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)
$$

Thus, because of the minus-sign in (29) one gets

$$
\frac{\partial}{\partial t} P_{1 \mid 1}\left(x^{\prime}, t \mid x, 0\right)=A(x) \frac{\partial}{\partial x} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)+\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, t\right)
$$

[^12]Integrating over the first argument of $P_{1 \mid 1}\left(x^{\prime}, t \mid x, 0\right)$ we get an equation for the survival probability

$$
\begin{equation*}
\frac{\partial}{\partial t} G(x, t)=A(x) \frac{\partial}{\partial x} G(x, t)+\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} G(x, t) \tag{30}
\end{equation*}
$$

Initially the particle is released at $x$

$$
P_{1 \mid 1}\left(x^{\prime}, 0 \mid x, 0\right)=\delta\left(x^{\prime}-x\right)
$$

yielding the initial condition for $G(x, t)$

$$
G(x, 0)= \begin{cases}1 & x \in[a, b] \\ 0 & x \notin[a, b]\end{cases}
$$

Boundary conditions at $x=x_{B}$ with $x_{B}=a$ or $x_{B}=b$ :

- absorbing boundary

$$
\begin{aligned}
\operatorname{Prob}(T \geq t)=0 & \text { for } x=x_{B} \\
G\left(x_{B}, t\right)= & 0
\end{aligned}
$$

- reflecting boundary
it does not matter whether the particle is released at $x_{B}-\delta x$ or at $x_{B}+\delta x$

$$
\frac{\partial}{\partial x} G(x, t)=0 \quad \text { at } x=x_{B}
$$

We would like to get moments of the mean first passage time. More generally

$$
\langle f(T)\rangle=\int_{0}^{\infty} f(t) P_{e s c}(t) d t
$$

where $P_{\text {esc }}(t) d t$ is the probability that the particle leaves the interval during the interval $[t, t+d t]$.
$P_{\text {esc }}(t) d t$ is the amount by which the probability for the particle to be inside the interval decreases during $d t$

$$
P(t) d t=-d G(x, t)=-\frac{\partial}{\partial t} G(x, t) d t
$$

Thus,

$$
\langle f(T)\rangle=-\int_{0}^{\infty} f(t) \frac{\partial}{\partial t} G(x, t) d t
$$

and

$$
\begin{aligned}
\tau_{n}(x) \equiv\left\langle T^{n}\right\rangle & =-\int_{0}^{\infty} t^{n} \frac{\partial}{\partial t} G(x, t) d t= \\
& =n \int_{0}^{\infty} t^{n-1} G(x, t) d t
\end{aligned}
$$

The boundary terms vanish since the particle is guaranteed to leave the interval eventually (unless both boundaries are reflecting, of course).

Obtain a differential equation for $\tau_{n}$ by multiplying (30) by $t^{n-1}$ and integrating it over time

$$
\int_{0}^{\infty} t^{n-1} \frac{\partial}{\partial t} G(x, t) d t=A(x) \frac{\partial}{\partial x} \int_{0}^{\infty} t^{n-1} G(x, t) d t+\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} \int_{0}^{\infty} t^{n-1} G(x, t) d t
$$

Using

$$
\int_{0}^{\infty} t^{n-1} \frac{\partial}{\partial t} G(x, t) d t=-\tau_{n-1}(x)
$$

we get

$$
\begin{equation*}
-n \tau_{n-1}(x)=A(x) \frac{\partial}{\partial x} \tau_{n}(x)+\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} \tau_{n}(x,) \tag{31}
\end{equation*}
$$

For $n=1$ this reduces to

$$
\begin{equation*}
-1=A(x) \frac{\partial}{\partial x} \tau_{1}(x)+\frac{1}{2} B(x) \frac{\partial^{2}}{\partial x^{2}} \tau_{1}(x) \tag{32}
\end{equation*}
$$

which is again the Dynkin equation (26).
Example:
$A(x)=-U^{\prime}(x) / \gamma$ and $B(x)=b$ with an absorbing boundary at $x=0$ and a reflecting boundary at $x=-L$
Introducing $v(x)=\frac{\partial}{\partial x} \tau_{n}(x)$ we get

$$
\begin{gathered}
v^{\prime}-\frac{2}{b \gamma} U^{\prime} v=-\frac{2}{b} n \tau_{n-1} \\
\frac{d}{d x}\left(e^{-\frac{2}{b \gamma} U} v\right)=-\frac{2}{b} n \tau_{n-1} e^{-\frac{2}{b \gamma} U}
\end{gathered}
$$

Then

$$
v(x)=e^{\frac{2}{b \gamma} U(x)}\left\{\int_{-L}^{x}-\frac{2}{b} n \tau_{n-1} e^{-\frac{2}{b \gamma} U\left(x^{\prime}\right)} d x^{\prime}+C\right\}
$$

The reflecting boundary condition requires that $v^{\prime}(x)=0$ for $x=-L \Rightarrow C=0$.
Thus

$$
\tau_{n}(x)=\int_{\hat{x}}^{x} e^{\frac{2}{\partial \gamma} U\left(x^{\prime}\right)} \int_{-L}^{x^{\prime}}-\frac{2}{b} n \tau_{n-1} e^{-\frac{2}{b \gamma} U\left(x^{\prime \prime}\right)} d x^{\prime \prime}
$$

To satisfy the absorbing boundary condition at $x=0$ we need $\hat{x}=0$

$$
\tau_{n}(x)=\frac{2}{b} n \int_{x}^{0} e^{\frac{2}{b \gamma} U\left(x^{\prime}\right)}\left\{\int_{-L}^{x^{\prime}} \tau_{n-1} e^{-\frac{2}{b \gamma} U\left(x^{\prime \prime}\right)} d x^{\prime \prime}\right\} d x^{\prime}
$$

## Note:

- for two absorbing boundaries the solution can also be given in terms of similar integrals, but it is much more complicated [15, 5.2.7]


### 4.4 The Backward Fokker-Planck Equation

The backward Fokker-Planck equation describes the dependence of $P\left(y_{2}, t_{2} \mid y_{1}, t_{1}\right)$ on the initial condition $\left(y_{1}, t_{1}\right)$.
To invoke again the Chapman-Kolmogorov equation consider three times $t_{1}-\Delta t$, $t_{1}$, and $t_{2}$, this time the small increment is in the initial time,

$$
P\left(t_{2}, y_{2} \mid t_{1}-\Delta t, y_{1}\right)=\int P\left(t_{2}, y_{2} \mid t_{1}, z\right) P\left(t_{1}, z \mid t_{1}-\Delta t, y_{1}\right) d z
$$

For simplicity assume this process does not include jump components, i.e. $P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)$ is smooth. Therefore
during the small interval $\left[t_{1}-\Delta t, t_{1}\right]$ the particle does not get very far and $z$ is near $y_{1}$ : expand in $z-y_{1}$

$$
\begin{aligned}
P\left(t_{2}, y_{2} \mid t_{1}, z\right)= & P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)+\left(z-y_{1}\right) \frac{\partial}{\partial y_{1}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)+ \\
& +\frac{1}{2}\left(z-y_{1}\right)^{2} \frac{\partial^{2}}{\partial y_{1}^{2}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)+\mathcal{O}\left(\left(z-y_{1}\right)^{3}\right)
\end{aligned}
$$

Insert this expansion for small $\Delta t$

$$
\begin{aligned}
P\left(t_{2}, y_{2} \mid t_{1}-\Delta t, y_{1}\right)= & P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right) \underbrace{\int P\left(t_{1}, z \mid t_{1}-\Delta t, y_{1}\right) d z}_{=1}+ \\
& +\frac{\partial}{\partial y_{1}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right) \underbrace{\int\left(z-y_{1}\right) P\left(t_{1}, z \mid t_{1}-\Delta t, y_{1}\right) d z}_{\rightarrow \Delta t A\left(y_{1}, t_{1}-\Delta t\right)} \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial y_{1}^{2}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right) \underbrace{\int\left(z-y_{1}\right)^{2} P\left(t_{1}, z \mid t_{1}-\Delta t, y_{1}\right) d z}_{\rightarrow \Delta t B\left(y_{1}, t_{1}-\Delta t\right)}+ \\
& +\mathcal{O}\left(\int\left(z-y_{1}\right)^{3} P\left(t_{1}, z \mid t_{1}-\Delta t, y_{1}\right) d z\right)
\end{aligned}
$$

Thus, assuming $P, A$, and $B$ are smooth in $t$ we get

$$
\frac{1}{\Delta t}\left(P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)-P\left(t_{2}, y_{2} \mid t_{1}-\Delta t, y_{1}\right)\right) \rightarrow \frac{\partial}{\partial t_{1}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)
$$

and

$$
\frac{\partial}{\partial t_{1}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)=-A\left(y_{1}, t_{1}\right) \frac{\partial}{\partial y_{1}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)-\frac{1}{2} B\left(y_{1}, t_{1}\right) \frac{\partial^{2}}{\partial y_{1}^{2}} P\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)
$$

## Notes:

- this backward Fokker-Planck equation describes the dependence of the transition probability on the initial conditions
- while in the forward Fokker-Planck equation the drift and diffusion terms are inside the derivative, these terms are outside the derivative in the backward Fokker-Planck equation
- to be well posed, the backward Fokker-Planck equation needs a final condition rather than an initial condition.
- for processes that also exhibit jumps one can derive a backward derivative ChapmanKolmogorov equation (cf. ch.3.6 in [15])


## 5 Langevin Equation ${ }^{15}$

So far we dealt with equations for the probability distributions or transition probabilities (Chapman-Kolmogorov, Fokker-Planck).
Consider now an equation directly for the stochastic variable itself
Approach:

1. start with the macroscopic equation of motion
2. add "suitable" noise term
3. adjust noise strength "suitably"

Consider the Langevin equation for Brownian motion

$$
\frac{d V}{d t}=-\gamma V+L(t)
$$

where $L(t)$ represents the effect of the many molecules hitting the Brownian particle:

- the average is meant to be contained in the macroscopic equation

$$
\langle L(t)\rangle=0
$$

- the kicks by the molecules are very brief and they are uncorrelated for different times

$$
\left\langle L(t) L\left(t^{\prime}\right)\right\rangle=\Gamma \delta\left(t-t^{\prime}\right)
$$

we expect that we can determine the noise strength $\Gamma$ from a comparison with the distribution in thermondynamic equilibrium

- higher moments of $L(t)$ :

Assume the process is Gaussian, i.e. all higher cumulants (cf. (1)) vanish.
For a Gaussian process we know (cf. $(9,10)$ )

$$
\phi(\{s(t)\})=\exp \left\{i \int s(t)\langle L(t)\rangle d t-\frac{1}{2} \iint s(t)\left(\left\langle L(t) L\left(t^{\prime}\right)\right\rangle-\langle L(t)\rangle\left\langle L\left(t^{\prime}\right)\right\rangle\right) s\left(t^{\prime}\right) d t d t^{\prime}\right\}
$$

[^13]thus
$$
\ln \left(\phi(\{s(t\}))=i \int s(t)\langle L(t)\rangle d t-\frac{1}{2} \iint s(t)\left\langle\left\langle L(t) L\left(t^{\prime}\right)\right\rangle\right\rangle s\left(t^{\prime}\right) d t d t^{\prime}\right.
$$
which does not contain any contributions higher than quadratic in $s(t)$. Thus, all higher cumulants vanish.

To obtain $\langle V(t)\rangle$ and $\left\langle V(t) V\left(t^{\prime}\right)\right\rangle$ determine explicit solution of the Langevin equation

$$
V(t)=V_{0} e^{-\gamma t}+\int_{0}^{t} e^{-\gamma\left(t-t^{\prime}\right)} L\left(t^{\prime}\right) d t^{\prime}
$$

Here $V(t)$ is still a stochastic process. To obtain this equation one could consider a specific realization of the noise term $L(t)$ and determine the solution $v(t)$ for that realization that satisfies the initial condition $v_{0}$. That amounts to a realization of the stochastic process $V(t)$.
Mean:

$$
\begin{equation*}
\langle V(t)\rangle=v_{0} e^{-\gamma t}+\int_{0}^{t} e^{-\gamma\left(t-t^{\prime}\right)}\left\langle L\left(t^{\prime}\right)\right\rangle d t^{\prime}=v_{0} e^{-\gamma t} \tag{33}
\end{equation*}
$$

Second moment (assuming $t_{2} \geq t_{1}$ ):

$$
\begin{aligned}
\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle= & v_{0}^{2} e^{-\gamma\left(t_{1}+t_{2}\right)}+v_{0} e^{-\gamma t_{1}} \int_{0}^{t_{2}} e^{-\gamma\left(t-t^{\prime}\right)}\left\langle L\left(t^{\prime}\right)\right\rangle d t^{\prime}+v_{0} e^{-\gamma t_{2}} \int_{0}^{t_{1}} e^{-\gamma\left(t-t^{\prime}\right)}\left\langle L\left(t^{\prime}\right)\right\rangle d t^{\prime} \\
& +\int_{0}^{t_{1}} \int_{0}^{t_{2}} e^{-\gamma\left(t_{1}-t^{\prime}\right)} e^{-\gamma\left(t_{2}-t^{\prime \prime}\right)}\left\langle L\left(t^{\prime}\right) L\left(t^{\prime \prime}\right)\right\rangle d t^{\prime} d t^{\prime \prime} \\
= & v_{0}^{2} e^{-\gamma\left(t_{1}+t_{2}\right)}+\Gamma e^{-\gamma\left(t_{1}+t_{2}\right)} \int_{0}^{t_{1}} d t^{\prime}\left\{\int_{0}^{t^{\prime}+\epsilon} e^{\gamma\left(t^{\prime}+t^{\prime \prime}\right)} \delta\left(t^{\prime}-t^{\prime \prime}\right) d t^{\prime \prime}+\int_{t^{\prime}+\epsilon}^{t_{2}} e^{\gamma\left(t^{\prime}+t^{\prime \prime}\right)} \delta\left(t^{\prime}-t^{\prime \prime}\right) d t^{\prime \prime}\right\} \\
= & v_{0}^{2} e^{-\gamma\left(t_{1}+t_{2}\right)}+\Gamma e^{-\gamma\left(t_{1}+t_{2}\right)} \int_{0}^{t_{1}} d t^{\prime} e^{2 \gamma t^{\prime}} \\
= & v_{0}^{2} e^{-\gamma\left(t_{1}+t_{2}\right)}+\frac{\Gamma}{2 \gamma}\left(e^{-\gamma\left(t_{1}+t_{2}\right)}\left(e^{2 \gamma t_{1}}-1\right)\right) \\
\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle= & \left(v_{0}^{2}-\frac{\Gamma}{2 \gamma}\right) e^{-\gamma\left(t_{1}+t_{2}\right)}+\frac{\Gamma}{2 \gamma} e^{-\gamma\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

To compare with the equilibrium solution: $t_{1,2} \rightarrow \infty$ with $t_{2}-t_{1}=\tau$

$$
\begin{equation*}
\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle \rightarrow \frac{\Gamma}{2 \gamma} e^{-\gamma \tau} \tag{35}
\end{equation*}
$$

In equilibrium one has

$$
\frac{1}{2} M\left\langle V^{2}\right\rangle=\frac{1}{2} k T
$$

Using (35) one obtains

$$
\begin{equation*}
\left\langle V(t)^{2}\right\rangle=\frac{\Gamma}{2 \gamma}=\frac{k T}{M} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle=\left(v_{0}^{2}-\frac{k T}{M}\right) e^{-\gamma\left(t_{1}+t_{2}\right)}+\frac{k T}{M} e^{-\gamma\left(t_{2}-t_{1}\right)} \tag{37}
\end{equation*}
$$

## Note:

- (36) is again a fluctuation-dissipation relation relating the fluctuations ( $\Gamma$ ) with the dissipation $\gamma$.
- it would be very difficult to determine the noise strength directly from the molecular interactions $\Rightarrow$ the success of the Langevin approach relies partially on this comparison with equilibrium statistical mechanics.


