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The presence of heterogeneity of variance across groups indicates that the standard statistical model
for treatment effects no longer applies. Specifically, the assumption that treatments add a constant
to each subject's development fails. An alternative model is required to represent how treatment
effects are distributed across individuals. We develop in this article a simple statistical model to
demonstrate the link between heterogeneity of variance and random treatment effects. Next, we
illustrate with results from two previously published studies how a failure to recognize the substan-
tive importance of heterogeneity of variance obscured significant results present in these data. The
article concludes with a review and synthesis of techniques for modeling variances. Although these
methods have been well established in the statistical literature, they are not widely known by social
and behavioral scientists.

Psychological researchers have tended historically to view
heterogeneity of variance as a methodological nuisance, an un-
welcome obstacle in the pursuit of inferences about the effects
of treatments on means. In their discussion of variance hetero-
geneity, standard texts concentrate on identifying conditions
under which such heterogeneity can safely be ignored so that
standard analyses of means may proceed. It is usually argued
that heterogeneity can be ignored when statistical tests for
means are robust to violation of the homogeneity assumption
(Glass & Hopkins, 1984, pp. 238-240; Hays, 1981, p. 287;
Winer, 1971, pp. 37-39). When such violations cannot be ig-
nored, analysts tend to assume heterogeneity must be elimi-
nated. The primary strategy for eliminating heterogeneity is to
find a transformation of the dependent variable that stabilizes
treatment group variances, enabling retention of the homoge-
neity hypothesis (Kirk, 1982, pp. 79-84; Winer, 1971, pp.
397-402).

There has been little discussion in the literature of the causes
of heterogeneity in experimental studies. Light and Smith
(1971) noted that heterogeneity is likely to occur in program
evaluation studies. Although providing good exploratory data
analysis advice for examining heterogeneity of variance across
groups, their focus remained fastened on making appropriate
inferences about mean differences between programs.

In our view, to restrict considerations of variance heterogene-
ity to its effect on inferences about means is fundamentally mis-
guided. We show in this article that the presence of heterogene-
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ity of variance across groups in experimental studies indicates
that treatments have differential effects across individuals.
Rather than being a nuisance factor to be adjusted away, the
presence of heterogeneity of variance is important empirical
evidence of an interaction of treatments with some unspecified
subject characteristics. To ignore variance heterogeneity, then,
is tantamount to interpreting main effects while concealing sig-

nificant interaction effects. Although it is generally understood
that inferences about main effects are often misleading in the
presence of interaction effects, ironically, we commit exactly the

same error when we ignore heterogeneity of variance in experi-
mental studies.

Further, in many cases, the nature of these differential effects
is substantively interesting and can be crucial to evaluating the
efficacy of treatments (e.g., see Bloom, 1984; Bryk, 1978). A
common example of this phenomenon occurs when an experi-
mental treatment has an effect on some subjects but not on oth-
ers. This can result from technical problems in applying treat-
ments, or it can result from differential responsiveness of sub-
jects to the treatment. In either case, the treatment both
increases the variance and affects the mean.

We present in this article a simple mathematical model that
demonstrates how individual differences in treatment effects
produce heterogeneity of variance across groups. On the basis
of this model, we illustrate, with data from two previously pub-
lished studies, a general strategy for examining the results of
experiments when heterogeneity is present. The article con-
cludes with a brief review of the necessary statistical theory for
estimating treatment effects on variance and for testing hypoth-
eses about these variance effects.

Model of Treatment Effects

The simplest experimental design consists of random assign-
ment of individuals to either a treatment group or a control
group. The traditional statistical model corresponding to this
design is
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YE = in + a + e,E. (1)

Here, 7,c and YE represent outcome scores for individuals in

the control and experimental groups, respectively, and ft repre-

sents the mean outcome across all individuals (in the population

from which both groups were sampled). The error terms, e,c

and e,E, reflect all variation across individuals that is related to
the outcome other than the treatment effect. It includes both

the effects of personal characteristics, which we denote byp,,
and truly random features, including measurement error, which

we denote by rt, so that for both control and experimental
groups,

where p, and r, are independent by definition and have means
ofzero.

The treatment effect, a, is conceived as a constant increment

to each individual's outcome score and is the expected value of
the mean difference between the treatment and control groups,

that is,

E[Yi

E]-E[Yi

c] = a.

Since the same effect, a, is added to the outcome of each indi-
vidual in the experimental group, the mean difference between
the groups, YE - Yc, constitutes the relevant estimate of the

treatment effect. We also note that under random assignment,

Var [p,E] = Var [p,c] = ap

2

where <rp

2 is the outcome variance attributable to person-spe-

cific characteristics. Similarly, assuming no interaction of treat-

ment with the measurement process, it also follows that

Var[r,-E] = Var [r,c] = <rr

2

where o>2 is true random variation. It follows then that

Var [Y,E] = Var [y(

c] = o>2 + a?.