## Example:

Noise in RC-circuit:

macroscopic equation (Kirchhoff's laws):

$$
\frac{d Q}{d t}=-I=-\frac{U}{R} \underbrace{=}_{C=\frac{Q}{U}}-\frac{Q}{R C}
$$

the macroscopic equation contains dissipation $\Rightarrow$ there will also be fluctuations

$$
\frac{d Q}{d t}=-\frac{1}{R C} Q+L(t)
$$

Noise strength: in thermal equilibrium the energy stored in the capacitor is $\frac{1}{2} k T$
The work done by bringing the charge $d Q$ onto the capacitor with voltage $U=E \cdot d$ is

$$
d W=E d Q \cdot d=U d Q
$$

The energy stored is

$$
\begin{gathered}
W=\int U d Q=\int \frac{Q}{C} d Q=\frac{1}{2} \frac{Q^{2}}{C} \\
\left\langle\frac{1}{2} \frac{Q^{2}}{C}\right\rangle=\frac{1}{2 C}\left\langle Q^{2}\right\rangle=\frac{1}{2} k T
\end{gathered}
$$

From the Langevin equation we obtain (cf. (37))

$$
\left\langle Q^{2}\right\rangle=\frac{\Gamma}{2} R C
$$

thus

$$
\Gamma=\frac{2 k T}{R}
$$

## Note:

- the noise depends only on the resistor $\Rightarrow$ the source of the noise is in the resistor (collision of conduction electrons with the atoms)
- the noise leads to a fluctuating current

$$
\left\langle\delta I(t)^{2}\right\rangle=\left\langle L(t)^{2}\right\rangle=\Gamma=\frac{2 k T}{R}
$$

which decreases with increasing resistivity
Alternatively, one can say the noise leads to a fluctuation voltage across the resistor

$$
\left\langle\delta U(t)^{2}\right\rangle=R^{2}\left\langle\delta I(t)^{2}\right\rangle=2 k T R
$$

which increases with increasing resistivity.

### 5.1 Relation between Langevin Equation and Fokker-Planck Equation

Because in the Langevin equation the noise is $\delta$-correlated in time it describes a Markov process $\Rightarrow$ expect that the same process also can be described by a Fokker-Planck equation More precisely

$$
y(t+\tau)=\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon}-y+L\left(t^{\prime}\right) d t^{\prime}+\int_{t}^{t+\tau}-y+L\left(t^{\prime}\right) d t^{\prime}
$$

i.e.

$$
y(t+\tau)-y(t)=\int_{t}^{t+\tau}-y\left(t^{\prime}\right)+L\left(t^{\prime}\right) d t^{\prime}
$$

Since $L(t)$ and $L\left(t^{\prime}\right)$ are independent of each other for $t \neq t^{\prime}$ we have that $y(t+\tau)-y(t)$ is independent of $y(t ")$ for all $t "<t$, i.e. for all $\tau>0$ the value $y(t+\tau)$ depends only on $y(t)$ and not on any previous values.

### 5.1.1 Linear Langevin Equation

Consider the linear Langevin equation

$$
\begin{equation*}
\frac{d V}{d t}=-\gamma V+L(t) \tag{38}
\end{equation*}
$$

with Gaussian noise $L(t)$.

The velocity $V(t)$ is given by a sum over the noise term at different times

$$
V(t)=V_{0} e^{-\gamma t}+\int_{0}^{t} e^{-\gamma\left(t-t^{\prime}\right)} L\left(t^{\prime}\right) d t^{\prime}
$$

which are all Gaussian.
Thus

- $V(t)$ is also a Gaussian process
- for a complete characterization of the process $V(t)$ only $\langle V(t)\rangle$ and $\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle$ are needed (cf. $(33,37)$

The mean and second moments are the same as those for the Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial P\left(v, t \mid v_{0}, t_{0}\right)}{\partial t}=\gamma\left\{\frac{\partial}{\partial v}\left(v P\left(v, t \mid v_{0}, t_{0}\right)\right)+\frac{k T}{M} \frac{\partial^{2}}{\partial v^{2}} P\left(v, t \mid v_{0}, t_{0}\right)\right\} \tag{39}
\end{equation*}
$$

(see homework). Therefore the Langevin equation (38) is equivalent to the Fokker-Planck equation (39).

### 5.1.2 Nonlinear Langevin Equation

Now consider

$$
\frac{d y}{d t}=f(y)+g(y) L(t)
$$

Through $g(y)$ the noise strength depends on the state of the system: multiplicative noise.

## Notes:

- formally one can rewrite the Langevin equation with multiplicative noise as a Langevin equation for a new variable $\tilde{y}$ with additive noise

$$
\tilde{y}=F(y) \equiv \int^{y} \frac{1}{g\left(y^{\prime}\right)} d y^{\prime}
$$

then

$$
\frac{d \tilde{y}}{d t}=\frac{1}{g(y)} \frac{d y}{d t}=\frac{f(y)}{g(y)}+L(t)
$$

i.e.

$$
\frac{d \tilde{y}}{d t}=\frac{f\left(F^{-1}(\tilde{y})\right)}{g\left(F^{-1}(\tilde{y})\right)}+L(t)
$$

For instance

$$
\frac{d y}{d t}=-y+y L(t)
$$

becomes with $\tilde{y}=\ln y$ (assuming $y>0$ )

$$
\frac{d \tilde{y}}{d t}=-1+L(t)
$$

- There are important qualitative differences between additive noise and multiplicative noise, which can of course not be removed by such a transformation

1. Consider

$$
\frac{d y}{d t}=a y-y^{3}+L(t)
$$

Among many possibilities, this equation could describe the buckling of a beam under a longitudinal load with $y$ denoting the amount of buckling. Without noise this system exhibits a pitchfork bifurcation

$$
y_{\infty}=\left\{\begin{array}{cc}
0 & \text { for } a \leq 0 \\
\pm \sqrt{a}, 0 & \text { for } a>0
\end{array}\right.
$$

with $\pm \sqrt{a}$ representing a buckling to the left or right, respectively.
Here the noise terms breaks the reflection symmetry $y \rightarrow-y$ (in this example it represents a fluctuating forcing transverse to the beam) and the pitchfork bifurcation is perturbed.

2. Consider

$$
\frac{d y}{d t}=a y-y^{3}+y L(t)
$$

Now the fluctuation force modifies $a$, i.e. the longitudinal load. The reflection symmetry is preserved, the pitchfork bifurcation is still perfect, i.e. $y=0$ is a solution for all values of $a$, i.e. the unbuckled state exists for all $a$ and noise strengths.

- If $f(y)$ is nonlinear or $g(y)$ not constant then $y$ is not a Gaussian process even if $L(t)$ is Gaussian.

To obtain the Fokker-Planck equation we need $A(y)$ and $B(y)$

$$
\begin{gathered}
A(y)=\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{\left|y-y_{0}\right|<\epsilon}\left(y-y_{0}\right) T_{\tau}\left(y \mid y_{0}\right) d y=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left\langle y(\tau)-y_{0}\right\rangle \\
B(y)=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left\langle\left(y(\tau)-y_{0}\right)^{2}\right\rangle
\end{gathered}
$$

with $y_{0}$ being the specified (non-random) initial condition at $t=0$.
To determine these expectation values integrate the Langevin equation ${ }^{16}$ from $t=0$ to

[^14]$t=\tau \ll 1$
$$
y(\tau)-y_{0}=\int_{0}^{\tau} f(y(t)) d t+\int_{0}^{\tau} g(y(t)) L(t) d t
$$

Expand

$$
\begin{aligned}
f(y) & =f\left(y_{0}\right)+\left(y(\tau)-y_{0}\right) f^{\prime}\left(y_{0}\right)+\ldots \\
g(y) & =g\left(y_{0}\right)+\left(y(\tau)-y_{0}\right) g^{\prime}\left(y_{0}\right)+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
y(\tau)-y_{0}= & f\left(y_{0}\right) \tau+f^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left(y(t)-y_{0}\right) d t+\ldots \\
& +g\left(y_{0}\right) \int_{0}^{\tau} L(t) d t+g^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left(y(t)-y_{0}\right) L(t) d t+\ldots
\end{aligned}
$$

Expand again in the integrand

$$
\begin{aligned}
y(\tau)-y_{0}= & f\left(y_{0}\right) \tau+f^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left\{f\left(y_{0}\right) t+\ldots+g\left(y_{0}\right) \int_{0}^{t} L\left(t^{\prime}\right) d t^{\prime}+\ldots\right\} d t+\ldots \\
& +g\left(y_{0}\right) \int_{0}^{\tau} L(t) d t+g^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left\{f\left(y_{0}\right) t+\ldots+g\left(y_{0}\right) \int_{0}^{t} L\left(t^{\prime}\right) d t^{\prime}+\ldots\right\} L(t) d t+\ldots
\end{aligned}
$$

We are interested in the average.

$$
\langle L(t)\rangle=0 \quad\left\langle L(t) L\left(t^{\prime}\right)\right\rangle=\Gamma \delta\left(t-t^{\prime}\right)
$$

Thus

$$
\begin{aligned}
\left\langle y(\tau)-y_{0}\right\rangle= & f\left(y_{0}\right) \tau+f^{\prime}\left(y_{0}\right) f\left(y_{0}\right) \underbrace{\int_{0}^{\tau} t d t}_{\mathcal{O}\left(\tau^{2}\right)}+\ldots+f^{\prime}\left(y_{0}\right) g\left(y_{0}\right) \int_{0}^{\tau} \int_{0}^{t} \underbrace{\left\langle L\left(t^{\prime}\right)\right\rangle}_{=0} d t^{\prime}+\ldots \\
& +g\left(y_{0}\right) \cdot 0+g^{\prime}\left(y_{0}\right) g\left(y_{0}\right) \int_{0}^{\tau} \int_{0}^{t} \underbrace{\left\langle L\left(t^{\prime}\right) L(t)\right\rangle}_{=\Gamma \delta\left(t-t^{\prime}\right)} d t^{\prime} d t+\ldots \\
& \left\langle y(\tau)-y_{0}\right\rangle=f\left(y_{0}\right) \tau+g^{\prime}\left(y_{0}\right) g\left(y_{0}\right) \Gamma \int_{0}^{\tau} \int_{0}^{t} \delta\left(t-t^{\prime}\right) d t^{\prime} d t+\ldots
\end{aligned}
$$

What is $\int_{0}^{t} \delta\left(t-t^{\prime}\right) d t^{\prime}$ ? The question arises because the $\delta$-function is located at end of the integration interval.
It seems reasonable to consider the $\delta$-correlation as the limit of a a process with finite, but short correlation time $\Rightarrow \delta\left(t-t^{\prime}\right)$ is the limit of some symmetric, sharply peaked function, e.g.

$$
\delta_{\epsilon}\left(t-t^{\prime}\right)=\left\{\begin{array}{lc}
\frac{1}{\epsilon} \quad & \begin{array}{c}
-\frac{\epsilon}{2} \leq t-t^{\prime} \leq \frac{\epsilon}{2} \\
\text { otherwise }
\end{array} \\
& 0
\end{array}\right.
$$

If we take the limit $\epsilon \rightarrow 0$ only in the very end, after all the integrals are taken one gets for any smooth function $h(t)$

$$
\int_{0}^{t} h\left(t^{\prime}\right) \delta\left(t-t^{\prime}\right) d t^{\prime}=\frac{1}{2} h(t)
$$

Then

$$
\left\langle y(\tau)-y_{0}\right\rangle=f\left(y_{0}\right) \tau+g^{\prime}\left(y_{0}\right) g\left(y_{0}\right) \Gamma \frac{1}{2} \tau+\ldots
$$

and

$$
\begin{equation*}
A(y)=f(y)+g^{\prime}(y) g(y) \tag{40}
\end{equation*}
$$

Analogously one gets

$$
\left\langle\left(y(\tau)-y_{0}\right)^{2}\right\rangle=\left[g\left(y_{0}\right)\right]^{2} \int_{0}^{\tau} d t \int_{0}^{\tau} d t^{\prime}\left\langle L(t) L\left(t^{\prime}\right)\right\rangle+\mathcal{O}\left(\tau^{2}\right)
$$

implying

$$
\begin{equation*}
B(y)=\Gamma[g(y)]^{2} \tag{41}
\end{equation*}
$$

Thus we get the Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial y}\left[\left(f(y)+\frac{1}{2} \Gamma g(y) g^{\prime}(y)\right) P\right]+\frac{1}{2} \Gamma \frac{\partial^{2}}{\partial y^{2}}\left[(g(y))^{2} P\right] \tag{42}
\end{equation*}
$$

Using

$$
\frac{\partial}{\partial y}\left(g^{2} P\right)=2 g g^{\prime} P+g^{2} \frac{\partial}{\partial y} P=g g^{\prime} P+g \frac{\partial}{\partial y}(g P)
$$

one can rewrite the Fokker-Planck equation as

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial y}[f(y) P]+\frac{1}{2} \Gamma \frac{\partial}{\partial y}\left[g(y) \frac{\partial}{\partial y}[g(y) P]\right]
$$

## Note:

- If $g(y)$ is not constant the noise term contributes to the drift term $A(y)$ : "noise-induced drift", i.e. even if $f(y)=0$ the average $\langle y\rangle$ will be time-dependent and is driven purely by the noise term and the dependence of its effect on the state $y$.
- The noise-induced drift points to a problem that can arise when one wants to identify the correct Fokker-Planck equation:
- Systems with external noise, i.e. the macroscopic dynamics is separate from the noise (one could imagine the noise can be turned off), e.g. a transmission line into which a noisy signal is fed, a bridge under the random force of cars driving on it:
* macroscopic dynamics $f(y)$ is known in the absence of noise and the noise, which conceptually can be turned on or off, can modify the drift term
- System with internal noise, e.g. Brownian motion, chemical reactions, viscous fluid flow. Here the macroscopic motion arises from the noisy microscopic motion, the noise cannot be turned off. Therefore the macroscopic dynamics $f(y)$ cannot be separated from the noise.
* when the noise affects the system only additively the drift term $A(y)$ is not modified by the noise and the Langevin approach should be fine (viscosity in fluid flow acts only on the linear term, the nonlinear term is the advection term).
In particular, if the dynamics of the system are also linear the mean satisfies the macroscopic equation.
* when the noise acts nonlinearly then it is not clear what to take for $f(y)$ because $f(y)$ already contains aspects of the noise. E.g., in chemical reactions the nonlinear terms represent reactions of molecules, which are the cause of the noise $\Rightarrow$ the nonlinear Langevin equation is then most likely not appropriate. One would have to start from the master equation and obtain suitable reductions [28, Chap. X].


### 5.2 Mathematical Considerations: Ito vs Stratonovich ${ }^{17}$

Mathematically we are having a problem: consider the simplest Langevin equation

$$
\frac{d y}{d t}=L(t)
$$

then

$$
y(t)=\int_{0}^{t} L\left(t^{\prime}\right) d t^{\prime}
$$

Being a continuous Markov process $y(t)$ can be described by a Fokker-Planck equation. From $(40,41)$ we have

$$
\frac{\partial P}{\partial t}=\frac{1}{2} \Gamma \frac{\partial^{2}}{\partial y^{2}} P
$$

i.e. $y(t)$ is the Wiener process $W(t)$ (cf. $(6,7))$.

The Wiener process is continuous but nowhere differentiable, i.e. $\frac{d y}{d t}$ does not exist!
To avoid using $L(t)$ itself use an integral formulation

$$
W(\tau)=\int_{t}^{t+\tau} L\left(t^{\prime}\right) d t^{\prime}
$$

Write $d W(t)$ instead of $L(t) d t$
The Langevin equation becomes

$$
d y=f(y) d t+g(y) d W(t)
$$

or in integral form

$$
y(t+\tau)=y(t)+\int_{t}^{t+\tau} f\left(y\left(t^{\prime}\right)\right) d t^{\prime}+\underbrace{\int_{t}^{t+\tau} g\left(y\left(t^{\prime}\right)\right) d W\left(t^{\prime}\right)}
$$

Riemann-Stieljes integral
The Riemann-Stieltjes integral is defined for general $u(t)$ and $v(t)$ as

$$
\int_{t}^{t+\tau} u\left(t^{\prime}\right) d v\left(t^{\prime}\right)=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} u\left(t_{i}^{*}\right)\left[v\left(t_{i+1}\right)-v\left(t_{i}\right)\right] \quad \text { with } t_{i}^{*} \in\left[t_{i}, t_{i+1}\right]
$$

## Notes:

[^15]- For $v(t)=t$ one recovers directly the Riemann integral $\lim _{N \rightarrow \infty} \sum_{i=1}^{N} u\left(t_{i}^{*}\right) \Delta t_{i}=\int_{t}^{t+\tau} u\left(t^{\prime}\right) d t^{\prime}$.
- For 'nice' functions with bounded variation the value of the integral does not depend on the choice of $t_{i}^{*} \in\left[t_{i}, t_{i+1}\right]$.
- the Wiener process $W(t)$ has unbounded variation:

$$
\sum_{i=1}^{N}\left|W\left(t_{i+1}\right)-W\left(t_{i}\right)\right| \rightarrow \infty \quad \text { for } N \rightarrow \infty
$$

Then the integral does depend on the choice of $t_{i}^{*}$, e.g.,

$$
\left\langle S_{N}\right\rangle \equiv\left\langle\sum_{i=1}^{N} W\left(t_{i}^{*}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right\rangle=\sum_{i=1}^{N}\left\{\left\langle W\left(t_{i}^{*}\right) W\left(t_{i+1}\right)\right\rangle-\left\langle W\left(t_{i}^{*}\right) W\left(t_{i}\right)\right\rangle\right\}
$$

Using (cf. (23))

$$
\left\langle W\left(t_{1}\right) W\left(t_{2}\right)\right\rangle=\min \left(t_{1}, t_{2}\right)
$$

one gets

$$
\left\langle S_{N}\right\rangle=\sum_{i=1}^{N}\left(t_{i}^{*}-t_{i}\right)
$$

choosing

$$
t_{i}^{*}=\alpha t_{i+1}+(1-\alpha) t_{i}
$$

one gets

$$
\left\langle S_{N}\right\rangle=\sum_{i=1}^{N} \alpha\left(t_{i+1}-t_{i}\right)=\alpha \tau
$$

Two definitions for the stochastic integral

- Stratonovich ( $\alpha=\frac{1}{2}$ )

$$
\int u(t) d v(t)=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{1}{2}\left(u\left(t_{i}\right)+u\left(t_{i+1}\right)\right)\left(v\left(t_{i+1}\right)-v\left(t_{i}\right)\right)
$$

- Ito $(\alpha=0)$

$$
\int u(t) d v(t)=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} u\left(t_{i}\right)\left(v\left(t_{i+1}\right)-v\left(t_{i}\right)\right)
$$

## Notes:

- for $u=g$ and $d v=d W$ this means
- for Stratonovich integral the prefactor $g(y)$ is averaged across the kick
- for Ito integral the prefactor $g(y)$ is determined before the kick
- the limit $\lim _{N \rightarrow \infty}$ is to be understood as a mean-squared limit $m s-\lim _{N \rightarrow \infty}$

$$
\begin{equation*}
m s-\lim _{N \rightarrow \infty} Y_{n}=Y \quad \Leftrightarrow \quad \lim _{N \rightarrow \infty}\left\langle\left(Y_{n}-Y\right)^{2}\right\rangle=0 \tag{43}
\end{equation*}
$$

Reconsider the derivation of the terms $A(y)$ and $B(y)$ of the Fokker-Planck equation

$$
\begin{aligned}
y(\tau)-y_{0} & =\int_{0}^{\tau} f\left(y\left(t^{\prime}\right)\right) d t^{\prime}+\int_{0}^{\tau} g\left(y\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right. \\
& =f\left(y_{0}\right) \tau+\mathcal{O}\left(\tau^{2}\right)+g\left(y_{0}\right) \underbrace{\int_{0}^{\tau} d W\left(t^{\prime}\right)}_{W(\tau)-W(0)=W(\tau)}+g^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left(y\left(t^{\prime}\right)-y_{0}\right) d W\left(t^{\prime}\right) \\
& =f\left(y_{0}\right) \tau+g\left(y_{0}\right) W(\tau)+g^{\prime}\left(y_{0}\right) \int_{0}^{\tau}\left[f\left(y_{0}\right) t^{\prime}+g\left(y_{0}\right) W\left(t^{\prime}\right)\right] d W\left(t^{\prime}\right)
\end{aligned}
$$

Since the ensemble average of $d W(t)$ vanishes one has also

$$
\int_{0}^{\tau} t^{\prime}\left\langle d W\left(t^{\prime}\right)\right\rangle=0
$$

and

$$
\left\langle y(\tau)-y_{0}\right\rangle=f\left(y_{0}\right) \tau+g^{\prime}\left(y_{0}\right) g\left(y_{0}\right)\left\langle\int_{0}^{\tau} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle
$$

and

$$
A(y)=f(y)+g(y) g^{\prime}(y) \frac{1}{\tau}\left\langle\int_{0}^{\tau} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle
$$

Evaluate the stochastic integral:

1. Stratonovich:

$$
\begin{aligned}
\left\langle S \int_{0}^{\tau} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{1}{2}\left\langle\left(W\left(t_{i+1}\right)+W\left(t_{i}\right)\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right\rangle \\
& =\lim _{N \rightarrow \infty} \frac{1}{2} \sum_{i=1}^{N}\left\langle W\left(t_{i+1}\right)^{2}\right\rangle-\left\langle W\left(t_{i}\right)^{2}\right\rangle \\
& =\frac{1}{2}\left(\left\langle W(\tau)^{2}\right\rangle-\left\langle W(0)^{2}\right\rangle\right)
\end{aligned}
$$

We computed $\left\langle W(t)^{2}\right\rangle$ for the Wiener process in the context of the Rayleigh particle (cf. 23)), $W(t)$ is the position of the Brownian particle at time $t$,

$$
\left\langle W(\tau) W\left(\tau^{\prime}\right)\right\rangle=\min \left(\tau, \tau^{\prime}\right) .
$$

Therefore

$$
\begin{equation*}
\left\langle S \int_{0}^{\tau} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle=\frac{1}{2} \tau=\left\langle\frac{1}{2} W(\tau)^{2}\right\rangle \tag{44}
\end{equation*}
$$

and

$$
A_{S}(y)=f(y)+\frac{1}{2} g(y) g^{\prime}(y)
$$

2. Ito:

$$
\begin{aligned}
\left\langle I \int_{0}^{\tau} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle W\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right\rangle \\
& =\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle W\left(t_{i+1}\right) W\left(t_{i}\right)\right\rangle-\left\langle W\left(t_{i}\right)^{2}\right\rangle \\
& =\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\{t_{i}-t_{i}\right\}=0
\end{aligned}
$$

Therefore

$$
A_{I}(y)=f(y)
$$

## Notes:

- In the Stratonovich interpretation of the stochastic integral the same noise-induced drift arises as we found when interpreting the $\delta$-correlation as a symmetric smooth correlation function in the limit of vanishing correlation time.
- In the Ito interpretation no noise-induced drift term arises.
- By adjusting the drift term appropriately, both interpretations can be used for the same process.
- In the Stratonovich interpretation the usual integration rules hold (cf. (44))

$$
\left\langle\int w d w\right\rangle=\left\langle\frac{1}{2} w^{2}\right\rangle
$$

- In the Ito interpretation we found a new integration rule

$$
\left\langle\int w d w\right\rangle=0
$$

- If $g(y)$ is constant, i.e. for additive noise, there is no difference between the two approaches.


### 5.3 Ito Stochastic Integrals ${ }^{18}$

To use the Ito interpretation of the stochastic integrals we need to evaluate integrals like

$$
\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)
$$

where $G(t)$ is a non-anticipating function.
Define:

[^16]- $G(t)$ is non-anticipating if it is statistically independent of $W(s)-W(t)$ for $s>t$.

The integrals are evaluated in the mean-square limit (cf. (43)),

$$
\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)=m s-\lim _{N \rightarrow \infty} \sum_{i=1}^{N} G\left(t_{i-1}\right)\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right)
$$

## Note:

- the stochastic integral $\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)$ is a different kind of integral than $\int G\left(t^{\prime}\right) d t^{\prime}$ and there is in general no connection between the two.
- the integral $\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)$ depends on the process $W$ which is here assumed to be the Wiener process.

We need a number of properties of stochastic integrals.
a) $d W^{2}=d t$ and $d W^{2+n}=0$ for $n>0$

The precise statements are

$$
\begin{equation*}
\int_{0}^{t} G\left(t^{\prime}\right)\left(d W\left(t^{\prime}\right)\right)^{2}=m s-\lim _{N \rightarrow \infty} \sum_{i=1}^{N} G_{i-1}\left(W_{i}-W_{i-1}\right)^{2}=\int_{0}^{t} G\left(t^{\prime}\right) d t^{\prime} \tag{45}
\end{equation*}
$$

and for $n>0$

$$
\begin{equation*}
\int_{0}^{t} G\left(t^{\prime}\right)\left(d W\left(t^{\prime}\right)\right)^{2+n}=m s-\lim _{N \rightarrow \infty} \sum_{i=1}^{N} G_{i-1}\left(W_{i}-W_{i-1}\right)^{2+n}=0 \tag{46}
\end{equation*}
$$

Here $G_{i}=G\left(t_{i}\right)$ and $W_{i}=W\left(t_{i}\right)$.
Thus:

- $d W$ is a differential of order $\frac{1}{2}$
- $d W^{2}=d t$

To proof this identity consider the appropriate limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\langle\{\sum_{i=1}^{N} G_{i-1}[\underbrace{\Delta W_{i}^{2}}_{\left(W_{i}-W_{i-1}\right)^{2}}-\Delta t_{i}]\}^{2}\rangle= & \lim _{N \rightarrow \infty}\left\langle\sum_{i=1}^{N} G_{i-1}^{2}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)^{2}+\right. \\
& \left.2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} G_{i-1} G_{j-1}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)\left(\Delta W_{j}^{2}-\Delta t_{j}\right)\right\rangle
\end{aligned}
$$

## first sum

$$
\{\mathrm{g} 1+\mathrm{g} 2+\ldots+\mathrm{gN}\}\{\mathrm{g} 1+\mathrm{g} 2+\ldots+\mathrm{gN}\}
$$

second sum
Term with single sum:
$G$ is non-anticipating $\Rightarrow G_{i-1}$ and $\Delta W_{i}$ are statistically independent

$$
\left\langle G_{i-1}^{2}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)^{2}\right\rangle=\left\langle G_{i-1}^{2}\right\rangle\left\langle\left(\Delta W_{i}^{2}-\Delta t_{i}\right)^{2}\right\rangle
$$

Since $W$ is Gaussian distributed the fourth (and higher) cumulants vanishes

$$
0=\left\langle\left\langle\Delta W_{i}^{4}\right\rangle\right\rangle=\left\langle\Delta W_{i}^{4}\right\rangle-3\left\langle\Delta W_{i}^{2}\right\rangle^{2}
$$

using also that all terms with odd powers of $\Delta W_{i}$ vanish.
Thus

$$
\left\langle\Delta W_{i}^{4}\right\rangle \quad \begin{array}{ll}
= & 3\left\langle\Delta W_{i}^{2}\right\rangle^{2}=3\left\langle\left(W_{i}-W_{i-1}\right)^{2}\right\rangle^{2}= \\
& 3\left\{t_{i}-2 t_{i-1}+t_{i-1}\right\}^{2}=3 \Delta t_{i}^{2}
\end{array}
$$

and

$$
\left\langle G_{i-1}^{2}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)^{2}\right\rangle=\left\langle G_{i-1}^{2}\right\rangle\left\{3 \Delta t_{i}^{2}-2 \Delta t_{i}^{2}+\Delta t_{i}^{2}\right\}=2\left\langle G_{i-1}^{2}\right\rangle \Delta t_{i}^{2}
$$

Therefore

$$
\lim _{N \rightarrow \infty}\left\langle\sum_{i=1}^{N} G_{i-1}^{2}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)^{2}\right\rangle=2 \lim _{N \rightarrow \infty}\{\underbrace{\sum_{i=1}^{N}\left\langle G_{i-1}^{2}\right\rangle \Delta t}_{=\mathcal{O}(1)} \cdot \Delta t\}=0
$$

Term with double sum:
$j>i \Rightarrow G_{i-1} G_{j-1}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)$ is statistically independent of $\Delta W_{j}^{2}-\Delta t_{j}$

$$
\left\langle G_{i-1} G_{j-1}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)\left(\Delta W_{j}^{2}-\Delta t_{j}\right)\right\rangle=\left\langle G_{i-1} G_{j-1}\left(\Delta W_{i}^{2}-\Delta t_{i}\right)\right\rangle \underbrace{\left\langle\Delta W_{j}^{2}-\Delta t_{j}\right\rangle}_{=0}
$$

Thus

$$
\lim _{N \rightarrow \infty}\langle\{\sum_{i=1}^{N} G_{i-1}[\underbrace{\Delta W_{i}^{2}}_{\left(W_{i}-W_{i-1}\right)^{2}}-\Delta t_{i}]\}^{2}\rangle=0
$$

[^17]The proof of $d W^{2+n}=0$ is analagous. It makes use of the higher cumulants and is more cumbersome.