Although ideal for purposes of statistical analysis, this model
for treatment effects (Equation 1) is not very realistic in many

situations. Why should every individual receive an identical

boost? Surely some individuals must gain more than others

from experiencing the treatment.

This objection suggests that we generalize the model to repre-
sent individualized treatment effects. The model for the control

group remains as before:

f r,c. (3)

Now, the expected value of the mean difference between

groups is

In the treatment group, we now have

Yf = \i + a,• + pE + r,E, (4)

where at represents the effect of the treatment on individual;'.

The treatment effect is now a random variable that has a mar-

ginal distribution with some mean, /*„, and dispersion, <ra

2. It is

reasonable to assume that a, will often depend upon the person-

specific features represented by p,. As a consequence, a, and p,

covary, that is,

<W*0. (5)

as before, but now,

As a result, the observed mean difference between the groups

provides an unbiased estimate of the mean effect, na. As for the
variances,

"f

2 + «r2, (6a)

2ffw + o>2 + ff,
2. (6b)

Thus, as soon as we allow treatment effects to have a distribu-
tion, heterogeneity of variance across groups will occur. In-

cluded in this heterogeneity is the linkage between person char-
acteristics, PI, and the treatment effect, a,. Thus, in randomized

experiments, heterogeneity of variance between groups can be
viewed as an indicator that interaction effects of treatment with
subject-specific characteristics are likely in the data.1

Simple Case

In order to clarify the empirical consequences of individual-

ized treatment effects, we consider the simplest case, in which

both Pi and a, depend on just one measurable characteristic, Xi,
In research on cognitive development, for example, X, might be
a measure of cognitive ability. Thus, in this simple case, we

model the person and treatment-specific effects as

pp,c] = 1a1̂ p,c|> (7a)

and

«i = M« + fcXf, (7b)

where without loss of generality we will assume that Xp'cl have
means of zero.

The 0\ parameter in Equation 7a captures the structural rela-
tionship between aptitude and achievement that exists in the
absence of the experimental intervention. The allocation of

treatment effects across individuals is represented through

f>2XiE. When ft is positive, the larger treatment effects are allo-
cated to the higher ability students. Conversely, when ft is nega-
tive, the lower ability students receive the bigger effects. Substi-
tuting Equation 7 into Equations 3 and 4, we now have

YiC = M + p,XiC + r,c (8a)

and
Yf = n + ti, + № + ft)*,* + rf. (8b)

Equation 8 demonstrates that the individualized treatment
effects, modeled in Equation 7, imply a Treatment X Ability

interaction effect.

1 We note that heterogeneity of variance can also result from differ-

ential measurement error across groups. The presence of floor or ceiling

effects on a test, for example, could cause this to occur. Even in this case,

however, identifying heterogeneity of variance is important, because it

indicates a model misspecincation. Failure to take this into account

would result in a biased estimate of treatment effects.
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If the data were analyzed, however, in accordance with the

conventional analysis of variance (ANOVA) model (Equation 1 ),

we would find that

and

Var [Y,E] = (ft + ft)2 Var №E) + <r,2.

(9a)

(9b)

Because we are assuming experimental conditions in which in-

dividuals are randomly assigned to groups,

Var (X,c) = Var (X,E) = Var (A). (10)

Nevertheless, heterogeneity of variance still results, because

Var [Y,E] - Var №c] = ft (2/3, + ft) Var (A). (11)

We assume, without loss of generality, that X is scaled so that

0i is positive. Then when ft is positive, the variance in the treat-

ment group is larger than that in the control group. We call this

a disequalizing situation, in that the bigger effects are allocated

to the higher-ability students. Conversely, when —2/3, < ft < 0,

the variance in the treatment group is smaller than that in the

control group. We call this the equalizing case, in which the

bigger treatment effects are allocated to the lower-ability stu-

dents. Finally, there is an anomalous case, when ft < ~2ft, in

which again the treatment effect is disequalizing. Although

mathematically possible, this condition seems unlikely to arise.

Thus, a larger variance in the treatment group will most often

indicate a disequalizing allocation of individual treatment

effects. A smaller variance in the treatment group always indi-

cates an equalizing allocation.

Suppose an analysis of covariance (ANCOVA) were performed

instead of the standard ANOVA for the one-factor experimental

design. If the sample sizes in the treatment and control groups

are equal, then

/SANCOVA = (Pc + &)/2 = (2ft + ft)/2. (12)

As a result, the true regression coefficients within each group

deviate from /SANCOVA by the same amount:

It follows that the residual variances computed on the basis of

the ANCOVA model would be identical. Specifically,

Var [YiE] = Var [Yf] = (ft/2)2 Var (X) + <rr

2. (14)

Here is a case in which the model is misspecified (heterogeneity

of regression is ignored), and yet the heterogeneity of variance

has disappeared. This result actually constitutes a special case

that occurs when there are two groups of equal sample size.