## b) Integration of polynomials

$$
d(W)^{n+1}=(W+d W)^{n+1}-W^{n+1}=\sum_{m=1}^{n+1}\binom{n+1}{m} W^{n-m+1} d W^{m}
$$

with $d W^{2+k}=0$ for $k>0$ one gets

$$
d(W)^{n+1}=(n+1) W^{n} d W+\frac{1}{2}(n+1) n W^{n-1} \underbrace{(d W)^{2}}_{=d t}
$$

Integrating the previous equation we get

$$
\begin{equation*}
\int_{0}^{t} W^{n}\left(t^{\prime}\right) d W\left(t^{\prime}\right)=\frac{1}{n+1}\left(W(t)^{n+1}-W(0)^{n+1}\right)-\frac{1}{2} n \int_{0}^{t} W\left(t^{\prime}\right)^{n-1} d t^{\prime} \tag{47}
\end{equation*}
$$

Example: $n=1$

$$
\int_{0}^{t} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)=\frac{1}{2}\left(W(t)^{2}-W(0)^{2}\right)-\frac{1}{2} t
$$

therefore

$$
\left\langle\int_{0}^{t} W\left(t^{\prime}\right) d W\left({ }^{\prime} t\right)\right\rangle=\frac{1}{2} t-\frac{1}{2} t=0
$$

as before.
c) Differentiation

When taking derivatives (i.e. when expanding) one has to keep in mind that $(d W)^{2}$ is of the same order as $d t$

$$
\begin{aligned}
d f(W(t), t) & =f(W(t)+d W, t+d t)-f(W(t), t)= \\
& =\frac{\partial}{\partial W} f d W+\frac{1}{2} \frac{\partial^{2}}{\partial W^{2}} f d W^{2}+\frac{\partial}{\partial t} f
\end{aligned}
$$

i.e.

$$
d f(W(t), t)=\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial W^{2}}\right) d t+\frac{\partial f}{\partial W} d W
$$

## d) Mean-Value Formula

For non-anticipating functions one has for the Ito stochastic integral

$$
\left\langle\int_{0}^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle=0
$$

since

$$
\left\langle\sum_{i=1}^{N} G_{i-1}\left(W_{i}-W_{i-1}\right)\right\rangle=\sum_{i=1}^{N}\left\langle G_{i-1}\right\rangle \underbrace{\left\langle W_{i}-W_{i-1}\right\rangle}_{=0}=0
$$

## Note:

- For the Stratonovich interpretation of the integral this average need not be 0 , since $G_{i}$ can be correlated with $W_{i}-W_{i-1}$ ( $G_{i}$ is after the kick). Aspects like this make the Stratonovich formulation very difficult/cumbersome to use for proofs.
e) Correlation Formula

One can show (see homework)

$$
\left\langle\int_{0}^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right) \int_{0}^{t} H\left(t^{\prime \prime}\right) d W\left(t^{\prime \prime}\right)\right\rangle=\int_{0}^{t}\left\langle G\left(t^{\prime}\right) H\left(t^{\prime}\right)\right\rangle d t^{\prime}
$$

### 5.4 Ito Stochastic Differential Equation ${ }^{20}$

### 5.4.1 Ito's Formula

Consider the stochastic differential equation

$$
d y=f(y) d t+g(y) d W
$$

One can transform the variables so that the new variable satisfies a stochastic differential equation with additive rather than multiplicative noise.
While for multiplicative noise there is a significant difference between the differential equation in the Ito or in the Stratonovich sense, there is no difference for additive noise
$\Rightarrow$ the transformation of the variable must be different in the two cases, since in the original version the stochastic differential equation is interpreted differently for Ito and for Stratonovich.
What stochastic differential equation does $v(y, t)$ satisfy if $y$ satisfies the stochastic differential equation above?

$$
\begin{aligned}
d v & =\frac{\partial v}{\partial y} d y+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}(d y)^{2}+\frac{\partial v}{\partial t} d t+\text { h.o.t. } \\
& =\frac{\partial v}{\partial y}\{f(y) d t+g(y) d W\}+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}}\{f(y) d t+g(y) d W\}^{2}+\frac{\partial v}{\partial t} d t+\text { h.o.t. }
\end{aligned}
$$

Thus for Ito stochastic differential equations the change of variables is given by Ito's formula

$$
d v=\left(\frac{\partial v}{\partial t}+\frac{\partial v}{\partial y} f+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}} g^{2}\right) d t+\frac{\partial v}{\partial y} g d W .
$$

Example: The Kubo oscillator
A noiseless linear oscillator can be described by

$$
\frac{d y}{d t}=i \omega y \quad \Rightarrow \quad y=y_{0} e^{i \omega t}
$$

With noise one obtains

$$
\begin{equation*}
d y=i \omega y d t+i \lambda y d W \tag{48}
\end{equation*}
$$

[^18]where $\lambda d W$ represents fluctuations in the frequency of the oscillator.
For the first transformation $v(t)=e^{-i \omega t} y(t)$ Ito's formula results in the usual transformation since $d^{2} v / d y^{2}=0$,
\[

$$
\begin{gathered}
d v=\left(-i \omega v+e^{-i \omega t} i \omega y\right) d t+e^{-i \omega t} y i \lambda d W \\
d v=i \lambda v d W
\end{gathered}
$$
\]

For regular functions one would have

$$
\frac{d v}{v}=d(\ln v)
$$

To solve this differential equation try a second transformation, $u=\ln v$, which yields

$$
d u=\left(\frac{1}{2}\left(-\frac{1}{v^{2}}\right)(i \lambda v)^{2}\right) d t+\frac{1}{v} i \lambda v d W
$$

thus $d u$ is not simply given by $d v / v$, instead

$$
\begin{equation*}
d u=\frac{1}{2} \lambda^{2} d t+i \lambda d W \tag{49}
\end{equation*}
$$

with the solution

$$
u(t)-u(0)=\frac{1}{2} \lambda^{2} t+i \lambda(W(t)-W(0))
$$

For $y$ we have now

$$
\begin{equation*}
y=e^{i \omega t} e^{\frac{1}{2} \lambda^{2} t+i \lambda W(t)} \tag{50}
\end{equation*}
$$

## Note:

- With this solution for the stochastic differential equation we have for each realization of the Wiener process ('random walk') a realization of the trajectory of the oscillator.

How about the mean of $y$ ?
Clearly

$$
\langle u(t)-u(0)\rangle=\frac{1}{2} \lambda^{2} t
$$

and therefore

$$
\langle y(t)\rangle=e^{i \omega t} e^{\frac{1}{2} \lambda^{2} t}\left\langle e^{i \lambda(W(t)-W(0))}\right\rangle
$$

$W(t)$ is Gaussian with 0 mean.
For Gaussian distributed variables $z$ with vanishing mean one has

$$
\left\langle e^{z}\right\rangle=e^{\frac{1}{2}\left\langle z^{2}\right\rangle}
$$

One obtains this result by direct evaluation of

$$
\left\langle e^{z}\right\rangle=\frac{1}{\sqrt{2 \pi \Delta^{2}}} \int e^{z} e^{-\frac{1}{2} \frac{z^{2}}{\Delta^{2}}} d z
$$

Thus

$$
\begin{aligned}
\langle y(t)\rangle= & e^{i \omega t} e^{\frac{1}{2} \lambda^{2} t} e^{\frac{1}{2}\left\langle(i \lambda(W(t)-W(0)))^{2}\right\rangle} \\
= & e^{i \omega t} e^{\frac{1}{2} \lambda^{2} t} e^{-\frac{1}{2} \lambda^{2} t} \\
& \langle y(t)\rangle=e^{i \omega_{0} t}
\end{aligned}
$$

## Note:

- Interpreted in the Ito sense the fluctuations do not affect the mean oscillation frequency or the oscillation amplitude of the Kubo oscillator (48).
- Interpreted in the Stratonovich sense (48) would describe fluctuations that lead to a damping of the oscillations. (see homework).


## Ito's Formula for Multiple Variables

Consider a multi-dimensional Wiener process $\mathbf{W}(t) \equiv\left(W_{1}(t), \ldots, W_{n}(t)\right)$ in which all components are statistically independent of each other and the stochastic differential equation for $\mathbf{x} \equiv\left(x_{1}(t), \ldots, x_{n}(t)\right)$,

$$
d \mathbf{x}=\mathbf{A}(\mathbf{x}, t) d t+\mathbf{B}(\mathbf{x}, t) d \mathbf{W}(t)
$$

What stochastic differential equation does a scalar function of $\mathbf{x}, f=f(\mathbf{x})$, satisfy?

$$
\begin{aligned}
d f & =\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}+\frac{1}{2} \sum_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d x_{i} d x_{j} \\
& =\sum_{i} \frac{\partial f}{\partial x_{i}}\left(A_{i} d t+\sum_{k} B_{i k} d W_{k}\right)+\frac{1}{2} \sum_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(A_{i} d t+\sum_{k} B_{i k} d W_{k}\right)\left(A_{j} d t+\sum_{l} B_{j l} d W_{l}\right)
\end{aligned}
$$

Use

$$
\begin{array}{rlrl}
d W_{i} d W_{j} & =\delta_{i j} d t \quad \text { statistically independent } \\
{\left[d W_{i}\right]^{2+n}} & =0 & & n>0 \\
d t^{1+n} & =0 & & n>0
\end{array}
$$

and get

$$
d f=\{\sum_{i} \frac{\partial f}{\partial x_{i}} A_{i}+\frac{1}{2} \sum_{i j k} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \underbrace{B_{i k} B_{j k}}_{\left(\mathbf{B B}^{t}\right)_{i j}}\} d t+\sum_{i k} \frac{\partial f}{\partial x_{i}} B_{i k} d W_{k}
$$

### 5.4.2 Solvability by Variable Transform

Under what conditions can the stochastic differential equation

$$
\begin{equation*}
d y=f(y, t) d t+g(y, t) d W \tag{51}
\end{equation*}
$$

be solved by such a variable transformation?
Assume an invertible variable transformation

$$
v=v(y(t), t)
$$

Then we have from Ito's formula

$$
d v=\left(\frac{\partial v}{\partial t}+\frac{\partial v}{\partial y} f+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}} g^{2}\right) d t+\frac{\partial v}{\partial y} g d W .
$$

This transformation reduces the stochastic differential equation to simple integrations if the coefficients do not depend on $v$, i.e. if

$$
\begin{equation*}
d v=\alpha(t) d t+\beta(t) d W \tag{52}
\end{equation*}
$$

Thus the conditions are

$$
\begin{align*}
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial y} f+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}} g^{2} & =\alpha(t)  \tag{53}\\
\frac{\partial v}{\partial y} g & =\beta(t) \tag{54}
\end{align*}
$$

This will be possible only for certain combinations of the functions $f$ and $g$, i.e. these two equations are not conditions for $v$ but for $f$ and $g$. We now obtain the corresponding condition.

From (54) we get

$$
\begin{equation*}
\frac{\partial v}{\partial y}=\frac{\beta(t)}{g(y(t), t)} \tag{55}
\end{equation*}
$$

Differentiating (53) with respect to $y$ we get

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial y \partial t}+\frac{\partial}{\partial y}\left[\frac{\partial v}{\partial y} f+\frac{1}{2} \frac{\partial^{2} v}{\partial y^{2}} g^{2}\right]=0 \tag{56}
\end{equation*}
$$

We want a condition on $f$ and $g$ and not on $v$. Therefore we want to eliminate $v$ from these conditions and still need expressions for the two terms with the second derivative

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial y \partial t}=\frac{\partial}{\partial t}\left[\frac{\beta(t)}{g(y(t), t)}\right] \\
&=\frac{\beta^{\prime}}{g}-\frac{\beta}{g^{2}} \frac{\partial g}{\partial t} \\
& \frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial}{\partial y}\left[\frac{\beta(t)}{g(y(t), t)}\right]=-\frac{\beta}{g^{2}} \frac{\partial g}{\partial y} .
\end{aligned}
$$

Insert them into (56) to get

$$
\frac{\beta^{\prime}}{g}-\frac{\beta}{g^{2}} \frac{\partial g}{\partial t}+\frac{\partial}{\partial y}\left[\frac{\beta(t)}{g} f\right]-\frac{1}{2} \frac{\partial}{\partial y}\left[\frac{\beta}{g^{2}} \frac{\partial g}{\partial y} g^{2}\right]=0
$$

i.e.

$$
\begin{equation*}
\frac{\beta^{\prime}(t)}{\beta(t)}=\frac{1}{g} \frac{\partial g}{\partial t}-g \frac{\partial}{\partial y}\left[\frac{f}{g}\right]+\frac{1}{2} g \frac{\partial^{2} g}{\partial y^{2}} \tag{57}
\end{equation*}
$$

Since the left-hand side depends only on $t$ the condition on $f$ and $g$ is

$$
\begin{equation*}
\frac{\partial}{\partial y}\left\{\frac{1}{g} \frac{\partial g}{\partial t}-g \frac{\partial}{\partial y}\left[\frac{f}{g}\right]+\frac{1}{2} g \frac{\partial^{2} g}{\partial y^{2}}\right\}=0 \tag{58}
\end{equation*}
$$

Thus

- the condition (58) guarantees that a $y$-independent $\beta$ can be determined from (57).
- then $v(y, t)$ can be determined from (55)
- (57) guarantees that the expression (53) defining $\alpha$ is $y$-independent and therefore such an $\alpha=\alpha(t)$ can indeed be chosen.

Conclusion:

- if the coefficients in the stochastic differential equation (51) satisfies the condition (58) it can be transformed into the linear equation (52).


## Example:

For the Kubo oscillator we have

$$
f(y, t)=i \omega y \quad g(y, t)=i \lambda y
$$

Condition (58) is satisfied

$$
\frac{\partial}{\partial y}\left\{-i \lambda y \frac{\partial}{\partial y}\left[\frac{\omega}{\lambda}\right]+\frac{1}{2} i \lambda y \frac{\partial^{2}}{\partial y^{2}}(i \lambda y)\right\}=0
$$

$\beta$ is determined from

$$
\frac{\beta^{\prime}}{\beta}=0 \quad \Rightarrow \quad \beta=\beta_{0}
$$

For $v(y, t)$ we get the equation

$$
\frac{\partial v}{\partial y}=\frac{\beta_{0}}{i \lambda y} \quad \Rightarrow \quad v=\frac{\beta_{0}}{i \lambda} \ln y+v_{0}(t)
$$

implying

$$
y=e^{i \frac{\lambda}{\beta_{0}}\left(v-v_{0}(t)\right)}
$$

and

$$
\begin{aligned}
\alpha(t) & =v_{0}^{\prime}(t)+\frac{\beta_{0}}{i \lambda} \frac{1}{y} \cdot i \omega y-\frac{1}{2} \frac{\beta_{0}}{i \lambda} \frac{1}{y^{2}} \cdot(i \lambda y)^{2} \\
& =v_{0}^{\prime}(t)+\frac{\beta_{0} \omega}{\lambda}-\frac{i}{2} \beta_{0} \lambda
\end{aligned}
$$

We still can choose $v_{0}(t)$ and $\beta_{0}$ to simplify the equations.
For instance

$$
\begin{aligned}
\beta_{0} & =i \lambda \\
v_{0}(t) & =-i \omega t
\end{aligned}
$$

Then

$$
y=e^{v-i \omega t}
$$

and

$$
d v=\frac{1}{2} \lambda^{2} d t+i \lambda d W
$$

as before (cf. (49)).

### 5.4.3 Fokker-Planck Equation from the Ito Stochastic Differential Equation

Consider $y$ satisfying

$$
y=f d t+g d W
$$

Use Ito's formula for $d h(y(t))$

$$
\langle d h\rangle=\left\langle\left(\frac{d h}{d y} f+\frac{1}{2} \frac{d^{2} h}{d y^{2}} g^{2}\right) d t+\frac{d h}{d y} g d W\right\rangle
$$

yielding

$$
\frac{d}{d t}\langle h\rangle=\frac{\langle d h\rangle}{d t}=\left\langle\frac{d h}{d y} f+\frac{1}{2} \frac{d^{2} h}{d y^{2}} g^{2}\right\rangle
$$

Using the probability distribution $P\left(y, t \mid y_{0}, t_{0}\right)$ for initial condition $y\left(t_{0}\right)=y_{0}$ we get

$$
\frac{d}{d t}\langle h\rangle=\int h(y) \frac{\partial}{\partial t} P\left(y, t \mid y_{0}, t_{0}\right) d y=\int\left(\frac{d h}{d y} f+\frac{1}{2} \frac{d^{2} h}{d y^{2}} g^{2}\right) P\left(y, t \mid y_{0}, t_{0}\right) d y
$$

As previously, integrate by parts to get

$$
\int h(y)\left\{\frac{\partial}{\partial t} P\left(y, t \mid y_{0}, t_{0}\right)+\frac{\partial}{\partial y}\left(f P\left(y, t \mid y_{0}, t_{0}\right)\right)-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(g^{2} P\left(y, t \mid y_{0}, t_{0}\right)\right)\right\} d y=0
$$

Since $h(y)$ is arbitraty we get again the FPE

$$
\begin{equation*}
\frac{\partial}{\partial t} P\left(y, t \mid y_{0}, t_{0}\right)=-\frac{\partial}{\partial y}\left(f P\left(y, t \mid y_{0}, t_{0}\right)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(g^{2} P\left(y, t \mid y_{0}, t_{0}\right)\right) \tag{59}
\end{equation*}
$$

### 5.5 Stratonovich's Stochastic Differential Equation

Make the connection between the Ito interpretation and the Stratonovich interpretation of the stochastic differential equation explicit.
Consider the Ito stochastic differential equation

$$
d y=f(y, t) d t+g(y, t) d W
$$

which has the formal integral

$$
y=y(0)+\int_{0}^{t} f\left(y\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}+\int_{0}^{t} g\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)
$$

Consider now the Stratonovich stochastic differential equation that has the same solution $y(t)$,

$$
y=y(0)+\int_{0}^{t} \tilde{f}\left(y\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}+S \int_{0}^{t} \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)
$$

where $S \int$ denotes the Stratonovich stochastic integral.
What is the connection between $f, g$ and $\tilde{f}, \tilde{g}$ ?

$$
\begin{aligned}
S \int_{0}^{t} \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)= & \sum_{i} \tilde{g}\left(\frac{1}{2}\left[y_{i}+y_{i-1}\right], t_{i}\right)\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right) \\
= & \sum_{i} \tilde{g}\left(y_{i-1}+\frac{1}{2} d y_{i-1}, t_{i}\right)\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right) \\
= & \sum_{i}[\tilde{g}\left(y_{i-1}, t_{i}\right)+\frac{1}{2} \tilde{g}^{\prime}\left(y_{i-1}, t_{i}\right)\{f\left(y_{i-1}, t\right) \underbrace{d t}_{\rightarrow \mathcal{O}(d t d W)}+g\left(y_{i-1}, t\right) d W\}+\mathcal{O}\left(d W^{2}\right) \\
& \cdot\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right) \\
= & \int \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)+\frac{1}{2} \int g\left(y\left(t^{\prime}\right), t^{\prime}\right) \frac{\partial \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right)}{\partial y} d t^{\prime}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{0}^{t} f\left(y\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}+\int_{0}^{t} g\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)= & \int_{0}^{t} \tilde{f}\left(y\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}+\int \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right) d W\left(t^{\prime}\right)+ \\
& +\frac{1}{2} \int g\left(y\left(t^{\prime}\right), t^{\prime}\right) \frac{\partial \tilde{g}\left(y\left(t^{\prime}\right), t^{\prime}\right)}{\partial y} d t^{\prime}
\end{aligned}
$$

which gives the condition for the two equations to have the same solution

$$
\begin{aligned}
\tilde{g}(y, t) & =g(y, t) \\
\tilde{f}(y, t) & =f(y, t)-\frac{1}{2} g(y, t) \frac{\partial g(y, t)}{\partial y}
\end{aligned}
$$

i.e.

$$
\begin{array}{lllll}
d y & =f d t+g d W & {[\text { Ito }]} & \Leftrightarrow d y=\left(f-\frac{1}{2} g \frac{\partial g}{\partial y}\right) d t+g d W & {[\text { Stratonovich }]} \\
d y=f d t+g d W & {[\text { Stratonovich }]} & \Leftrightarrow d y=\left(f+\frac{1}{2} g \frac{\partial g}{\partial y}\right) d t+g d W & {[\text { Ito }]}
\end{array}
$$

## Variable Transformation:

Consider

$$
d y=f d t+g d W \quad[\text { Stratonovich }]
$$

and

$$
v=v(y) \quad \Leftrightarrow \quad y=u(v)
$$

To use Ito's formula for the variable transformation we need to rewrite the differential equation first in the Ito sense

$$
d y=\left(f+\frac{1}{2} g \frac{\partial g}{\partial y}\right) d t+g d W \quad[I t o]
$$

then use Ito's formula

$$
d v=\left[\frac{d v}{d y}\left(f+\frac{1}{2} g \frac{\partial g}{\partial y}\right)+\frac{1}{2} \frac{d^{2} v}{d y^{2}} g^{2}\right] d t+\frac{d v}{d y} g d W
$$

We need to write everything in terms of $v$

$$
\frac{d v}{d y}=\frac{1}{\frac{d u}{d v}}
$$

and

$$
\begin{aligned}
\frac{d^{2} v}{d y^{2}} & =\frac{d}{d y}\left(\frac{1}{\frac{d u}{d v}}\right)=\frac{d}{d v}\left(\frac{1}{\frac{d u}{d v}}\right) \frac{d v}{d y} \\
& =-\frac{1}{u^{\prime 2}} \frac{d^{2} u}{d v^{2}} \frac{1}{u^{\prime}}=-\frac{1}{u^{\prime 3}} \frac{d^{2} u}{d v^{2}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
d v=\left[\frac{1}{u^{\prime}} f+\frac{1}{u^{\prime}} \frac{1}{2} g \frac{\partial g}{\partial v} \frac{1}{u^{\prime}}-\frac{1}{2} \frac{1}{u^{\prime 3}} \frac{d^{2} u}{d v^{2}} g^{2}\right] d t+\frac{1}{u^{\prime}} g d W \tag{Ito}
\end{equation*}
$$

Now convert the Ito SDE back to a Stratonovich SDE

$$
\begin{aligned}
d v= & {\left[\frac{1}{u^{\prime}} f+\frac{1}{u^{\prime}} \frac{1}{2} g \frac{\partial g}{\partial v} \frac{1}{u^{\prime}}-\frac{1}{2} \frac{1}{u^{\prime 3}} \frac{d^{2} u}{d v^{2}} g^{2}\right] d t+\frac{1}{u^{\prime}} g d W } \\
& -\frac{1}{2} \frac{1}{u^{\prime}} g \frac{d}{d v}\left(\frac{1}{u^{\prime}} g\right) d t \\
= & {\left[\frac{1}{u^{\prime}} f+\frac{1}{u^{\prime}} \frac{1}{2} g \frac{\partial g}{\partial v} \frac{1}{u^{\prime}}-\frac{1}{2} \frac{1}{u^{\prime 3}} \frac{d^{2} u}{d v^{2}} g^{2}\right] d t+\frac{1}{u^{\prime}} g d W } \\
& -\frac{1}{2} \frac{1}{u^{\prime}} g\left(-\frac{1}{u^{\prime 2}} u^{\prime \prime} g+\frac{1}{u^{\prime}} \frac{\partial g}{\partial v}\right) d t \\
= & {[f d t+g d W] \frac{1}{u^{\prime}} } \\
d v= & \frac{d v}{d y}[f d t+g d W]
\end{aligned}
$$

Thus:

- for the Stratonovich stochastic differential equation the usual variable transformations hold


### 5.6 Colored Noise: Ornstein-Uhlenbeck and its White-Noise Limit

So far we always considered only Gaussian white noise, i.e. the Wiener process, in the stochastic differential equation. How can one treat different types of noise, 'colored noise'?
Could develop the stochastic calculus for other types of noise. If the colored noise can be written as driven by white noise it is easier to introduce an additional equation.
We will find: The Ito SDE can in general not be considered as the white-noise limit of noise with finite correlation time.

Recall the Fokker-Planck equation for the Ornstein-Uhlenbeck process (22)

$$
\frac{\partial}{\partial t} P(v, t)=\gamma \frac{\partial}{\partial v}(v P(v, t))+\gamma \frac{k T}{M} \frac{\partial^{2}}{\partial v^{2}} P(v, t)
$$

Comparing with (59) we get

$$
f=-\gamma v \quad g=\sqrt{\frac{2 k T}{M}} \sqrt{\gamma} \equiv \kappa \sqrt{\gamma}
$$

Consider a system driven by the Ornstein-Uhlenbeck process

$$
\begin{align*}
\frac{d y}{d t} & =a y+b y v  \tag{60}\\
d v & =-\gamma v d t+\kappa \sqrt{\gamma} d W \tag{61}
\end{align*}
$$

Since $v$ is a continuous function (rather than discontinous random kicks $L(t)$ ) the equation (60) for $y$ is a conventional differential equation.
(61) has additive noise, therefore the additional term of Ito's formula does not arise and we get a standard variable transformation. Can therefore do usual integrating factor

$$
\begin{gathered}
v=e^{-\gamma t} u \\
d u=\kappa \sqrt{\gamma} e^{\gamma t} d W \\
u=v_{0}+\kappa \sqrt{\gamma} \int_{0}^{t} e^{\gamma t^{\prime}} d W\left(t^{\prime}\right)
\end{gathered}
$$

and

$$
v(t)=v_{0} e^{-\gamma t}+\kappa \sqrt{\gamma} \int_{0}^{t} e^{-\gamma\left(t-t^{\prime}\right)} d W\left(t^{\prime}\right)
$$

For simplicity set $v_{0}=0$.
For given $v(t)$ we can solve for $y$ again by integrating factor

$$
y(t)=y_{0} e^{\int_{0}^{t} a+b v\left(t^{\prime}\right) d t^{\prime}}
$$

The Ornstein-Uhlenbeck process is a Gaussian process with finite correlation time $\tau=\gamma^{-1}$. For $\gamma \rightarrow \infty$ it turns into noise with vanishing correlation time. Determine $y$ in that limit.

Consider first the autocorrelation function, assuming $t_{2} \geq t_{1}$

$$
\begin{aligned}
C\left(t_{1}, t_{2}\right)=\left\langle\left(\kappa \sqrt{\gamma} \int_{0}^{t_{1}} e^{-\gamma\left(t_{1}-t^{\prime}\right)} d W\left(t^{\prime}\right)\right)\left(\kappa \sqrt{\gamma} \int_{0}^{t_{2}} e^{-\gamma\left(t_{2}-t^{\prime \prime}\right)} d W\left(t^{\prime \prime}\right)\right)\right\rangle & =\kappa^{2} \gamma \int_{0}^{t_{1}} e^{-\gamma\left(t_{1}-t^{\prime}\right)-\gamma\left(t_{2}-t^{\prime}\right)} d t^{\prime} \\
& =\kappa^{2} \frac{1}{2} e^{-\gamma\left(t_{2}+t_{1}\right)}\left(e^{2 \gamma t_{1}}-1\right) \\
& =\kappa^{2} \frac{1}{2} e^{-\gamma\left(t_{2}-t_{1}\right)}-\kappa^{2} \frac{1}{2} e^{-\gamma\left(t_{2}+t_{1}\right)}
\end{aligned}
$$

where we used the correlation formula and $\left\langle d W\left(t^{\prime}\right) d W\left(t^{\prime \prime}\right)\right\rangle=0$ for $t^{\prime} \neq t^{\prime \prime}$.
For large times we get

$$
C\left(t_{1}, t_{2}\right)=\kappa^{2} \frac{1}{2} e^{-\gamma\left|t_{2}-t_{1}\right|}
$$

We want that for $\gamma \rightarrow \infty$

$$
C\left(t_{1}, t_{2}\right) \rightarrow \delta\left(t_{2}-t_{1}\right)
$$

i.e.

$$
1=\int_{-\infty}^{+\infty} C\left(t, t^{\prime}\right) d t^{\prime}=\kappa^{2} \frac{1}{2} \frac{2}{\gamma}
$$

We need to choose $\kappa^{2}=\gamma$.

## Note:

- increasing only the dissipation shortens the correlation time but decreases the overall amount of noise $\Rightarrow$ we need to increase the temperature $T=M \kappa^{2} / 2 k$ at the same to keep the noise level constant

Need to evaluate the integral for $v(t)$ for large $\gamma$.

$$
\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=\gamma \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} e^{-\gamma\left(t^{\prime}-t^{\prime \prime}\right)} d W\left(t^{\prime \prime}\right)
$$

To exploit the limit $\gamma \rightarrow \infty$ we would like to do the $t^{\prime}$-integral first


$$
\begin{aligned}
\lim _{\gamma \rightarrow \infty} \int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime} & =\lim _{\gamma \rightarrow \infty} \gamma \int_{0}^{t} d W\left(t^{\prime \prime}\right) \int_{t^{\prime \prime}}^{t} e^{-\gamma\left(t^{\prime}-t^{\prime \prime}\right)} d t^{\prime}= \\
& =\lim _{\gamma \rightarrow \infty} \gamma \int_{0}^{t} d W\left(t^{\prime \prime}\right) \frac{1}{\gamma}\left(1-e^{-\gamma\left(t-t^{\prime \prime}\right)}\right)= \\
& =\int_{0}^{t} d W\left(t^{\prime \prime}\right)=W(t)
\end{aligned}
$$

Thus we have

$$
y(t)=y_{0} e^{a t+b W(t)}
$$

Since for $\gamma \rightarrow \infty$ the Ornstein-Uhlenbeck process becomes $\delta$-correlated, one might expect that one could replace the forcing in $v$ directly by the Wiener process

$$
d y=a y d t+b y d W \quad[I t o]
$$

Comparing with (50) we get then

$$
y=y_{0} e^{a t-\frac{1}{2} b^{2} t+b W(t)}
$$

which does not agree with the limit $\gamma \rightarrow \infty$ of the Ornstein-Uhlenbeck process.