If the sample sizes vary or if there are more than two groups,

heterogeneity of variance will generally accompany heterogene-

ity of regression (assuming that the varying slopes are not speci-

fied in the model).

General Case

We now extend the modeling of person- and treatment-spe-

cific effects to the multivariate case. (Hereinafter, we suppress

the E and C sub- and superscripts in the interest of simpli-

city.) Let

/

= 2 /
/-i

• •, J variables,

and

(15)

(16)

Equation 15 models the underlying structural processes that

form each individual's status in the absence of a treatment in-

tervention. Equation 16 indicates how individual treatment

effects are allocated with regard to the person-specific factors

captured in the Xit variables. This model is really quite general

in that any /3 coefficient or subset of coefficients may be set equal

to zero. If a ft; coefficient is zero, this means that the treatment

effects are being distributed without regard to that factor. If an

element in ft; is zero, but ft; is nonzero, this means that the

treatment has introduced a factor into the allocation process

upon which natural development does not depend. For exam-

ple, suppose we are comparing the effectiveness of an aural

method of foreign language instruction with that of a more tra-

ditional approach. Although auditory acuity may play a negligi-

ble role in traditional instruction, it could be a very important

factor for aural instruction. As a result, treatment effects are

allocated as a function of what was previously an extraneous

factor.

Without loss of generality, we assume that all of the Xq s are

scaled such that in the control group the correlation between

each XtJ and Y is positive. As a result, positive elements in ftyS

indicate that the treatment is disequalizing with regard to those

factors, that is, that the treatment is amplifying preexisting

differences among individuals. Conversely, negative elements

in ft; s indicate equalizing effects (again discounting reverse dis-

tribution as unlikely).

Assuming that we analyze these data in accordance with

Equation 1, we would find that

Var[r f

E]-Var[r ;

c]

= <7a

2 + 2ttf. = 2 ft;2 VarOj) + 2 [2 ft;ft; Var (A,)]
j-i >-i

/ j

+ 12 (ft;ft/ + ft; ft/ + fty0y)Cov (X,,Xj) (17)

i /

for ally+j'. If all of the ft; s are positive, Equation 17 must also

be positive. In the presence of such disequalizing effects, the

outcome variance will be greater in the treatment than in the

control group. Conversely, in the presence of pure equalizing

effects, that is,

with

-2ft;<ft;<0 for all;

for all

(18a)

(ISb)

the outcome variance will be smaller in the treatment group

than in the control group. Clearly, there are also many cases

between these two extremes with some ft; s positive and others

negative. The overall net effect can be deduced from a compari-

son of group variances. When a treatment group's variance is
smaller, this means that the net result of the process that allo-
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Table 1

Basic Statistics and Key Results From

Gagne and Cropper Study

Retention

Group n m

Correlation of retention

Pre-
Pre- achieve-

d Ability V/S rate ment

Verbal 42 33.5 96.04 4.570 .22 .28 .02 .09
Visual 46 37.8 75.69 4.348 .16 -.12 .19 .36
Control 45 32.2 187.69 5.156 .33 .07 .27 .23

Note. V/S = verbal-spatial ability. Heterogeneity of variance test (reten-
tion): (1/2) 2JL| Vj (d, ~Sf = 9.807, x2(2), p < .01. This test is based
on the log transformation of the standard deviation, d, = In (s/) + 1/u,.
(See Equations 19through21.)

cates treatment effects is to reduce existing differences among

individuals. In contrast, when the treatment group's variance is

elevated, the allocation process is amplifying these differences.

Included in the latter case is the possibility that the treatment

is activating new factors previously unrelated to the outcome of

interest.

Two Illustrations from the Literature

Aptitudes Treatment Study of Verbal and Visual

Methods of Instruction

Our first example is an Aptitude X Treatment interaction

(ATI) study (Gagne & Cropper, 1965) that was subsequently

reanalyzed by Cronbach and Snow (1977). The primary pur-

pose of the investigation was to test the hypothesis that the addi-

tion of visual illustrations to text would reduce the effects of

general ability on the learning of verbal lessons. The central in-

struction was the same for all subjects, consisting of seven self-

paced programs/lessons on mechanical advantage. Subjects

were randomly assigned to three groups: visual, verbal, and con-

trol. The two experimental groups were given special introduc-

tions to each of the seven lessons. The visual group saw film

demonstrations of basic concepts. For the verbal group, the

same demonstrations were described only in words. The final

outcome variable was achievement retention (retention) on a

test 1 month after the end of the lesson. Interim outcomes in-

cluded time to work through the lesson (rate) and the achieve-

ment score immediately following the lesson (achievement).

General ability (ability) and verbal-spatial ability (V/S) were

assessed prior to the commencement of instruction. Each group

undertook two preliminary programmed lessons that provided

necessary background information on mechanical advantage.

This phase was identical for all three groups. These lessons pro-

vided additional aptitude measures of prerate and preachieve-

ment.

Gagne and Gropper (1965), using simple correlations and

blocked ANOVA, found no significant ATI effects. Their report

ended on a rather pessimistic note. They commented that there

was "no reason why ATI effects could not have been revealed

[in this study], if they truly existed" (p. 19) and further con-

cluded that the ATI approach to studying learning was not a

particularly promising one. The Cronbach and Snow (1977) re-

analysis, employing more powerful regression techniques, de-

tected some evidence of ATI effects on retention, although they

cautioned about the suggestive character of those results. Table

1 displays key statistics reported in the Cronbach and Snow re-

analysis of the Gagne and Gropper data.

Although Cronbach and Snow (1977) noted the heterogene-

ity of variance among the experimental groups, neither pair of

investigators recognized the substantive implications of this

empirical result. As was demonstrated in the previous section,

the presence of heterogeneity is indicative of the fact that sig-

nificant interaction effects occurred in this experiment. Further,

we see from Table 2 that both treatments are variance-reducing

in comparison with self-paced instruction. This indicates that

the effects of self-paced instruction were disequalizing in rela-

tion to the other two methods considered in this study. Pure

self-paced learning amplified differences among students that

the supplemental direct instruction attenuated.

Cronbach and Snow's (1977) reanalysis fitted separate

models for regressing retention on ability, V/S, achievement,

and preachievement for each group. (The residual variances

from this conditional model are displayed in Table 2). After

controlling for these four variables, the variance difference be-

tween the verbal treatment and the self-paced instruction was

no longer significant. The residual variance in the visual group,

however, remains significantly smaller. This implies that there

are still unspecified variables, the effects of which operate

differently under visual instruction than under other methods.

Whatever these specific variables are, it is clear that visual

methods reduce the effect of unmeasured individual differ-

ences, differences that are amplified under both the verbal and

the self-paced forms of presentation.

Thus, by a careful consideration of variance differences

across the experimental groups, we come to a considerably

different conclusion than that reached by the original authors.

Quite contrary to Gagne and Cropper's (1965) rather pessimis-

tic ending, the evidence assembled in their study suggests that

the visual form of instruction is a very promising method. The

level of retention was higher and the effects distributed in a rela-

tively equalizing fashion.

Teacher Expectancy Experiment

Our second illustration draws on results from an experiment

conducted by Kester (1969), and later published by Kester and

Table 2

Residual Variances in Retention (After Controlling for Ability,

V/S, Prerate, and Preachievement)

Group s^x d

Verbal
Visual
Control

65.74
23.47
78.83

4.030
3.180
4.392

Note. V/S = verbal-spatial ability. One degree of freedom contrasts:
tfo: In <rraw

2 = In ammf; z = (4.030 - 4.392)/[2(l/37 + 1/40)]"2 =
-1.12, n.s.
H0:la Jvi,,,.,2 = (l/2)(ln <rralM

2 + In ffconttol
2); z = (3.180 - 4.211)/

[2/41 + 1/4(2/37+ 2/40)]l/2 = -2.47,p<.01. These tests are based on
the procedure for examining linear contrasts given in Equation 22.
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Letchworth (1972). The study assessed the effects of experimen-

tally induced teacher expectancies on pupil IQ. Within each of

24 classrooms, several students were assigned at random to ei-

ther a high-expectancy or a control condition. In all, 75 students

were assigned to each group, though data for one control stu-

dent was lost. The authors found no effect of teacher expectancy

on pupil IQ.
In this study, too, the treatment had an effect on the variance

that went unrecognized in the original investigation. As is indi-

cated in Tables 3 and 4, a reanalysis of the Kester data using

preexperiment IQ as a covariate reveals substantial differences

in the residual variance in the experimental and control

groups.2 Unlike our first example, the treatment apparently ex-

erts a disequalizing effect here. Specifically, the residual vari-

ance in the experimental group (56.52) was significantly larger

than the residual variance in the control group (32.59), F(73,

74)= 1.73,p<.02.
Two different explanations are possible for this result. First,

it might be that teachers differed in their response to the expec-

tancy-inducing information. If some teachers acted on the basis

of the inflated expectancies while others simply ignored them,

a larger treatment group variance would result. Alternatively,

the effect of the treatment might depend on student characteris-

tics (e.g., varying individual responsiveness or needs for praise

and reinforcement). This, too, could produce heterogeneity of

variance.