## Notes:

- as was the case for the Fokker-Planck description before, the Ito SDE does not describe the limit of vanishing correlation time of smooth noise
- colored noise can be treated by using an additional equation.
${ }^{21}$ Aside: consider for an arbitrary test function $h(t)$ and large $\gamma$

$$
\begin{aligned}
\int_{0}^{\infty} h\left(t^{\prime}\right) \kappa \sqrt{\gamma} e^{-\gamma\left(t-t^{\prime}\right)} d t^{\prime} & =\kappa \sqrt{\gamma} \int_{0}^{\infty}\left(h(0)+h^{\prime}(0) t^{\prime}+\frac{1}{2} h^{\prime \prime}(0) t^{\prime 2}+\ldots\right) e^{-\gamma\left(t-t^{\prime}\right)} d t^{\prime} \\
& =\kappa \sqrt{\gamma}\left\{\frac{1}{\gamma} h(0)+h^{\prime}(0) \frac{d}{d \gamma}\left(\frac{1}{\gamma}\right)+\frac{1}{2} h^{\prime \prime}(0) \frac{d^{2}}{d \gamma^{2}}\left(\frac{1}{\gamma}\right)+\ldots\right\} \\
& =\frac{\kappa}{\sqrt{\gamma}} h(0)+\mathcal{O}\left(\frac{\kappa}{\gamma^{3 / 2}}\right)
\end{aligned}
$$

thus setting $\kappa=\sqrt{\gamma}$

$$
\lim _{\gamma \rightarrow \infty} \gamma e^{-\gamma\left(t-t^{\prime}\right)}=\delta\left(t-t^{\prime}\right)
$$

Then for $\gamma \rightarrow \infty$

$$
v(t)=\int_{0}^{t} \delta\left(t-t^{\prime}\right) d W\left(t^{\prime}\right)
$$

For $y$ we need

$$
\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{t}\left\{\int_{0}^{t^{\prime}} \delta\left(t^{\prime}-t^{\prime \prime}\right) d W\left(t^{\prime \prime}\right)\right\} d t^{\prime} \underbrace{=}_{\text {can be shown }} W(t)
$$

## 6 Stochastic Resonance

There are climate variations on all kinds of time scales, from few years to 100,000 years.


Figure 1: a) Fluctuation in global ice volume (or sea level) from observations of the oxygenisotope content of fossil plankton in deep-sea core, which indicates fluctuations in gobal ice volume. b) Power spectrum of that time series. [20]

The earth 's orbit has secular variations (Milankovich cycles):

- the eccentricity of the orbit changes by $0.1 \%$ with a period of 96,000 years
- obliquity of axis of orbit varies with a period of 40,000 years
- precession of the longitude of the perihelion varies with a 21,000 year period.

However, the magnitude of the changes of the 96,000 year period is much too small:

- the temperature change induced directly by the variable heat flux is $\mathcal{O}(0.3 \mathrm{~K})$
- the observed changes in temperature are $\mathcal{O}(10 K)$

It was suggested by Benzi et al. [4] that fluctuations in the climate ('noise') may trigger transitions between two states, are get resonantly enhanced by the small modulation: stochastic resonance. They considered a bistable system in which the barrier between the states was modulated slowly in time.
Transition rate is given by Kramers formula (27)

$$
W=\frac{1}{2 \pi \gamma} \omega_{1} \omega_{2} e^{-\frac{2}{b \gamma} \Delta U}
$$

## Notes:

- Kramers formula valid for $\Delta U \gg b \gamma$
- if the potential is time-dependent the temporal variation has to be slow compared to the evolution inside the potential

$$
\frac{1}{U} \frac{d U}{d t} \ll \omega_{1}
$$

so that the probability distribution in the well is (almost) equilibrated at all times.

Consider a double-well system as a two-state system[21]

$$
n_{+}(t)=\int_{x_{m}}^{\infty} P\left(x^{\prime}, t\right) d x^{\prime} \quad n_{-}(t)=\int_{-\infty}^{x_{m}} P\left(x^{\prime}, t\right) d x^{\prime}
$$

Transition rates between the two states

$$
W_{ \pm}(t): \quad n_{ \pm} \rightarrow n_{\mp}
$$

Evolution equation for the probability for the system to be in state +

$$
\begin{aligned}
& \frac{d n_{+}}{d t}=-\frac{d n_{-}}{d t}=W_{-}(t) n_{-}-W_{+}(t) n_{+} \\
& \frac{d n_{+}}{d t}=W_{-}(t)-\left(W_{+}(t)+W_{-}(t)\right) n_{+}
\end{aligned}
$$

The transition rates are time-dependent because the barrier height depends on time.

$$
\begin{gathered}
\frac{d}{d t}\left(e^{\int^{t} W_{+}+W_{-} d t^{\prime}} n_{+}\right)=W_{-} e^{t^{t} W_{+}+W_{-} d t^{\prime}} \\
n_{+}(t)=e^{-\int_{t_{0}}^{t} W_{+}+W_{-} d t^{\prime}} n_{+}\left(t_{0}\right)+e^{-\int_{t_{0}}^{t} W_{+}+W_{-} d t^{\prime}} \int_{t_{0}}^{t} W_{-}\left(t^{\prime}\right) e^{\int_{t_{0}}^{t^{\prime}} W_{+}+W_{-} d t^{\prime \prime}} d t^{\prime}
\end{gathered}
$$

Consider modulations of the barrier

$$
\Delta U_{ \pm}=\Delta U_{0} \pm \Delta U_{1} \cos \omega_{s} t
$$

where $\Delta U_{+}$is the barrier height from the right potential well and $\Delta U_{-}$from the left.

If the modulation amplitude is small, $\Delta U_{1} \ll b \gamma$ one gets

$$
\begin{aligned}
W_{ \pm}(t) & =\frac{1}{2 \pi \gamma} \omega_{1} \omega_{2} e^{-\frac{2}{b \gamma}\left(\Delta U_{0} \pm \Delta U_{1} \cos \omega_{s} t\right)}= \\
& =\frac{1}{2 \pi \gamma} \omega_{1} \omega_{2} e^{-\frac{2}{b \gamma} \Delta U_{0}}\left\{1 \mp \frac{2}{b \gamma} \Delta U_{1} \cos \omega_{s} t\right\}
\end{aligned}
$$

which can be written as

$$
W_{ \pm}(t)=\frac{1}{2} \alpha_{0} \mp \frac{1}{2} \epsilon \alpha_{1} \cos \omega_{s} t+\mathcal{O}\left(\epsilon^{2}\right)
$$

with

$$
\alpha_{0}=\frac{1}{\pi \gamma} \omega_{1} \omega_{2} e^{-\frac{2}{b \gamma} \Delta U_{0}} \quad \epsilon \alpha_{1}=\frac{2 \Delta U_{1}}{b \gamma} \alpha_{0}
$$

Then

$$
\begin{aligned}
& W_{+}+W_{-}=\alpha_{-}+\mathcal{O}\left(\epsilon^{2}\right) \\
& n_{+}=e^{-\alpha_{0}\left(t-t_{0}\right)}\left\{n_{+}\left(t_{0}\right)+\int_{t_{0}}^{t}\left(\frac{1}{2} \alpha_{0}+\frac{1}{2} \epsilon \alpha_{1} \cos \omega_{s} t^{\prime}\right) e^{\alpha_{0}\left(t^{\prime}-t_{0}\right)} d t^{\prime}\right\}= \\
&=e^{-\alpha_{0}\left(t-t_{0}\right)}\left\{n_{+}\left(t_{0}\right)+\frac{1}{2}\left(e^{\alpha_{0}\left(t-t_{0}\right)}-1\right)+\frac{1}{2} \frac{\epsilon \alpha_{1}}{\sqrt{\omega_{s}^{2}+\alpha_{0}^{2}}}\left(\cos \left(\omega_{s} t-\phi\right) e^{\alpha_{0}\left(t-t_{0}\right)}-\cos \left(\omega_{s} t_{0}-\phi\right)\right)\right\}
\end{aligned}
$$

with

$$
\phi=\arctan \frac{\omega_{s}}{\alpha_{0}}
$$

Assuming the system is initially either in the right or the left well one gets for the transition probability

$$
\begin{aligned}
n_{+}\left(t \mid x_{0}, t_{0}\right) & =\frac{1}{2}\{e^{-\alpha_{0}\left(t-t_{0}\right)}[2 \underbrace{\delta_{\text {for }_{x_{0}, t}}}_{=1}-1-\frac{\epsilon \alpha_{1}}{\sqrt{\omega_{s}^{2}+\alpha_{0}^{2}}} \cos \left(\omega_{s} t_{0}-\phi\right)]+1+\frac{\epsilon \alpha_{1}}{\sqrt{\omega_{s}^{2}+\alpha_{0}^{2}}} \cos \left(\omega_{s} t-\phi\right) \\
& =\frac{1}{2}\{e^{-\alpha_{0}\left(t-t_{0}\right)}[2 \underbrace{\text { for }_{x_{0}>0}}_{=1} \delta_{x_{0},+}-1-\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t_{0}-\phi\right)]+1+\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t-\phi\right)\}
\end{aligned}
$$

with

$$
\tilde{\alpha}_{1}=\frac{\alpha_{1}}{\sqrt{\omega_{s}^{2}+\alpha_{0}^{2}}}
$$

To get the power spectrum determine the correlation function
Approximate the position

$$
\langle x(t)\rangle=x_{+} n_{+}(t)+x_{-} n_{-}(t) \equiv c\left(n_{+}-n_{-}\right)
$$

Then, using $\langle x(t)\rangle=0$

$$
\begin{aligned}
\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle & =\sum_{s, s^{\prime}= \pm 1} s c s^{\prime} c P\left(s, t+\tau ; s^{\prime}, t \mid x_{0}, t_{0}\right)= \\
& =c^{2} \sum_{s, s^{\prime}= \pm 1} s s^{\prime} P\left(s, t+\tau \mid s^{\prime}, t\right) P\left(s^{\prime}, t \mid x_{0}, t_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
c^{-2}\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle= & n_{+}(t+\tau \mid+c, t) n_{+}\left(t \mid x_{0}, t_{0}\right)-n_{+}(t+\tau \mid-c, t) \underbrace{n_{-}\left(t \mid x_{0}, t_{0}\right)}_{1-n_{+}\left(t \mid x_{0}, t_{0}\right)} \\
& -\underbrace{n_{-}(t+\tau \mid+c, t)}_{1-n_{+}(t+\tau \mid+c, t)} n_{+}\left(t \mid x_{0}, t_{0}\right)+\underbrace{n_{-}(t+\tau \mid-c, t)}_{1-n_{+}(t+\tau \mid-c, t)} \underbrace{n_{-}\left(t \mid x_{0}, t_{0}\right)}_{1-n_{+}\left(t \mid x_{0}, t_{0}\right)}
\end{aligned}
$$

The contributions to this correlation can be read as different sequences of events like

$$
n_{-}(t+\tau \mid+, t) n_{+}\left(t \mid x_{0}, t_{0}\right) \quad \Leftrightarrow \quad\binom{x_{0}}{t_{0}} \rightarrow\binom{x_{+}}{t} \rightarrow\binom{x_{-}}{t+\tau}
$$

Using $n_{-}=1-n_{+}$we get

$$
\begin{aligned}
c^{-2}\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle= & \left\{2 n_{+}(t+\tau \mid+c, t)-1+2 n_{+}(t+\tau \mid-c, t)-1\right\} n_{+}\left(t \mid x_{0}, t_{0}\right) \\
& -\left\{2 n_{+}(t+\tau \mid-c, t)-1\right\}
\end{aligned}
$$

For large times $\left(t_{0} \rightarrow-\infty\right)$

$$
\begin{aligned}
\frac{\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle}{c^{2}} \rightarrow & \left\{e^{-\alpha_{0} \tau}\left[1-\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t-\phi\right)\right]+1+\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s}(t+\tau)-\phi\right)-1\right. \\
& \left.+e^{-\alpha_{0} \tau}\left[-1-\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t-\phi\right)\right]+1+\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s}(t+\tau)-\phi\right)-1\right\} \\
& \cdot \frac{1}{2}\left[1+\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t-\phi\right)\right] \\
& -\left\{e^{-\alpha_{0} \tau}\left[-1-\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s} t-\phi\right)\right]+1+\epsilon \tilde{\alpha}_{1} \cos \left(\omega_{s}(t+\tau)-\phi\right)-1\right\} \\
= & e^{-\alpha_{0} \tau}+\epsilon \tilde{\alpha}_{1}(0)+ \\
& +\epsilon^{2} \tilde{\alpha}_{1}^{2}\left[-e^{-\alpha_{0} \tau} \cos ^{2}\left(\omega_{s} t-\phi\right)+\cos \left(\omega_{s}(t+\tau)-\phi\right) \cdot \cos \left(\omega_{s} t-\phi\right)\right]
\end{aligned}
$$

## Notes:

- the correlation function depends on $\tau$ and $t$ even for $t_{0} \rightarrow-\infty$ due to the periodic modulation, which defines a phase
- the dependence on $t$ is only be apparent if the averaging is done at fixed values of the phase relative to the modulation.