Further examination of the data sheds considerable light on

the tenability of these alternative explanations. If, indeed,

teachers responded differentially to the expectancy-inducing in-

formation, we would expect to find evidence that the magnitude

of the treatment effect varied across classrooms. This hypothe-

sis can be examined by introducing classrooms as an additional

factor in the ANCOVA, with attention focusing on the Treat-

ment X Classroom interaction effect. The 2 X 24 (Treatment X

Classroom) ANCOVA, however, revealed no evidence of a sig-

nificant interaction, F(l, 23) = ,83.3 This result indicates that

the source of the heterogeneity is within classrooms, a result

consistent with our second explanation. Specifically, the second

explanation, that treatment effects depend on student charac-

teristics, implies that the within-classroom variance would be

larger for the treatment group than for the control group. In

fact, this is exactly what occurs (see Table 3).4 The within-class-

room variance was 54.69 in the experimental group and only

25.24 in the control group, yielding an experiment-to-control

Table 3
Basic Statistics and Key Results From Kester (1969) Study

Statistic Experimental Control

Pretest IQ mx

Posttest IQ my

Pretest s2

Posttest s,.2

Residual variance, S2
lx

Pooled within-classes
residual variance,

2
•V | ^classes

Sample sizes, n

101.11
104.62
30.36
71.40
56.52

54.69
74

100.07
102.47
28.20
47.47
32.59

25.24
75

Table 4

Treatment X Classroom ANCOVA

(With Pretest IQ as a Covariate)

Source df SS MS

Covariate
Treatment
Teachers
Treatment X

Teachers
Residual

1
i

22

22
102

1,147.91
83.28

1,863.24

721.91
4,021.97

1,147.91
83.28
84.69

32.81
39.43

2.54

.83

.07

n.s.

variance ratio of 2.17, .F(51, 50) = 2.17, p < .01. Hence, the

effect of the treatment did indeed depend on unmeasured stu-

dent characteristics.5

Here, too, our framework for studying variance heterogeneity

enabled us to take a study originally dismissed as producing

null findings and to discover a potentially important result. The

effects of teacher expectancies, rather than being negligible,

were variable. Moreover, we were able to dismiss teacher differ-

ences as the source of this variability and to conclude instead
that the treatment effects depended on unidentified student

characteristics. Thus, the results of this simple experiment sug-

gest that a more sophisticated subsequent study be undertaken

to identify the precise student characteristics involved and

thereby to contribute to a better understanding of the mecha-

nism by which teachers' expectations differentially affect their

students.

Techniques for Modeling Variances

Normal Theory Methods

Clearly, a careful examination of variance should be a routine

component in the analysis of data from psychological experi-

2 This first analysis was based on a simple treatment-control group
design (ignoring classrooms), using pretreatmentlQ as a covariate. Spe-
cifically, the model was YtJ = </ + a; + S(XtJ - X,j) + e^ where fi is the
grand mean, aj is the group effect (treatment versus control), £ is the
regression coefficient pooled within the treatment and control groups,
and Xq is the pretreatment IQ. The use of the pooled within-group co-
efficient was justified in that the separate regression coefficients in the
treatment and control groups were not statistically different. The pa-
rameter estimates from this ANCOVA model were used to generate pre-
dicted outcomes, Ys, for each subject, and a residual variance, 2JV,
(Yy — Yy)2/(nj — 1), computed separately for the treatment and control
groups.

3 The model for this second analysis was Y& = p + «/ + 4» + tit +
S(Xijk - Xg) + «№ where a, denotes the treatment effect (experimental
vs. control); 5* is the effect of classroom k, (k = 1, • • • , 24); 7^ repre-
sents the Treatment X Classroom interaction effect; and /3 is the regres-
sion coefficient pooled within the 48 Treatment X Classroom cells.

4 As in the first analysis, parameter estimates based on this model
were used to generate predicted outcomes Yijk, and a residual variance
was computed separately for experimental and control groups using the
formula 2,2* (IV - ijn)2/(2;2* »* - 24), where njk is the number of
children in treatment _/', classroom k.

5 This analysis treated both classrooms and treatments as fixed fac-
tors. As a reviewer pointed out, the optimal analysis of these data is
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ments. To facilitate future efforts of this sort, we review in this
section basic statistical techniques for analyzing variances and
testing hypotheses about them. Although this theory is well es-
tablished in the statistical literature (see, e.g., Miller, 1986), it is
not widely known by practicing researchers.

The method for comparing the variances of two independent
groups is well-known. Assuming the data are normally distrib-
uted, the ratio of two sample variances is distributed as an F
statistic with t>, and % djk respectively, under the homogeneity
of variance hypothesis. This is the standard parametric test for
comparing variances in two groups. Extension to more than
two groups is not direct, however, because there is no simple
statistical theory for linear modeling of sample variances. The
most common alternative is to transform the sample variances,
Sj2, for each of the /groups such that the transformed statistics
are approximately normally distributed. Estimation- and hypo-
thesis-testing techniques from normal distribution theory are
then applied.

Several normalizing transformations of Sj2 have been sug-
gested in the literature, including the log transform and the
square root and cubed root afsj2 (see Kendall & Stuart, 1969;
or for a more recent review, Raudenbush & Bryk, 1987). Al-
though the cube root transform converges very quickly to nor-
mality and thus offers distinct advantages with very small sam-
ple sizes, the log transformation is generally preferable for sev-
eral reasons. First, linear contrasts among the In (y/) are
invariant to changes of scale in the raw data (Box & Tiao, 1973).
for instance, standardizing the data around the grand mean for
several groups has no effect on estimated contrasts among the
log-transformed variances. This invariance property does not
hold s2, s, or the cube root transform. Second, when the raw
data are normal, the In (jj2) are approximately normally dis-
tributed and with stable variance. The approximate sampling
variance for In (i/) is 2/ty, which does not depend on the popu-
lation variance, a1. Third, a bias correction factor for In (j/)
can be introduced that improves the accuracy of the asymptotic
approximation. Raudenbush and Bryk (1987) demonstrate that
this bias-adjusted log transform is an excellent approximation
with sample sizes as small as 10 per group, which covers most
of the cases likely to be encountered in social and behavioral
research.

Specifically, we define the transformation

where Vj is the degrees of freedom in group./ and \/Vj is the bias
correction factor. These transformed variances can then be used
in any standard linear model technique.

For example, as first suggested by Bartlett and Kendall
(1946), we can estimate the residual variance separately for
each cell in an ANOVA design and perform an ANOVA on the
transformed variance statistics. A simple application is the om-

based on a mixed model with treatments fixed and classrooms random.

However, the F test for the Treatment X Classroom interaction is the

same using both models if the design is balanced (Kirk, 1982, p. 391).

Given that the Kester data were nearly balanced and that the F test was
trivially small, no further analysis was needed.

nibus test for heterogeneity of variance, as was previously used
in Table 1 . For an ANOVA design, if we define

(20)

where the summation is taken across all of the cells of the de-
sign, j = ! , • • • , / , then the test statistic for the omnibus homoge-
neity of variance hypothesis is

(21)

which has an approximate chi-squared distribution with J - 1
degrees of freedom.

Because the dj are approximately normally distributed, we
can also perform both simple and complex contrasts among
specific cell values. In general, for any linear contrast,

j
%Cjdj with 2 0 = 0

among the /-transformed variances, the test statistic

(22)

follows a z distribution under the null hypothesis. This test was
also used in Table 1, in which we separately compared the ver-
bal and visual methods of instruction with the control condi-
tion. In general, any standard multiple comparison procedure
can be applied to the dj statistics. For a further discussion and
illustration of these techniques, see Games (1978a, 1978b). His
development is identical to ours except that he does not take
into account the bias correction factor in Equation 19.

In fact, modeling of variances can be approached as a general
linear model problem. Specifically, Raudenbush and Bryk
(1987) have formulated a mixed model for sample variances
utilizing the log-transformed dj introduced above. These dj are
represented as a linear function of a set of fixed effects including
possible design variables and of random effects that might result
from sampling units such as schools, classrooms, or persons.

Sensitivity to Distributional Assumptions

Parametric test statistics for variances are not robust to viola-
tion of the normality assumption for the raw data. In particular,
the distribution of the test statistics are sensitive to kurtosis in
the parent distribution. If the raw data have "fat tails" (a platy-
kurtic distribution), the true a levels will be underestimated
and the probability of a Type I error increased. With leptokurtic
data, the reverse is true (for a review, see O'Brien, 1979).

Table 5 displays the kurtosis values, 72, of several common
distributions. For each distribution, we present a correction fac-
tor that can be used in two different ways to guard against in-
valid inferences.

First, if the underlying distribution is known or can be ap-
proximated, standard errors can be adjusted for kurtosis. Sup-
pose, for example, that the outcome variable is a behavioral
count, such as the frequency of student-initiated interaction
during a class, and that students initiate an average of one inter-
action each. This outcome should be well represented as a Pois-
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Table 5

Correction Factors for Several Distributions

Distribution

t, df= 5

t, df" 6
f, df= 10

t, df= 20
(, df= 30
t, df= 60

Poisson, n
Poisson, /i
Poisson, ju

= 1
= 2
= 3

72 = kurtosis

6.00
3.00
1.00
.37
.23
.11

1.00
.50
.33

Correction factor
C=(l+7 2/2)"2

2.00
1.58
1.22
1.09
1.06
1.03

1.22
1.12
1.08

Normal 0.0

Unimodal, symmetric likert .50
Beta (p = 2,q = 2) -.86
Uniform (or uniform likert) — 1.30

1.00

.87

.76

.59

Note. For the t distribution, y2 = 6/(df— 4). For the Poisson distribution,
72 = V- ~ 1. The Poisson is a sensible model for the probability of n
events in a unit interval of time, where £(«) = 41. Examples might in-
clude student-initiated interactions or days absent. The unimodal sym-
metric Likert has five categories with probabilities of .1, .2, .4, .2, and
.1, respectively. The beta distribution with p = 1, q = 2, is unimodal,
symmetric, and truncated so that the variable takes on values between
0 and 1. The kurtosis depends on the fourth moment of the data distri-
bution and indicates the density of observations in the tails of the distri-
bution. See Johnson and Kotz (1970).