Consider averaging over multiple experiments, each starting at different times in the cycle $\Rightarrow$ average over $t$.
Typically, even for single run the correlation function is determined as an average over time

$$
\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle \rightarrow \int_{0}^{\infty} x(t) x(t+\tau) d t
$$

Therefore look at average over one period

$$
\begin{aligned}
& \frac{\omega_{s}}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega_{s}}} \cos \left(\omega_{s}(t+\tau)-\phi\right) \cdot \cos \left(\omega_{s} t-\phi\right) d t=\cos \omega_{s} \tau \cdot \frac{1}{2}-\sin \omega_{s} \tau \cdot 0=\frac{1}{2} \cos \omega_{s} \tau \\
& \frac{\omega_{s}}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega_{s}}} \frac{\left\langle x(t) x(t+\tau) \mid x_{0}, t_{0}\right\rangle}{c^{2}} d t=\underbrace{e^{-\alpha_{0}|\tau|}\left\{1-\frac{1}{2} \epsilon^{2} \tilde{\alpha}_{1}^{2}\right\}}_{\text {decaying component }}+\underbrace{\frac{1}{2} \epsilon^{2} \tilde{\alpha}_{1}^{2} \cos \omega_{s} \tau}_{\text {periodic component }}
\end{aligned}
$$

## Note:

- for general $\tau$ the exponential has $|\tau|$. In our derivation we had assumed $\tau>0$

Averaged power spectrum

$$
\frac{1}{c^{2}}\langle S(\Omega)\rangle_{t}=\left\{1-\frac{1}{2} \epsilon^{2} \tilde{\alpha}_{1}^{2}\right\} \underbrace{\frac{2 \alpha_{0}}{\alpha_{0}^{2}+\Omega^{2}}}_{\text {Lorentzian shape }}+\frac{1}{2} \pi \epsilon^{2} \tilde{\alpha}_{1}^{2}\left\{\delta\left(\Omega-\omega_{s}\right)+\delta\left(\Omega+\omega_{s}\right)\right\}
$$

We are interested in the dependence of the signal-to-noise ratio at $\Omega=\omega_{s}$, i.e. the ratio of the $\delta$-function to the smooth spectrum $\Omega=\omega_{s}$

$$
\begin{aligned}
R & =\frac{\pi \epsilon^{2} \tilde{\alpha}_{1}^{2}}{\left\{1-\frac{1}{2} \epsilon^{2} \tilde{\alpha}_{1}^{2}\right\} \frac{2 \alpha_{0}}{\alpha_{0}^{2}+\omega_{s}^{2}}}=\frac{\pi \epsilon^{2} \tilde{\alpha}_{1}^{2}\left(\alpha_{0}^{2}+\omega_{s}^{2}\right)}{2 \alpha_{0}}+\mathcal{O}\left(\epsilon^{4}\right)= \\
& =\frac{\pi \epsilon^{2} \alpha_{1}^{2}}{2 \alpha_{0}}=\frac{\pi 4\left(\Delta U_{1}\right)^{2}}{2 b^{2} \gamma^{2}} \frac{1}{\pi \gamma} \omega_{1} \omega_{2} e^{-\frac{2}{b \gamma} \Delta U_{0}}
\end{aligned}
$$

Thus

$$
R=k_{0}\left(\Delta U_{1}\right)^{2} \frac{e^{-\frac{2}{b \gamma} \Delta U_{0}}}{b^{2}}
$$

## Notes:

- for small noise $b$ the signal-to-noise ratio increase with increasing noise level: the number of jumps between the two wells increases and because the escape time depends so sensitively on the barrier height these jumps occur predominantly during a relatively well-defined period when the relevant barrier is minimal
- for large noise levels the jumping can also occur at any other times: signal becomes noisy again
- essential is the bistability of the system: the system has to be nonlinear


### 6.1 Examples

Stochastic resonance has been found and investigated in a wide range of physical and biological systems (for a review see e.g. [14])

- climate models
- various set-ups of lasers
- SQUIDs (superconducting quantum interference device): superconducting loop interrupted by a Josephson junction
- chemical reactions
- neuronal systems
- psycho-physical experiments

Here just a couple of examples.

### 6.1.1 Ring Laser [22]

In the ring laser the beam can travel in one of two opposite directions $\Rightarrow$ bistability
By an acousto-optic coupler one of the two directions can be preferred: the preferred direction depends on the frequency of the modulation $\Rightarrow$ modulating the frequency periodically a periodic switching of directions can be induced
Combine a periodic and noisy modulation of the ultrasound frequency to get stochstic resonance.

This paper triggered a huge interest in stochastic resonance.


Figure 2: Experimental set-up of ring laser [22]


Figure 3: Left: Input and output of laser for two noise strengths. Right: Power spectrum for increasing noise strength [22].


Figure 4: Dependence of the signal-to-noise ratio on the noise strength [22].

### 6.1.2 Mechanoreceptors in Crayfish[12]

Stimulate mechanical mechanoreceptors on the tailfan of the crayfish $\Rightarrow$ sensory neuron generates spikes triggered by the stimulation
Stimulus: weak periodic signal + noise of variable strength


Figure 5: a) Power spectrum from spiking activity of crayfish mechanoreceptor for 3 different noise levels with fixed weak periodic signal. b) Interspike interval histograms for different noise levels [12].


Figure 6: Dependence of the signal-to-noise ratio as determined from the power spectrum (top) and the interspike interval distribution (bottom) on the strength of the external noise [12].

### 6.1.3 Tactile Sensation[9]

Human psychophysics experiment: apply small indentations to the tip of a subject's middle digit
There is a minimal indentation that is needed for the person to perceive it.
To be discriminated:

- subthreshold stimulus plus noise
- no stimulus plus noise


Figure 7: Indentation stimulus given to the finger tip. Three different noise strengths [9].


Figure 8: Percent of correct discrimination of the stimulus for three different subjects as a function of noise strength [9].

For another interesting psychophysics experiment see [26].

## 7 Sketch of Numerical Methods for Stochastic Differential Equations

For numerical solutions of stochastic differential equations two goals are possible

1. Strong approximation: pathwise approximation
for any given realization $W(t)$ of the noise the numerical solution approximates the exact solution $\tilde{y}$

$$
E_{s}(t)=\langle | y(t)-\tilde{y}(t)| \rangle=\frac{1}{N} \sum_{k=1}^{N}\left|y_{k}(t)-\tilde{y}_{k}(t)\right| .
$$

Here $y_{k}(t)$ is the numerical result one obtains for the $k^{t h}$-realization of the noise. To get a good estimate of the error the number $N$ of realizations has to be sufficiently large. Add up absolute value of error to avoid error cancellation.
2. Weak approximation: approximation of expectation values
for any $f(y)$ in a class of test functions the mean value obtained with the numerical solution approximates the mean value of $f(y)$

$$
E_{m}(t)=<f(\tilde{y}(t))>-<f(y(t))>
$$

Typically one would require convergence of the
(a) mean: $f(y)=y$
(b) variance: $f(y)=y^{2}$

## Notes:

- to obtain a strong approximation the numerical realizations $W(t)$ of the noise have to approximate the exact realizations
- for a weak approximation the numerical noise can be quite different than the exact noise as long as it yields a $y(t)$ for which sufficiently many expectation values agree, e.g. mean, variance, higher moments $\left\langle(y(t))^{m}\right\rangle$.


### 7.1 Strong Approximation

### 7.1.1 Euler-Maruyama Scheme

Consider

$$
\begin{equation*}
d y=f(y, t) d t+g(y, t) d W \tag{62}
\end{equation*}
$$

Discretize time and integrate over a short time interval $\Delta t$

$$
\int_{t}^{t+\Delta t} d y=\int_{t}^{t+\Delta t} f\left(y, t^{\prime}\right) d t^{\prime}+\int_{t}^{t+\Delta t} g\left(y, t^{\prime}\right) d W\left(t^{\prime}\right)
$$

Using a left-endpoint rule with only a single interval one obtains the Euler-Maruyama scheme

$$
\begin{equation*}
y_{n+1}=y_{n}+f\left(y_{n}, t_{n}\right) \Delta t+g\left(y_{n}, t_{n}\right) \Delta W_{n} \tag{63}
\end{equation*}
$$

where

$$
\Delta W_{n}=W\left(t_{n}+\Delta t\right)-W\left(t_{n}\right) .
$$

The $\Delta W_{n}$ are Gaussian distributed with variance $\Delta t$. They are $\delta$-correlated

$$
\left\langle\Delta W_{n} \Delta W_{n^{\prime}}\right\rangle=\delta_{n, n^{\prime}}
$$

Using a normally distributed variable $\Delta \tilde{W}$ that has variance 1 we get $\Delta W_{n}$ by setting

$$
\begin{equation*}
\Delta W_{n}=\sqrt{\Delta t} \Delta \tilde{W} \quad \text { with } \quad P(\Delta \tilde{W})=\frac{1}{\sqrt{2 \pi}} e^{-\frac{\Delta \tilde{W}^{2}}{2}} \tag{64}
\end{equation*}
$$

The noise strength is characterized by $g\left(y_{n}, t_{n}\right)$.

## Notes:

- For each time step generate a new random number $\Delta W_{n}$ that obeys Gaussian statistics (normal distribution); in matlab this is done with randn.
- If y is a vector, usually the random processes for different components of y are independent: for each component of $y$ one has to generate a different independent random number
- To check convergence of the strong approximation:
need to compare solutions with different time steps $\Delta t$ for the same realization $W(t)$

1. Starting with smallest $\Delta t$, generate increments $\Delta W_{n}^{(0)}$ for all time steps $t_{n}$ using a random number generator for a normal (Gaussian) distribution with variance $\Delta t$ according to (64).
2. Increase the time step to $\Delta t^{(2)} \equiv 2 \Delta t$, generate the Wiener process with increments $\Delta W_{n}^{(1)}$ with larger time step by adding pairs of successive increments,

$$
\begin{equation*}
\Delta W_{n}^{(1)}=\Delta W_{2 n}^{(0)}+\Delta W_{2 n+1}^{(0)} \quad n=0,1, \ldots \tag{65}
\end{equation*}
$$

3. Continue to add up the appropriate increments of the Wiener process with increments $\Delta W_{n}^{(l)}$ to generate Wiener processes with increments $\Delta W_{n}^{(l+1)}, l=1,2, \ldots$ corresponding to time steps $\Delta t^{(l+1)}=2^{l+1} \Delta t$. These compound increments have the variance

$$
\left\langle\left(\Delta W_{n}^{(l)}\right)^{2}\right\rangle=2^{l}
$$

since the variances are additive

$$
\left\langle\left(x_{1}+x_{2}\right)^{2}\right\rangle=\int\left(x_{1}+x_{2}\right)^{2} e^{-\frac{x_{1}^{2}}{2 \sigma^{2}}} e^{-\frac{x_{2}^{2}}{2 \sigma^{2}}} d x_{1} d x_{2}=\left\langle x_{1}^{2}\right\rangle+\underbrace{\left\langle 2 x_{1} x_{2}\right\rangle}_{=0}+\left\langle x_{2}^{2}\right\rangle
$$

4. Use $2^{l} \Delta t$ and $\Delta W_{n}^{(l)}, l=1,2, \ldots$, for successively less accurate approximations in (63).

## Note:

- For $f\left(y_{n}, t_{n}\right)=0$ and $g\left(y_{n}, t_{n}\right)=1$ the Euler scheme (63) generates $W(t)$ exactly for all $l$. Changing the time step for a given realization makes no difference since the coarsened Brownian motion adds the steps of the finer representation of the realization.


## Order:

- One can show that, in general, the Euler-Maruyama scheme is of order $\Delta t^{\frac{1}{2}}$.
- If $\frac{d g}{d y}=0$ then the Euler-Maruyama scheme is of order $\mathcal{O}\left(\Delta t^{1}\right)$ as in the deterministic case (see (68)).


### 7.1.2 Milstein Scheme

In particular for multiplicative noise one may want to get a higher-order approximation.
Write the stochastic differential equation again in integral form

$$
\begin{equation*}
\int_{t}^{t+\Delta t} d y=\int_{t}^{t+\Delta t} f(y) d t^{\prime}+\int_{t}^{t+\Delta t} g(y) d W\left(t^{\prime}\right) \tag{66}
\end{equation*}
$$

## Note:

- for simplicity assume that $f$ and $g$ do not depend explicitly on time.

To obtain a higher-order approximation we need to go beyond the left-end-point rule: use a better approximation of the integrand.

Use Ito's formula for a function $v(y)$ with $y$ satisfying the stochastic differential equation (62)

$$
d v=\left(\frac{d v}{d y} f+\frac{1}{2} \frac{d^{2} v}{d y^{2}} g^{2}\right) d t+\frac{d v}{d y} g d W
$$

Rewrite as integral

$$
v\left(y\left(t^{\prime}\right)\right)=v(y(t))+\int_{t}^{t^{\prime}}\left(\frac{d v}{d y} f+\frac{1}{2} \frac{d^{2} v}{d y^{2}} g^{2}\right) d t^{\prime \prime}+\int_{t}^{t^{\prime}} \frac{d v}{d y} g d W\left(t^{\prime \prime}\right)
$$

Use Ito's formula in integral form to rewrite the two integrands in (66)

$$
\begin{align*}
y(t+\Delta t)= & y(t)+\int_{t}^{t+\Delta t}\left[f(y(t))+\int_{t}^{t^{\prime}}\left(\frac{d f}{d y} f+\frac{1}{2} \frac{d^{2} f}{d y^{2}} g^{2}\right) d t^{\prime \prime}+\int_{t}^{t^{\prime}} \frac{d f}{d y} g d W\left(t^{\prime \prime}\right)\right] d t^{\prime} \\
& +\int_{t}^{t+\Delta t}\left[g(y(t))+\int_{t}^{t^{\prime}}\left(\frac{d g}{d y} f+\frac{1}{2} \frac{d^{2} g}{d y^{2}} g^{2}\right) d t^{\prime \prime}+\int_{t}^{t^{\prime}} \frac{d g}{d y} g d W\left(t^{\prime \prime}\right)\right] d W\left(t^{\prime}\right)  \tag{67}\\
= & \underbrace{y(t)+\Delta t f(y(t))+g(y(t)) \Delta W}_{\text {Euler-Maruyama }}+\text { h.o.t. }
\end{align*}
$$

We want the leading-order terms in the h.o.t.: since $d W^{2}=d t$ the dominant term is

$$
\int_{t}^{t+\Delta t} \int_{t}^{t^{\prime}} \frac{d g\left(y\left(t^{\prime \prime}\right)\right.}{d y} g\left(t^{\prime \prime}\right) d W\left(t^{\prime \prime}\right) d W\left(t^{\prime}\right)=\frac{d g(y(t))}{d y} g(t) \int_{t}^{t+\Delta t}\left\{\int_{t}^{t^{\prime}} d W\left(t^{\prime \prime}\right)\right\} d W\left(t^{\prime}\right)+\ldots
$$

Use the Ito integration rule (47) for polynomials

$$
\int_{0}^{t} W^{n}\left(t^{\prime}\right) d W\left(t^{\prime}\right)=\frac{1}{n+1}\left(W(t)^{n+1}-W(0)^{n+1}\right)-\frac{1}{2} n \int_{0}^{t} W\left(t^{\prime}\right)^{n-1} d t^{\prime}
$$

to evaluate the integral

$$
\begin{aligned}
\int_{t}^{t+\Delta t}\left\{\int_{t}^{t^{\prime}} d W\left(t^{\prime \prime}\right)\right\} d W\left(t^{\prime}\right) & =\int_{t}^{t+\Delta t}\left[W\left(t^{\prime}\right)-W(t)\right] d W\left(t^{\prime}\right) \\
& =\frac{1}{2}\left(W(t+\Delta t)^{2}-W(t)^{2}-\frac{1}{2} \Delta t\right)-W(t)(W(t+\Delta t)-W(t)) \\
& =\frac{1}{2}(W(t+\Delta t)-W(t))^{2}-\frac{1}{2} \Delta t=\frac{1}{2} \Delta W^{2}-\frac{1}{2} \Delta t
\end{aligned}
$$

## Note:

- the integral does not vanish since in a given realization one has in general $\Delta W^{2} \neq \Delta t$; only in the mean one has $\left\langle\Delta W^{2}\right\rangle=\Delta t$.