son variate with mean, ji = 1. For this case, the correction factor

is C = 1.225. The value of the z statistic is simply divided by C

to obtain a test statistic that is corrected for the kurtosis in the

parent distribution. Without the correction, the z test would be

too liberal, resulting in elevated Type I errors. Note that if there

were an average of three interactions per student (i.e., /» = 3),

then the correction factor, C, would be 1.080. Alternatively, sup-

pose the outcome is a Likert scale with an approximately uni-

form distribution of responses. Now the appropriate correction

factor would be .59. Without this correction, the z test would

be too conservative.

The second way of using these correction factors is as a form

of sensitivity analysis. One simply calculates the value of the

correction factor needed to reverse an inference. The question

becomes, Is it possible that the data were actually generated

from such a distribution?

For example, consider the analysis presented in Table 3 for

the Kester study. Assuming normality, the z test of the differ-

ence between experimental- and control-group variances

(pooled within classrooms), is

log (54.69) + 1/50 - log (25.24) - 1/51 = 2 ?J

V2/50 + 2/51

p < .005. Because the critical value of z at a = .05 is 1.96, the

correction factor needed to overturn the inference is 2.75/

1.96 = 1.40. As Table 5 shows, this correction factor is associ-

ated with a rather fat-tailed distribution, a t distribution with

approximately 8 degrees of freedom. However, examination of

a normal probability plot actually showed a distribution with

"thin tails" (so that the correction factor is likely to be smaller

than unity). Thus, the sensitivity analysis supports the normal-

based inference.

When nonnormal data occur, nonparametric tests for vari-

ances represent another option (for a review, see Miller, 1986,

chap. 7). One fairly flexible technique, discussed by O'Brien

(1979), is a generalization of the Scheife test (see Glass & Hop-

kins, 1984, p. 356) that involves use of jackknife-type estima-

tors. This approach is more complex computationally, and as

O'Brien notes, the variance of these estimators depends upon

their means, and this dependence can be problematic.

Discussion

Both of the examples presented in this article were chosen to

illustrate an important point. Substantively significant empiri-

cal results have been ignored because research methodology has

tended to focus exclusively on mean differences. Standard

methodological training has left researchers largely unaware of

the theoretical significance of variance heterogeneity, partly be-

cause basic texts tend to view such heterogeneity as a method-

ological nuisance rather than a source of important informa-

tion.

The practice of routinely searching for data transformations

that will eliminate heterogeneity is misguided. Although such

transformations may be warranted, their legitimacy derives

from purely substantive considerations; that is, a transforma-

tion is justified only if the transformed metric is more meaning-

ful than the original metric. Variance, stabilizing transforma-

tions are necessarily nonlinear transformations. Hence, the

original and transformed metrics cannot both be interval mea-

sures of the same construct. Because linear model analyses re-

quire the outcome to be measured on an interval scale (at least

approximately so), a variance-stabilizing transformation is jus-

tified only if the transformed metric approximates an interval

scale measure of the construct better than does the original

metric.

Most analyses of experimental data assume that the treat-

ment is a fixed entity that can be formally defined and uni-

formly administered to each individual. In such a case, the only

source of heterogeneity of variance is individual differences in

responsiveness to the fixed treatment. Such differences consti-

tute interaction effects between person characteristics and treat-

ment group membership.

In many research contexts, however, the treatment that is ac-

tually implemented may vary across individuals. We hypothe-

sized such effects, for example, in considering the heterogeneity

in Kester's (1969) teacher expectancy study. More generally, re-

search on instruction often utilizes several classrooms, therapy

groups, or other groupings in order to obtain a sufficient subject

sample. It is reasonable to assume, however, that the different

teachers in these classrooms will vary in their use of the instruc-

tional intervention. The resultant variations in the treatment

implementation as well as differences in individual subjects

characteristics can produce variance in the treatment effects.

One obvious response to our objections to the constant treat-

ment effect model (Equation 1) is that although this model is

not literally correct, it is still useful in that it provides an ade-

quate summary measure of a treatment's overall effect. Knowl-

edge that a treatment works well on the average is considered to
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Test homogeneity
of variance

retain Ho / .reject Ho

Estimate constant
treatment effect, a

Search for possible

interaction effects
of variance

retain Ho/ reject Hc

Estimate p.a and report
treatment effects across
a range of values on the

interacting factors

Conduct post-hoc
investigation of sources

of heterogeneity

of variance

Figure I. Decision tree in analyzing experimental data. (It is good data analysis practice to consider the

tenability of the normality assumption with conventional techniques such as probability plots. If the data

appear nonnormal, the analyst should examine the sensitivity of the homogeneity tests to the likely viola-

tions of the normality assumption. See text.)

be useful. Embedded in this interpretation of mean differences
between groups is an implicit value judgment about the relative
worth of differential effects. For example, we are assuming that
five individuals gaining 2 points is an equal counterweight to
one individual losing 10 points. If, however, the 10-point loss
reflects catastrophic consequences for that individual, the value
of these two sets of consequences may be far from counterbal-
ancing. For clarification, the concerns we are raising now are
not measurement issues but rather questions of value. These
problems would exist even if our measures had ideal psycho-
metric properties, such as a perfect interval scale.

On a more profound level, we assert that psychological re-
search will be better served by assuming a priori that treatment
effects are random rather than fixed. Here the treatment effects
are random not because the treatments themselves constitute a
random sample from a population of treatments but because
the number of subject characteristics that may interact with
treatments is so vast that one cannot assume a priori that our
statistical models can specify all relevant interactions. If the
treatment effect is therefore a truly random variable, the goal
of statistical inference is to learn about its distribution. Techni-
cally, the distribution of interest is the conditional distribution
of the treatment effects given the characteristics of individuals,
settings, and characteristics of treatment implementations. Im-
portant parameters of this distribution include conditional
means (specified by main effects and interactions) and condi-
tional variances.

In summary, the presence of heterogeneity of variance across
treatment groups is a strong indicator that the treatments have
differential effects on individuals. In the presence of such indi-
vidualized effects the mean treatment effect, na, provides an

insufficient summary. The sources of this heterogeneity should
be identified and treatment effects reestimated conditionally on
the identified interactions. Specifically, we propose a sequence
of analytic activities, as is displayed in Figure 1.

Testing the homogeneity of variance hypothesis should be a
routine component in the analysis of experimental data. A
finding of homogeneity of variance across groups indicates that
the classical treatment effect model is tenable. The analyst may
safely proceed to estimate a as the appropriate statistical sum-
mary of the treatment effect. If the homogeneity hypothesis is
rejected, the analyst should consider the possibility of interac-
tion effects in the experiment. Assuming that such factors are
identified, the analyst should fit a new model that incorporates
the interaction terms and test the homogeneity of residual vari-
ances. If the latter is sustained, the investigator should report
both the average effect, /»„, and estimated effects across a range
of values on the interacting factors. A comprehensive descrip-
tion of the multivariate distribution of treatment effects be-
comes the central scientific goal.

Failure to sustain a homogeneity of variance hypothesis
means that there are still unidentified sources of individual vari-
ability present in the study that may confound the interpreta-
tion of estimated treatment effects. This is an important finding
that requires explicit acknowledgment and further investiga-
tion. Post hoc studies, as we have illustrated in our two exam-
ples, may help to reveal the source of the unmeasured interac-
tion effects (e.g., interactions with subject characteristics) and
their general nature (e.g., equalizing versus disequalizing). Such
exploratory analyses can suggest possible explanations for the
observed heterogeneity that should be formally tested in subse-
quent research.



404 ANTHONY S. BRYK AND STEPHEN W. RAUDENBUSH

More generally, the possibility of individualized treatment

effects in experimental studies has implications for research de-

sign and reporting of results. Data on personal characteristics

that might interact with treatment effects should be collected.

Both existing theory and careful observation of the experiment

in progress may help to direct this extended inquiry. Should

heterogeneity of variance be encountered, these additional data

can be explored for possible explanations using the methods

presented in this article.

The presence of individualized treatment effects also has im-

portant implications for subsequent meta-analysis of research

programs. Because studies rarely employ a random sampling

of both person and treatment characteristics, differences across

studies in these factors will produce heterogeneity of mean

effect sizes. At a minimum, studies should report a full elabora-

tion of subject and treatment characteristics in order to facili-

tate subsequent synthesis. Ideally, the focus of the meta-analysis

task should also be redirected. Attention should shift from syn-

thesizing a single effect estimate, that is, /*„, from each study to

summarizing the distribution of the treatment effects condi-

tionally on subjects, settings, and treatment characteristics.

Both conditional means and conditional variances are relevant

to the summary. Given that each study would produce a vector

of parameter estimates, a multivariate approach to meta-analy-

sis is needed. Statistical methods for such multivariate meta-

analyses have begun to appear (Hedges & Olkin, 1985; Rauden-

bush, Becker, & Kalaian, 1988; Rosenthal & Rubin, 1986), and

further work in this area is warranted.

Finally, although the research designs considered here are

simple, the methods readily extend to more complex cases, in-

cluding multifactor models having within- and between-subject

components. Raudenbush (1988) provided methods for esti-

mating and testing contrasts among correlated dispersion esti-

mates. This theory enables study of the effect of within-subjects

treatments on variances. The sequence of steps presented in this

article apply again: If variances are found to be heterogeneous,

model variation among the variances first; then estimate mean

effects and report differential effects of treatments for subjects

of differing background.
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