Thus one obtains

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t f\left(y_{n}\right)+g\left(y_{n}\right) \Delta W+\frac{1}{2} \frac{d g\left(y_{n}\right)}{d y} g\left(y_{n}\right)\left(\Delta W_{n}^{2}-\Delta t\right) \tag{68}
\end{equation*}
$$

## Notes:

- For the convergence test proceed as for the Euler-Maruyama scheme and generate increments $\Delta W_{n}$ with variance $\Delta t$ for the smallest $\Delta t$ to be used and then generate the compound increments as in (65).
- Milstein scheme has strong convergence of order $\Delta t^{1}$
- for additive noise one has $\frac{d g}{d y}=0$ : the Euler-Maruyama scheme is then identical to the Milstein scheme and also becomes strong of $\mathcal{O}(\Delta t)$ (see simulations).


## Sample Code:

## function milstein

\% pre-assign memory for speed
nstepmax $=1 \mathrm{e} 5$; time $(1:$ nstepmax $)=0 ; x(1:$ nstepmax $)=0$; realization(1:nstepmax) $=0$;
noise(1:nstepmax) $=0$;
\% physical parameters
$\operatorname{tmax}=0.5 ; \mathrm{amp}=.1 ;$ field=0.1; $\mathrm{x}(1)=0 ;$
\% numerical parameters
ntjmin=3;ntjmax=12;
nstep_max=2^ntjmax; dtmin=tmax/nstep_max;
nconf=100;
log_plot_sol=0;
$\%$ control scheme:
\%forward euler: milstein=0 \%milstein: milstein=1
milstein=1;
errormean(1:ntjmax-1)=0;
for iconf=1:nconf
for $i=1$ :nstepmax
realization(i)=sqrt(dtmin)*randn;
end
for $n t j=n t j m a x:-1: n t j m i n$
nt=2^ntj;
dt(ntj)=tmax/nt;
time(1)=0;
for $\mathrm{i}=1$ :nt
if ( $n t j==n t j m a x$ )
noise(i)=realization(i);
else
noise $(\mathrm{i})=$ noise $(2 * \mathrm{i}-1)+$ noise $(2 * \mathrm{i})$;

```
        end
        x(i+1)=x(i)+dt(ntj)*F(x(i),amp,field)+...
        x(i)*noise(i)+...
        1/2*milstein*x(i)*(noise(i)^2-dt(ntj));
        time(i+1)=time(i)+dt(ntj);
    end
    if (log_plot_sol==1)
        figure(1)
        plot(time(1:nt+1),x(1:nt+1));
        if ntj==1
        figure(1)
        hold all
        xlabel('time');
        ylabel('x');
    end
    end
    xfinal(ntj)=x(nt+1);
    end
    if (log_plot_sol==1)
    hold off
    end
    error(iconf,1:ntjmax-1)=abs(xfinal(2:ntjmax)-xfinal(1:ntjmax-1));
    errormean=errormean+error(iconf,:);
    figure(3)
    slope1x=[0.001,0.01];
    slope1y=[0.0001,0.001];
    slope05x=[0.001,0.1];
    slope05y=[0.0001,0.001];
    loglog(dt(1:ntjmax-1),error(iconf,1:ntjmax-1),'-o');
    hold all
    loglog(slope1x,slope1y);
    loglog(slope05x,slope05y);
    xlabel('dt');
    ylabel('difference between succ. approx');
end
hold off
errormean=errormean/nconf;
figure(4)
    loglog(dt(1:ntjmax-1),errormean(1:ntjmax-1),'o');
    axis([1e-4 1e-1 1e-6 1e-2]);
    hold all
```


## $\log \log ($ slope1x,slope1y);

$\log \log$ (slope $05 x$,slope $05 y$ );
xlabel('dt');
ylabel('difference between succ. approx');
hold off
end

## \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%

$$
\text { function }[F] b=F(x, a m p, f i e l d)
$$

\%xmin2=5;
$\% \mathrm{~F}=-\mathrm{amp}{ }^{*} \mathrm{x}^{*}(1-\mathrm{x}) *(\mathrm{xmin} 2-\mathrm{x}) / \mathrm{xmin} 2$;
$\mathrm{F}=-\mathrm{amp}{ }^{*} 2^{*} \mathrm{x}+$ field;
end


Figure 9: Euler-Maruyama scheme for $d y=-0.2 y d t+y d W$ : a) errors for 20 individual realizations of the Wiener process as a function of $\Delta t$. b) mean error.


Figure 10: Milstein scheme for $d y=-0.2 y d t+y d W$ : a) errors for 20 individual realizations of the Wiener process as a function of $\Delta t$. b) mean error.

To go beyond $\mathcal{O}(\Delta t)$ we would have to deal with the integrals

$$
\int_{t}^{t+\Delta t} \int_{t}^{t^{\prime}} d W\left(t^{\prime \prime}\right) d t^{\prime} \quad \int_{t}^{t+\Delta t} \int_{t}^{t^{\prime}} d t^{\prime \prime} d W\left(t^{\prime}\right)
$$

They cannot be expressed simply in terms of $\Delta W$ and $\Delta t$. One would have to introduce an additional random variable

$$
\Delta z=\int_{t}^{t+\Delta t} \int_{t}^{t^{\prime}} d W\left(t^{\prime \prime}\right) d t^{\prime}
$$

One can show

$$
\langle\Delta z\rangle=0 \quad\left\langle(\Delta z)^{2}\right\rangle=\frac{1}{3} \Delta t^{3} \quad\langle\Delta z \Delta W\rangle=\frac{1}{2} \Delta t^{2}
$$

## Note:

- expect $\Delta z$ to be of $\mathcal{O}\left(\Delta t^{\frac{3}{2}}\right)$, very loosely speaking.
- with $\Delta z$ included the scheme would become of $\mathcal{O}\left(\Delta t^{\frac{3}{2}}\right)$.


### 7.1.3 Implicit Schemes

As in deterministic case stability may require implicit scheme.
If one tries to implement a fully implicit scheme one runs into difficulties: as example, consider backward Euler for

$$
\begin{aligned}
d y & =a y d t+b y d W \\
y_{n+1} & =\frac{y_{n}}{1-a \Delta t-b \Delta W_{n}}
\end{aligned}
$$

Since $\Delta W$ is unbounded the denominator can vanish for some $\Delta W_{n}$.
$\Rightarrow$ treat only the deterministic term implicitly

## i) Backward Euler

$$
y_{n+1}=y_{n}+\Delta t F\left(y_{n+1}, t_{n+1}\right)+g\left(y_{n}, t_{n}\right) \Delta W
$$

## ii) Backward Milstein

$$
y_{n+1}=y_{n}+\Delta t F\left(y_{n+1}, t_{n+1}\right)+g\left(y_{n}, t_{n}\right) \Delta W+\frac{1}{2} \frac{d g\left(y_{n}\right)}{d y} g\left(y_{n}\right)\left(\Delta W^{2}-\Delta t\right)
$$

### 7.2 Weak Approximation

If only averages and moments like $\left\langle y^{n}\right\rangle$ are of interest the strong approximation is not needed, i.e. any given run need not converge to the exact solution corresponding to a given realization of the noise.
In particular:
The noise used in the simulation need not be the same noise as in the stochastic differential equation.

## i) Forward Euler

$$
y_{n+1}=y_{n}+F\left(y_{n}\right) \Delta t+g\left(y_{n}\right) \Delta \tilde{W}
$$

where the process $\Delta \tilde{W}$ needs to satisfy

$$
\begin{aligned}
\langle\Delta \tilde{W}\rangle & =\mathcal{O}\left(\Delta t^{2}\right) \\
\left\langle(\Delta \tilde{W})^{2}\right\rangle & =\Delta t+\mathcal{O}\left(\Delta t^{2}\right) \\
\left\langle(\Delta \tilde{W})^{3}\right\rangle & =\mathcal{O}\left(\Delta t^{2}\right)
\end{aligned}
$$

## Notes:

- the noise $\Delta \tilde{W}$ need not be the Wiener process, i.e. $\Delta \tilde{W}$ need not be $\int_{t}^{t+\Delta t} d W\left(t^{\prime}\right)$. Specifically, it may differ from the Wiener process at order $\mathcal{O}\left(\Delta t^{2}\right)$. The conditions for the process $\Delta \tilde{W}$ can be combined to

$$
|\langle\Delta \tilde{W}\rangle|+\left|\left\langle\Delta \tilde{W}^{3}\right\rangle\right|+\left|\left\langle\Delta \tilde{W}^{2}\right\rangle-\Delta t\right| \leq K \Delta t^{2}
$$

- the noise could be a simple coin toss with $\Delta \tilde{W}= \pm \sqrt{\Delta t}$ and

$$
P(\Delta \tilde{W}= \pm \sqrt{\Delta t})=\frac{1}{2}
$$

(it seems however that in matlab there is no random number generator for such a dichotomic noise: need to generate uniformly distributed numbers in the interval $[0,1]$ and then check whether the number is larger or smaller than $\frac{1}{2}$. This seems to be slower in matlab than the Gaussian distribution)

- this weak Euler scheme has weak convergence of $\mathcal{O}(\Delta t)$


## ii) Order-2 Weak Taylor Scheme

by keeping all the integrals in (67) and keeping also a term coming from $d W^{2} d t$ at next order one gets

$$
\begin{aligned}
y_{n+1}= & y_{n}+F_{n} \Delta t+g_{n} \Delta W+\frac{1}{2} g_{n} \frac{d g_{n}}{d y}\left(\Delta W^{2}-\Delta t\right)+ \\
& +\frac{d F_{n}}{d y} g_{n} \Delta z+\frac{1}{2}\left(F_{n} \frac{d F_{n}}{d y}+\frac{1}{2} \frac{d^{2} F_{n}}{d y^{2}} g_{n}^{2}\right) \Delta t^{2}+ \\
& +\left(F_{n} \frac{d g_{n}}{d y}+\frac{1}{2} \frac{d^{2} g_{n}}{d y^{2}}\right)(\Delta W \Delta t-\Delta z)
\end{aligned}
$$

with

$$
\Delta z=\int_{t}^{t+\Delta t} \int_{t}^{t^{\prime}} d W\left(t^{\prime \prime}\right) d t^{\prime}
$$

For weak convergence $\Delta W$ can be replaced by $\Delta \tilde{W}$ and $\Delta z$ by $\frac{1}{2} \Delta \tilde{W} \Delta t$ if

$$
|\langle\Delta \tilde{W}\rangle|+\left|\left\langle\Delta \tilde{W}^{3}\right\rangle\right|+\left|\left\langle\Delta \tilde{W}^{5}\right\rangle\right|+\left|\left\langle\Delta \tilde{W}^{2}\right\rangle-\Delta t\right|+\left|\left\langle\Delta \tilde{W}^{4}\right\rangle-3 \Delta t^{2}\right| \leq K \Delta t^{3}
$$

## Notes:

- the conditions are satisfied by Gaussian random variable and also by three-state discrete random variable with

$$
P(\Delta \tilde{W}= \pm \sqrt{3 \Delta t})=\frac{1}{6} \quad P(\Delta \tilde{W}=0)=\frac{2}{3}
$$

With that replacement get simplified scheme

$$
\begin{aligned}
y_{n+1}= & y_{n}+F_{n} \Delta t+g_{n} \Delta \tilde{W}+\frac{1}{2} g_{n} \frac{d g_{n}}{d y}\left(\Delta \tilde{W}^{2}-\Delta t\right)+\frac{1}{2}\left(F_{n} \frac{d F_{n}}{d y}+\frac{1}{2} \frac{d^{2} F_{n}}{d y^{2}} g_{n}^{2}\right) \Delta t^{2} \\
& +\frac{1}{2}\left(\frac{d F_{n}}{d y} g_{n}+F_{n} \frac{d g_{n}}{d y}+\frac{1}{2} \frac{d^{2} g_{n}}{d y^{2}}\right) \Delta \tilde{W} \Delta t
\end{aligned}
$$

## Note:

- generate $\Delta \tilde{W}$ : generate a uniformly distributed variable $\xi \in[0,1]$ (using rand in matlab)

$$
\begin{array}{ll}
0 \leq \xi \leq \frac{1}{6} & \Delta \tilde{W}=+\sqrt{3 \Delta t} \\
\frac{1}{6}<\xi<\frac{1}{3} & \Delta \tilde{W}=-\sqrt{3 \Delta t} \\
\frac{1}{3}<\xi \leq 1 & \Delta \tilde{W}=0
\end{array}
$$

## 8 Projects

## Suggested Projects:

1. Thermal Ratchets [10, 2]
2. Ratchets and games [3]
3. Bifurcations [18]
4. Coherence resonance [23]
5. Coherence resonance in SIR [19]
6. Reduction of Kramers equation to Smoluchowski equation [5]
7. Stability of incoherent spiking in neuronal networks [6]
8. Localization of waves in random media [11]
9. Noise-induced neuronal network oscillations [24]
10. Noisy Kuramoto model: Fokker-Planck for oscillators [27, can be downloaded from class web site]
11. Exit from non-smooth potentials [29]
12. Black-Scholes equation for options pricing [31, 16, chapters from these books]
13. Coagulation [7, chapter III.6]

[^0]:    ${ }^{1}$ [15, Chapter 2.6 and 2.7]

[^1]:    ${ }^{2}$ one could formulate this statement also in terms of the rescaled sum as in the simple proof below.

[^2]:    ${ }^{3}$ cf. chapter III. 3 in [28] ([28]III.3)

[^3]:    ${ }^{4}$ [28]IV. 2

[^4]:    ${ }^{5}$ [28]V. 1

[^5]:    ${ }^{6}[15] 3.4$

[^6]:    ${ }^{7}$ use integration by parts with vanishing boundary terms.

[^7]:    ${ }^{8}$ [28, VIII.4]

[^8]:    ${ }^{9}$ Einstein derived these relations for the position.

[^9]:    ${ }^{10}[28$, V.8]

[^10]:    ${ }^{11}$ [29, can be downloaded from the class web site]

[^11]:    ${ }^{12}$ This amounts to a reflecting boundary condition for $x \rightarrow-\infty$
    ${ }^{13}$ This amounts to an absorbing boundary condition at $x=x_{2}$.

[^12]:    ${ }^{14}[15,5.2 .7]$

[^13]:    ${ }^{15}$ [28], IX.1-3

[^14]:    ${ }^{16}$ For simplicity we assume that the process is stationary.

[^15]:    ${ }^{17}[15,4$.

[^16]:    ${ }^{18}$ [15, Chap.4.2]

[^17]:    ${ }^{19}$ or simpler visualization via sum over all elements in a symmetric matrix: first sum consists of the diagonal terms, second (double) sum is over the upper triangle.

[^18]:    ${ }^{20}$ [15, Ch.4.3][25, Ch. 4.1]

